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Abstract: 13 

    The resonant water motion inside a narrow gap between two identical fixed boxes that are in 14 

side-by-side configuration is investigated using a two-dimensional (2D) numerical wave tank based 15 

on OpenFOAM®, an open source CFD package. Gap resonance is excited by regular waves with 16 

various wave heights, ranging from linear waves to strong nonlinear waves. This paper mainly 17 

focuses on the harmonic analyses of the free-surface elevation in the narrow gap and wave loads 18 

(including the horizontal wave forces, the vertical wave forces and the moments) on the bodies. It 19 

is found that the influences of the incident wave height on the higher-order harmonic components 20 

of different physical quantities are quite different. The effects of the incident wave height on the 21 

reflection, transmission and energy loss coefficients are also discussed. Finally, aiming at the 22 

quantitative estimation of the response time and the damping time of gap resonance, two different 23 

methods are proposed and verified for the first time on gap resonance.  24 

 25 
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1. Introduction 29 

In the past few decades, as the oil and gas industry have moved towards deeper waters and 30 

harsher environments, Floating Production Storage and Offloading (FPSO) platforms have shown 31 

great potential as the most economic ways to process and distribute the hydrocarbon products. One 32 

of the key challenges for FPSO platforms lies in the safe offloading operations from them to a shuttle 33 

tanker when the tanker is positioned side-by-side with them. When multiple floating bodies are 34 

deployed side-by-side in close proximity and are subjected to incident water waves, drastic water 35 

surface oscillations may occur inside the narrow gaps between them at certain frequencies. This 36 

phenomenon is normally referred to as “gap resonance”.   37 

The hydrodynamic interactions of multiple bodies with narrow gaps between have been 38 

investigated extensively due to its relevance to offloading facilities for FPSO. The methods used in 39 

these studies include theoretical analyses, physical experiments and numerical simulations. The 40 

theoretical analyses were mainly used in the early studies of the gap resonance problem and were 41 

mainly based on the linear potential flow theory (Miao et al., 2000; Molin, 2001). Subsequently, to 42 

better understand gap resonance and to validate the theoretical analyses, a large number of physical 43 

model tests in 2D and 3D wave basins were also implemented by previous researchers (e.g., Iwata 44 

et al. (2007); Saitoh et al. (2006); Zhao et al. (2017)). The numerical investigations conducted so far 45 

are mainly based on the classical potential flow model employing the boundary element method and 46 

scaled boundary finite element method (e.g., Li et al. (2005); Li and Zhang (2016); Sun et al. (2010)).  47 

Although both theoretical analyses and the numerical simulations based on the potential flow 48 

theory have been shown to predict the resonant frequency well, they were reported to significantly 49 

over-estimate the resonant wave height inside the gap and the wave forces on the floating bodies, 50 

because the physical energy dissipation due to the fluid viscosity, vortex shedding and even 51 

turbulences cannot be considered in the context of potential flow theory. To overcome this problem, 52 

several particular numerical techniques that artificially introduce wave energy dissipation term into 53 

the potential flow model were developed so far (Chen, 2004; Huijsmans et al., 2001; Lu et al., 2010b; 54 

Newman, 2004; Ning et al., 2015a, b). However, the introduction of artificial damping term seems 55 

somewhat arbitrary for the rigorous potential theory, and under some conditions it was found to be 56 

difficult to obtain a unique value of the damping parameter (Pauw et al., 2007; Tan et al., 2014). In 57 

recent years, with the fast developments of computing technology, the CFD simulation has gradually 58 
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become an alternative method in investigating the gap resonance problem (Jiang et al. (2018); Lu et 59 

al. (2010a); Lu et al. (2011a); Lu et al. (2011b); Moradi et al. (2015, 2016)). All these studies found 60 

that the results obtained by the CFD simulations agreed well with those from existing experiments. 61 

While many research efforts into the gap resonance have been undertaken, the majority have 62 

concentrated on the analyses of the overall resonant wave height in the narrow gap and the overall 63 

wave loads on the boxes under the condition of the linear or weakly nonlinear regular waves (e.g., 64 

Feng et al. (2017); Jiang et al. (2018); Lu et al. (2010a); Lu et al. (2010b); Lu et al. (2011a); Lu et 65 

al. (2011b); Moradi et al. (2015, 2016)). The investigations on the harmonic analyses of the wave 66 

height and wave loads are relatively rare. By using a semi-analytical formulation of the velocity 67 

potentials, Mavrakos and Chatjigeorgiou (2009) investigated the significance of the second-order 68 

effects to the total wave loading on a cylindrical moonpool, especially in the frequency regions in 69 

which the fluid resonance occurs. Sun et al. (2010) employed a 3D boundary element code 70 

DIFFRACT to investigate the first- and second-order loads and free-surface elevations for two side-71 

by-side rectangular barges. However, both of their methods are based on the classical potential flow 72 

theory which does not consider the physical energy dissipation due to the viscous effect. Hence, 73 

some of their findings may not reflect real phenomena of the fluid resonance in the narrow gap or 74 

in the moonpool, where the physical energy dissipation plays an important role. Zhao et al. (2017) 75 

investigated experimentally the first and higher harmonic components of the resonant fluid response 76 

in the gap between two identical fixed rectangular boxes excited by the transient focused wave 77 

groups in a 3D wave basin. However, the gap resonance induced by the regular waves and the 78 

harmonic analyses on wave loads were not considered in that paper.  79 

To further improve the understanding of related phenomena involved in gap resonance, this 80 

paper mainly focuses on the variations of the first and higher harmonic components of free-surface 81 

elevation inside the gap and wave loads on boxes with respect to the wave height of the incident 82 

regular waves when gap resonance occurs. In this paper, the system of two identical boxes is taken 83 

as the background of this study. For comparison, the same problem is also investigated when the 84 

free-surface elevation in the narrow gap is under non-resonant conditions. Compared to the previous 85 

investigations (i.e., Feng et al. (2017); Jiang et al. (2018); Lu et al. (2010a); Lu et al. (2010b); Lu et 86 

al. (2011a); Lu et al. (2011b); Moradi et al. (2015, 2016)), stronger nonlinear incident waves are 87 

used in this paper, which is necessary due to the fact that FPSO platforms are often exposed to severe 88 
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wave conditions. Subsequently, the variations of the reflection coefficient 
rC , the transmission 89 

coefficient 
tC  and the energy loss coefficient 2 21e r tL C C    with respect to the frequency of 90 

