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Abstract 

Converting CO2 into value-added fuel by utilizing abundant solar energy could in principle 

minimize fossil fuel consumption and anthropogenic CO2 emissions. However, developing 

catalytic systems with high selectivity and efficiency is necessary for photocatalytic CO2 

conversion. Here we report the fabrication of a N-doped C dot/CoAl-layered double 

hydroxide/g-C3N4 (NCD/LDH/CN) hybrid heterojunction photocatalyst for high efficiency 

and selectivity reduction of CO2 with water into CH4 under simulated-solar-light illumination. 

The NCD/LDH/CN hybrid photocatalyst demonstrated remarkable CH4 production with an 

optimum rate of 25.69 µmol g−1 h−1, an apparent quantum yield of 0.62%, and 99% 

selectivity for CH4. This NCD/LDH/CN hybrid system also exhibited exceptional stability 

and durability during consecutive test cycles with no apparent change in activity. The high 

activity and stability of the NCD/LDH/CN hybrid toward CO2 photoreduction is essentially 

attributable to the strong synergy among the NCD, LDH, and CN constituents, which hinder 

charge recombination by accelerating charge transportation processes, together with the 

favorable properties such as broad optical response and good CO2 adsorption capability. We 

explored the role of the NCDs in the NCD/LDH/CN hybrid system as a metal-free co-catalyst 

for the efficient and selective production of CH4 from CO2 photoreduction. Thus, the present 

report provides new insights into the rational fabrication of noble-metal-free photocatalysts 

for efficient and selective sustainable hydrocarbon production from photocatalytic reduction 

of CO2.  

Keywords: g-C3N4; layered double hydroxide; carbon dots; hybrid heterojunction; solar 

energy conversion 
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Introduction 

     Large-scale consumption of nonrenewable fossil fuels due to increasing industrial growth 

has led to continually increasing emission of anthropogenic carbon dioxide (CO2) into our 

atmosphere. Since CO2 is a greenhouse gas, this intemperate level of atmospheric CO2 has 

caused a series of adverse consequences for the climate system of our planet, including acid 

rain, rising sea levels, and global warming [1-3]. Despite these disadvantages, CO2 serves as 

a C1-feedstock for many chemical industries; therefore, increasing efforts are being devoted 

to its conversion into energy-rich products [4,5]. Since solar power is a major renewable 

energy source, solar-powered photocatalytic conversion of CO2 has been regarded as a 

potential means of transforming CO2 into high-energy embedded chemicals or solar fuels 

(e.g., CO, CH3OH, C2H5OH, CH4, HCOOH, etc.) that would simultaneously mitigate the 

global energy crisis and greenhouse effect [6,7]. Nevertheless, the photocatalytic reduction of 

CO2 is quite strenuous, due to the high thermodynamic stability of CO2 molecules and the 

competing water reduction reaction, which reduce the yield of the desired product [8]. To 

overcome these limitations and improve the CO2 reduction efficiency and selectivity, it is 

essential to develop efficient catalysts capable of harnessing the light absorption across the 

entire solar spectrum and boosting charge separation and transport.  

     Since the seminal work by Inoue et al. [9] on photoconversion of CO2 into value-added 

chemicals over various semiconductors was published in 1979, numerous heterogeneous 

photocatalysts have been explored for CO2 reduction [10]. Recently, the features of two-

dimensional (2D) metal-free polymeric graphitic carbon nitride (g-C3N4), including high 

thermal and chemical stabilities, appropriate band gap for visible light absorption, tunable 

electronic structure, low cost, and nontoxicity, have made it a strong contestant for use in 

photocatalytic CO2 reduction reactions [11-13]. Despite these outstanding features, the 

efficiency of CO2 reduction is unsatisfactory and hinders the practical application of this 
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material owing to the limited use of solar energy, low CO2 adsorption capacity, and low 

separation efficiency of photoinduced electron–hole pairs. The construction of heterojunction 

composites by integrating two different semiconductors, particularly into 2D layered 

architectures with matching conduction band (CB) and valence band (VB) edge potentials, is 

regarded as an efficient method of improving the separation efficiency of photoexcited charge 

carriers [14]. Some g-C3N4-based 2D/2D composite catalysts reported in the literature have 

demonstrated considerably enhanced activity for photocatalytic CO2 reduction performance 

[15-19].  

     In addition, the high proximity of CO2 molecules on the photocatalyst surface is crucial 

for subsequent CO2 activation and reduction [20]. Considering their 2D layered architecture 

and high affinity towards CO2 molecules, layered double hydroxides (LDHs), as a new class 

of materials [21-25], are suitable choices for integration with g-C3N4. For instance, Hong et al. 

[26] reported an LDH/g-C3N4 composite photocatalyst displaying improved performance for 

CO2 reduction to CH4, which was mainly due to the enrichment of CO2 molecules on the 

surface of the composite catalyst. We recently reported a g-C3N4/NiAl-LDH hybrid composte 

for enhanced photoreduction of CO2 to CO without using a sacrificial reagent [27]. The 

enhanced activity was mainly attributed to the efficient separation and transfer of 

photoinduced electron–hole pairs at the heterojunction interfaces. Although these LDH/g-

C3N4-based composites achieved improved CO2 adsorption and high charge separation, their 

relatively poor surface redox chemistry limited the activity and selectivity towards 

hydrocarbon production.  

     To overcome these issues, we rationally integrated N-doped C dots (NCDs), CoAl-LDH, 

and g-C3N4 to construct an efficient noble-metal-free NCD/LDH/CN hybrid heterojunction 

system, which was applied effectively for selective CO2 reduction to produce CH4 under 

simulated-solar-light illumination. The fabricated NCD/LDH/CN hybrids were carefully 
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characterized using several analytical techniques. Importantly, the NCD/LDH/CN hybrid 

photocatalyst with appropriate contents of NCDs and LDH showed significantly improved 

CO2 photoreduction performance compared to CN, LDH, NCD/CN, and LDH/CN samples. 

The effects of the LDH content and the multiple roles of the NCDs on the photocatalytic 

activity of the NCD/LDH/CN hybrid photocatalyst were thoroughly examined. A possible 

mechanism for the efficient and selective CH4 production achievable using the present hybrid 

system was proposed based on the results of photoluminescence (steady-state and time-

resolved) and photocurrent experiments. The durability and stability of the hybrid were also 

probed by conducting consecutive test cycles. To the best of our knowledge, this is the first 

report of the integration of NCD, LDH, and CN for high efficiency and selectivity reduction 

of CO2 into value-added fuels. 

