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Abstract:

The resonant water motion inside a narrow gap between two identical fixed boxes that are in
side-by-side configuration is investigated using a two-dimensional (2D) numerical wave tank based
on OpenFOAM®, an open source CFD package. Gap resonance is excited by regular waves with
various wave heights, ranging from linear waves to strong nonlinear waves. This paper mainly
focuses on the harmonic analyses of the free-surface elevation in the narrow gap and wave loads
(including the horizontal wave forces, the vertical wave forces and the moments) on the bodies. It
is found that the influences of the incident wave height on the higher-order harmonic components
of different physical quantities are quite different. The effects of the incident wave height on the
reflection, transmission and energy loss coefficients are also discussed. Finally, aiming at the
quantitative estimation of the response time and the damping time of gap resonance, two different

methods are proposed and verified for the first time on gap resonance.

Keywords: Gap resonance; Wave height amplification; Wave force; Harmonic analysis; Response

time and damping time of gap resonance; OpenFOAM®
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1. Introduction

In the past few decades, as the oil and gas industry have moved towards deeper waters and
harsher environments, Floating Production Storage and Offloading (FPSO) platforms have shown
great potential as the most economic ways to process and distribute the hydrocarbon products. One
of the key challenges for FPSO platforms lies in the safe offloading operations from them to a shuttle
tanker when the tanker is positioned side-by-side with them. When multiple floating bodies are
deployed side-by-side in close proximity and are subjected to incident water waves, drastic water
surface oscillations may occur inside the narrow gaps between them at certain frequencies. This
phenomenon is normally referred to as “gap resonance”.

The hydrodynamic interactions of multiple bodies with narrow gaps between have been
investigated extensively due to its relevance to offloading facilities for FPSO. The methods used in
these studies include theoretical analyses, physical experiments and numerical simulations. The
theoretical analyses were mainly used in the early studies of the gap resonance problem and were
mainly based on the linear potential flow theory (Miao et al., 2000; Molin, 2001). Subsequently, to
better understand gap resonance and to validate the theoretical analyses, a large number of physical
model tests in 2D and 3D wave basins were also implemented by previous researchers (e.g., lwata
etal. (2007); Saitoh et al. (2006); Zhao et al. (2017)). The numerical investigations conducted so far
are mainly based on the classical potential flow model employing the boundary element method and
scaled boundary finite element method (e.g., Li et al. (2005); Li and Zhang (2016); Sun et al. (2010)).

Although both theoretical analyses and the numerical simulations based on the potential flow
theory have been shown to predict the resonant frequency well, they were reported to significantly
over-estimate the resonant wave height inside the gap and the wave forces on the floating bodies,
because the physical energy dissipation due to the fluid viscosity, vortex shedding and even
turbulences cannot be considered in the context of potential flow theory. To overcome this problem,
several particular numerical techniques that artificially introduce wave energy dissipation term into
the potential flow model were developed so far (Chen, 2004; Huijsmans et al., 2001; Lu et al., 2010b;
Newman, 2004; Ning et al., 2015a, b). However, the introduction of artificial damping term seems
somewhat arbitrary for the rigorous potential theory, and under some conditions it was found to be
difficult to obtain a unique value of the damping parameter (Pauw et al., 2007; Tan et al., 2014). In

recent years, with the fast developments of computing technology, the CFD simulation has gradually
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become an alternative method in investigating the gap resonance problem (Jiang et al. (2018); Lu et
al. (2010a); Lu etal. (2011a); Lu et al. (2011b); Moradi et al. (2015, 2016)). All these studies found
that the results obtained by the CFD simulations agreed well with those from existing experiments.

While many research efforts into the gap resonance have been undertaken, the majority have
concentrated on the analyses of the overall resonant wave height in the narrow gap and the overall
wave loads on the boxes under the condition of the linear or weakly nonlinear regular waves (e.g.,
Feng et al. (2017); Jiang et al. (2018); Lu et al. (2010a); Lu et al. (2010b); Lu et al. (2011a); Lu et
al. (2011b); Moradi et al. (2015, 2016)). The investigations on the harmonic analyses of the wave
height and wave loads are relatively rare. By using a semi-analytical formulation of the velocity
potentials, Mavrakos and Chatjigeorgiou (2009) investigated the significance of the second-order
effects to the total wave loading on a cylindrical moonpool, especially in the frequency regions in
which the fluid resonance occurs. Sun et al. (2010) employed a 3D boundary element code
DIFFRACT to investigate the first- and second-order loads and free-surface elevations for two side-
by-side rectangular barges. However, both of their methods are based on the classical potential flow
theory which does not consider the physical energy dissipation due to the viscous effect. Hence,
some of their findings may not reflect real phenomena of the fluid resonance in the narrow gap or
in the moonpool, where the physical energy dissipation plays an important role. Zhao et al. (2017)
investigated experimentally the first and higher harmonic components of the resonant fluid response
in the gap between two identical fixed rectangular boxes excited by the transient focused wave
groups in a 3D wave basin. However, the gap resonance induced by the regular waves and the
harmonic analyses on wave loads were not considered in that paper.

To further improve the understanding of related phenomena involved in gap resonance, this
paper mainly focuses on the variations of the first and higher harmonic components of free-surface
elevation inside the gap and wave loads on boxes with respect to the wave height of the incident
regular waves when gap resonance occurs. In this paper, the system of two identical boxes is taken
as the background of this study. For comparison, the same problem is also investigated when the
free-surface elevation in the narrow gap is under non-resonant conditions. Compared to the previous
investigations (i.e., Feng et al. (2017); Jiang et al. (2018); Lu et al. (2010a); Lu et al. (2010b); Lu et
al. (2011a); Lu et al. (2011h); Moradi et al. (2015, 2016)), stronger nonlinear incident waves are

used in this paper, which is necessary due to the fact that FPSO platforms are often exposed to severe



89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

wave conditions. Subsequently, the variations of the reflection coefficient C,, the transmission
coefficient C, and the energy loss coefficient L, =1-C? —C? with respect to the frequency of
the incident waves with various wave heights are also discussed, because an integral comprehension
of these coefficients may promote the better understanding of the mechanism essence of the gap
resonance (Jiang et al., 2018). Meanwhile, these previous studies were mainly concerned on the
related hydrodynamic phenomena after the free-surface resonance in the narrow gap reached the
steady state, and both the response and the damp phases were paid little attention to. In the current
paper, both the response time and the damping time of gap resonance are quantitatively evaluated
by two different methods. In practical engineering applications, the fast and accurate estimation of
the response time and the damping time is very important for the safe evacuation of staff and the
reasonable arrangement of operation time during the offloading operations from a FPSO platform
to a shuttle tanker under gap resonance conditions.