the incident waves with various wave heights are also discussed, because an integral comprehension 91 

of these coefficients may promote the better understanding of the mechanism essence of the gap 92 

resonance (Jiang et al., 2018). Meanwhile, these previous studies were mainly concerned on the 93 

related hydrodynamic phenomena after the free-surface resonance in the narrow gap reached the 94 

steady state, and both the response and the damp phases were paid little attention to. In the current 95 

paper, both the response time and the damping time of gap resonance are quantitatively evaluated 96 

by two different methods. In practical engineering applications, the fast and accurate estimation of 97 

the response time and the damping time is very important for the safe evacuation of staff and the 98 

reasonable arrangement of operation time during the offloading operations from a FPSO platform 99 

to a shuttle tanker under gap resonance conditions.    100 

In Sections 2, 3 and 4, the numerical model employed in this work, numerical experimental 101 

setup and the validations of the numerical model against available experimental and numerical data 102 

are presented, respectively. The numerical results and discussions are presented in Section 5. Finally, 103 

conclusions are drawn in Section 6. 104 

 105 

2. Numerical model description 106 

     To consider the physical energy dissipation near the gap due to the viscous effect, a viscous 107 

flow solver is necessary. In this paper, the numerical wave tank is based on the OpenFOAM® 108 

multiphase solver “interFoam”, and waves are generated and dissipated using the relaxation-based 109 

wave generation toolbox “waves2Foam” proposed by Jacobsen et al. (2012). 110 

2.1. Governing equations 111 

The continuity and Navier-Stokes equations are utilized as the governing equations to solve 112 

the two-phase flow of water and air:  113 

   0
t





 


u ,  (1) 114 

      T

tP k
t




    


         



u
uu g x u ,  (2) 115 

where ρ is the fluid density,  , ,
x y z

  

  
   is the gradient operation, u=(u, v, w) is the velocity 116 

vector of the fluid, x=(x, y, z) is the Cartesian coordinate vector, g is the gravitational acceleration, 117 
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P is the pressure in excess of the hydrostatic part, μ is the dynamic viscosity of the fluid, 
t  is the 118 

surface tension coefficient and k  is the surface curvature. The above equations are solved for 119 

both water and air simultaneously. α denotes the volume fraction of water in the computational cell, 120 

which takes a value of 1 for water and 0 for air and intermediate values for a mixture of water and 121 

air. The distribution of α is modelled by the following advection transport equation: 122 

     r1 0,
t


  


     

u u   (3) 123 

in which 
r water air u u u is a relative velocity between the water and the air. Using α, the spatial 124 

variation of any fluid property φ (e.g., the fluid density ρ and the dynamic viscosity μ) can be 125 

expressed through the weighting  126 

  water air1      ,  (4) 127 

where the subscripts “water” and “air” denote the corresponding fluid property of water and air, 128 

respectively.  129 

2.2. Boundary conditions and numerical implementations  130 

The toolbox “waves2Foam” proposed by Jacobsen et al. (2012) is employed to generate and 131 

absorb waves at the boundaries (see Fig. 1). At the inlet and the outlet boundaries, the velocities are 132 

defined as that of a regular incoming wave and as zero, respectively, and the pressure gradients are 133 

set to zero. Two relaxation zones are deployed at the inlet and the outlet boundaries to absorb the 134 

reflected and the transmitted waves. At the upper part of the tank, the boundary condition is set as 135 

“atmosphere”; while at the bottom of the tank and the solid walls of the fixed boxes, “no-slip” 136 

boundary condition is applied. For a 2D problem, the boundary condition on the walls in the third 137 

dimension is set to “empty”.  138 

The governing equations (1)-(2) and the advection transport equation (3) are solved based on 139 

the finite volume method. The velocity-pressure coupling is calculated using the PISO (Pressure 140 

Implicit with Splitting of Operator) algorithm. Gradients are approximated by the Gaussian 141 

integration method based on a linear interpolation form cell centers to cell faces. The time 142 

derivatives are solved by a first-order Euler scheme. The Gauss Convection-specific schemes are 143 

used for the evaluation of the divergence terms. Identical to Feng et al. (2017), to produce accurate 144 

and stable results, the largest Courant number is set to 0.25 in all simulations.  145 

Once Eqs. (1)-(3) are solved at each time step, the wave force and the moment on the structure 146 



6 

 

can be calculated by the following formulations: 147 

  + ( )P ds


  F n u n ,  (5) 148 

and 149 

  + ( )P ds


   M r n u n , (6) 150 

where F and M are the vectors of the wave force and the moment, respectively, u is the tangent 151 

velocity component, n is the unit normal vector, ds is the surface area differential on the wet solid 152 

surface Ω, and r is the position vector of ds relative to a certain space point. For the gap resonance 153 

problem that will be described in detail in Section 3, the moments on the two fixed boxes correspond 154 

to their respective centroids. As for the harmonic analysis for various variables (i.e., the free-surface 155 

elevation in the gap, the horizontal and vertical wave forces and the moments on the two boxes), 156 

they are performed by using the discrete Fourier transform for the time-histories of their respective 157 

signals. 158 

 159 

Fig. 1. Sketch of the numerical wave tank: (a) boundary conditions and the definition of the 160 

coordinate system; (b) positions of wave gauges and the definition of the geometric parameters.     161 

3. Numerical wave tank 162 

Fig. 1 illustrates the sketch of the 2D numerical wave tank used in the present study. The wave 163 

tank has a length of 18.5 m, a height of 0.8 m and a width of W=0.1 m. The origin of the coordinate 164 

system is located at the still water level (SWL) of the left inlet boundary. The x-axis is in the wave 165 
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propagation direction, and the z-axis is in the upward direction. The thickness of the wave tank in 166 

y-direction corresponds to a cell. Two identical fixed boxes are placed at the middle of the wave 167 

tank. The box height is H=0.5 m, the breadth is B=0.5 m, the draft d=0.25 m, the gap width Bg=0.05 168 

m, the water depth is h=0.5 m, and the air depth is ha=0.3 m. This configuration is in accordance 169 

with the physical experiments in Saitoh et al. (2006) as well as the numerical investigations in Lu 170 

et al. (2008; 2011a; 2011b).  171 

Five sets of simulations are implemented, in which the wave heights of the incident regular 172 

waves are set to H0 = 0.010 m, 0.024 m, 0.050 m, 0.075 m and 0.100 m, respectively. The wave 173 

frequency, ω, considered in all the five sets of simulations ranges from 4.456 rad/s to 7.534 rad/s. 174 