 

Experimental section 

Synthesis of photocatalysts 

     The g-C3N4 nanosheets were synthesized by a simple thermal treatment of urea in a muffle 

furnace. Briefly, 10 g of finely ground urea powder was placed into a covered alumina 

crucible and then thermally treated to 520 °C for 2 h at a rate of 5 °C/min in a muffle furnace. 

After cooling to room temperature, the obtained whitish-yellow powder of g-C3N4 nanosheets 

was collected and is herein denoted as CN.  

     NCDs were prepared from citric acid and urea via a simple hydrothermal route [28]. 

Typically, 3 g of citric acid and 1 g of urea were dissolved in 30 mL of water and 

ultrasonicated for 2 h. Then, the solution was transferred into a 50 mL Teflon-lined stainless-

steel (TL-SS) autoclave and heated at 180 °C for 5 h. After hydrothermal treatment, the 
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obtained brown solution was centrifuged at 12,000 rpm for 20 min to remove large particles. 

Finally, the resultant solution was dried at 80 °C to procure the NCD powder. 

     The target NCD/LDH/CN hybrid heterojunctions were fabricated via a facile one-pot 

hydrothermal route, which can be described as follows. Calculated amounts of as-synthesized 

CN and NCD powders were dispersed through ultrasonication in 160 mL of aqueous solution 

containing 0.006 M Co(NO3)2.6H2O and 0.002 M Al(NO3)3.9H2O. Subsequently, 0.04 M 

urea and 0.016 M NH4F were added to the above suspension and magnetically stirred for 2 h. 

The resultant reaction mixture was transferred into a 200 mL TL-SS autoclave and heated at 

120 °C for 24 h. After treatment, the obtained precipitate was collected and washed with 

water several times, followed by washing with ethanol and drying at 60 °C. NCD/LDH/CN 

hybrid photocatalysts with the same amount of NCDs (2 wt. %) and different contents of 

LDH to CN, i.e., 5, 10, 15, and 20 wt. % were fabricated and are denoted herein as NLC-5, 

NLC-10, NLC-15, and NLC-20, respectively. Pristine LDH was prepared using a similar 

hydrothermal method, but without the addition of CN and NCDs. For comparison, LDH/CN 

(10 wt. % of LDH on CN) and NCD/CN (2 wt. % of NCDs on CN) hybrid photocatalysts 

were also prepared using the same procedure, but in the absence of NCDs and LDH 

precursors, respectively.  

Photocatalytic CO2 reduction test  

     Photocatalytic CO2 reduction experiments were conducted in a homemade stainless steel 

reactor (80 mL) with a quartz window at the top for passing light irradiation. A 300 W Xe arc 

lamp was employed as the light source to trigger the CO2 reduction reaction. In a typical 

process, 50 mg of the catalyst powder was evenly distributed on a circular glass dish and 

placed at the bottom of the stainless steel reactor. Then, 300 µL of degassed and CO2-

saturated water (to remove any dissolved O2) was introduced into the reactor for humidity 
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and electron donation. Prior to light illumination, the reactor was vacuum-treated and purged 

with high-purity CO2 gas for 1 h to ensure that air was completely removed from the reactor. 

After finishing this process, the reactor was backfilled with CO2 gas to maintain an inside 

pressure of about 1 bar. The temperature of the system was held constant at 80 °C to generate 

water vapor. The pressure and temperature inside the system were continuously monitored by 

a dial pressure gauge. During the irradiation, 500 µL of gas was periodically extracted from 

the reactor for quantitative analysis of the products on a Shimadzu Tracera GC-2010 Plus gas 

chromatograph equipped with barrier ionization detector and He as a carrier gas. The 

quantification of the production yield was based on a calibration curve of a standard gas 

mixture. 

     For the photostability experiment, the catalyst was collected after each photocatalytic run 

and heated at 120 °C to remove all possible physically adsorbed products. Then, its CO2 

reduction performance was re-evaluated under conditions similar to those mentioned above. 

The selectivity toward the formation of CH4 was simply deduced according to the following 

equation:  

CH�	selectivity	
%� =
8N���

8N��� + 2N��
× 100 

CO	selectivity	
%� =
��� 

��� !��"�
× 100, 

where #$%�, #$&, and #%� are the yields of CH4, CO, and H2, respectively. 

     The apparent quantum yield (AQY) of the photocatalyst was calculated using the 

following equations: 

AQY	
%� =
*+,-./	01	/.234.5	.6.34/0*7

*+,-./	01	8*385.*4	9:040*7
× 100  

AQY	
%� =
*+,-./	01	.;06;.5	���	,06.3+6.7×<

*+,-./	01	8*385.*4	9:040*7
× 100. 
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Results and discussion 

Characterization of NCDs 

     The crystal and chemical structures of the NCDs were determined based on the XRD, 

FTIR, and XPS measurements. The XRD pattern of the NCDs in Fig. 1a displays a broad 

diffraction peak at 23.8°, which is attributable to the (002) interlayer spacing of a graphitic 

structure [29]. The FTIR pattern of the NCDs in Fig. 1b reveals the presence of N–H (3000–

3400 cm−1), C–H (2650–2900 cm−1), C=O (1767 cm−1), C=N (1658 cm−1), C=C (1551 cm−1), 

–COOH (1352 cm−1), C–O–C (1237 cm−1), and C–O (1002 cm−1) groups [29-31]. Owing to 

the existence of these abundant O-containing functional groups, NCDs possess high 

dispersibility and stability in aqueous solutions. The survey XPS spectrum (Fig. 2a) clearly 

shows that the NCDs contain C, N, and O. Quantitative XPS analysis revealed 65.7% C, 12.5% 

N, and 21.8% O, which implies that the synthesized NCDs are C-rich and N-doped. The 

high-resolution C 1s spectrum (Fig. 2b) can be fitted into four peaks with binding energies 

(BEs) of 284.5, 286.0, 287.9, and 289.4 eV, corresponding to graphitic-C (C–C/C=C), C–OH, 

sp2-bonded C (C=N), and HO–C=O, respectively [28,32]. The N 1s spectrum (Fig. 2c) shows 

three peaks at 397.4, 399.5, and 401.1 eV for pyridinic-N (C–N–C), graphitic-N (N−(C)3), 

and amine (N–H) groups [28,33], respectively, implying that the N atoms in the urea were 

doped into the C dots successfully during the hydrothermal process. The O 1s peaks at 531.0 

eV and 533.1 eV shown in Fig. 2d are attributable to oxygen in the form of C=O and C–

OH/C–O–C, respectively [33].   