In Sections 2, 3 and 4, the numerical model employed in this work, numerical experimental
setup and the validations of the numerical model against available experimental and numerical data
are presented, respectively. The numerical results and discussions are presented in Section 5. Finally,

conclusions are drawn in Section 6.

2. Numerical model description
To consider the physical energy dissipation near the gap due to the viscous effect, a viscous
flow solver is necessary. In this paper, the numerical wave tank is based on the OpenFOAM®
multiphase solver “interFoam”, and waves are generated and dissipated using the relaxation-based
wave generation toolbox “waves2Foam” proposed by Jacobsen et al. (2012).
2.1. Governing equations
The continuity and Navier-Stokes equations are utilized as the governing equations to solve

the two-phase flow of water and air:

op

P Lv.(pu)=0, 1

2 +V-(pu) @
a/;%.,_v.(pu[ﬂ):—VP—(g.x)Vp+V~(,uVu)+o-tkaVa, (2)

where p is the fluid density, V =(§, %) is the gradient operation, u=(u, v, w) is the velocity

oz

8
(?y y

vector of the fluid, x=(x, y, z) is the Cartesian coordinate vector, g is the gravitational acceleration,
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P is the pressure in excess of the hydrostatic part, . is the dynamic viscosity of the fluid, o, is the
surface tension coefficient and k, is the surface curvature. The above equations are solved for
both water and air simultaneously. « denotes the volume fraction of water in the computational cell,
which takes a value of 1 for water and O for air and intermediate values for a mixture of water and

air. The distribution of o is modelled by the following advection transport equation:

%Z+V'(au)+v~[a(1—a)u,]:0, @)

in which u, =u,,, —u,,is a relative velocity between the water and the air. Using a, the spatial

variation of any fluid property ¢ (e.g., the fluid density p and the dynamic viscosity x) can be
expressed through the weighting

O =P +(1— ) ;. » 4)
where the subscripts “water” and “air” denote the corresponding fluid property of water and air,
respectively.
2.2. Boundary conditions and numerical implementations

The toolbox “waves2Foam” proposed by Jacobsen et al. (2012) is employed to generate and
absorb waves at the boundaries (see Fig. 1). At the inlet and the outlet boundaries, the velocities are
defined as that of a regular incoming wave and as zero, respectively, and the pressure gradients are
set to zero. Two relaxation zones are deployed at the inlet and the outlet boundaries to absorb the
reflected and the transmitted waves. At the upper part of the tank, the boundary condition is set as
“atmosphere”; while at the bottom of the tank and the solid walls of the fixed boxes, “no-slip”
boundary condition is applied. For a 2D problem, the boundary condition on the walls in the third
dimension is set to “empty”.

The governing equations (1)-(2) and the advection transport equation (3) are solved based on
the finite volume method. The velocity-pressure coupling is calculated using the PISO (Pressure
Implicit with Splitting of Operator) algorithm. Gradients are approximated by the Gaussian
integration method based on a linear interpolation form cell centers to cell faces. The time
derivatives are solved by a first-order Euler scheme. The Gauss Convection-specific schemes are
used for the evaluation of the divergence terms. Identical to Feng et al. (2017), to produce accurate
and stable results, the largest Courant number is set to 0.25 in all simulations.

Once Egs. (1)-(3) are solved at each time step, the wave force and the moment on the structure
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can be calculated by the following formulations:
F = [[Pn+su(ou, /on)ds Q
o
and
M =_[r><[Pn+y(aur/6n)]ds, (6)
o
where F and M are the vectors of the wave force and the moment, respectively, u_ is the tangent
velocity component, n is the unit normal vector, ds is the surface area differential on the wet solid
surface Q, and r is the position vector of ds relative to a certain space point. For the gap resonance
problem that will be described in detail in Section 3, the moments on the two fixed boxes correspond
to their respective centroids. As for the harmonic analysis for various variables (i.e., the free-surface
elevation in the gap, the horizontal and vertical wave forces and the moments on the two boxes),
they are performed by using the discrete Fourier transform for the time-histories of their respective

signals.
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Fig. 1. Sketch of the numerical wave tank: (a) boundary conditions and the definition of the
coordinate system; (b) positions of wave gauges and the definition of the geometric parameters.
3. Numerical wave tank

Fig. 1 illustrates the sketch of the 2D numerical wave tank used in the present study. The wave
tank has a length of 18.5 m, a height of 0.8 m and a width of W=0.1 m. The origin of the coordinate

system is located at the still water level (SWL) of the left inlet boundary. The x-axis is in the wave
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propagation direction, and the z-axis is in the upward direction. The thickness of the wave tank in
y-direction corresponds to a cell. Two identical fixed boxes are placed at the middle of the wave
tank. The box height is H=0.5 m, the breadth is B=0.5 m, the draft d=0.25 m, the gap width B4=0.05
m, the water depth is h=0.5 m, and the air depth is h,=0.3 m. This configuration is in accordance
with the physical experiments in Saitoh et al. (2006) as well as the numerical investigations in Lu
etal. (2008; 2011a; 2011b).

Five sets of simulations are implemented, in which the wave heights of the incident regular
waves are set to Ho = 0.010 m, 0.024 m, 0.050 m, 0.075 m and 0.100 m, respectively. The wave
frequency, w, considered in all the five sets of simulations ranges from 4.456 rad/s to 7.534 rad/s.
Correspondingly, the dimensionless wavenumber, kh, ranges from 1.210 to 2.910, where k=2z/L
denotes the wavenumber and L denotes the wavelength. Four wave gauges, G1-Gg4, are arranged to
record the free-surface elevations. G; and G; are utilized to decompose the incident and reflected
waves, and their distance is set to 0.25 m. Gz and G, are used to obtain the free surfaces inside the
gap and the transmitted waves. Gs is placed in the middle of the gap; while G, and G4 are positioned
at 1.50 m from the left side of Box A and the right side of Box B, respectively. Two relaxation zones
of 5.50 m long each are placed at the inlet and outlet boundaries of the wave tank to absorb the
reflected and transmitted waves. The length of 5.50 m is approximately 2.11 times of the maximum
wavelength that corresponds to the incident waves with w=4.456 rad/s.