Correspondingly, the dimensionless wavenumber, kh, ranges from 1.210 to 2.910, where k=2π/L 175 

denotes the wavenumber and L denotes the wavelength. Four wave gauges, G1-G4, are arranged to 176 

record the free-surface elevations. G1 and G2 are utilized to decompose the incident and reflected 177 

waves, and their distance is set to 0.25 m. G3 and G4 are used to obtain the free surfaces inside the 178 

gap and the transmitted waves. G3 is placed in the middle of the gap; while G2 and G4 are positioned 179 

at 1.50 m from the left side of Box A and the right side of Box B, respectively. Two relaxation zones 180 

of 5.50 m long each are placed at the inlet and outlet boundaries of the wave tank to absorb the 181 

reflected and transmitted waves. The length of 5.50 m is approximately 2.11 times of the maximum 182 

wavelength that corresponds to the incident waves with ω=4.456 rad/s. 183 

A built-in mesh generation utility supplied with OpenFOAM®, “blockMesh”, is employed to 184 

generate meshes. A typical computational mesh is shown in Fig. 2. Non-uniform meshes are adopted 185 

for saving the computational time. The fine meshes with higher resolution are used around the boxes, 186 

especially in the vicinity of the narrow gap. To capture the interface between water and air, the 187 

meshes gradually become denser from the bottom and the atmosphere boundaries to the still water 188 

level. 189 

 190 

 191 

 192 

 193 

 194 

 195 

(a) 

(b) 
Box A Box B 
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 196 

 197 

 198 

 199 

 200 

 201 

Fig. 2. Side view of typical meshes in the computational domain: (a) the meshes around the boxes; 202 

(b) the meshes close to the gap inlet  203 

 204 

 205 

Fig. 3. Dependence of the free-surface elevation in the gap on the mesh resolution for the incident 206 

waves with kh=1.556 and H0=0.010 m, in which A0= H0/2 denotes the amplitude of the incident 207 

waves. 208 

 209 

To examine the dependence of the numerical results on the mesh resolution, the free-surface 210 

response in the narrow gap is simulated using three different meshes, namely the coarse, medium 211 

and fine meshes. The numbers of the cells for these three meshes are 143600, 224060 and 340880, 212 

respectively. Based on the numerical results that will be shown in Section 4.1, the free-surface 213 

resonance in the gap occurs at kh=1.556. Fig. 3 presents the resonant free surfaces inside the gap 214 

induced by the incident waves with kh=1.556 and H0=0.010 m. A0=H0/2 in this figure denotes the 215 

incident wave amplitude. It is seen that the time histories of the free-surface elevations for the three 216 

mesh configurations are almost identical to each other. Meanwhile, considering that the medium 217 

mesh can provide more accurate simulations of the wave fields excited by the incident waves with 218 

higher frequencies as compared to the coarse mesh, in all our numerical simulations, the medium 219 

mesh configuration is employed.  220 

20 21 22 23 24 25 26 27 28 29 30
-8

-4

0

4

8

η
/A

0

t (s)

 Coarse

 Medium
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    For most of the simulations, a total time of 40.0 s is considered. However, to study the damping 221 

time of the resonant free surface, for the five cases in which the incident wave frequency equals the 222 

resonant frequency, a total time of 70.0 s is employed. The wave inlet boundary stops working after 223 

40.0 s, and the numerical model continues to simulate the damping process. It can be seen from Fig. 224 

3 that the free-surface elevation in the gap has already reached the steady state at t=20.0 s. All the 225 

numerial results that will be presented in Section 4.1 and Sections 5.1–5.3 are based on the simulated 226 

steady-state data from 20.0 s to 40.0 s. While in Section 5.4, the time histories of the free-surface 227 

elevation in the gap between 0 – 20.0 s and 40.0 s – 70.0 s are utilized to investigate the response 228 

time and the damping time of gap resonance, respectively. 229 

 230 

4. Numerical model validations 231 

To guarantee the reliability of the model and the accuracy of the numerical results, the 232 

numerical model and the numerical wave tank illustrated in Sections 2 and 3 are first validated by 233 

comparing the present results obtained by OpenFOAM® with available experimental data and 234 

numerical results in previous literatures. For the simulations with H0=0.024 m described in Section 235 

3, Saitoh et al. (2006) and Lu et al. (2011b) have measured the amplification of the free-surface 236 

elevation inside the gap and the wave forces on boxes by using physical experiments and a viscous 237 

flow model, respectively. Comparisons of the present results with those in the two papers will be 238 

presented in Section 4.1. Because the current research mainly focuses on the harmonic analysis of 239 

the free-surface elevation in the gap and the wave loads on the boxes, it is essential to further 240 

examine the capability of the present model to predict the higher-order harmonic components of the 241 

free-surface elevation or the wave loads. To the best of our knowledge, for the gap resonance 242 

problem, the experimental data on the higher-order harmonic components of the free-surface 243 

elevation or the wave loads are rare. However, Rodríguez et al. (2016) implemented physical 244 

experiments on the interactions between regular waves and one fixed box, and the experimental data 245 

of the vertical wave force on the box (including the first- and second-order harmonic components) 246 

were presented in that paper. The numerical reproduction for part of their experiments will be 247 

implemented in Section 4.2.  248 

4.1. Two-boxes condition 249 
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 250 

Fig. 4. Amplification of the free-surface elevation inside the narrow gap for the cases with H0=0.024 251 

m, in which Hg denotes the wave height inside the narrow gap. 252 

 253 

Fig. 4 illustrates the amplification of the free-surface elevation inside the narrow gap excited 254 

by the incident waves with H0=0.024 m. It can be seen that the predicted resonant frequency, 255 

kh=1.556, by the present numerical model is almost identical to those obtained by both the 256 

laboratory tests of Saitoh et al. (2006) and the CFD results of Lu et al. (2011b). Besides, in general, 257 

the variation of Hg/H0 with respect to kh also agrees well with their results. Fig. 5 further presents 258 

the comparisons of the horizontal and vertical wave forces on Boxes A and B predicted by 259 

OpenFOAM® and those by the CFD results in Lu et al. (2011b). Similar to Fig. 4, the overall 260 

agreement between the present results and those in Lu et al. (2011b) is also observed.  261 

 262 

 263 

Fig. 5. Variations of the wave forces on the two boxes with respect to the incident wave frequency. 264 

(a) and (b) correspond to the horizontal and vertical forces on Box A, respectively; (c) and (d) 265 

correspond to the horizontal and vertical forces on Box B, respectively.  266 

 267 
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4.2. One-box condition 268 