     The morphological and optical properties of the NCDs were probed by TEM, UV-vis 

absorption, and PL analyses. Figure 3a displays a TEM image of the synthesized NCDs, 

revealing that they are well separated from each other without apparent aggregation and 

possess a quasi-spherical shape. The Gaussian fitting curve (Fig. 3b) demonstrates that the 
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average size of the NCDs is approximately 2.18 ± 0.25 nm. Although these NCDs are partly 

composed of amorphous structural groups (e.g., C=C and C−C), the graphitic structure is 

clearly discernible by high-resolution TEM (HRTEM). The inset of Fig. 3a exhibits lattice 

planes with a d-spacing of 0.21 nm, which agrees well with the (001) in-plane lattice 

periodicity of graphitic C [34]. As shown in Fig. 3c, the absorption spectrum of the NCD 

aqueous solution shows two typical peaks at 236 nm and 334 nm, which can be assigned to 

the π→π* transitions of aromatic sp2 C=C species and n→π* transitions that occur in the 

C=O bonds, respectively [35]. Moreover, the clear brown aqueous NCD solution displays 

bright blue florescence (inset in Fig. 3c) in the presence of UV light (365 nm). To investigate 

the optical characteristics of the NCDs further, detailed PL analysis was performed by using 

different excitation wavelengths (Fig. 3d). As the NCDs were excited by wavelengths at the 

longer limit (600–900 nm), the up-converted emissions distinctly appear in the shorter 

wavelength region (400–600 nm), indicating the remarkable up-conversion fluorescent 

properties of NCDs [28,32]. These PL results indicate that the NCDs might improve the CO2 

reduction efficiency through the conversion of longer wavelength emissions into shorter 

wavelength light, allowing NCD to be used as a strong energy transfer constituent in the 

fabrication of hybrid heterojunctions.   

Characterization of NCD/LDH/CN hybrids 

     The crystal structures of the synthesized samples were examined by XRD, and the results 

are presented in Fig. 4a. For CN, the strong XRD peak at 27.5° can be ascribed to the (002) 

reflection of a graphite-like stacking of the conjugated aromatic structure with a d-value of 

0.32 nm, whereas the weak peak at 13.2° corresponds to a typical in-plane structural packing 

motif of tri-s-triazine ring [36]. The diffraction peaks appearing in the pattern of LDH are 

well consistent with the standard hydrotalcite-like CoAl-LDH (JCPDS No. 51-0045) with the 

typical peaks located at 2θ = 11.6° (003), 23.4° (006), 34.5° (012), 39.2° (015), 46.7° (018), 
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60.2° (110), and 61.5° (018), confirming the successful synthesis of CoAl-LDH [37]. All 

peaks appearing in the XRD patterns of the LDH/CN and NCD/LDH/CN hybrids are in 

accordance with those of LDH and CN, implying that LDH was generated on the surface of 

CN during the hydrothermal process. Moreover, as the amount of LDH increases in the 

NCD/LDH/CN hybrids, the characteristic peaks of LDH intensify gradually at the expense of 

the CN peaks (Fig. S1). It is also observable that after adding the NCDs and LDH to CN, the 

typical peak of CN at 27.5° in the NCD/LDH/CN hybrids is quite shifted from its original 

position (Fig. S2). These results demonstrate the existence of synergetic interactions among 

the NCDs, LDH, and CN in the NCD/LDH/CN hybrids. However, no characteristic peaks 

related to NCDs are detectable in the XRD patterns of the NCD/CN and NCD/LDH/CN 

hybrids due to the small quantity and relatively low crystallinity of NCDs. 

     Fig. 4b shows the UV-vis DRS spectra of the synthesized catalysts. CN displays an 

absorption edge at ~455 nm, reflecting its intrinsic visible-light properties. For LDH, the 

absorption situated in the UV region (200–300 nm) corresponding to the ligand-to-metal 

charge transfer within the LDH network, whereas the three bands (450, 490, and 530 nm) 

located in the visible region can be attributed to d–d transitions of Co (II) species in 

octahedral coordination geometry [38-40]. Compared to CN, LDH/CN exhibits a slight blue 

shift along with the mentioned characteristic visible-range absorption bands of LDH, 

implying the coordination of CN with LDH. In contrast to CN, the NCD/CN hybrid shows an 

obvious red shift in the absorption edge as well as notably improved optical absorption across 

the wavelength range investigated, providing solid and direct evidence for the existence of 

NCDs in the sample. More importantly, analogous enhanced optical responses corresponding 

to NCDs and the typical visible-range absorption bands related to LDH are observable in all 

the NCD/LDH/CN hybrids, demonstrating the interactions among NCDs, LDH, and CN in 

these hybrids. The distinct improvement in the optical response of the NCD/LDH/CN hybrids 
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can enable efficient utilization of the solar spectrum and therefore promote the production of 

more charge carriers to improve the efficiency of the photoreduction of CO2 to produce solar 

fuels. 

     In the Tauc plot derived from the UV-vis spectrum (i.e., (αhν) n versus hν, where h, ν, and 

α are the Planck constant, light frequency, and absorption coefficient, respectively, and n = 2 

for a direct band gap material and n = 1/2 for an indirect band gap material), the bandgap 

energy of the sample can be estimated based on the horizontal intercept of the extrapolation 

from the linear region (as depicted in Fig. S2) [41]. Thus, the bandgap energies of CN, LDH, 

and NLC-10 estimated from Tauc plots are 2.72, 2.1, and 2.62 eV, respectively. 

