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Scheduling of Wind Farms for Optimal Frequency
Response and Energy Recovery

Antonio De Paola, Student Member, IEEE, David Angeli, Fellow, IEEE, and Goran Strbac, Member, IEEE

Abstract—This paper deals with control of variable speed wind
turbines which provide frequency support through temporary
overproduction. In particular, it determines the optimal profile of
power extraction among multiple generators in order to minimize
the total loss of efficiency while allowing for a prescribed
increase in generation. Starting with the simplifying assumption
of unconstrained generated/supplied power for the single turbine,
the scheduling is characterized as the solution of an optimal
control problem. On the basis of this result, an heuristic control
strategy is proposed for the case of turbines with limited power
output, investigating under which conditions this choice achieves
optimality. Using a similar approach, the problem of energy
recovery is also considered, calculating the optimal power profiles
which bring back the turbines to their working point of maximum
efficiency after having provided frequency response.

Index Terms—Wind turbines, frequency control, optimal
scheduling, monotone systems.

NOMENCLATURE
C Power coefficient with fixed pitch angle.
E Rotational kinetic energy (J).
EV Vector of initial kinetic energies (J).
Emax Maximum kinetic energy of single turbine (J).
Eyiy  Minimum kinetic energy of single turbine (/).
Egs Kinetic energy of maximum efficiency (J).
J Moment of inertia (Kg-mz).
N Number of turbines.
P, Min. aggregate power during recovery phase (W).
P, Reference for aggregate output power (W).
Pyax Maximum output power of single turbine (W).
Pyiy - Minimum output power of single turbine (W).
R Turbine radius (m).
T, Electrical torque (N - m).

T, Mechanical torque (N -m).

Mechanical power extracted from the wind (W).
Energy derivative of mechanical power (s~ 1).
Inverse of Ilg for the i-th turbine (J).

Total mech. power extracted by the wind farm (W).
Power coefficient.

Tip-speed ratio.

Subset of turbines.

Air density (kg/m?).

Turbine rotor speed (rad/s).

Control feedback law with constrained power (W).
Pitch angle of the blades (deg).

Control feedback law with unconstrained power (W).
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h Maximized total mechanical power (W).

v Wind speed (m/s).

(E*,P*) Scheduling with constrained power (J,W).

(E*,P*) Optimal scheduling with unconstrained power (J,W).

I. INTRODUCTION AND MOTIVATIONS

N the last few years growing environmental concerns and

advancements in technology have led to an increasing
penetration of wind generation in power systems. In the near
future wind turbines will represent a significant component
of the total supply and will be required to procure the same
services that nowadays are provided by conventional syn-
chronous generators [1]. An element of particular importance
and interest is the provision of frequency response: following
an outage in the network the wind turbines are required
to reduce the resulting fall of frequency by generating an
extra quantity of power [2]. Two main approaches have been
proposed so far: keeping a power reserve by operating the
turbines at a deloaded maximum power curve [3], [4] or
releasing part of the kinetic energy stored in the rotating
shafts by slowing down the turbines [5]. This is usually
achieved by introducing an additional feedback loop in the
speed controller of the generator which takes into account
the system frequency variation [6]. Other formulations have
also been proposed, considering the frequency derivative [7]
or introducing additional control loops to improve system
damping and emulate synchronizing power characteristics [8].

This paper applies the latter approach of energy overproduc-
tion on a higher level: only the mechanical dynamics of the
single turbines are considered and the analysis is extended to
multiple generators. These are in general affected by different
amounts of wind and therefore operate, in steady state, at dif-
ferent rotor speeds. Based on the preliminary results presented
in the last part of [9], the frequency support is formulated as
an optimal control problem. In case of frequency events, a set-
point is introduced for the aggregate extra generation that must
be provided by the wind farm, calculating the power profile
of each turbine in order to minimize the resulting losses of
kinetic energy. In this case the application of the classical tools
of optimal control is prevented by the complicated expression
that describes the power extraction from the wind and the large
number of considered generators. For this reason, the power
profile of the turbines is obtained by exploiting particular
monotonicity properties that arise if one considers the kinetic
energy dynamics and its relationship with the efficiency of the
turbines.

The problem is initially solved for the simplified case
without constraints on generated power, using the results



as a starting point for the more realistic analysis in which
the power provided by each turbine cannot exceed some
technical limits. It is worth noticing that the optimal power
profiles are straightforward to calculate numerically and can be
used, in practical implementations, as references for the speed
controller of the turbines. Furthermore, a similar approach can
be used to study the energy recovery problem: after having
provided frequency response, the aggregate power set-point is
reduced and turbines are brought back to the operating state
of maximum efficiency. With the same tools, it is possible
to determine which power references are feasible for a given
energy state and calculate the power profiles which allow to
perform the recovery in minimal time.

The choice of analyzing frequency support with wind tur-
bines using optimal control techniques is novel and gives
significant insights on the structure of the problem. Moreover,
it represents a theoretical framework that can be expanded in
order to consider, for example, other ancillary services to be
provided by the generators. While the improvement obtained
with the proposed solution depends in general from the chosen
turbine parameters and wind conditions, our technique also
provides an upper bound to the maximum achievable efficiency
which could be useful to evaluate other control strategies.

The rest of the paper is structured as follows: Section II
presents the model of the individual wind generator and the
expression for the power extracted from the wind, specifying
the assumptions and the context in which the frequency
response problem will be formulated. The optimal power
profiles are calculated for the unconstrained case in Section
I through the resolution of a static optimization problem.
The case with constraints on generated power is studied in
Section IV and simulation results are presented in Section V.
The problem of energy recovery of the turbines and its time
minimizing solution are described in Section VI while Section
VII contains some final considerations.

II. MODELLING OF INDIVIDUAL TURBINES

Each wind turbine is modelled in its mechanical part as a
rotating mass. The dynamics of the rotor speed @ are described
by the swing equation:

1

where J is the total moment of inertia of the rotating shafts,
T,, is the mechanical torque resulting from the wind and 7, is
the electromagnetic counter torque. The electrical dynamics
of the turbine are much faster than the mechanical ones and
therefore have been neglected. The additional control loop
which determines the electrical quantities of rotor and stator
in order to achieve a certain torque 7, is not considered and
T, directly represents the control input of the system.