Rodríguez et al. (2016) performed laboratory experiments in a 2.79 m wide and 63.00 m long 269 

wave tank, and the water depth is h=1.25 m. A rectangular box was placed approximately in the 270 

center of the wave tank, at x=29 m, where x=0 defines the location of the wave-maker. Because the 271 

experimental study sought to achieve 2D flow conditions, the width of the rectangular box was 272 

chosen as 2.76m, leaving only a very small gap of 0.015 m to either of the tank's sidewalls. Single 273 

box geometry with the breadth B=0.50 m and the draught d=0.25 m. The regular incident waves 274 

with 0.4 2.4kB  were considered. Two series of physical experiments were carried out with two 275 

steepnesses of the incident waves kA0 = 0.05 and 0.10. To examine the performance of the numerical 276 

model for the strongly nonlinear wave conditions, the series of experiments with kA0 = 0.10 are 277 

reproduced by OpenFOAM® here. Considering that the box used in Rodríguez et al. (2016) has the 278 

same breadth and draft with the two boxes shown in Fig. 1, a very similar numerical wave tank (not 279 

shown in this paper for brevity) with that in Fig. 1 is employed to implement the present simulations. 280 

Compared to the wave tank shown in Fig. 1, there only exist two main differences in the present 281 

wave tank. First, there is only a single box located in the middle of the present wave tank. Second, 282 

the water depth is deepened from 0.50 m to 1.25 m. A mesh configuration that has a similar mesh 283 

density with the medium mesh described in Section 3 is utilized. It should be noted that due to the 284 

relaxation zone deployed around the inlet and outlet boundaries, it is not necessary for the numerical 285 

wave tank to set the same length, 63.00 m, as the physical wave tank, and the numerical tank with 286 

a length of 18.5 m is already long enough.   287 

Fig. 6 presents the simulated and experimental time-histories of the non-dimensional vertical 288 

wave force, 
0( ) / (0.5 )zF t gA BW , for three cases with kB=0.8, 1.4, and 2.0. It can be obviously seen 289 

that significant nonlinearities are present, particularly for kB=1.4 and 2.0, due to the vertical 290 

asymmetry of the force traces. Overall, the agreement between the present numerical results and the 291 

experimental data is good. Fig. 7 further quantitatively compares the first- and second-order 292 

harmonic components of the experimental and numerical vertical forces for all cases with kA0=0.10. 293 

Good agreement between the experimental and numerical results is also observed.  294 
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 295 

Fig. 6. Time histories of the vertical wave forces excited by the regular waves with kA0=0.10 and 296 

(a) kB=0.8, (b) kB=1.4 and (c) kB=2.0, in which *

0( ) ( ) / (0.5 )z zF t F t gA BW denotes the time 297 

history of the non-dimensional vertical wave forces.     298 

 299 

 300 

Fig. 7. Non-dimensional (a) first-order and (b) second-order vertical wave forces excited by the 301 

incident regular waves with kA0=0.10  302 

 303 
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5. Numerical results and discussion 305 

In order to present an overall impression of the hydrodynamic characteristics of gap resonance 306 

under the conditions of various incident wave heights on the reader, the variations of the overall 307 

wave height amplification in the narrow gap and the overall wave loads on boxes with respect to the 308 

incident wave frequency are first illustrated and discussed in Section 5.1. Subsequently, to find out 309 

the relative importance of different harmonic components, the first three order harmonic 310 

components of the free-surface elevation in the narrow gap and the wave loads on boxes are 311 

analyzed in Section 5.2. Then, to better explain some phenomena presented in Sections 5.1 and 5.2 312 

and better understand the mechanism essence of gap resonance, the variations of the reflection, 313 

transmission and energy loss coefficients with respect to the frequency of the incident waves with 314 

various wave heights are discussed in Section 5.3. Finally, considering the importance of the fast 315 

and accurate estimation of the response time and the damping time of gap resonance, two different 316 

estimation methods are proposed and verified in Section 5.4. 317 

 318 

5.1 Overall wave height amplifications and overall wave loads  319 

Fig. 8 shows the overall free-surface amplification in the narrow gap and the overall wave 320 

forces and moments impacting on Boxes A and B excited by the incident regular waves with various 321 

wave heights. Four obvious phenomena can be easily seen. First, it is seen from Fig. 8a that the 322 

resonant frequency seems not sensitive to the incident wave height. For the cases with H0=0.010 m, 323 

0.024 m and 0.100 m, all the three variation curves of the free-surface amplification with the 324 

frequency present perfect single-peak shapes, and the maximum free-surface amplification in the 325 

narrow gap always occurs at the resonant frequency, i.e., kh=1.556. However, for the cases with 326 

H0=0.050 m and 0.075 m, the two variation curves of the free-surface amplification do not show the 327 

perfect single-peak shape. The two curves around the resonant frequency become flat, and the values 328 

of free-surface amplification at kh=1.556 are even slightly less than the ones at its both adjacent 329 

sides. The reason for this phenomenon can be attributed to the almost invariable reflection 330 

coefficients around the resonant frequency under the conditions of H0=0.050 m and 0.075 m (it will 331 

be shown in Section 5.3).  332 
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 333 

Fig. 8. The overall free surface amplification in the gap and the overall wave forces and moments 334 

on Boxes A and B induced by the incident regular waves with various wave heights. The vertical 335 

dash line refers to the position of the resonant frequency.   336 

 337 

Second, for the vertical wave forces on both the two boxes (Fig. 8b and c), there exist obvious 338 

deviations between the frequency at which the maximum vertical wave force appears and the 339 

resonant frequency. However, there are some different features for the changing trends of the vertical 340 

wave forces on the two boxes. For Box A, the difference between the frequency at which the 341 

maximum vertical wave force appears and the resonant frequency monotonously increases with the 342 

incident wave height. Besides, the vertical wave forces excited by the incident wave with small 343 

height tends to increase first, then sharply decrease, then slowly increase, and then slowly decrease 344 

with the non-dimensional wavenumber, kh. However, with the increase of the incident wave height, 345 
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the vertical wave forces gradually become monotonic decrease with kh. For Box B, when the 346 

incident wave height is small, the changing trend of the vertical wave forces with kh is similar to 347 

that for Box A. When the incident wave height becomes large, the value of the vertical wave force 348 

seems insensible to the incident wave frequency at the ranges of kh < 1.5 and kh > 1.9, and its value 349 

only decreases sharply with the incident wave frequency at the range of 1.5 < kh < 1.9.  350 