     FTIR spectroscopy was utilized to characterize the chemical bonds present in the CN, 

LDH, and NCD/LDH/CN hybrid heterojunctions, as displayed in Fig. S3. The broad band at 

3000–3400 cm−1 for CN (Fig. S3a) can be assigned to the stretching vibrations of residual 

primary and secondary amine groups [19]. Several bands at 1200–1500 cm−1 are due to C–N 

stretching of aromatic rings, and the sharp band at 804 cm−1 is the typical peak for tri-s-

triazine units [42,43]. No significant changes in these typical bands are observable in the 

NCD/CN sample compared to CN, implying that there were no notable changes to the basic 

framework of CN when it was hybridized with the NCDs, which is consistent with previous 

reports [31,44]. LDH exhibits a strong band at 1354 cm−1 corresponding to the bending 

vibrations of NO3
− species intercalated in the lamellar network [36]. The absorption band 

related to the stretching modes of hydroxyl (O−H) groups attached to the brucite layers and 

stretching vibrations of intercalated water molecules is observable at 3200–3600 cm−1 [45]. 

The bands below 1000 cm−1 are characteristic vibrations of M−O, M−OH, and M−O−M 

(M=Co, Al) in the LDH lattice [27,45,46]. The FTIR spectra of the LDH/CN and 

NCD/LDH/CN hybrids exhibit all the bands related to CN along with the characteristic band 

(3200–3600 cm−1) of LDH (Fig. S3b). In addition, the typical band of CN (804 cm−1) is 
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clearly shifted to a higher frequency region in the FTIR patterns of the NCD/LDH/CN 

hybrids (Fig. S3c), which might be due to the existence of solid interactions among the NCDs, 

CN, and LDH in the NCD/LDH/CN hybrids. 

     The morphological aspects of CN, LDH, and the NCD/LDH/CN hybrids were 

characterized using SEM and TEM measurements. As appeared in Fig. 5a, CN shows a sheet-

like structure with irregular orientation. The TEM image in Fig. 5b further reveals that CN 

possesses a 2D thin layered structure composed of some mesoporous channels on its surface. 

LDH possesses a hierarchical flower-like microsphere structure consisting of several self-

assembled 2D thin sheets (Figs. 5c and d). The SEM and TEM images (Figs. 5e and f) of 

NLC-10 clearly indicate that the NCD/LDH/CN hybrid was composed of CN and LDH. 

Because of their very small size (2.18 nm, as confirmed by the particle size distribution in Fig. 

2b), the NCDs are not visible in these SEM and TEM images of NLC-10; however, they can 

easily be discerned by HRTEM. As expected, the HRTEM image of NLC-10 (Fig. 6a) clearly 

demonstrates the presence of NCDs, LDH, and CN and their close integration in the 

NCD/LDH/CN hybrid. Interestingly, the original flower-like microsphere (self-aggregated) 

morphology of LDH is nowhere to be seen in the SEM or TEM images of NLC-10, but 

numerous segregated thin LDH sheets are intimately contacted on the CN nanosheet surface. 

Thus, it can be deduced that during hydrothermal treatment, several LDH sheets tend to grow 

on the CN surface rather than undergoing self-aggregation, which is due to the opposite 

surface charges of CN (negative) and LDH (positive). Likewise, owing to the presence of 

abundant O-containing functional groups (as evidenced by the FTIR and XPS results in Figs. 

1b and 2), NCDs also have strong coordination with CN and LDH. Furthermore, clear lattice 

fringes with d-spacings of 0.21, 0.26, and 0.32 nm are observable in the HRTEM image of 

NLC-10 (Fig. 6b), which correspond to NCDs (100), LDH (012), and CN (002), respectively 

[27,34,47]. Furthermore, the EDS elemental mapping images of LCR-15 in Figs. 6c–h 
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indicate the coexistence of C, N, Co, Al, and O, further confirming the close integration of 

the NCDs, LDH, and CN rather than a mechanical mixture of independent phases in the 

NCD/LDH/CN hybrid. In addition, the bulk elemental composition of NLC-10 obtained by 

EDS elemental analysis (Fig. S4) reveals that the atomic ratio of Co:Al in NLC-10 is 2.94, 

which is very close to the theoretical value for pristine CoAl-LDH, i.e., 3. 

     XPS analysis was conducted to determine the surface compositions and chemical states of 

the elements in the CN, LDH, and NLC-10 catalysts accurately. As shown in the survey XPS 

spectra (Fig. 7a), CN displays peaks related to C and N, whereas LDH reveals the presence of 

Co, Al, and O. Moreover, the survey XPS profile of NLC-10 displays peaks related to C, N, 

Co, Al, and O, indicating that the hybrid heterojunction consists of LDH, CN, and NCDs. 

The high-resolution C 1s spectrum of CN (Fig. 7b) can be fitted into two peaks appearing at 

284.5 eV and 288.1 eV, which correspond to adventitious or graphitic C (C–C/C=C) units 

and N–C=N coordination within the tri-s-triazine ring, respectively [19]. Along with these 

two peaks, NLC-10 exhibits two additional peaks with BEs of 286.0 eV and 289.5 eV, 

corresponding to C–OH and HO–C=O of NCDs, respectively [28,32]. Moreover, compared 

to CN, the intensity of the graphitic C component of NLC-10 is significantly higher, which 

clearly indicates the presence of NCDs in the hybrid heterojunction. In addition, the N 1s 

spectrum of CN (Fig. 7c) shows three main peaks at 398.4, 399.8, and 401.0 eV after 

deconvolution. The two typical peaks at 398.4 eV and 399.8 eV can be assigned to aromatic 

C–N=C coordination in one tri-s-triazine heteroring and N−(C)3 bridging among three tri-s-

triazine moieties, respectively [48]. The weak peak at 401.0 eV corresponds to the amino 

functional groups (N−H) [36]. Additionally, significant shift in the BEs of the mentioned N 

components are observable for the NLC-10 hybrid compared to CN, which could be due to 

the CN and NCD interactions [19]. The O 1s spectra of LDH (Fig. 7d) exhibits three peaks at 

530.3, 532.0, and 534.2 eV corresponding to lattice O species (O2−), hydroxide groups (−OH), 
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and adsorbed water, respectively [49,50]. In addition to these O species, NLC-10 displays 

extra O components of NCDs at 531.1 eV (C=O) and 533.4 eV (C–OH/C–O–C) [33]. Two 

peaks at 780.9 eV and 797.2 eV in the high-resolution Co 2p spectrum of LDH (Fig. 7e) can 

be assigned to Co 2p3/2 and Co 2p1/2, respectively [51]. The concomitant two satellite peaks at 

786.8 eV and 803.1 eV indicate the high-spin Co2+ oxidation state of Co in the LDH. 