A built-in mesh generation utility supplied with OpenFOAM®, “blockMesh”, is employed to
generate meshes. A typical computational mesh is shown in Fig. 2. Non-uniform meshes are adopted
for saving the computational time. The fine meshes with higher resolution are used around the boxes,
especially in the vicinity of the narrow gap. To capture the interface between water and air, the
meshes gradually become denser from the bottom and the atmosphere boundaries to the still water

level.
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Fig. 2. Side view of typical meshes in the computational domain: (a) the meshes around the boxes;

(b) the meshes close to the gap inlet

| IR Coarse
== = Medium
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“0 21 22 23 24 25 26 27 28 29 0
t(s)
Fig. 3. Dependence of the free-surface elevation in the gap on the mesh resolution for the incident

waves with kh=1.556 and Hyo=0.010 m, in which A¢= Ho/2 denotes the amplitude of the incident

waves.

To examine the dependence of the numerical results on the mesh resolution, the free-surface
response in the narrow gap is simulated using three different meshes, namely the coarse, medium
and fine meshes. The numbers of the cells for these three meshes are 143600, 224060 and 340880,
respectively. Based on the numerical results that will be shown in Section 4.1, the free-surface
resonance in the gap occurs at kh=1.556. Fig. 3 presents the resonant free surfaces inside the gap
induced by the incident waves with kh=1.556 and Hy=0.010 m. A¢=Ho/2 in this figure denotes the
incident wave amplitude. It is seen that the time histories of the free-surface elevations for the three
mesh configurations are almost identical to each other. Meanwhile, considering that the medium
mesh can provide more accurate simulations of the wave fields excited by the incident waves with
higher frequencies as compared to the coarse mesh, in all our numerical simulations, the medium

mesh configuration is employed.
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For most of the simulations, a total time of 40.0 s is considered. However, to study the damping
time of the resonant free surface, for the five cases in which the incident wave frequency equals the
resonant frequency, a total time of 70.0 s is employed. The wave inlet boundary stops working after
40.0 s, and the numerical model continues to simulate the damping process. It can be seen from Fig.
3 that the free-surface elevation in the gap has already reached the steady state at t=20.0 s. All the
numerial results that will be presented in Section 4.1 and Sections 5.1-5.3 are based on the simulated
steady-state data from 20.0 s to 40.0 s. While in Section 5.4, the time histories of the free-surface
elevation in the gap between 0 — 20.0 s and 40.0 s — 70.0 s are utilized to investigate the response

time and the damping time of gap resonance, respectively.

4. Numerical model validations

To guarantee the reliability of the model and the accuracy of the numerical results, the
numerical model and the numerical wave tank illustrated in Sections 2 and 3 are first validated by
comparing the present results obtained by OpenFOAM® with available experimental data and
numerical results in previous literatures. For the simulations with Ho=0.024 m described in Section
3, Saitoh et al. (2006) and Lu et al. (2011b) have measured the amplification of the free-surface
elevation inside the gap and the wave forces on boxes by using physical experiments and a viscous
flow model, respectively. Comparisons of the present results with those in the two papers will be
presented in Section 4.1. Because the current research mainly focuses on the harmonic analysis of
the free-surface elevation in the gap and the wave loads on the boxes, it is essential to further
examine the capability of the present model to predict the higher-order harmonic components of the
free-surface elevation or the wave loads. To the best of our knowledge, for the gap resonance
problem, the experimental data on the higher-order harmonic components of the free-surface
elevation or the wave loads are rare. However, Rodr guez et al. (2016) implemented physical
experiments on the interactions between regular waves and one fixed box, and the experimental data
of the vertical wave force on the box (including the first- and second-order harmonic components)
were presented in that paper. The numerical reproduction for part of their experiments will be

implemented in Section 4.2.

4.1. Two-boxes condition
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Fig. 4. Amplification of the free-surface elevation inside the narrow gap for the cases with Ho=0.024

m, in which Hgy denotes the wave height inside the narrow gap.

Fig. 4 illustrates the amplification of the free-surface elevation inside the narrow gap excited
by the incident waves with Ho=0.024 m. It can be seen that the predicted resonant frequency,
kh=1.556, by the present numerical model is almost identical to those obtained by both the
laboratory tests of Saitoh et al. (2006) and the CFD results of Lu et al. (2011b). Besides, in general,
the variation of Hg/Ho with respect to kh also agrees well with their results. Fig. 5 further presents
the comparisons of the horizontal and vertical wave forces on Boxes A and B predicted by
OpenFOAM® and those by the CFD results in Lu et al. (2011b). Similar to Fig. 4, the overall

agreement between the present results and those in Lu et al. (2011b) is also observed.

Forces on Box A Forces on Box B
a 25 . —— r C 25 . —— r
- —o— Lu's viscous model (2011) = —o— Lu's viscous model (2011)
io 20F —e— Present by OpenFOAM T io 20 —e— Present by OpenFOAM
~ ~
o 15F B s 15F E
S S
<, 10F E @, 1.0+ E
W w
05F B 05F -
0.0 L L L 0.0 1 1
1.0 15 2.0 25 3.0 1.0 15 2.0 2.5 3.0
kh kh
25 T T - T 25 T T - T
b = —o— Lu's viscous model (2011) d = —o— Lu's viscous model (2011)
Eo 20 —e— Present by OpenFOAM io 20 —e— Present by OpenFOAM
= 15+ B o 15F -
S S
<, 10} B o, 1.0} E
w w
051 M- oSt % ]
0.0 1 1 1 0.0 1 - -
1.0 15 2.0 25 3.0 1.0 15 2.0 25 3.0
kh kh

Fig. 5. Variations of the wave forces on the two boxes with respect to the incident wave frequency.
(a) and (b) correspond to the horizontal and vertical forces on Box A, respectively; (c) and (d)

correspond to the horizontal and vertical forces on Box B, respectively.
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4.2. One-box condition