If we denote by v the wind speed, by R the radius of the rotor
and by u the air density, we obtain the following expressions
for the power of the wind P,, and the corresponding mechanical
torque T, acting on the turbine:

2.3 ~
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The power coefficient C represents the fraction of wind power
P,, captured by the turbine and depends on the tip-speed ratio
A= C"TR and the pitch angle of the blades 6. For instance in
Section V, where simulations are presented, we will consider
the formulation proposed by [10]:
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however, any nonlinear dependence that fulfills the qualita-
tive assumptions detailed below is suitable for the design
techniques discussed in subsequent sections. For the wind
speed v and the pitch angle 0, the following assumptions are
introduced:

Assumption 1: Given the relatively short time interval to
be considered for the frequency response of the turbines, it is
reasonable to assume that the wind speed v is constant in time.
This is a common assumption for studies in this area [3], [11].
Furthermore, if one excludes high wind conditions, pitch angle
actions are not applied and the angle 6 is constant and equal
to zero. The power coefficient can then be defined exclusively
as a function of the rotor speed @ and wind speed v:

Clow) =C ("’Ro> . 4

v

A diagram of the wind turbine model, with a representation of
the current assumptions, is presented in Fig. 1. The Optimal
Power Point Tracking block (OPPT) is the controller which
is used in normal operation and determines the reference of
electric torque 7, in order to achieve maximum efficiency.
The frequency control strategy presented in the next sections
will bypass this block and directly determine 7, when a
frequency event occurs.

Electrical dynamics (much
faster than the mechanical v
ones) have been neglected

0 ,—:T_l T, i PitE é

High-wind speed conditions are
not considered: pitch angle 6 is
constant and equal to 0

Fig. 1. Block representation of the individual wind turbine. Source: [12].

On the basis of the expressions of C proposed in the liter-
ature, the following properties are considered for the power
coefficient:

Assumption 2: For a fixed wind speed v, it is assumed that
the coefficient C(w,v) has a unique maximum for ® = @ (v)
and is a monotonic increasing function in some interval
(1. (v), 055 (v)]-

In order to study the optimal control problem to be defined
in the next section, it is convenient to introduce a change of
coordinates, describing the state evolution of a single turbine



by considering its kinetic energy E = %Jco2 (rather than its
angular speed). It is straightforward to obtain an expression
for the mechanical power P, that depends only on E and v:

Pn =Py (v)C(@,v) = P, (v)C (ﬁo =I(E,v). )

Values of IT at different wind speeds, for the power coefficient
introduced in (3) and the turbine parameters considered in the
simulation section, are shown in Fig. 2.

1.2F T T T T T T T T 3

v=8 m/s
1F v=9 m/s 4
v=10 m/s

0.8 q

0.6 q

0.4 q

Mechanical power, M (MW)

0.2 q

Kinetic energy, E (MJ)

Fig. 2. Mechanical power IT extracted from the wind as a function of kinetic
energy E, for different wind speeds v.

The state equation in the new coordinate becomes:
E=Jo®=P,— P, =TI(E,v)—P,. (6)

The term P, = T,® in (6) represents the electrical power
generated by the turbine. Assuming that the rotor speed ®
can be measured without uncertainties, P, can be considered
as the new input of the system. To take into account the
physical limitations of the turbine, constraints are imposed
on the kinetic energy E which is limited to some interval
& = [Emin, Emax]-

Remark 1: The properties of C considered in Assumption 2
have a direct correspondence in the function II. In particular,
for each v, the mechanical power II(E,v) has a unique max-
imum for E = E(v) = Jw%(v) and is monotone increasing
in the interval [E; (v),Ey(v)] with E(v) = 2Jw? (v).

Assumption 3: For any fixed v, given the expressions for
the coefficient C and the specifications of the turbines found
in the literature, it is reasonable to assume that II(E,v) is
strictly concave on [EL(v),Epax] and the energy E of the
single generator, in the overproduction regime of the frequency
response, is always within the concavity region of IT:

Er(v) <Epiy < E < Eg(v) < Epax. @)

III. OPTIMAL FREQUENCY RESPONSE: THE
UNCONSTRAINED CASE

A population of N turbines is considered and the kinetic
energy, electrical power and wind speed of the i-th generator
are denoted respectively by E;, P, and v;. All turbines are
initially operating in steady-state at the kinetic energy Ess(v;)

which guarantees the maximum efficiency, with the following
equality holding for the mechanical and electrical power:
II(Eg(vi),vi) = P(0) i=1...N. (8)

The wind speeds experienced by the individual turbines are
assumed in general to be different: this allows to consider, for
example, the wind speed reduction caused in the wind farm by
the upstream turbines, also known as wake effect [12]. When
an outage occurs in the network at time f = 0, in order to
reduce the resulting frequency drop, the wind farm increases
its aggregate generated power by releasing part of the kinetic
energy stored in the rotating shafts. In particular, a reference
P,(+) is set on the time interval [0, 7], requiring an aggregate
power which is greater than the one at steady state:

P(t) > YN \T(Eu(vi),vi) =Py  Vte[0,T]. (9
Our aim is to determine the power profile of each turbine P;(-)
in order to satisfy the following:

N
Y R6)= B0

i=1
E;(t) € [Emin, Emax]

vt €[0,7T] (10)

i=1...N.

In general, there exist multiple choices of P, which are feasible
for (10) and it is therefore important to introduce some
optimality criterion in the calculation of the power profiles.
In this respect, a logical choice is to define as optimal the
set of P(-) which maximizes the total final energy Y, E:(T)
of the turbines. This choice takes into account the following
phase of recovery of the generators that, after having provided
frequency response, are brought back to their working point
of maximum efficiency. Furthermore, it will be shown that the
resulting power profiles guarantee feasibility for the largest
class of power references P.

The simpler case in which no constraints are imposed on
the generated power P; of the turbines is initially analysed.
The corresponding optimization problem is:

N
max E(T)
P()i=1.N =
st XV R =P) ( Vi=1,...,N )
E,(O) _ Ezo Vt € [0, T]
Ei(r) = TI(E;(t),vi) — P(t)
Ei(t) € [Evin, Emax].-
(11)

In this scenario, given any state vectors E* and E? in &V of
equivalent total energy (viz. such that YN | E¢ =YN | EP), it
is possible to transfer between turbines the amount of energy
required so as to achieve an instantaneous switch between the
two states. This is true since all P;s are unconstrained and
(as we are neglecting power losses deriving from friction in
the mechanical components) the total power required for the
switch is zero. Therefore, indications on the solution of (11)
can be obtained by solving, at each time instant ¢, a static
optimization problem. In particular, the kinetic energy Eror
of the wind farm is distributed among the turbines in order to
obtain the maximum value h(Eror) of total mechanical power



extracted from the wind:

N
h(Eror) = max Y T(xi,v) (12a)
o=l =]
N
st. Y xi=Eror (12b)
=1
Xi € [Emin, Emax]. (12c¢)

The general idea is to calculate the optimal solution for (12)
(derived in Theorem 1) and then show with Theorem 2 that the
optimal trajectories for the original problem (11) can simply
be obtained by solving the static optimization problem at each
time instant. The corresponding optimal power profiles are
straightforward to derive through Proposition 3.