Nevertheless, the BEs of Co 2p3/2 and Co 2p1/2 increases for the NLC-10 hybrid 

heterojunction relative to that of LDH. Meanwhile, the high-resolution Al 2p spectra (Fig. 7f) 

of both LDH and NLC-10 reveal a typical peak centered at 73.8 eV, which confirms the 

presence of Al+3 species [52]. The significant shift in the BEs of N 1s and Co 2p demonstrate 

the intimate interfacial interactions among CN, LDH, and the NCDs for rapid charge transfer 

to boost the CO2 reduction performance of the NCD/LDH/CN hybrid heterojunction 

[19,27,51,53].   

     TGA was performed to analyze the thermal behaviors of CN and LDH, as well as to 

determine the actual LDH contents in the target NCD/LDH/CN hybrids. The obvious mass-

loss region of CN at 550−700 °C is attributable to the combustion of CN (Fig. S5) [43]. The 

pattern of LDH mainly shows two weight-loss regions, where the first region at 100−200 °C 

corresponds to the evaporation of physisorbed (surface-adsorbed) and chemisorbed 

(interlayer) water molecules, and the second region at 200−300 °C is attributable to the 

elimination of interlayer nitrate ions and dehydroxylation of the brucite-like layers [27,54]. 

Moreover, no significant weight-loss after 300 °C is observable for LDH, possibly due to the 

complete transformation of LDH into its respective metal oxides [55]. Analogous mass-loss 

regions corresponding to LDH and CN were observable for all the NCD/LDH/CN hybrids. In 

addition, the actual contents of LDH in the NCD/LDH/CN hybrids according to the TGA 

patterns are 3.2, 8.2, 11.9, and 16.5 wt.% for NLC-5, NLC-10, NLC-15, and NLC-20, 

respectively. 
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Photocatalytic CO2 reduction performance 

     The photocatalytic CO2 reduction activities of the fabricated NCD/LDH/CN hybrids were 

assessed in the presence of water (vapor) under simulated solar-light illumination. For 

comparison, the CO2 photoreduction performances of bare CN and LDH samples and binary 

NCD/LDH and LDH/CN hybrids were also examined under similar experimental conditions. 

Figure 8a displays the CO2 photoreduction yields of all the samples after 5 h of light 

illumination. Because of the suitable band-edge potentials for water reduction reactions, all 

the fabricated catalysts produced H2 as a competitive (water) reduction product (Fig. 8b). CN 

displays minimal CO generation with a total yield of 0.68 µmol, owing to its intrinsic 

drawbacks, as discussed earlier. Meanwhile, LDH shows relatively low CO2 photoreduction 

activity, where the total CO yield is only 0.52 µmol. However, compared to CN, the LDH/CN 

sample shows enhanced CO production yield, i.e., 2.9 µmol, possibly due to charge transfer 

between LDH and CN, which can lead to reduced photoinduced charge recombination. 

Surprisingly, the NCD/CN hybrid produced a different carbonaceous product, CH4, with a 

total yield of 1.84 µmol, from CO2 reduction reaction under the same experimental conditions. 

Moreover, compared to CN, the NCD/CN hybrid demonstrates significantly enhanced 

selectivity towards CO2 reduction against the competitive water reduction reaction, implying 

that the incorporation of NCDs into the CN framework strongly affects the efficiency and 

selectivity of CO2 photoreduction.  

     Importantly, after incorporating LDH and NCDs into the CN framework, the resulting 

NCD/LDH/CN hybrids exhibited substantially improved photocatalytic activities for CO2 

reduction to generate CH4. Among all the NCD/LDH/CN hybrids, the NLC-10 hybrid with 2 

wt. % of NCDs and 10 wt. % of LDH displays the highest CH4 production with a total yield 

of 6.42 µmol for 5 h, equating to a rate of 25.69 µmol g−1 h−1 (Fig. 8c), which is manifested 

as substantial 12.5, 9, 2.2, and 3.5-fold enhancements in productivity compared to those of 
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LDH, CN, LDH/CN, and NCD/CN, respectively. More remarkably, the amount of H2 

generation was only 0.16 µmol, which means that the selectivity of CH4 production reached 

almost 99%. The photocatalytic performance of the NLC-10 hybrid was also compared with 

those of other catalysts reported in the literature. Notably, the rate of CH4 production using 

this optimum catalyst, NLC-10, is several orders of magnitude higher than those of the CN-

based and other photocatalytic systems reported previously [26,56-61]. Furthermore, the 

apparent quantum yield of NLC-10 at 400 nm is 0.62%, which is also far superior to the other 

state-of-the-art CO2 photoreduction catalyst systems for CH4 generation [16,26,31,62,63]. 

     To confirm that the CH4 generation was not due to organic residues, a control test was 

performed under an Ar atmosphere. No CH4 generation was detected for the same NLC-10 

hybrid after 5 h of light irradiation. Moreover, no products were detected in the absence of 

the catalyst, light irradiation, or water, meaning that the CH4 generation truly originated from 

the reduction of CO2 with water vapor in the presence of the NLC-10 hybrid. Similar 

controlled tests were conducted for all the catalysts before performing the CO2 reduction 

experiments. From the photocatalytic activity results, it is also worth noting that, as the 

amount of LDH in the NCD/LDH/CN hybrids increased beyond its optimum level, i.e., 10 

wt. %, a significant decrease in the CH4 generation was observed. This is because excessive 

incorporation of LDH into CN led to self-aggregation of LDH (Fig. S6), thereby decreasing 

the density of LDH/CN heterojunctions, which subsequently resulted in decreased CO2 

photoreduction performance. The CO2 photoreduction experiments were also conducted for 

NCD/LDH/CN hybrids synthesized from different amounts of NCDs (i.e., 1, 2, and 3 wt. %) 

but with the same amount of LDH on CN (10 wt. %) (Fig. S7a). Although the NCD/LDH/CN 

hybrid with high NCD content (3 wt. %) exhibits improved optical absorption (Fig. S7b), its 

activity is inferior to that of the optimized catalyst with 2 wt. % of NCDs (NLC-10). This 

feature might be due to the inner-filter effect of the NCDs via competition for the absorption 
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of photons with CN and LDH, leading to reduced charge carrier generation and thereby 

decreasing the CO2 photoreduction performance [28,64]. These results clearly suggest that 

suitable contents of LDH and NCDs are important to establish strong synergy among the 

NCDs, CN, and LDH in the NCD/LDH/CN hybrid for improved CO2 reduction performance. 