Rodr guez et al. (2016) performed laboratory experiments in a 2.79 m wide and 63.00 m long
wave tank, and the water depth is h=1.25 m. A rectangular box was placed approximately in the
center of the wave tank, at x=29 m, where x=0 defines the location of the wave-maker. Because the
experimental study sought to achieve 2D flow conditions, the width of the rectangular box was
chosen as 2.76m, leaving only a very small gap of 0.015 m to either of the tank’s sidewalls. Single
box geometry with the breadth B=0.50 m and the draught d=0.25 m. The regular incident waves
with 0.4 <kB < 2.4 were considered. Two series of physical experiments were carried out with two
steepnesses of the incident waves kAo = 0.05 and 0.10. To examine the performance of the numerical
model for the strongly nonlinear wave conditions, the series of experiments with kAg = 0.10 are
reproduced by OpenFOAM® here. Considering that the box used in Rodr fuez et al. (2016) has the
same breadth and draft with the two boxes shown in Fig. 1, a very similar numerical wave tank (not
shown in this paper for brevity) with that in Fig. 1 is employed to implement the present simulations.
Compared to the wave tank shown in Fig. 1, there only exist two main differences in the present
wave tank. First, there is only a single box located in the middle of the present wave tank. Second,
the water depth is deepened from 0.50 m to 1.25 m. A mesh configuration that has a similar mesh
density with the medium mesh described in Section 3 is utilized. It should be noted that due to the
relaxation zone deployed around the inlet and outlet boundaries, it is not necessary for the numerical
wave tank to set the same length, 63.00 m, as the physical wave tank, and the numerical tank with
a length of 18.5 m is already long enough.

Fig. 6 presents the simulated and experimental time-histories of the non-dimensional vertical
wave force, F,(t)/(0.509A,BW), for three cases with kB=0.8, 1.4, and 2.0. It can be obviously seen
that significant nonlinearities are present, particularly for kB=1.4 and 2.0, due to the vertical
asymmetry of the force traces. Overall, the agreement between the present numerical results and the
experimental data is good. Fig. 7 further quantitatively compares the first- and second-order
harmonic components of the experimental and numerical vertical forces for all cases with kA¢=0.10.

Good agreement between the experimental and numerical results is also observed.

11
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5. Numerical results and discussion

In order to present an overall impression of the hydrodynamic characteristics of gap resonance
under the conditions of various incident wave heights on the reader, the variations of the overall
wave height amplification in the narrow gap and the overall wave loads on boxes with respect to the
incident wave frequency are first illustrated and discussed in Section 5.1. Subsequently, to find out
the relative importance of different harmonic components, the first three order harmonic
components of the free-surface elevation in the narrow gap and the wave loads on boxes are
analyzed in Section 5.2. Then, to better explain some phenomena presented in Sections 5.1 and 5.2
and better understand the mechanism essence of gap resonance, the variations of the reflection,
transmission and energy loss coefficients with respect to the frequency of the incident waves with
various wave heights are discussed in Section 5.3. Finally, considering the importance of the fast
and accurate estimation of the response time and the damping time of gap resonance, two different

estimation methods are proposed and verified in Section 5.4.

5.1 Overall wave height amplifications and overall wave loads

Fig. 8 shows the overall free-surface amplification in the narrow gap and the overall wave
forces and moments impacting on Boxes A and B excited by the incident regular waves with various
wave heights. Four obvious phenomena can be easily seen. First, it is seen from Fig. 8a that the
resonant frequency seems not sensitive to the incident wave height. For the cases with Hy=0.010 m,
0.024 m and 0.100 m, all the three variation curves of the free-surface amplification with the
frequency present perfect single-peak shapes, and the maximum free-surface amplification in the
narrow gap always occurs at the resonant frequency, i.e., kh=1.556. However, for the cases with
Ho=0.050 m and 0.075 m, the two variation curves of the free-surface amplification do not show the
perfect single-peak shape. The two curves around the resonant frequency become flat, and the values
of free-surface amplification at kh=1.556 are even slightly less than the ones at its both adjacent
sides. The reason for this phenomenon can be attributed to the almost invariable reflection
coefficients around the resonant frequency under the conditions of Ho=0.050 m and 0.075 m (it will

be shown in Section 5.3).
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Fig. 8. The overall free surface amplification in the gap and the overall wave forces and moments
on Boxes A and B induced by the incident regular waves with various wave heights. The vertical

dash line refers to the position of the resonant frequency.

Second, for the vertical wave forces on both the two boxes (Fig. 8b and c), there exist obvious
deviations between the frequency at which the maximum vertical wave force appears and the
resonant frequency. However, there are some different features for the changing trends of the vertical
wave forces on the two boxes. For Box A, the difference between the frequency at which the
maximum vertical wave force appears and the resonant frequency monotonously increases with the
incident wave height. Besides, the vertical wave forces excited by the incident wave with small
height tends to increase first, then sharply decrease, then slowly increase, and then slowly decrease

with the non-dimensional wavenumber, kh. However, with the increase of the incident wave height,
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the vertical wave forces gradually become monotonic decrease with kh. For Box B, when the
incident wave height is small, the changing trend of the vertical wave forces with kh is similar to
that for Box A. When the incident wave height becomes large, the value of the vertical wave force
seems insensible to the incident wave frequency at the ranges of kh < 1.5 and kh > 1.9, and its value
only decreases sharply with the incident wave frequency at the range of 1.5 <kh < 1.9.

Third, for the horizontal wave forces on Box A (Fig. 8d), the frequency at which the maximum
horizontal force occurs is obviously larger than the resonant frequency; the larger the incident wave
height is, the more obvious the deviation becomes. While for the horizontal wave forces on Box B
(Fig. 8e), the frequency at which the maximum horizontal force occurs is equal to or just slightly
less than the resonant frequency. It is due to the fact that the magnitude of the horizontal force is
determined by the free-surface elevation difference between the opposite sides of the each box (Lu
etal., 2011b). The free-surface elevation at the left side of Box A is much larger than that at the right
side of Box B. It leads to that the free-surface elevation difference between the opposite sides of
Box A is more different from the free-surface elevation in the gap, while the free-surface elevation
difference between the opposite sides of Box B is more close to the free-surface elevation in the gap.
As for the reason why the free-surface elevation at the left side of Box A is much larger than that at
the right side of Box B, there are two main reasons: (1) the reflected wave height is always larger
than the transmitted wave height (i.e., Cr > C;, which will be shown in Section 5.3), and (2) the left
side of Box A locates at a antinode of the partially standing waves composed of the incident and the
reflected waves, which causes the wave height at the left side of Box A is approximately equal to
the summation of the incident and the reflected wave heights.