In order to solve (12) it 1is wuseful to introduce
the partial derivative Ilg(E,v) = % and its inverse
function with respect to E when v = v;, denoted by
HE[_I [0, g (Emin, vi)] = [Emin, Ess(vi)]. Tt follows from the
strict concavity of I1, established in Assumption 3, that Hgil is
always well defined and monotone decreasing. Since the static
problem (12) will be solved in Theorem 1 using Karush-Kuhn-
Tucker (KKT) conditions, we preliminary show existence and
uniqueness of the quantity K(Eror), which depends on the
total kinetic energy Eror of the turbines and will represent
the multiplier associated to the equality constraint.

Proposition 1: For any value of total energy
Eror € [NEyn, Y Ess(vi)] there exists one and only one
K, that we denote by K(Eror), such that the following holds:

N
ZHE[I (min(K,HE(EMIN,vi))) = ET0T~ (13)
i=1

Proof: Existence and uniqueness of K(Eror) are straight-
forward to verify if one considers that the function K~!(x),
which denotes the left-hand-side of (13), is monotonic de-
creasing, continuous and its image includes the interval
INEmin, Y Ess(vi)]:

N
Kﬁl(o) = ZESS(Vi)

i=1 (14)

IIlaXN} (HE (EMIN,Vi))) = NEMIN~

|
This result allows to determine the solution of the static
optimization problem:

Theorem 1: Under Assumption 3 for the function II, if
the total kinetic energy of the turbines Eror is such that
Eror € [NEmin, Y Ess(v;)], the solution x* for problem (12)
exists and is unique. Given K(Eror) introduced in Proposition
1, x* has the following expression:

xf = HEil (min(K(ETOT),HE(EMIN,V,-))) = 1, ce ,N.
15)
Proof: See Appendix A. ]
For a better understanding of the structure of the solution, a
graphical representation is provided in Fig. 3 for the simple
case of three turbines affected by different wind speeds. Three
distinct values of total energy [Ej,E,,E3] are considered,

associating to each E; the constant value K (E;), represented in

o
w
T

o o

o i o N

N o N a
T T

Derivative of mech. power,l‘IE(E,Vi) (s‘l)

o

o

G
T

5
Kinetic energy, E (MJ)

Fig. 3. Solution of the static maximization problem (12) for different values
of Eror. The optimal energy values of each turbine are in the same colour of
the corresponding I curves (blue: v; = 7m/s, green: v; = 8.5m/s, red: v; =
10m/s). They are displayed as circles when Epor = E| = 10MJ, as squares
when Eror = E> = 7.5MJ and as crosses when Eror = E3 = 5.4MJ.

the figure as a black/grey dashed line. For the i-th generator, if
K(Ej) <TIlg (EM[N,vi), the optimal x; for (12) with Eror = Ej
is such that I (x},v;) = K(E;) (see for example the projec-
tions on the x-axis of the red curve). If on the other hand
K(Ej) > g (Emin, vi), the corresponding x7 is equal to Epyy
(for example the x-value of the curve in green). Notice also
that, following the concavity of Il presented in Assumption
3, the derivatives Ilg (shown in Fig. 3 for different wind
speeds) are always monotonic decreasing. This means that
g (Emin, vi) will correspond to the maximum rate of change
in the mechanical power extracted from the wind.

The following property of the function A(-), as defined in
(12), is crucial for determining the optimal solution for the
original problem (11):

Proposition 2: The maximum h(Eror) of (12) is strictly
concave and Lipschitz continuous with respect to E7or in the
interval [NEM[N>Z§V:1 ESS(V,‘)].

Proof: See Appendix B. [ ]
From the results of Proposition 2, using Picard-Lindel6f The-
orem, it is possible to define £} (-) as the unique solution
of the following ODE:

N

Eror(0) =Y EJ.
i=1

ETOT(t) = h(ETOT(l‘)) —Pr(l‘) (16)
A constructive solution can then be provided for the problem
of final energy maximization:

Theorem 2: The functions E}(-), i = [1,...,N], defined
as the solution at each time 7 € [0,7] of problem (12) for
Eror = Ejor(t), are optimal state trajectories for the final
energy maximization problem (11).

Proof: See Appendix C. [ ]

An expression for E* can be obtained by evaluating the min
function in (15) for Eror = EJ -

i€ A(t)
i€ (1)

I, (K (Etor (1)) if

Eyin if

E: (1) = (17



where Ejop (1) = YN | EX(t) and the two sets .7 (¢) and .75 (t)
are defined as follows:

F1(t) = {i : g (Emiv,vi) > K (Efor (1))}
St ={1,2,....N\A ().

Remark 2: At any time ¢, the unique optimal solution
E*(¢) is obtained by dividing the turbines in two groups:
the ones in #(¢) will have minimum energy Ejyy while
the remaining ones will be characterized by equal derivatives
Mg (Ef(t),vi) = K(E}or(t)). By evaluating Ig at EF in (17),
considering the definitions of .| and .5, we have:

e (Ef(2),vi) > e (Ef(t),v;) Vie A(t) Vje Alt).
19)
We are now interested in determining the power profiles P*
which generate the optimal state trajectories. The analysis will
consider the case in which it is not necessary to perform an
instantaneous energy switch since the initial state corresponds
to the optimal solution at time # = 0:

E? = E{ (0)

(18)

i=1,...,N. (20)

If this is not the case, it is sufficient to consider an additional
impulsive term (EY —E7(0))-8(¢) in the expression of P;. The
following feedback law is introduced:

(E;,vi) = fi(E,t) if E;i > Epn
H(EM]N,V,’) lf Ei = EMIN

where the function f; is obtained by differentiating with respect
to time the expression in (17) when i € .#](¢), evaluated at an

arbitrary state E:
N
Z (Ej,vi) — Pe(1)
) )

d —1 ZN ! ZN
flE,1) = axE <K (‘_1Ei>>K <‘—1Ei)
2

Proposition 3: If (20) holds for the initial state E, the
optimal power profile P* for (11) is equal to the feedback
function ¢ evaluated along the optimal trajectory E*:

Pr(t) = @i (E*(1),1)

Proof: 1t is sufficient to show that, given E defined in
(17), its derivative corresponds to the dynamics (6) of the
single turbine when P* is applied. Notice that, for E; = Eyp,
the feedback law is discontinuous. In this case, taking into
account that E(f) = Epyy when E} (1) = Eygny and 7 > 1, the
right derivative (equal to 0) can be considered. The following
general expression can then be provided:

Lprty = f(E().0)-sign(EF (1)
—T(EN () - B ()

dt

The first equality holds by definition of f;, the second one is
obtained by replacing (21) in the expression (23) of P?. The
proof is concluded by verifying that the last member in (24)
is equal to (6) evaluated at E = E}(t), P, = P*(¢t) and v =v;.
|

From (17) and (24) one can conclude that the optimal
scheduling, in case of unconstrained power, is achieved by
controlling the turbines in two different ways. The kinetic

0i(E,t) = 21

i=1,...,N. (23)

- EMIN) (24)

energy of the generators with E}(¢) > Eyyn is reduced by
imposing E7(t) = f;(E*(t),t) so that the following holds:

g (Ef (t),vi) = K(Efor (1)) Vie A1)

Once the i-th turbine reaches the minimum energy Epy, it
remains in that state (E*(f) = 0) and the energy reduction is
performed with the same criterion on the remaining ones.

It is now possible to further discuss the choice of providing
frequency response with a scheduling of the turbines which
maximizes the total kinetic energy at the final time 7.

Proposition 4: For a given initial state E°, the solution of
the maximization problem (11) guarantees feasibility of (10)
for the largest class of aggregate power set-points P,.

Proof: Consider an aggregate power reference
B :[0,T] - R, for which (11) is unfeasible. Assuming
P. is bounded, since the power of the single turbine is
unconstrained, there exist 7 < 7 defined as the maximum
¢t such that (11) is feasible for P, = P. restricted on the
interval [0,7]. In the considered overproduction regime this
implies Ef(f) =---=E}(f) = Epmyy for the optimal states,
with E;OT (f) < 0. Take now an arbitrary power profile P with
Z,P P.. For the corresponding energy vector E it will hold
Y Ei(f) <Y,EF(f) = NEyy. This means that E(f) = E*(7)
with Eror(f) < 0 or there exists at least one i such that
Ei(f) < Epny. We can conclude that there exists no power
profile P(-) such that (10) is satisfied for P, = P,. [ |

(25)

IV. OPTIMAL RESPONSE WITH CONSTRAINTS ON
GENERATED POWER

The analysis is now extended in order to study the case of
wind turbines that have a power output limited to the interval
[PMIN,PMAX]. The corresponding control problem becomes:

S. t' z:lPl():Pr(t)
E;(0) = E? el N
Ei(t) = ( i(t),vi) —Pi(t) — o
E;(t) € [Emin, Emax] ( vt €[0,T] )
Pi(t) € [Puin; Puax]-

(26)
When applying the approach presented in the previous section,
two important elements must be taken into account. The first
one is the initialization of the turbines: if (20) is not satisfied,
it follows from Remark 2 that the generators present different
values of IIg at r = 0. In this case, it is not possible to
instantly correct such condition and impose equal derivatives
by performing an energy switch with impulsive power. The
second element to consider is that the power profile P defined
in (23) and optimal for the unconstrained problem, albeit
bounded for ¢ > 0, may violate the power boundaries defined
by Pyv and Pyax. In the rest of this section, on the basis
of the insights provided by the analysis of the unconstrained
problem, we present an heuristic control strategy that brings
the turbines to equal levels of partial derivative I1g(E,v) and
then preserves such equality for as long as possible. It is shown
that the proposed choice solves the initialization issue of the
turbines and, under some conditions, guarantees optimality.



A. Feedback Control Strategy for the Constrained Problem

In order to properly define our candidate solution for the
optimization problem (26), some preliminary operations are
required. In particular, given the vector E € [Eyyy, Eyax]" of
kinetic energy values, we rank the generators for decreasing
values of their partial derivative I1g. This allows to introduce
a permutation of the turbines population, denoting by i(E)
the turbine that occupies the i-th position in the derivative
ordering for a given energy vector E. With this new indexing,
the following chain of inequalities is satisfied:

g (Eqg),vie)) = Me(Bsg) vag) 2 - 2 He(Ey ), vne))-

27)
It is worth mentioning that such ordering always exists and
is unique if one assumes, for example, that the original index
order is preserved for turbines with equal derivatives. Equiva-
lently, given j; < j, such that IIg(Ej,,vj,) =g (Ej,,v},), for

the corresponding new indexes 7| (E) and i>(E) we have:

;I(E):jl 72(E):j2 i1 <lip.
Definition 1: The proposed feedback control law
¢(Eat) : [EMIN»EMAX]N X [O, T] — [PMIN7PMAX]N can be

defined component-wise for decreasing values of i (starting
from i = N) and has the following expression:

N
min (PMAX,Pr(t) - Z (Pf(E)(Evt))
=it
if EZ(E) > EM[N

Gre) (E 1) = N
min (H(EMINavf(E))’Pr(t)_ Y ¢f(E)(E7t)>
]
if Ef(E) =EynN.
(28)

By setting P(t) = ¢(E(¢),t), the frequency response is pro-
vided by allocating maximum power on the turbine N(E(t))
which has the lowest partial derivative I1g, taking into account
that PN(E)(t) < PMAX and PN(E)(I) < H(EM[N,VN(E>) if the
turbine has reached the minimum energy level Ejny. The
same procedure is repeated for the i(E(t))-th turbine with
i =N —1 and for decreasing value of i until the whole required
power P,(t) has been allocated. Coherently with our initial
premise, the turbines with lower values of ITg will generate
the maximum feasible amount of power, reducing their kinetic
energy very rapidly and, consequentially, increasing their val-
ues of Ilg. The opposite occurs for the remaining generators,
ensuring that the partial derivatives of the wind turbines are
driven towards a common value.