     To ensure that the synergy among the NCDs, CN, and LDH in the NCD/LDH/CN hybrids 

is crucial in CH4 generation, the CO2 photoreduction activity of NLC-10 was compared with 

that of a physical mixture of the same weight consisting of NCDs (2 wt. %), LDH (10 wt. %), 

and CN, denoted here as NLC-10 PM. As shown in Fig. 8, the productivity of the physically 

mixed NLC-10 PM is much lower than that of NLC-10 hybrid fabricated by the hydrothermal 

method, and even weaker than binary those of the NCD/CN and LDH/CN hybrids, 

confirming that strong synergy among the constituents of the NCD/LDH/CN hybrids is 

necessary for excellent photocatalytic CO2 reduction activity. 

     To verify the durability and stability of the NCD/LDH/CN hybrids, the time course of CH4 

generation using the NLC-10 hybrid was obtained under the same test conditions. As 

displayed in Fig. 9a, the CH4 generation rate is constant under prolonged light illumination up 

to 9 h and decreases after 10 h. This CO2 reduction activity was measured in a closed reactor; 

therefore, CO2 exhaustion in the reaction medium may be the primary reason for the 

decreased CH4 production [65]. To corroborate the stability of the hybrid, four consecutive 

test cycles with repeated CO2 charging in the reactor were conducted. After each test cycle, 

the catalyst was refreshed and placed in a reactor with fresh aqueous medium. As displayed 

in Fig. 9b, the amount of CH4 generation linearly increases in every test cycle, and no 

significant decline in reaction activity after four successive test cycles is observable. 

Therefore, the fabricated hybrid maintained excellent stability during the prolonged reaction. 

The phase and chemical structures of the fresh and recycled catalysts were further analyzed 

by comparing their XRD and FTIR characteristics (Figs. S8a and 8b). The XRD and FTIR 
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analysis results reveal no obvious changes in the phase composition and chemical structure of 

the NLC-10 hybrid after four reaction cycles, further confirming the high structural stability 

of the hybrid.  

Photocatalytic mechanism 

     The significantly enhanced photocatalytic performance of the NCD/LDH/CN hybrids 

toward CO2 photoreduction to CH4 is essentially attributable to the solid synergy among the 

constituents along with various favorable properties. As is well known, broad optical 

response, large surface area, good CO2 adsorption capability, and high transfer and separation 

efficiency of photogenerated charge carriers can boost the photocatalytic performance of a 

catalyst. The UV-vis DRS studies (discussed earlier) demonstrated that incorporating LDH 

and NCDs on CN distinctly enhances the optical responses of the NCD/LDH/CN hybrids, 

which can promote the generation of more charge carriers upon light irradiation. This 

characteristic could be one of the main reasons for the enhanced efficiency of the present 

hybrid system toward photoreduction of CO2 to CH4.  

     To explain the effect of the surface area on the CO2 photoreduction activities of the 

fabricated catalysts, N2 adsorption–desorption isotherms and corresponding pore-size 

distribution measurements were performed. All the catalysts in Fig. S9 exhibit type-IV 

isotherms with H3 hysteresis loops, indicating the presence of a porous structure. The BET 

surface area (SBET) and Barrett–Joyner–Halenda pore properties of all the catalysts are 

summarized in Table S1. SBET, the total pore volume, and the average pore diameter of CN 

are 125.6 m2/g, 0.324 cm3/g, and ~58 nm, respectively. The SBET values of all the 

NCD/LDH/CN hybrids as well as the binary NCD/CN and LDH/CN hybrids are almost the 

same as or slightly less than that noticed for CN, but their activities are apparently different. 

Although the surface area of a catalyst is a crucial factor for the improved photocatalytic 
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activity, it is ruled out as a factor in the present case since it does not significantly influence 

the CO2 photoreduction activities of the present NCD/LDH/CN hybrid systems. Instead, the 

differences among the photocatalytic performances of these catalysts are related to their CO2 

adsorption capabilities, as discussed below.  

     Figure 10a displays the CO2 adsorption curves of CN, NCD/CN, LDH/CN, and all the 

NCD/LDH/CN hybrids. CN shows a decent CO2 adsorption capacity of 0.26 mmol/g at 

atmosphere pressure and 298 K temperature. After introducing a small amount (2 wt. %) of 

NCDs onto the CN surface, the resulting NCD/CN hybrid exhibits an improved CO2 

adsorption capacity of 0.33 mmol/g. This improvement could be due to the existence of 

amino (–NH2) functional groups on the NCD surface (as evidenced by the XPS results, Fig. 

2c), which can increase the CO2 adsorption ability significantly [34,66]. Meanwhile, the 

binary LDH/CN hybrid shows an enhanced CO2 adsorption capacity (0.40 mmol/g) compared 

to that of CN, probably due to the presence of abundant basic surface hydroxyl (–OH) groups 

in LDH materials [24,39]. Importantly, the target NCD/LDH/CN hybrids display remarkably 

enhanced CO2 adsorption capacities compared to those of CN and the binary NCD/CN and 

LDH/CN catalysts. These findings clearly demonstrate that the enhanced CO2 adsorption 

capability of the NCD/LDH/CN hybrid is another important factor for the excellent 

photocatalytic CO2 reduction activity.  

     To understand how the transfer and separation efficiencies of photogenerated charge 

carriers effect the photocatalytic performance of the target NCD/LDH/CN hybrid, steady-

state and time-resolved PL spectral analysis were performed. Since PL emission results from 

charge carrier recombination [67,68], the intense PL emission signal observable for CN (Fig. 