Fourth, for the moments on Boxes A and B (Fig. 8f and g), for all the incident wave heights
considered in this paper, the variation curves of the moment on each box with the frequency is very
similar to those of the horizontal force on the corresponding box. Hence, the phenomena described
above for the horizontal forces are also applicable for the moments. To further examine the
phenomenon that the variation curves of the moment on each box with the frequency are very similar
to those of the horizontal force on the corresponding box for all the incident wave heights studied
in this paper, Fig. 9 presents the comparisons of the normalized curves of the horizontal forces and
the moments on Boxes A and B for Ho=0.010 m and 0.100 m. The normalized curve refers to the

original variation curve divided by the corresponding peak value of the original variation curve.
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Hence, the normalized curve always has a maximum value, 1.0. It can be seen that for both the two
boxes and for both the two incident wave heights, the normalized curves of the horizontal wave
forces are almost identical to those of the moments. For the other three incident wave heights (i.e.,
Ho=0.024 m, 0.050 m and 0.075 m), the similar phenomenon can also be clearly observed (their

comparisons are not shown in the paper for brevity).
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Fig. 9. Comparisons of the normalized curves of the horizontal wave forces and the moments on

Boxes A and B

5.2 Harmonic analyses of wave height amplifications and wave loads

Fig. 10 illustrates the variation of the first three order harmonic components of the free-surface
elevation in the gap with respect to the frequency under the conditions of various incident wave
heights. Hy™ (i=1, 2 and 3) in the figure denotes the i"-order harmonic component of the free-surface
elevation in the gap. The following three phenomena can be easily observed. First, the first-order
component of the free-surface elevation is significantly larger than the second- and third-order
components. Second, around the resonant frequency, the second-order component is larger than the
corresponding third-order one; the larger the incident wave height is, the more obvious the
phenomenon becomes. Third, all the first three order harmonic components around the resonant
frequency are remarkably larger than the corresponding ones for the non-resonant conditions.

To quantify the relative importance of higher-order components to the first-order component,
Fig. 11 further shows the ratios of the second- and third-order harmonic components to the first-

order harmonic components for the free-surface elevation in the gap under the conditions of various
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398 incident wave heights. It is seen that at the range of 1.3<kh<1.9, there existing obvious peak points

399 around the resonant frequency for both the second- and third-order harmonic components. For the
400 second-order harmonic components, the maximum of their ratios to the first-order harmonic
401 components reaches up to about 13%. It can be attributed to the fact that the free-surface elevation
402 around the resonant frequency is remarkably amplified, and naturally the higher-order harmonic
403 components of the free-surface elevation are enhanced due to the wave nonlinearity. While at the
404 ranges of kh<1.3 and kh>1.9, as the wave frequency becomes far from the resonant frequency, the
405 ratios of the second- and third-order components to the first-order components tend to gradually
406 increase. It is mainly due to that the value of the first-order component significantly decreases as
407 the wave frequency becomes far from the resonant frequency, especially for the high-frequency
408 range (i.e., kh>1.9).
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410 Fig. 10. The first three order harmonic components of the free-surface elevation in the gap under
411 the conditions of various incident wave heights
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Fig. 11. Ratios of the second- and third-order harmonic components to the first-order harmonic
components for the free-surface elevation in the gap under the conditions of various incident wave

heights

Fig. 12 illustrates the first three order harmonic components of the vertical wave forces on
Boxes A and B for all the simulations. FA®and F2® (i=1, 2 and 3) in this figure refer to the it"-
order harmonic components of the vertical wave forces on Boxes A and B, respectively. The
following three phenomena can be easily seen. First, the first-order harmonic components of the
vertical wave force are much larger than the higher-order components near the resonant frequency.
Second, when the incident wave height is small (Fig. 12a and f), the second-order harmonic
component is obviously larger than the third-order ones around the resonant frequency. As the
incident wave height increases, the third-order harmonic components around the resonant frequency
gradually become obviously larger than those far away from the resonant frequency; on the contrary,
the second-order harmonic components around the resonant frequency become smaller and smaller
compared with those far away from the resonant frequency. When the incident wave height increases
up to Ho=0.100 m (Fig. 12e and j), the third-order harmonic components have approached (for Box
B) or even exceeded (for Box A) the second-order ones. Third, for the high-frequency range,
because the first-order harmonic components decease sharply with the wave frequency, the second-
order harmonic components approach and even exceed the corresponding first-order ones for both
the two boxes.

Fig. 13 further shows the ratios of the second- and third-order harmonic components to the

first-order harmonic components for the vertical wave forces on the two boxes for all the simulations.
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435 It can be easily observed that for both the two boxes and for the wave frequency far away from the

436 resonant frequency, the ratio of the second- to the first-order components is always larger than the
437 ratio of the third- to the first-order components, while around the resonant frequency, the latter
438 approaches or even exceeds the former. Besides, for the second-order components, their ratios near
439 the resonant frequency are less than those far from the resonant frequency. While for the third-order
440 components, their ratios near the resonant frequency tend to be larger than those far from the
441 resonant frequency (it is valid for the whole frequency range considered in this paper for Box A,
442 and for kh<1.800 for Box B).
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445 Fig. 12. The first three order harmonic components of the vertical wave forces on Boxes A and B
446 under the conditions of various incident wave heights.
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Fig. 13. Ratios of the second- and third-order harmonic components to the first-order harmonic
components for the vertical wave forces on (a) Box A and (b) Box B under the conditions of various

incident wave heights

Fig. 14 presents the first three order harmonic components of the horizontal wave forces on
Boxes A and B for all the simulations. F®and FP® (i=1, 2 and 3) in this figure refer to the it"-

order harmonic components of the horizontal wave forces on Boxes A and B, respectively. Because
both the second- and third-order harmonic components of the horizontal wave forces around the
resonant frequency are extremely small compared to the corresponding first-order components, in
order to better show the variations of all these three harmonic components with the incident wave
frequency, the values of both the second- and third-order harmonic components shown in this figure
are enlarged five times. In general, the above three phenomena for the vertical wave forces shown
in Fig. 12 can also be observed in this figure.