Remark 3: The feedback law ¢ maximizes, at each time
instant 7, the derivative of the total mechanical power extracted
from the wind, which has the following linear expression with
respect to the P;s:

d N N
= ;H(Ei(t%vi) = ;HE(Ei(f)Ni) (TI(E;(),vi) — Pi(1)) -

To verify this, it is sufficient to note that while the sum of
the generated powers P;(¢) is fixed and equal to P,(¢), when
¢ is applied the maximum feasible power is allocated on the
turbines with the lowest values of the positive quantity I1g.

B. Optimality Results and Structure of the Solution

The feedback control law ¢, presented in Definition 1 and
designed heuristically on the basis of the analysis of the
unconstrained case, is optimal for the optimization problem
(26) with limited power generation if certain conditions are
satisfied. To show this, we formally define the state trajectories
and power profiles of the turbines when ¢ is applied:

Definition 2: Consider the following dynamical system,
which describes the evolution of the turbines kinetic energies
across time:

E;(t) = TL(E;(t),vi) = Bi(t)

El(o):Elo lzl,...,N.

(29)
Given the feedback control law ¢ presented in Defini-
tion 1, we denote by E* : [0,T7] — [Epmv,Emax]¥ and
P*:[0,T] — [Puin, Puax]" the state trajectories and the con-
trol inputs of system (29) when the feedback ¢ is applied and
P(t)=¢;(E(t),t) forall r € [0,T] and i =1,...,N.

We initially assume that E* and P* always exist and are
unique. Such assumption is discussed in the last part of this
section, after Theorem 3. Next, we show that the feedback
¢ is optimal for the final energy maximization problem if the
ordering of the turbines derivatives remains constant over time.
Equivalently, the following condition must be satisfied.

(E*(t))=i wvtel0,T] i=1,....N.  (30)

Theorem 3: Given E* introduced in Definition 2, the final
total energy Ejp (T) = YN, Ef(T) is the maximum of prob-
lem (26) if (30) holds.

Proof: See Appendix D [ ]

To fully understand the implications of Theorem 3 and
determine when its hypothesis are verified, it is important
to analyse the structure of the solutions of (29) when the
feedback law ¢ is applied. To keep our analysis simple, we will
consider the case N =2 but the results can be easily extended
to an arbitrarily large value of N. We assume without loss of
generality that IIg(E?,v|) > TIg(EY,v2) and, for simplicity,
we consider Pr(l) S [PMAsz'PMAX] for all ¢ € [O,T]. If the
minimum energy level Eyy is never reached, the components
of the feedback law ¢ have the following expression:

01(E,1) = P(t) —Pyax if Tg(Ep,vi) >g(Ex,v)
1(£, Pyax if Tg(E;,vi) <g(E,vs)

HE(Ehvl) > HE(Eg,Vz)
HE(El,Vl) < HE<E2,VQ).
(3D
Three different possibilities, represented graphically in Fig.
4, must be considered for the state trajectories of (29).
The first trivial case (A - blue trace in Fig. 4) is that
g (Ef(t),v1) > g(E5(t),v2) for all ¢+ € [0,T]. This means
that the power generated by the two turbines is equal to
P/ (t) = P.(t) — Pyax and P;(t) = Pyax, respectively. The so-
lution of system (29) can then be interpreted in a classical
sense and it is straightforward to verify that (30) holds and the
optimality of the control signal P* is guaranteed. Alternatively
to case A, there exists a time instant 7, defined as the minimum
t € [0,T] such that IIg(Ej(r),vi) = Ig(E;(t),v2). In this

Puyax if
Pr(l) — PMAX if

(.0 = |
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Fig. 4. State-space representation of different typologies of solutions for
system (29) when N =2 and the feedback control law ¢ is applied.

instance the system solution, for t > 7, could lie on the sliding
surface characterized by Ig(E;,v;) = Hg(Ey,v2) (B - red
trace in Fig. 4). From the results of the previous section, in
case B the solution for ¢ > 7 corresponds to the unconstrained
optimal one (denoted by (E*,P*)) obtained solving (11) for
EY =E;(f) and EY = E; (). Adopting Filippov definition [13]
for solutions of systems with discontinuous inputs, this is the
case if the following conditions are satisfied:

P (t —1) € [P(t) — Puax, Puax]
Py (t—1) € [P:(t) — Puax, Puax]

Remark 4: Two important considerations can be made if (32)
holds and the solution of (29) lies on the sliding surface. From
a practical point of view, the implementation of the feedback
law ¢ does not require high frequency switching of the control
inputs when the turbines reach equal values of the derivative
. In this case one can simply apply the power profiles P*
obtained by solving the unconstrained problem. It can also be
proven that P*(t) = ¢ (E*(¢),t) is still optimal for (26). In fact,
as a result of Theorem 3, the total kinetic energy is maximized
over [0,7]. Moreover, the state trajectory on [f,T] is equal to the
one of the unconstrained problem, whose objective function
coincides with the original one and is monotonic increasing
with respect to the total energy Ej (f) +E; (7).

The last possibility to consider (C - green trace in Fig. 4)
is that (32) does not hold for some 7 € [f,7] and the state
trajectory leaves the sliding surface. If it returns to the region
of the state-space characterized by g (E;,vi) > g (Ea,v2)
(C - dotted green trace in Fig. 4), the initial ordering of
the derivatives Ilg is preserved and the optimality results
discussed for the previous scenarios still hold. If, on the other
hand, the state trajectory “crosses” the sliding surface (C -
dashed green trace in Fig. 4) the original derivative ordering
is altered. The scenario C is the only one for which it is not
possible to prove the optimality of ¢. On the other hand, one
can still apply Theorem 3 and previous considerations to the
time subintervals [0,7] and [7, T]. In particular, the total kinetic

vie[F,T). (32

energy is maximized at 7 and, for the resulting energy state
E*(f), also the final kinetic energy is maximized.

Remark 5: It is worth mentioning that, in a scenario with
wind turbines affected by equal wind speed, case C never
occurs. In fact, in this instance, we have Py (t) = P;(¢t) when
Mg (Ef(t),v1) = Hg(E}(¢),v2). This means that (32) always
holds and the power profile P* obtained with the feedback ¢
is optimal for the frequency response problem (26).

V. SIMULATION RESULTS

The performance of the proposed scheduling has been
evaluated in simulations. The turbine parameters presented in
[10] have been adopted, converting the operative interval of
the rotor speed to the corresponding kinetic energy values:

R=37.5m J=59-10°Kg -m?
Puiv = OMW Pyax = 2MW
Eyiy =2.62-10%  Epyax = 1.43-107J.