Third, for the horizontal wave forces on Box A (Fig. 8d), the frequency at which the maximum 351 

horizontal force occurs is obviously larger than the resonant frequency; the larger the incident wave 352 

height is, the more obvious the deviation becomes. While for the horizontal wave forces on Box B 353 

(Fig. 8e), the frequency at which the maximum horizontal force occurs is equal to or just slightly 354 

less than the resonant frequency. It is due to the fact that the magnitude of the horizontal force is 355 

determined by the free-surface elevation difference between the opposite sides of the each box (Lu 356 

et al., 2011b). The free-surface elevation at the left side of Box A is much larger than that at the right 357 

side of Box B. It leads to that the free-surface elevation difference between the opposite sides of 358 

Box A is more different from the free-surface elevation in the gap, while the free-surface elevation 359 

difference between the opposite sides of Box B is more close to the free-surface elevation in the gap. 360 

As for the reason why the free-surface elevation at the left side of Box A is much larger than that at 361 

the right side of Box B, there are two main reasons: (1) the reflected wave height is always larger 362 

than the transmitted wave height (i.e., Cr > Ct, which will be shown in Section 5.3), and (2) the left 363 

side of Box A locates at a antinode of the partially standing waves composed of the incident and the 364 

reflected waves, which causes the wave height at the left side of Box A is approximately equal to 365 

the summation of the incident and the reflected wave heights.  366 

Fourth, for the moments on Boxes A and B (Fig. 8f and g), for all the incident wave heights 367 

considered in this paper, the variation curves of the moment on each box with the frequency is very 368 

similar to those of the horizontal force on the corresponding box. Hence, the phenomena described 369 

above for the horizontal forces are also applicable for the moments. To further examine the 370 

phenomenon that the variation curves of the moment on each box with the frequency are very similar 371 

to those of the horizontal force on the corresponding box for all the incident wave heights studied 372 

in this paper, Fig. 9 presents the comparisons of the normalized curves of the horizontal forces and 373 

the moments on Boxes A and B for H0=0.010 m and 0.100 m. The normalized curve refers to the 374 

original variation curve divided by the corresponding peak value of the original variation curve. 375 
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Hence, the normalized curve always has a maximum value, 1.0. It can be seen that for both the two 376 

boxes and for both the two incident wave heights, the normalized curves of the horizontal wave 377 

forces are almost identical to those of the moments. For the other three incident wave heights (i.e., 378 

H0=0.024 m, 0.050 m and 0.075 m), the similar phenomenon can also be clearly observed (their 379 

comparisons are not shown in the paper for brevity).       380 

 381 

 382 

Fig. 9. Comparisons of the normalized curves of the horizontal wave forces and the moments on 383 

Boxes A and B  384 

5.2 Harmonic analyses of wave height amplifications and wave loads 385 
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incident wave heights. It is seen that at the range of 1.3<kh<1.9, there existing obvious peak points 398 

around the resonant frequency for both the second- and third-order harmonic components. For the 399 

second-order harmonic components, the maximum of their ratios to the first-order harmonic 400 

components reaches up to about 13%. It can be attributed to the fact that the free-surface elevation 401 

around the resonant frequency is remarkably amplified, and naturally the higher-order harmonic 402 

components of the free-surface elevation are enhanced due to the wave nonlinearity. While at the 403 

ranges of kh<1.3 and kh>1.9, as the wave frequency becomes far from the resonant frequency, the 404 

ratios of the second- and third-order components to the first-order components tend to gradually 405 

increase. It is mainly due to that the value of the first-order component significantly decreases as 406 

the wave frequency becomes far from the resonant frequency, especially for the high-frequency 407 

range (i.e., kh>1.9).  408 

 409 

Fig. 10. The first three order harmonic components of the free-surface elevation in the gap under 410 

the conditions of various incident wave heights    411 
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 412 

Fig. 11. Ratios of the second- and third-order harmonic components to the first-order harmonic 413 

components for the free-surface elevation in the gap under the conditions of various incident wave 414 

heights   415 

 416 

Fig. 12 illustrates the first three order harmonic components of the vertical wave forces on 417 

Boxes A and B for all the simulations. A( )i

zF and B( )i

zF (i=1, 2 and 3) in this figure refer to the ith-418 

order harmonic components of the vertical wave forces on Boxes A and B, respectively. The 419 

following three phenomena can be easily seen. First, the first-order harmonic components of the 420 

vertical wave force are much larger than the higher-order components near the resonant frequency. 421 

Second, when the incident wave height is small (Fig. 12a and f), the second-order harmonic 422 

component is obviously larger than the third-order ones around the resonant frequency. As the 423 
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gradually become obviously larger than those far away from the resonant frequency; on the contrary, 425 

the second-order harmonic components around the resonant frequency become smaller and smaller 426 

compared with those far away from the resonant frequency. When the incident wave height increases 427 

up to H0=0.100 m (Fig. 12e and j), the third-order harmonic components have approached (for Box 428 

B) or even exceeded (for Box A) the second-order ones. Third, for the high-frequency range, 429 

because the first-order harmonic components decease sharply with the wave frequency, the second-430 

order harmonic components approach and even exceed the corresponding first-order ones for both 431 

the two boxes.  432 

Fig. 13 further shows the ratios of the second- and third-order harmonic components to the 433 

first-order harmonic components for the vertical wave forces on the two boxes for all the simulations. 434 
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It can be easily observed that for both the two boxes and for the wave frequency far away from the 435 

resonant frequency, the ratio of the second- to the first-order components is always larger than the 436 

ratio of the third- to the first-order components, while around the resonant frequency, the latter 437 

approaches or even exceeds the former. Besides, for the second-order components, their ratios near 438 

the resonant frequency are less than those far from the resonant frequency. While for the third-order 439 

components, their ratios near the resonant frequency tend to be larger than those far from the 440 

resonant frequency (it is valid for the whole frequency range considered in this paper for Box A, 441 

and for kh<1.800 for Box B).  442 

 443 

 444 

Fig. 12. The first three order harmonic components of the vertical wave forces on Boxes A and B 445 

under the conditions of various incident wave heights.   446 
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 447 

Fig. 13. Ratios of the second- and third-order harmonic components to the first-order harmonic 448 

components for the vertical wave forces on (a) Box A and (b) Box B under the conditions of various 449 

incident wave heights   450 

 451 

Fig. 14 presents the first three order harmonic components of the horizontal wave forces on 452 