Fig. 15 further presents the ratios of the second- and third-order harmonic components to the

first-order harmonic components for the horizontal wave forces on the two boxes for all the
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simulations. It should be noted that, for Box B (Fig. 15b), when kh=2.910 and Ho=0.100 m, the

value of FP?/F"® has already exceeded 140%. However, to better show the variation

characteristics of the ratios around the resonant frequency, the maximum changing range of the y-
axis is only set to 20%. Again, in general, all the phenomena for the vertical wave forces presented
in Fig. 13 can also be observed in this figure, except that the ratios of the third- to the first-order
components near the resonant frequency shown in this figure tend to be smaller than those far from

the resonant frequency.

Horizontal force on Box A Horizontal force on Box B
s, (@) Hy= 0.010 M ' T O s 2f ' (f) Hy=0.010 -
< —e—5F 2@ <
~ X ~
2 —a—5F A S 1k ——F |
-:(’:; 1F x4 -E.’—?,\ _._5|:XB(2)
W o —a—5F 2O
X
0 0k
1. 1. 15 2.0 25 3.0
2 16 ' (9) H,= 0.024
—~ <) =0. m
S g 9o
‘:o ‘QO 12 L -
= = : BQY)
i Sost : R
=N = : o 5F B@
o X041 : .
. ZS . —a—5F0
0 0.0 £ L * T
1. 1.0 15 2.0 25 3.0
15 12 . ; T
s s (h) H,=0.050 m
TO V:O L -
§ 1.0 E 0.8 | £ 20
S 05 $ o4l —e—5F 50
w w . E —a—5F BO
X
0.0 0.0k p: i — — E
1. 1.0 15 2.0 25 3.0
1.0 ; ;
s 1.2 s (i) Hy= 0.075 m
< 0.9 <
= =
80 ) B(1)
=06 Sosf —=—F°0 |
g g —— SFXBQ)
w03 e s 5F BO)
X
0.0 0.0k > g
1. 1.0 25 3.0
1.2 0.9 T
s s (j) H= 0.100 m
<09 T o6} T
by = B(1)
os 2 —F
g $ o3f —e—5F
u*03 e +— 5F B
X
‘.\
0.0 g 0.0k i g
1.0 15 2.0 25 3.0 1.0 15 2.0 25 3.0
kh kh

Fig. 14. The first three order harmonic components of the horizontal wave forces on Boxes A and

B under the conditions of various incident wave heights.
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Fig. 16 presents the first three order harmonic components of the moments on Boxes A and B
for all the simulations, in which Mf(i)and MyB(i) (i=1, 2 and 3) refer to the iM-order harmonic

components of the moments on Boxes A and B, respectively. It is obviously seen that when the
incident wave height is small (refer to Fig. 16a and f), both the second- and third-order harmonic
components are much smaller than the corresponding first-order ones around the resonant frequency
for both the two boxes. However, as the incident wave height increases, the values of the second-
order harmonic components around the resonant frequency gradually increase. Compared to the
first-order harmonic components, the second-order harmonic components have reached a
considerable values when Ho=0.100 m (refer to Fig. 16e and j). To better illustrate this point, the
ratios of the second- and third-order harmonic components to the first-order harmonic components
for the moments on both the two boxes under the conditions of various incident wave heights are

presented in Fig. 17. It can be seen that when the incident wave height is small (i.e., Ho=0.010 m),
both the values of M@ /M and M /M are approximately 5%. However, when the

incident wave height increases to Ho=0.100 m, both their values reach up to near 20%.
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Fig. 16. The first three order harmonic components of the moments on Boxes A and B under the

conditions of various incident wave heights.
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Fig. 17. Ratios of the second- and third-order harmonic components to the first-order harmonic
components for the moments on (a) Box A and (b) Box B under the conditions of various incident

wave heights

5.3 Reflection, transmission and energy loss coefficients

Based on the wave analysis technique in Goda and Suzuki (1976), the wave height of the
reflected waves from the two-box system can be obtained by using the free-surface elevations at G,
and G (refer to Fig. 1). The reflection coefficient C; is further calculated as the ratio of the reflected
wave height to the incident wave height Ho. The transmission coefficient C; is defined as the ratio
of the transmitted wave height to Ho, and the transmitted wave height can be obtained by the free-
surface elevation at G4. Then, the energy loss coefficient L =1-C?—-C? is calculated. The effects
of the incident wave height on the reflection, transmission and energy loss coefficients, Cr, C; and
Le, are illustrated in Fig. 18. For the reflection coefficient (Fig. 18a), the following three phenomena

can be easily observed. First, the reflection coefficients C; near the resonant frequency are always
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less than those away from the resonant frequency. Second, the reflection coefficient at the resonant
frequency increases with the increasing of the incident wave height. Third, under the conditions of
Ho=0.050 m and 0.075 m, both the two variation curves of the reflection coefficient around the
resonant frequency almost become flat, which indicates that the similar wave energy can propagate
into the gap. Hence, this leads to the relatively flat variation curves of Hg/Ho around the resonant
frequency for Ho=0.050 m and 0.075 m shown in Fig. 8a.

For the transmission coefficient (Fig. 18b), the frequency at which the maximum transmission
coefficient Cioccurs is always less than the resonant frequency. The larger the incident wave height
is, the more obvious their difference becomes. When the incident wave height is small, the
transmission coefficient first increases, then sharply decreases, then slowly increases, and then
slowly decreases with the non-dimensional wavenumber, kh. However, with the increase of the
incident wave height, the vertical wave forces gradually become monotonic decrease with kh. These
effects of the incident wave height on the variation characteristics of the transmission coefficient
are very similar to its effects on those of the vertical wave forces on Boxes A and B (see Fig. 8b and
c).

By carefully comparing Fig. 18a and b, it can be found that for all the incident wave heights
considered in this paper, the reflection coefficients are always larger than the transmission
coefficient, no matter whether the gap resonance occurs or not. The larger the incident wave height
is, the more obvious the difference between C; and C; becomes. This explains that phenomenon
shown in Fig. 8d and e that for the horizontal wave forces on Box A, the frequency at which the
maximum horizontal force occurs obviously deviates from the resonant frequency; while for the
horizontal wave forces on Box B, the frequency at which the maximum horizontal force occurs is
approximately equal to the resonant frequency.