(33)

A qualitative representation of the considered scenario is
presented in Fig. 5: initially all generators are operating at the
point of maximum efficiency, generating the aggregate power
P, specified in (9). At time ¢ = 0, supposing a frequency event
occurs, the reference for the aggregate power is increased:

N
Po(1) =1.3 Y TI(Eg(vi),vi) = 1.3P.
i=1

(34)

The power profiles of the turbines are calculated in order to
achieve a total generated power Pror which is equal to P, at
each time instant, as specified by the constraints in (11) and
(26), minimizing at the same time the total energy losses. After
having provided frequency response, the turbines move to a
recovery phase: their generated power is reduced so they can
increase their kinetic energy and move back to the operating
point of maximum efficiency which characterizes normal oper-
ation. The recovery problem is studied in detail in Section VI.
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Fig. 5. Total power generated by the wind farm at different operational modes.
Remark 6: In practical applications the proposed scheduling

can be implemented in real time with a centralized approach
that requires a two-way communication channel between the



turbines and a central entity. The latter receives the measured
wind speeds and current kinetic energies from the generators
and calculates, at each time 7, the power required from each
turbine. In the unconstrained case it solves (12), determining
the resulting power through (23). For the constrained case, the
feedback ¢ presented in Definition 1 is applied. The required
power values are communicated to each turbine and converted
to the equivalent torque reference 7, which constitutes the
input of the electrical control loop shown in Fig. 1.

A. Optimal Scheduling in the Unconstrained Case

A first analysis focuses on the case of turbines with
unconstrained power, considering a population of N = 20
generators. Initially, they are all operating at the point of
maximum efficiency E;(0) = Eg(v;) with different wind
speeds in the interval [8m/s,10m/s] and equal deriva-
tives TIg(E1(0),vi) =--- =Ig(En(0),vy) = 0. The optimal
scheduling is calculated with a time step Ar = 0.05s, solving
the static optimization problem (12) at each time instant /- Az.
The optimal energy trajectories E* for each turbine are shown
in Fig. 6. Notice that, after the frequency event occurs at t =0,
the kinetic energy is reduced across time in all generators in
order to maintain an equal derivative Ilg. The corresponding
optimal power profiles P* are shown in Fig. 7: after the initial
increase, the generated power is approximately constant for
all turbines. When the slowest turbine (let it be turbine i)
reaches the minimum energy Epn, its power generation is
instantaneously reduced to II(Ey v, v;) and the control effort is
redistributed among the remaining generators which, as a con-
sequence, increase their individual power output considerably
in order to meet overall power requirements. Since turbines
have equal derivatives I1g at time ¢ = O and therefore satisfy
(20), there is no impulsive energy switch. The optimal power
in the unconstrained case is finite and in this case it is also
within the operational limit Py;y < P < Pyax of the turbines
except for the very last part of the frequency response when
the power output of some turbines is indirectly limited by the
fact that they have reached the minimum feasible energy Eyn .

*
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Fig. 6. Kinetic energy of the individual wind turbines when providing
frequency response in the unconstrained power case.
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B. Scheduling of Turbines with Limited Power

A similar scenario with constraints on the generated power
P is now simulated: in this case it is assumed that turbines
have different derivative Ilg at + = 0, with wind speed and
initial state defined as follows for j=1,...,20:

v;=840.1-j  Ej(0)=Ey(v;)-(1.02—0.02-j). (35)

The frequency response is provided with the heuristic control
strategy introduced in Section IV, applying the feedback law
¢ presented in Definition 1. The resulting state trajectories
E} (1), generated power profiles P/(f) and partial derivatives
g (Ef(r),v;) of the individual generators, with i =1,...,N,
are shown, respectively, in Fig. 8, 9 and 10. Three different
time intervals can be analysed separately, on the basis of the
values of IIg. At the beginning of the frequency response
(from 0 to 1 second) the power derivatives are distinct: the
aggregate power P, is allocated by setting P/ (r) = Pyax for
the turbines that have lower I1g which, as a result, are slowed
down. Since P, is not an integer multiple of Pysx, one of
these turbines will generate a power which is lower than the
maximum. It can be seen in Fig. 10 that in the first second
the generators converge one after another to equal values of
Ilg. In the considered scenario, every time this happens, the
energy trajectories of the turbines will be similar to case B
in Fig. 4. In fact, the equivalent of condition (32) is satisfied
for the group of turbines with equal derivative, implying that
the corresponding solution of the unconstrained problem is
feasible. One turbine moves from maximum (or minimum)
generation to some intermediate value and the power of the
other generators is adjusted accordingly (see Fig. 9). The result
is that the energy trajectories will lie on the sliding surface
characterized by equal values of I1g, as it can be inferred from
Fig. 10. In a second time interval (approximately from 1 to 6
seconds), all turbines have reached the same value of Tz and
proceed on the sliding surface. The kinetic energy is gradually
reduced, the common value of Ilg increases over time and the
power P of each generator remains almost constant. In the
last interval, when turbines start reaching the minimum energy
value Epyy, their power is reduced to P(t) = II(Emiy, vi)



and such variation is compensated by increasing the power
on the remaining ones until feasibility can be guaranteed. It
is worth mentioning that, in the presented scenario, the initial
ordering of the derivatives Ilg is preserved throughout the
whole considered time interval [0,7]. From Theorem 3 and
considerations of the previous section, this implies that in the
present case the feedback ¢ is optimal for problem (26).
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Fig. 8. Kinetic energy of the individual wind turbines when providing
frequency response in the constrained power case.
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constraints on generated power.

The results obtained with the discussed turbine scheduling
are compared to the ones of a traditional approach, where
each turbine increases proportionally its generated power in
order to meet the same overall power requirements. The total
kinetic energy of the wind farm in the two cases, for the
parameters mentioned above, is denoted respectively by E7
and E7or and is shown in Fig. 11. As expected, the aggregate
energy of the turbines is higher with the proposed scheduling.
This means that the subsequent recovery phase, when turbines
generate less power to recover their kinetic energy, will require
a smaller counterbalance from other sources of generation and
therefore will have a reduced negative impact on the system.

0.2

-1,

Derivative of mech. power,l‘lE(ET(t),VI) (s)

time (s)

Fig. 10. Partial derivative Iz (E;(t),v;) of the turbines for scheduling with
constrained power.