Boxes A and B for all the simulations. A( )i

xF and B( )i

xF (i=1, 2 and 3) in this figure refer to the ith-453 

order harmonic components of the horizontal wave forces on Boxes A and B, respectively. Because 454 

both the second- and third-order harmonic components of the horizontal wave forces around the 455 

resonant frequency are extremely small compared to the corresponding first-order components, in 456 

order to better show the variations of all these three harmonic components with the incident wave 457 

frequency, the values of both the second- and third-order harmonic components shown in this figure 458 

are enlarged five times. In general, the above three phenomena for the vertical wave forces shown 459 

in Fig. 12 can also be observed in this figure.  460 
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simulations. It should be noted that, for Box B (Fig. 15b), when kh=2.910 and H0=0.100 m, the 463 

value of B(2) B(1)/x xF F  has already exceeded 140%. However, to better show the variation 464 

characteristics of the ratios around the resonant frequency, the maximum changing range of the y-465 

axis is only set to 20%. Again, in general, all the phenomena for the vertical wave forces presented 466 

in Fig. 13 can also be observed in this figure, except that the ratios of the third- to the first-order 467 

components near the resonant frequency shown in this figure tend to be smaller than those far from 468 

the resonant frequency.  469 

 470 

 471 

Fig. 14. The first three order harmonic components of the horizontal wave forces on Boxes A and 472 

B under the conditions of various incident wave heights.    473 
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 475 

Fig. 15. Ratios of the second- and third-order harmonic components to the first-order harmonic 476 

components for the horizontal wave forces on (a) Box A and (b) Box B under the conditions of 477 

various incident wave heights   478 
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Fig. 16 presents the first three order harmonic components of the moments on Boxes A and B 491 

for all the simulations, in which 
A( )i

yM and 
B( )i

yM (i=1, 2 and 3) refer to the ith-order harmonic 492 

components of the moments on Boxes A and B, respectively. It is obviously seen that when the 493 

incident wave height is small (refer to Fig. 16a and f), both the second- and third-order harmonic 494 

components are much smaller than the corresponding first-order ones around the resonant frequency 495 

for both the two boxes. However, as the incident wave height increases, the values of the second-496 

order harmonic components around the resonant frequency gradually increase. Compared to the 497 

first-order harmonic components, the second-order harmonic components have reached a 498 

considerable values when H0=0.100 m (refer to Fig. 16e and j). To better illustrate this point, the 499 

ratios of the second- and third-order harmonic components to the first-order harmonic components 500 

for the moments on both the two boxes under the conditions of various incident wave heights are 501 

presented in Fig. 17. It can be seen that when the incident wave height is small (i.e., H0=0.010 m), 502 

both the values of 
A(2) A(1)/y yM M  and 

B(2) B(1)/y yM M  are approximately 5%. However, when the 503 

incident wave height increases to H0=0.100 m, both their values reach up to near 20%.  504 
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 505 

Fig. 16. The first three order harmonic components of the moments on Boxes A and B under the 506 

conditions of various incident wave heights.    507 
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 510 

Fig. 17. Ratios of the second- and third-order harmonic components to the first-order harmonic 511 

components for the moments on (a) Box A and (b) Box B under the conditions of various incident 512 

wave heights   513 

 514 

5.3 Reflection, transmission and energy loss coefficients 515 

Based on the wave analysis technique in Goda and Suzuki (1976), the wave height of the 516 

reflected waves from the two-box system can be obtained by using the free-surface elevations at G1 517 

and G2 (refer to Fig. 1). The reflection coefficient Cr is further calculated as the ratio of the reflected 518 

wave height to the incident wave height H0. The transmission coefficient Ct is defined as the ratio 519 

of the transmitted wave height to H0, and the transmitted wave height can be obtained by the free-520 

surface elevation at G4. Then, the energy loss coefficient 2 21e r tL C C    is calculated. The effects 521 
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Le, are illustrated in Fig. 18. For the reflection coefficient (Fig. 18a), the following three phenomena 523 
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less than those away from the resonant frequency. Second, the reflection coefficient at the resonant 525 

frequency increases with the increasing of the incident wave height. Third, under the conditions of 526 

H0=0.050 m and 0.075 m, both the two variation curves of the reflection coefficient around the 527 

resonant frequency almost become flat, which indicates that the similar wave energy can propagate 528 

into the gap. Hence, this leads to the relatively flat variation curves of Hg/H0 around the resonant 529 

frequency for H0=0.050 m and 0.075 m shown in Fig. 8a.    530 

For the transmission coefficient (Fig. 18b), the frequency at which the maximum transmission 531 

coefficient Ct occurs is always less than the resonant frequency. The larger the incident wave height 532 

is, the more obvious their difference becomes. When the incident wave height is small, the 533 

transmission coefficient first increases, then sharply decreases, then slowly increases, and then 534 

slowly decreases with the non-dimensional wavenumber, kh. However, with the increase of the 535 

incident wave height, the vertical wave forces gradually become monotonic decrease with kh. These 536 

effects of the incident wave height on the variation characteristics of the transmission coefficient 537 

are very similar to its effects on those of the vertical wave forces on Boxes A and B (see Fig. 8b and 538 

c).  539 

By carefully comparing Fig. 18a and b, it can be found that for all the incident wave heights 540 

considered in this paper, the reflection coefficients are always larger than the transmission 541 

coefficient, no matter whether the gap resonance occurs or not. The larger the incident wave height 542 

is, the more obvious the difference between Cr and Ct becomes. This explains that phenomenon 543 

shown in Fig. 8d and e that for the horizontal wave forces on Box A, the frequency at which the 544 

maximum horizontal force occurs obviously deviates from the resonant frequency; while for the 545 

horizontal wave forces on Box B, the frequency at which the maximum horizontal force occurs is 546 

approximately equal to the resonant frequency.  547 

For the energy loss coefficient (Fig. 18c), it is seen that for all the incident wave heights 548 

considered in this paper, almost all the maximum energy loss coefficients appear at (or very close 549 

to) the resonant frequency. Besides, with the increase of the incident wave height, the energy loss 550 

coefficient at the resonant frequency becomes smaller and smaller. It should be noted that, intuitively, 551 

this finding seems to be incompatible with that phenomenon shown in Fig. 8a that larger incident 552 

wave height leads to smaller amplification of the free-surface elevation in the gap. In fact, these two 553 