For the energy loss coefficient (Fig. 18c), it is seen that for all the incident wave heights
considered in this paper, almost all the maximum energy loss coefficients appear at (or very close
to) the resonant frequency. Besides, with the increase of the incident wave height, the energy loss
coefficient at the resonant frequency becomes smaller and smaller. It should be noted that, intuitively,
this finding seems to be incompatible with that phenomenon shown in Fig. 8a that larger incident
wave height leads to smaller amplification of the free-surface elevation in the gap. In fact, these two

findings are compatible with each other. The reason lies on that the increase of the incident wave
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height tends to remarkably augment the reflection coefficient at the resonant frequency, and hence
relatively less wave energy can propagate into the gap. Therefore, less energy dissipation and
smaller free-surface amplification in the narrow gap can be observed at the resonant frequency,

which agrees with the related findings in Jiang et al. (2018).
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Fig. 18. Variations of (a) the reflection coefficient, (b) the transmission coefficient and (c) the energy
loss coefficient with respect to the wave frequency under the conditions of various incident wave

heights

5.4 Response time and damping time of gap resonance

In practical engineering applications, the fast and accurate estimation of the response time and
the damping time is crucial for the safe evacuation of staff and the reasonable arrangement of
operation time during the offloading operations from FPSO platforms to a shuttle tanker under gap
resonance conditions. In this section, a general method is proposed for accurately estimating both
the response time and the damping time of free-surface elevation in the gap under resonance. The
general method is based on fitting the envelope of the free-surface elevation. For the evaluation of

the response time, there is an alternative method which is based on the amplification curve of the
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free-surface elevation in the gap.
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Fig. 19. Generic amplification curve; Aw is the half-power spectral bandwidth

These methods are inspired by Bellotti (2007) and Dong et al. (2010) who investigated the
response time and the damping time of the harbor to long waves under the condition of harbor
resonance. In order to facilitate the understanding of the reader, the basic principle of these methods
is briefly explained here. To illustrate the basic principle, Fig. 19 shows a generic amplification
curve, in which Z is the amplification factor. The free-surface elevation in the narrow gap can be
considered as typical of a 1D system like a mass-spring system, moving along a line, connected to
a damper, forced by a periodically unit force. If the considered mass starts from rest (i.e., from the
position z=0), when the frequency of the force equals the natural frequency of the system, its position

along the axis (z) can be formulated as
2=27Z,, cos(—a)-t*)(l—e’gR“*), (7)

in which R is a parameter governing the response time of the resonator, Zmax is the maximum

amplification factor and t* denotes the relative time with respect to the moment that the mass just
begins to move from rest. It requires infinite time for the fluctuation to reach its maximum, following

Eq. (7). Thetime t*,, needed for the waves to reach a% of the maximum can be formulated as

a%
. :_In(l—a%)
a% é'R

Similarity, if the mass damps from the steady-state maximum to the rest state, its position can be

: (8)

expressed as
2=27,, cos(~w- r)e‘gD'T \ 9

where P is a parameter controlling the damping time of the resonator and z denotes the relative

time with respect to the moment that the mass just begins to damp from the steady-state maximum.
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The time z,, needed by the wave to decrease to /% of the maximum can be expressed as

In(/}%).

Ty = —T (10)

It can be found from Egs. (8) and (10) that the key step to quantitatively evaluate the response
time and the damping time lies on how to find the values of {R and {'P. A general method to obtain
their values is to directly fit the measured (or simulated) envelopes of the displacement of the mass
with the theoretical ones formulated by Egs. (7) and (9). It can be demonstrated that for 1D
resonators, the value of {R can also be evaluated from the amplification curve. More specifically,
¢R =Aw/ 2, in which Aw is the half-power spectral bandwidth (i.e., the width of the part of the
amplification curve with values larger than Zmax / 2°5). Identical to Bellotti (2007) and Dong et al.

(2010), t*,and 7, are selected in this article to represent the response time and the damping

time of the resonant free-surface elevations, respectively.
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o 5[ () Hy=0.010m ; - e—o—= =
i: 0 [ g el K s R S S S \.‘ 3
< L :
5 -]
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10 T T T T T T T T T T
. 5L (b) H,;=0.024 m
< e 3
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4 6 8 10 12 14 16
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0 2 4 6 8 10 12 14 16
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Fig. 20. The response process of the free-surface elevation (#/Ao) in the narrow gap excited by the
incident regular waves with the resonant frequency (i.e., kh=1.556, or equivalently »=>5.285 rad/s)

and various heights. Dashed lines denote the time histories of the simulated free-surface elevations
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obtain by the numerical model. Solid lines refer to the fitted envelope of 7/A obtained by directly
fitting the simulated envelopes with the theoretical ones formulated by Eq. (7). Small circles
represent the envelope of #/Aq as obtained by Eq. (7) using the amplification curve method for

estimating ¢R.

Fig. 20 shows the time histories of the free-surface elevations in the narrow gap, obtained by
using the time-resolving numerical model, from the calm to the steady state. The frequency of all
the incident regular waves corresponds to the resonant frequency (i.e., kh=1.556, or equivalently
®=5.285 rad/s). By directly fitting the simulated envelopes with the theoretical ones formulated by
Eq. (7), the numerical values of {R can be obtained. Besides, by measuring the half-power spectral
bandwidth of the amplification curve as shown in Fig. 19, the values of (R can also be calculated. It
is noted here that, to facilitate comparing the values of {®R obtained by these two different methods,
two different symbols, ¢ and ¢F, are used separately to represent the values of {® obtained by the
amplification curve method and by the direct envelope-fitting method in the following. As a
concrete example of employing the amplification curve method to evaluate the value of £, Fig. 21
illustrates the amplification curve of the free-surface elevation in the narrow gap under the condition

of Ho=0.010 m. It can be seen that the value of ¢ under the condition of Ho=0.010 m is equal to

0.20.
8 T T T T T T T
7L (Hy/Ho)ar= 6.59 ]
6 - 4
5[ (HyfHo)pad2°°= 4.66 ]
L 4L ]
I
3k 4
2+ . 1
L[ Aw=26%=040 1
0 L 1 1 1 1 1
40 45 50 55 60 65 70 75 80

w (rad/s)

Fig. 21. Amplification curve of the free-surface elevation in the narrow gap under the condition of