Moreover, the curves in Fig. 11 stop at different time instants,
corresponding to the points at which the turbines are not able
to provide the required amount of aggregate power under the
specified energy and power constraints. With the proposed
control strategy, it is possible to provide a frequency response
which is 15% longer than the standard one. Consequently,
there is more time for the secondary response to kick in and
correct the power imbalance in the system, allowing the use
of cheaper generators with lower ramping rates and achieving
significant economical benefits. Finally, for the chosen values
of initial energy and wind speed, it is supposed that a certain
time T of frequency response is required from the turbines.
The maximum percentage of power increase AP which can
be delivered with the proposed scheduling by setting P,(r) =
Pis(1+AP) for all r € [0,T] is shown in Fig. 12. At lower
values of T (and higher power increase factors), the reduction
of AP is more significant. In this case the turbines are gene-
rating more power, moving away faster from their initial ope-
rating point and introducing a larger reduction of efficiency.

Aggregate kinetic energy
T

(MJ)

50 I I I I I I I I

time(s)

Fig. 11. Total kinetic energy of the wind farm after a frequency event with
the proposed scheduling (E7 ;) and with traditional techniques, applying a
proportional increase of power generation equal for all turbines (E7or).
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VI. OPTIMAL ENERGY RECOVERY

When turbines provide frequency response they release part
of their kinetic energy, moving away from their operative point
of maximum efficiency. Therefore, after the frequency support
phase, it is desirable to bring back the turbines to their optimal
rotor speed (and corresponding kinetic energy). The recovery
is approached as an optimal control problem, imposing a
minimum value P;, of aggregate power and calculating the
power profiles P, which minimize the time required to restore
the original configuration of maximum production:

min T
T.P(-)i=1..N
st YV R() >R
Ei(0) = E}
Ei(T):ESS(VZ) Vi=1,...,N
Ei(t) =TI(E;(t),v;) — P(t) ( vt €[0,T] )
E;(t) € [Emin, Egs(vi)]
Bi(t) € [Puin, Puax).

(36)
The feasibility of the problem is initially assessed, determining
the values of P in the interval [NPyn,NPyax] for which
a solution exists. A preliminary assumption is made for the
constraints on the generated power P, of the single turbine
imposing that, for any feasible value Ej, it is always possible
to increase or reduce the kinetic energy of the turbine:

i=1,...,N
E; € [EmiN, Ess(vi)]-
(37

A first feasibility result can now be provided with the follow-
ing sufficient condition:

Proposition 5: Given the initial state EY, the value P, for
the minimum total generated power is feasible for problem
(36) if:

0 < Pyuny < II(Ej,vi) < Puax

) -y (e,

i=1

Mror (E )> P (38)
where I17or denotes the aggregate mechanical power extracted

by the wind farm.

Proof: See Appendix E. [ ]
If the sufficient condition (38) does not hold, there is no
power profile which allows to instantly increase the energies
E; of all turbines. It is still possible, on the other hand, to
provide milder conditions for the feasibility of the recovery
problem, which in this case are necessary and sufficient:
Proposition 6: For a given initial state £° and minimum
aggregate generation P, problem (36) is feasible if and only
if there exists a time T > 0 and a power profile P(-) such that,
for the corresponding energy vector E, it holds:
ror (E(t)) =

I(Ei(t),vi) > Pp. (39)

=

1

Proof: If 7 specified in the claim does not exist, it follows
that the derivative of the total energy stored in the turbines is
always negative and therefore, since E;(0) < Ess(v;) Vi, prob-
lem (36) is infeasible. If, on the other hand, (39) is satisfied,
the feasibility is guaranteed by Proposition 5, considering
E® = E(7) as the initial energy vector. [ |
This means that the feasibility of problem (36) can be deter-
mined by solving the following problem for increasing values
of 7 and comparing its solution with P:

BRI Mror (E(z))
s.t X Rt ) > P
b0 = Vi=1 N (40)
Ei(1) = ( i(1),vi) = Pi(1)
Ei(t) € [Epin, Egs (vi)] ( vi € [0,7] )
P(t) € [Puin, Puax]-

One can extend previous optimization results and prove that
under certain conditions the feedback ¢, presented in Defini-
tion 1, is optimal for (40) and can therefore be used to analyse
the feasibility of (36) for the considered value of P.

Proposition 7: Consider the power profile P* and the state
trajectory E* introduced in Definition 2, assuming P,(¢) = Py,
and T = 7. If the condition of constant indexing (30) holds,
P* is optimal for problem (40).

Proof: From Theorem 3, under the current assumptions,

P* is optimal and therefore also feasible for problem (26) with
P.(t) = P, and T = 7. The only difference to be considered
between the constraints of (26) and (40) is given by the stricter
constraint E;(t) < Eg(v;) in (40). Since this is never violated
when ¢ is applied (if E;(r) = E(v;) the power generated
by the i-th turbine is P (1) = Pyax > II(Es(vi),v;)), we can
conclude that P* is feasible for (40). Consider now the change
of coordinates introduced in the proof of Theorem 3 and
described by equations (50) and (51). The objective function
of (40) can alternatively be rewritten as:

ZH

which from (52) has positive partial derivatives with respect to
all the state components E; with i =1...,N. From the proof of
Theorem 3, under the current assumptions, such components
are maximized at final time 7 = © by P*. Therefore, P* is
optimal also for problem (40). [ ]

HTOT EN+P( ) EN+PL



The results provided in Section IV can also be used to solve
the current problem of time minimization:

Theorem 4: Consider the power profile P* and state trajec-
tory E* introduced in Definition 2, assuming P,(t) = P, and
T =T*. If the condition of constant indexing (30) holds and
the constraints of (36) are satisfied for P=P* and T =T,
then (P*,T*) is an optimal solution of (36).