10b) demonstrates the rapid recombination of charge carriers in it, through band-to-band 

transitions. The LDH/CN hybrid exhibits notably reduced PL emission intensity compared to 

that of CN. This difference could be due to efficient interfacial charge separation in the 
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LDH/CN hybrid arising from well-established 2D/2D heterojunction interfaces, which 

hampered the charge recombination [27]. Importantly, the NCD/CN catalyst also displays 

considerable PL quenching relative to that of CN, because NCDs can act as strong electron 

reservoirs to trap the electrons from CN and can promote the charge transfer process to 

hinder charge recombination [31]. More importantly, compared to CN and the binary 

NCD/CN and LDH/CN catalysts, all the NCD/LDH/CN hybrids display drastically decreased 

PL emission intensities, and the NLC-10 hybrid exhibits the highest PL emission quenching 

among all the catalysts studied. More importantly, steady-state PL quenching is well-

supported with charge carrier lifetimes determined using the biexponential fitting of the PL 

intensity decay curve (Fig. 10c), according to our previous report [19]. The average charge 

carrier lifetime (τ) of NCD/LDH/CN is 11.20 ns, which is much higher than those of the bare 

CN (3.22 ns), NCD/CN (5.15 ns), and LDH/CN (6.60 ns) catalysts (Table S2). This increase 

probably originated from the joint promotion of charge transfer by LDH and the NCDs at 

their optimal contents, which efficiently retarded the direct recombination of photoexcited 

charge carriers. Moreover, the degree of PL emission quenching is in accordance with the 

CO2 photoreduction activity results. 

     To support the excellent charge transfer and separation in the present NCD/LDH/CN 

hybrid system further, transient photocurrent measurements were conducted for CN, 

NCD/CN, LDH/CN, and all the NCD/LDH/CN hybrids. Figure 10d compares the transient 

photocurrent responses of all the catalysts (coated on electrodes) in several on–off cycles of 

intermittent light illumination. A prompt photocurrent response with good reproducibility is 

observable for each light turn-on and turn-off event in all the catalysts. Evidently, the 

photocurrent responses of all the NCD/LDH/CN hybrids are substantially higher than those 

of CN as well as the binary hybrids. Consistent with photocatalytic activity results, the 

highest photocurrent response was recorded for the NLC-10 hybrid, indicating that the 
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incorporation of appropriate amounts of NCDs and LDH can dramatically suppress electron–

hole recombination by promoting the interfacial charge-transportation processes, eventually 

resulting in the outstanding CO2 photoreduction activity of the NCD/LDH/CN hybrids 

towards CH4 production. Therefore, the photocurrent response results together with the PL 

(steady-state and time-resolved) findings provide sufficient evidence to conclude that the 

exceptional CO2 photoreduction activities of the NCD/LDH/CN hybrids mainly resulted from 

the rapid charge transfer among the NCDs, LDH, and CN, which caused a greater extent of 

charge separation in the NCD/LDH/CN hybrid system.  

     In addition, the transfer direction of the photoexcited charge carriers in the present hybrid 

system depends on the respective band edge potentials of its constituents. In the present study, 

VB-XPS studies (Fig. S10) were conducted to determine the VB edge potentials of CN and 

LDH. The VB edge potentials of CN and LDH estimated from the VB-XPS results are +1.30 

and +1.38, respectively. Based on the band gap energies of CN (2.72 eV) and LDH (2.1 eV), 

the CB edge potentials were estimated to be −1.42 eV and −0.72 eV for CN and LDH, 

respectively. Since the CB potentials of both CN and LDH are more negative than the 

CO2/CH4 reduction potential (E0), i.e., −0.24 eV versus the normal hydrogen electrode (NHE), 

the CO2 reduction reaction to produce CH4 is theoretically feasible. It can also be seen from 

VB-XPS results that the VB potential of CN is less positive than that of LDH, while the CB 

potential of LDH is less negative than that of CN.   

     Based on the above discussion, a possible mechanism for the remarkable photocatalytic 

reduction of CO2 by the NCD/LDH/CN hybrid system was proposed and is presented in Fig. 

11. Upon visible light illumination, both LDH and CN can be excited to produce electrons (e−) 

in the CB, with the simultaneous production of holes (h+) in the VB. Due to the intimate 

2D/2D heterojunction interface formed between CN and LDH, the generated e−s from the CB 

of CN are transferred to the CB of LDH, while the h+s are transferred in the opposite 
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direction, preventing direct charge carrier recombination. This process also results in the 

accumulation of h+s in the VB of CN and e−s in the CB of LDH. The accumulated h+s in the 

VB of CN further react with H2O to generate protons (H+). In the present hybrid system, 

NCDs play multiple roles in enhancing the CO2 photoreduction performance. First, owing to 

their excellent up-converted PL properties (Fig. 2d), NCDs are capable of absorbing longer 

wavelengths of visible light and then emitting shorter wavelengths. This converted light with 

shorter wavelength could excite CN and LDH to produce more electrons and holes. Second, 

due to their excellent electronic conductivities and electron storage capabilities, NCDs could 

trap the gathered e−s from the CB of LDH and thereby promote charge separation, as 

evidenced by the PL and photocurrent analyses discussed above. The e−s trapped by the 

NCDs can react with surface-adsorbed CO2 molecules to produce CO2 radical anions (CO2
• −), 

which are further converted into CO with the assistance of H+ [19,62,65]. Liu et al. [69] 

reported that highly graphitized NCDs with surface N-containing groups exhibited stronger 

chemical interactions with CO, preventing the desorption of CO molecules on the NCD 

surface. These strongly adsorbed CO molecules could accept more e−s followed by H+ to 

form intermediates, such as formyl or carbene radicals, and eventually to produce CH4 

[65,69,70]. It was also reported that the competing H2 generation reaction from water by 

NCDs is sluggish and kinetically trivial under appropriate test conditions [71,72]. Thus, the 

self-reaction of H+ on the NCD surface is less probable than an encounter between H+ and 

CO2
• −, which could be why the NCD/CN hybrid possessed high selectivity (98%) toward 

CO2 reduction reaction against water reduction compared to CN (68%) and LDH/CN (86%).   

     The reactions that can occur during photoreduction of CO2 with H2O to generate solar fuel 

in terms of E0 versus NHE are as follows: 

NCD/LDH/CN	 + hν ⟶ NCD/LDH/CN	
hCD
! + e�D

E � 
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NCD/LDH/CN	
hCD
! + e�D

E � ⟶ NCD	
eE� + CN	
hCD
! � 

CN	
hCD
! � + 2H�O ⟶ O� + 4H

! + 4eE; 	HI = +0.82	V 

CN or LDH 
2eE� + 2H! + CO�⟶ CN	or	LDH + CO + H�O;	H
I = −0.53	V 

NCD	
8eE� + 8H! + CO�⟶ NCD + CH� + 2H�O;	H
I = −0.24	V 

NCD	
2eE� + 2H!⟶ NCD + H�; 	H
I = −0.41	V. 