Ho=0.010 m

Table 1 further lists all the values of &7 and ¢, their relative percentage errors, Err, and
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the response time, t*,, for the free-surface elevations shown in Fig. 20. The response time, t*,,, ,
in this table is calculated by employing Eq. (8) and the value of £} . As mentioned in Section 5.1,
unlike the typical amplification curves shown in Figs. 19 and 21, the two free-surface amplification
curves for Hp=0.050 m and 0.075 m do not present the perfect single-peak shape; the two curves
around the resonant frequency become flat, and the values of the amplification factor at kh=1.556
are even slightly less than the ones at its both adjacent sides (refer to Fig. 8a). Hence, the values of
¢t for Ho=0.050 m and 0.075 m are absent. For the other three wave heights, the relative
percentage errors between ¢ and ¢ are shown to be extremely small. Besides, observing Fig.
20 can easily find that for all the incident wave heights considered in this paper, both the two
envelopes of the free-surface elevations obtained by ¢and ¢ agree well with the corresponding
simulated free-surface elevations by using the time-resolving numerical model. These phenomena
indicate that both the two above-mentioned methods for evaluating the response time of gap

resonance are accurate and reliable.

Table 1. All the parameters related to the response time and the damping time of the resonant free-

surface elevations shown in Figs. 20 and 22. Err denotes the relative percentage error between ¢}?
and ¢F. t*,, and r,, refers to the response time and the damping time of the free-surface

elevations, respectively. The evaluation of t*,, isbased on Eq. (8) and the value of ¢ .

Ho (m) ¢ ¢ Err (%) T, (9) ¢° Tos () Tooe /Moss
0.010 0.200 0.202 0.99 14.83 0.125 23.97 1.62
0.024 0.306 0.299 2.34 10.02 0.136 22.03 2.20
0.050 - 0.421 - 7.12 0.145 20.66 291
0.075 - 0.467 - 6.41 0.151 19.84 3.09
0.100 0.512 0.499 2.60 6.00 0.158 18.96 3.16
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Fig. 22. The damping process of the free-surface elevation (r/Ag) in the narrow gap excited by the

incident regular waves with the resonant frequency (i.e., kh=1.556, or equivalently »=5.285 rad/s)
and various heights. Dashed lines denote the time histories of the simulated free-surface elevations
obtain by the numerical model. Solid lines represent the fitted envelope of #/Ao obtained by directly

fitting the simulated envelopes with the theoretical ones formulated by Eq. (9).

Fig. 22 illustrates the time histories of the simulated free-surface elevations in the narrow gap
and their fitted envelopes obtained by directly fitting the simulated envelopes with the theoretical
ones formulated by Eq. (9) during their damping processes. It is seen that for all the incident wave
heights considered in this paper, Eq. (9) can describe the damping process of the resonant free-
surface elevation in the gap very well. All the values of (P gained by the direct envelope-fitting
method and the damping time z,,, under the conditions of various wave heights are also presented
in Table 1.

According to the response time and the damping time presented in Table 1, the following two
phenomena can be easily observed. First, for all the incident wave heights, the damping time is

always significantly larger than the corresponding response time. The ratio of the damping time to
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the response time gradually increases from 1.62 for Hy=0.100 m to 3.16 for Hy=0.100 m. This
indicates that once the gap resonance is excited, it will persist for a rather long time. Second, both
the response time and the damping time decrease with the incident wave height, and the decreasing
degree of the response time is obviously larger than that of the damping time. The response time

falls up to 60 % from Hy=0.010 m to Ho=0.100 m, while the damping time reduces only about 21%.

6. Conclusions
The CFD numerical model, OpenFOAM®, together with the wave generation toolbox

“waves2Foam” proposed by Jacobsen et al. (2012), is adopted for investigating the hydrodynamic

behaviors of water resonance in a narrow gap formed by two side-by-side identical boxes excited

by incident regular waves with various wave heights. The overall free-surface amplification in the

gap and the overall wave loads on the boxes are firstly presented. Then, the harmonic analyses of

free-surface elevation and wave loads are mainly investigated. Next, the reflection, transmission

and energy loss coefficients of the two-box system are discussed. Finally, two different methods to

evaluate the response time and the damping time of gap resonance are proposed. The results of this

study have provided new insights of the hydrodynamic characteristics involved in the gap resonance.
The following conclusions can be drawn from the results of the present study:

(1) The frequencies at which the maximum vertical wave forces on both boxes and the maximum
horizontal wave force on Box A occur appear to obviously deviate from the resonant frequency;,
and a larger incident wave height tends to cause more obvious differences between them. While
the frequency at which the maximum horizontal force on Box B occurs is equal or very close
to the resonant frequency.

(2) For the free-surface elevation in the gap and the moments on boxes, the ratios of their second-
order components to the corresponding first-order ones around the resonant frequency are
normally larger than those at the frequencies far from the resonant frequency (except those at
the very high frequency band). The larger the incident wave height is, the larger the ratios of
the second- to the first-order components around the resonant frequency becomes.

(3) For both the vertical and horizontal wave forces on both boxes, the ratios of their second- to the
first-order components near the resonant frequency are less than those far away from the

resonant frequency. Besides, when the incident wave height is small, their second-order
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®)

components are obviously larger than the corresponding third-order ones around the resonant
frequency. However, as the incident wave height increases, the third-order components around
the resonant frequency gradually approach and even exceed the second-order ones.

Both the minimum reflection coefficient and the maximum energy loss coefficient always
appear at (or very close to) the resonant frequency, while the frequency at which the maximum
transmission coefficient appears is obvious less than the resonant frequency. The reflection
coefficient is always larger than the transmission coefficient, and the larger the incident wave
height is, the more obvious their difference becomes. Besides, the energy loss coefficient under
the gap resonance condition gradually decreases with the increase of the incident wave height.
Both the amplification curve method and the direct envelope-fitting method are able to
accurately evaluate the response time and the damping time of the resonant free-surface
elevation in the gap, and it is shown that the damping time is always significantly larger than
the corresponding response time. Besides, with the increase of the incident wave height, both
the response time and the damping time decrease, and the decreasing degree of the former is

obviously larger than that of the latter.

Finally, we reaffirm here that these conclusions are only valid for the given geometric layout

(including the size and draft of the two boxes, the gap width and the water depth) and the ranges of

no.

the incident wave height and the incident wave frequency studied in this paper.
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