findings are compatible with each other. The reason lies on that the increase of the incident wave 554 
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height tends to remarkably augment the reflection coefficient at the resonant frequency, and hence 555 

relatively less wave energy can propagate into the gap. Therefore, less energy dissipation and 556 

smaller free-surface amplification in the narrow gap can be observed at the resonant frequency, 557 

which agrees with the related findings in Jiang et al. (2018).  558 

 559 

 560 

Fig. 18. Variations of (a) the reflection coefficient, (b) the transmission coefficient and (c) the energy 561 

loss coefficient with respect to the wave frequency under the conditions of various incident wave 562 

heights 563 

 564 

5.4 Response time and damping time of gap resonance  565 

In practical engineering applications, the fast and accurate estimation of the response time and 566 

the damping time is crucial for the safe evacuation of staff and the reasonable arrangement of 567 

operation time during the offloading operations from FPSO platforms to a shuttle tanker under gap 568 

resonance conditions. In this section, a general method is proposed for accurately estimating both 569 

the response time and the damping time of free-surface elevation in the gap under resonance. The 570 

general method is based on fitting the envelope of the free-surface elevation. For the evaluation of 571 

the response time, there is an alternative method which is based on the amplification curve of the 572 
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free-surface elevation in the gap.  573 

 574 

 575 
Fig. 19. Generic amplification curve; Δω is the half-power spectral bandwidth    576 

  577 

These methods are inspired by Bellotti (2007) and Dong et al. (2010) who investigated the 578 

response time and the damping time of the harbor to long waves under the condition of harbor 579 

resonance. In order to facilitate the understanding of the reader, the basic principle of these methods 580 

is briefly explained here. To illustrate the basic principle, Fig. 19 shows a generic amplification 581 

curve, in which Z is the amplification factor. The free-surface elevation in the narrow gap can be 582 

considered as typical of a 1D system like a mass-spring system, moving along a line, connected to 583 

a damper, forced by a periodically unit force. If the considered mass starts from rest (i.e., from the 584 

position z=0), when the frequency of the force equals the natural frequency of the system, its position 585 

along the axis (z) can be formulated as 586 

   
R *

max cos * 1 tz Z t e       ,  (7) 587 

in which ζ R is a parameter governing the response time of the resonator, Zmax is the maximum 588 

amplification factor and *t denotes the relative time with respect to the moment that the mass just 589 

begins to move from rest. It requires infinite time for the fluctuation to reach its maximum, following 590 

Eq. (7). The time %*t   needed for the waves to reach α% of the maximum can be formulated as  591 

 
 

% R

ln 1 %
*t 






  .  (8) 592 

Similarity, if the mass damps from the steady-state maximum to the rest state, its position can be 593 

expressed as   594 

  
D

max cosz Z e         ,  (9) 595 

where ζ D is a parameter controlling the damping time of the resonator and τ denotes the relative 596 

time with respect to the moment that the mass just begins to damp from the steady-state maximum. 597 
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The time %  needed by the wave to decrease to %  of the maximum can be expressed as 598 

 
 

% D

ln %






  .  (10) 599 

It can be found from Eqs. (8) and (10) that the key step to quantitatively evaluate the response 600 

time and the damping time lies on how to find the values of ζ R and ζ D. A general method to obtain 601 

their values is to directly fit the measured (or simulated) envelopes of the displacement of the mass 602 

with the theoretical ones formulated by Eqs. (7) and (9). It can be demonstrated that for 1D 603 

resonators, the value of ζ R can also be evaluated from the amplification curve. More specifically, 604 

R / 2   , in which Δω is the half-power spectral bandwidth (i.e., the width of the part of the 605 

amplification curve with values larger than Zmax / 20.5). Identical to Bellotti (2007) and Dong et al. 606 

(2010), 
95%*t and 

5%  are selected in this article to represent the response time and the damping 607 

time of the resonant free-surface elevations, respectively.  608 

 609 

Fig. 20. The response process of the free-surface elevation (η/A0) in the narrow gap excited by the 610 

incident regular waves with the resonant frequency (i.e., kh=1.556, or equivalently ω=5.285 rad/s) 611 

and various heights. Dashed lines denote the time histories of the simulated free-surface elevations 612 
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obtain by the numerical model. Solid lines refer to the fitted envelope of η/A0 obtained by directly 613 

fitting the simulated envelopes with the theoretical ones formulated by Eq. (7). Small circles 614 

represent the envelope of η/A0 as obtained by Eq. (7) using the amplification curve method for 615 

estimating ζ R.  616 

 617 

Fig. 20 shows the time histories of the free-surface elevations in the narrow gap, obtained by 618 

using the time-resolving numerical model, from the calm to the steady state. The frequency of all 619 

the incident regular waves corresponds to the resonant frequency (i.e., kh=1.556, or equivalently 620 

ω=5.285 rad/s). By directly fitting the simulated envelopes with the theoretical ones formulated by 621 

Eq. (7), the numerical values of ζ R can be obtained. Besides, by measuring the half-power spectral 622 

bandwidth of the amplification curve as shown in Fig. 19, the values of ζ R can also be calculated. It 623 

is noted here that, to facilitate comparing the values of ζ R obtained by these two different methods, 624 

two different symbols, R

1 and R

2 , are used separately to represent the values of ζ R obtained by the 625 

amplification curve method and by the direct envelope-fitting method in the following. As a 626 

concrete example of employing the amplification curve method to evaluate the value of R

1 , Fig. 21 627 

illustrates the amplification curve of the free-surface elevation in the narrow gap under the condition 628 

of H0=0.010 m. It can be seen that the value of R

1  under the condition of H0=0.010 m is equal to 629 

0.20.  630 

 631 

 632 

Fig. 21. Amplification curve of the free-surface elevation in the narrow gap under the condition of 633 

H0=0.010 m 634 

Table 1 further lists all the values of R

1  and R

2 , their relative percentage errors, Err, and 635 

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
0

1

2

3

4

5

6

7

8

(Hg/H0)max/2
0.5

= 4.66

 

 

H
g
/H

0

ω (rad/s)

(Hg/H0)max= 6.59

Δω=2ζ1

R
 = 0.40



31 

 

the response time, 
95%*t  for the free-surface elevations shown in Fig. 20. The response time, 

95%*t , 636 

in this table is calculated by employing Eq. (8) and the value of R

2 . As mentioned in Section 5.1, 637 

unlike the typical amplification curves shown in Figs. 19 and 21, the two free-surface amplification 638 

curves for H0=0.050 m and 0.075 m do not present the perfect single-peak shape; the two curves 639 

around the resonant frequency become flat, and the values of the amplification factor at kh=1.556 640 

are even slightly less than the ones at its both adjacent sides (refer to Fig. 8a). Hence, the values of 641 