 

Conclusions 

     We successfully fabricated NCD/LDH/CN hybrid heterojunctions via a facile 

hydrothermal route. The resulting hybrids displayed distinctly improved optical responses 

and excellent CO2 adsorption capabilities and, more importantly, dramatically enhanced CO2 

reduction performance to generate CH4 under simulated-solar-light irradiation. In particular, 

the optimum NLC-10 hybrid with suitable NCD and LDH contents displayed the highest CH4 

production rate of 25.69 µmol g−1 h−1 with an AQY of 0.62% and 99% selectivity for CH4. 

The significant enhancement in the photocatalytic CO2 reduction activity of the 

NCD/LDH/CN hybrids is primarily attributable to the synergistic effect among CN, NCDs, 

and LDH, which promotes the transfer of photoexcited charge carriers through heterojunction 

interfaces to suppress electron–hole recombination. Because of their excellent up-converted 

PL properties, electron storage capacities, and adsorption capabilities, the NCDs in the 

NCD/LDH/CN hybrids played multiple roles for the efficient and selective production of CH4 

from CO2 reduction. Due to their high stability and durability in successive CO2 reduction 

test cycles, these noble-metal-free NCD/LDH/CN hybrid photocatalysts can be considered 

potential candidates for practical application in the production of sustainable solar fuels.  
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Figure captions 

Fig. 1. (a) XRD and (b) FTIR patterns of the fabricated NCDs. 

Fig. 2. XPS spectra of the NCDs. (a) Survey spectrum, (b) C 1s, (c) N 1s, and (d) O 1s.  

Fig. 3. (a) TEM image of the NCDs (inset is the HRTEM image) and (b) the corresponding 

particle size distribution histogram. (c) UV–vis absorption spectrum and (d) up-converted PL 

spectra of the NCDs. 

Fig. 4. (a) XRD and (b) DRS patterns of the prepared LDH, CN, NCD/CN, LDH/CN and 

NCD/LDH/CN hybrid samples. 

Fig. 5. (a, c, e) SEM and (b, d, f) TEM images of CN, LDH, and the NLC-10 catalysts, 

respectively. 

Fig. 6.  High-resolution TEM images (a, b) of the NLC-10 hybrid photocatalyst. (c to h) EDS 

elemental mappings of constituent elements in the NLC-10 hybrid. 

Fig. 7. XPS spectra of CN, LDH, and NLC-10 samples. (a) Survey spectra, (b) C 1s, (c) N 1s, 

(d) O 1s, (e) Co 2p, and (f) Al 2p.  

Fig. 8. Time-dependent (a) CO & CH4 and (b) H2 yields produced in the presence of all the 

fabricated photocatalysts. (c) Comparison of the photocatalytic CO, CH4, and H2 generation 

rates over the fabricated catalysts upon 5 h of simulated-solar-light illumination.  

Fig. 9. (a) The amount of CH4 production over the NLC-10 hybrid catalyst for prolonged 

CO2 photoreduction reaction. (b) Reusability studies of CH4 production over NLC-10 hybrid 

catalyst. 

Fig. 10. (a) CO2 adsorption isotherms and (b) steady-state PL patterns for CN, NCD/CN, 

LDH/CN, and all the NCD/LDH/CN hybrid catalysts. (c) Time-resolved PL patterns of CN, 

NCD/CN, LDH/CN, and NLC-10 samples. (d) Photocurrent responses of CN, NCD/CN, 

LDH/CN, and all the NCD/LDH/CN hybrid catalysts. 
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Fig. 11. Schematic illustration of the proposed mechanism for CO2 photoreduction in the 

NCD/LDH/CN hybrid photocatalyst. 
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Fig. 1. (a) XRD and (b) FTIR patterns of the fabricated NCDs. 
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Fig. 2. XPS spectra of the NCDs. (a) Survey spectrum, (b) C 1s, (c) N 1s, and (d) O 1s.  
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Fig. 3. (a) TEM image of the NCDs (inset is the HRTEM image) and (b) the corresponding 

particle size distribution histogram. (c) UV–vis absorption spectrum and (d) up-converted PL 

spectra of the NCDs. 
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Fig. 4. (a) XRD and (b) DRS patterns of the prepared LDH, CN, NCD/CN, LDH/CN and 

NCD/LDH/CN hybrid samples. 
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Fig. 5. (a, c, e) SEM and (b, d, f) TEM images of CN, LDH, and the NLC-10 catalysts, 

respectively. 
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Fig. 6.  High-resolution TEM images (a, b) of the NLC-10 hybrid photocatalyst. (c to h) EDS 

elemental mappings of constituent elements in the NLC-10 hybrid. 
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Fig. 7. XPS spectra of CN, LDH, and NLC-10 samples. (a) Survey spectra, (b) C 1s, (c) N 1s, 

(d) O 1s, (e) Co 2p, and (f) Al 2p.  

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

44 

 

 

Fig. 8. Time-dependent (a) CO & CH4 and (b) H2 yields produced in the presence of all the 

fabricated photocatalysts. (c) Comparison of the photocatalytic CO, CH4, and H2 generation 

rates over the fabricated catalysts upon 5 h of simulated-solar-light illumination.  
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Fig. 9. (a) The amount of CH4 production over the NLC-10 hybrid catalyst for prolonged 

CO2 photoreduction reaction. (b) Reusability studies of CH4 production over NLC-10 hybrid 

catalyst. 
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Fig. 10. (a) CO2 adsorption isotherms and (b) steady-state PL patterns for CN, NCD/CN, 

LDH/CN, and all the NCD/LDH/CN hybrid catalysts. (c) Time-resolved PL patterns of CN, 

NCD/CN, LDH/CN, and NLC-10 samples. (d) Photocurrent responses of CN, NCD/CN, 

LDH/CN, and all the NCD/LDH/CN hybrid catalysts. 
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Fig. 11. Schematic illustration of the proposed mechanism for CO2 photoreduction in the 

NCD/LDH/CN hybrid photocatalyst. 
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Highlights 

 
• N-doped C dot/CoAl-LDH/g-C3N4 hybrid heterojunction was fabricated for the first time 

• Hybrid heterojunction displayed exceptional CO2 reduction performance to generate CH4 

• Rapid charge transfer owing to intimate interfacial contact contributed to high activity 

• Hybrid catalyst displayed high stability and durability during consecutive test cycles 

• NCDs played multiple roles for the efficient and selective production of CH4 from CO2 

reduction 