R

1  for H0=0.050 m and 0.075 m are absent. For the other three wave heights, the relative 642 

percentage errors between R

1 and R

2  are shown to be extremely small. Besides, observing Fig. 643 

20 can easily find that for all the incident wave heights considered in this paper, both the two 644 

envelopes of the free-surface elevations obtained by R

1 and R

2 agree well with the corresponding 645 

simulated free-surface elevations by using the time-resolving numerical model. These phenomena 646 

indicate that both the two above-mentioned methods for evaluating the response time of gap 647 

resonance are accurate and reliable.   648 

 649 

Table 1. All the parameters related to the response time and the damping time of the resonant free-650 

surface elevations shown in Figs. 20 and 22. Err denotes the relative percentage error between R

1651 

and R

2 . 
95%*t  and 

5%  refers to the response time and the damping time of the free-surface 652 

elevations, respectively. The evaluation of 
95%*t  is based on Eq. (8) and the value of R

2 .     653 

H0 (m) R

1  R

2  Err (%) 
95%*t (s) D  

5% (s) 
5% 95%t  

0.010 0.200 0.202 0.99 14.83 0.125 23.97 1.62 

0.024 0.306 0.299 2.34 10.02 0.136 22.03 2.20 

0.050 - 0.421 - 7.12 0.145 20.66 2.91 

0.075 - 0.467 - 6.41 0.151 19.84 3.09 

0.100 0.512 0.499 2.60 6.00 0.158 18.96 3.16 

 654 

 655 
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 656 

Fig. 22. The damping process of the free-surface elevation (η/A0) in the narrow gap excited by the 657 

incident regular waves with the resonant frequency (i.e., kh=1.556, or equivalently ω=5.285 rad/s) 658 

and various heights. Dashed lines denote the time histories of the simulated free-surface elevations 659 

obtain by the numerical model. Solid lines represent the fitted envelope of η/A0 obtained by directly 660 

fitting the simulated envelopes with the theoretical ones formulated by Eq. (9). 661 

 662 

Fig. 22 illustrates the time histories of the simulated free-surface elevations in the narrow gap 663 

and their fitted envelopes obtained by directly fitting the simulated envelopes with the theoretical 664 

ones formulated by Eq. (9) during their damping processes. It is seen that for all the incident wave 665 

heights considered in this paper, Eq. (9) can describe the damping process of the resonant free-666 

surface elevation in the gap very well. All the values of ζ D gained by the direct envelope-fitting 667 

method and the damping time 5%  under the conditions of various wave heights are also presented 668 

in Table 1.  669 

According to the response time and the damping time presented in Table 1, the following two 670 

phenomena can be easily observed. First, for all the incident wave heights, the damping time is 671 
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the response time gradually increases from 1.62 for H0=0.100 m to 3.16 for H0=0.100 m. This 673 

indicates that once the gap resonance is excited, it will persist for a rather long time. Second, both 674 

the response time and the damping time decrease with the incident wave height, and the decreasing 675 

degree of the response time is obviously larger than that of the damping time. The response time 676 

falls up to 60 % from H0=0.010 m to H0=0.100 m, while the damping time reduces only about 21%. 677 

 678 

6. Conclusions 679 

The CFD numerical model, OpenFOAM®, together with the wave generation toolbox 680 

“waves2Foam” proposed by Jacobsen et al. (2012), is adopted for investigating the hydrodynamic 681 

behaviors of water resonance in a narrow gap formed by two side-by-side identical boxes excited 682 

by incident regular waves with various wave heights. The overall free-surface amplification in the 683 

gap and the overall wave loads on the boxes are firstly presented. Then, the harmonic analyses of 684 

free-surface elevation and wave loads are mainly investigated. Next, the reflection, transmission 685 

and energy loss coefficients of the two-box system are discussed. Finally, two different methods to 686 

evaluate the response time and the damping time of gap resonance are proposed. The results of this 687 

study have provided new insights of the hydrodynamic characteristics involved in the gap resonance.  688 

The following conclusions can be drawn from the results of the present study: 689 

(1) The frequencies at which the maximum vertical wave forces on both boxes and the maximum 690 

horizontal wave force on Box A occur appear to obviously deviate from the resonant frequency, 691 

and a larger incident wave height tends to cause more obvious differences between them. While 692 

the frequency at which the maximum horizontal force on Box B occurs is equal or very close 693 

to the resonant frequency.  694 

(2) For the free-surface elevation in the gap and the moments on boxes, the ratios of their second-695 

order components to the corresponding first-order ones around the resonant frequency are 696 

normally larger than those at the frequencies far from the resonant frequency (except those at 697 

the very high frequency band). The larger the incident wave height is, the larger the ratios of 698 

the second- to the first-order components around the resonant frequency becomes.   699 

(3) For both the vertical and horizontal wave forces on both boxes, the ratios of their second- to the 700 

first-order components near the resonant frequency are less than those far away from the 701 

resonant frequency. Besides, when the incident wave height is small, their second-order 702 
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components are obviously larger than the corresponding third-order ones around the resonant 703 

frequency. However, as the incident wave height increases, the third-order components around 704 

the resonant frequency gradually approach and even exceed the second-order ones. 705 

(4) Both the minimum reflection coefficient and the maximum energy loss coefficient always 706 

appear at (or very close to) the resonant frequency, while the frequency at which the maximum 707 

transmission coefficient appears is obvious less than the resonant frequency. The reflection 708 

coefficient is always larger than the transmission coefficient, and the larger the incident wave 709 

height is, the more obvious their difference becomes. Besides, the energy loss coefficient under 710 

the gap resonance condition gradually decreases with the increase of the incident wave height. 711 

(5) Both the amplification curve method and the direct envelope-fitting method are able to 712 

accurately evaluate the response time and the damping time of the resonant free-surface 713 

elevation in the gap, and it is shown that the damping time is always significantly larger than 714 

the corresponding response time. Besides, with the increase of the incident wave height, both 715 

the response time and the damping time decrease, and the decreasing degree of the former is 716 

obviously larger than that of the latter.   717 

Finally, we reaffirm here that these conclusions are only valid for the given geometric layout 718 

(including the size and draft of the two boxes, the gap width and the water depth) and the ranges of 719 

the incident wave height and the incident wave frequency studied in this paper. 720 
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