Proof: From the proof of Theorem 3 we can conclude
that, under the current assumptions, P* is optimal for (26)
with P.(t) = P, and T € [0,T*]. In fact, P* maximizes at each
time instant the state derivatives of the monotone dynamical
system described by (50) and (51) and the objective function
of (26) is equal to the state component Ey(T). Since we are
assuming that P* is feasible for (36), the following holds for
the resulting kinetic energy E* of the turbines:

N N N
Y E ()<Y E/(T*) =) Ex(vi) Vt€[0,T*). (4D
i=1 i=1 i=1

If P* is not optimal for (36), there exists a power profile P and
the corresponding energy vector E such that, for T =T < T*,
we have E;(T) = Eg(v;) with i =1,...,N. As a result, the

following must hold at t =T
N N N

E®=;%W>ZE®

i=1

(42)
i=1

but this contradicts the optimality of P* for problem (26) with
final time T € [0,T]. ]
We can conclude that the recovery of the turbines is struc-
turally similar to the frequency response problem with limited
power. The heuristic control strategy described by the feedback
law ¢ represents a reasonable choice to bring back the turbines
to their original working point with maximum efficiency. In
fact, from Remark 3, ¢ maximizes at each time instants the
derivative of the total mechanical power absorbed by the
turbines. Moreover, if certain conditions are satisfied, ¢ can
be used to test which values of minimum aggregate generation
are feasible (Proposition 7) and to obtain recovery in minimum
time (Theorem 4).

The feasibility conditions and the scheduling for the energy
recovery problem have been tested in simulations adopting
the parameters (33) used in Section V. In particular, the
feasibility conditions presented in Proposition 5 and 6 have
been applied to the simple case of N = 3 turbines with different
wind speeds v = [8m/s,9m/s,10m/s] and minimum aggregate
power P, =2.5MW. The boundaries of the feasibility regions
with respect to the initial energy ElQ of each turbine are
shown in Fig. 13. The border B; (in red) delimits the initial
energy values for which a recovery scheduling exists (from
Proposition 6) while the border B, (in blue) denotes the
smaller area, defined by Proposition 5, in which is possible
to initially accelerate all turbines at the same time.

The proposed scheduling is also compared with the recovery
of the turbines when a standard optimum power point tracking
(OPPT) is used and the power generated by the i-th turbine is
defined as a function of the rotor speed @ [14]:
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Fig. 13. Borders of the feasibility region of the recovery problem with respect
to the initial state E, as defined by Proposition 5 (blue) and Proposition 6
(red) in the case of N = 3 turbines.

where Ag(0) denotes the tip-speed ratio which maximizes the
power coefficient C(A,0) when 6 = 0. The aggregate power
profile Pror generated with this controller is then used as
reference for the recovery problem (36), extended to consider
time-varying Pp. The kinetic energies of the turbines in the two
cases are compared in Fig. 14. Notice that, when the feedback
¢ is applied, only some turbines are initially accelerated and
then, once equal values of Ilg are obtained, the equality of
the partial derivatives is preserved. The total kinetic energy of
the turbines in the two cases (respectively Eror and Efor) is
shown in Fig. 15: as expected, the proposed scheduling is able
to achieve, for the same aggregate generated power, a faster
recovery of the wind farm.
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Fig. 14. Kinetic energy of each wind turbine during recovery when a standard
OPPT controller is used (top) and when the scheduling with feedback ¢ is
applied (bottom).

VII. CONCLUSIONS

A new methodology is presented for the scheduling of
wind turbines that provide frequency response, considering
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Fig. 15. Comparison between the aggregate energy Eror obtained with
standard OPPT controller (blue) and the total energy Er.; resulting from
the application of the scheduling with feedback ¢ (red).

wind speed and angular velocity different in general for each
turbine. In case of frequency events, the aggregate generation
is increased by a specified amount, determining the power
profile of the individual turbines through the resolution of an
optimal control problem which minimizes energy losses. The
proposed technique provides an upper bound on the efficiency
of wind farms in these scenarios and constitutes a theoretical
framework that can be expanded to include provisions of
other ancillary services. The results are evaluated through
simulations and the approach is also extended to the energy
recovery problem, bringing back the turbines to the initial state
of maximum efficiency in minimum time.
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APPENDIX A
PROOF OF THEOREM 1

The feasibility of x* is straightforward to verify: the con-
straint (12b) is satisfied from Proposition 1 while for (12c)
it is sufficient to notice that, for the considered values of
Eror, the value returned by ngl in (15) is always in the
interval [Epn, Ess(vi)], with Eg(vi) < Eyax from Assumption
3. The optimality of the candidate solution is now proved
through Karush-Kuhn-Tucker (KKT) conditions. In this par-
ticular case such conditions are necessary and sufficient since
the inequality constraints are convex, equation (12b) is affine
and the objective function is strictly concave [15]. To show
this last point, consider that the Hessian of the objective func-
tion H = diag(TTgg (x1,v1),...,ge(xy,vy)) is negative defi-
nite since the second derivative Igg (E,v) = 9*T1(E,v)/JE?
is negative from the strict concavity of I established in
Assumption 3. For the proposed solution the constraint on
the maximum energy Ej4x is never active (the corresponding
multiplier will always be equal to 0) and only the inequality
in the opposite sense x; > Ejy must be considered when
deriving the KKT conditions. Therefore, the vector x* is
optimal if and only if there exists k and u = [y, ..., ] such
that:

g (x7,vi) = —pi + &
u; >0
Mi- (Epany —x7) =0
These conditions are satisfied if one chooses the multipliers
as follows:

i=1,...,N. (44)

k=K (ETOT)

= 0 if

' K —g(Epiv,vi)  if

Uniqueness of the optimal solution follows from its existence
and the strict concavity of the function to maximize.

g (Emiv,vi) > K
g (Emiv,vi) < K.

(45)

APPENDIX B
PROOF OF PROPOSITION 2

Consider that the right hand side in (12a) is a strictly
concave function of x and the compact-valued continuous cor-
respondence D(Eror) which returns the set of feasible x for a



given E7or has a convex graph. It is therefore possible to apply
the maximum theorem [16, Theorem 9.17], considering Eror
as a parameter of the optimization and concluding that % is
strictly concave with respect to Eror on [NEMIN,Z?LI E(vi)]-
Following the concavity properties introduced in Assump-
tion 3, the definition of the derivative inverse Hg[_l can be
extended to the interval [IIg(Emax,vi), g (EL(vi),vi)]. It is
also possible to define the domain of /& as the interval
ép = [Z?]:]EL(VI%Z;LER(W)] which satisfies the following
property:

[NEM,N,ZjV: lEss(v,-)} CépC [ZN: lEL(v,-),NEMAX} (46)

where Eg(v;) < Eyax is the maximum value for the optimal
energy of the i-th turbine for which it holds:

HE(ER(VI),Vl) == HE(ER(VN),VN) <0. (47)

Such domain definition is possible if one considers that in
each [EL(v;), Er(v;)] the monotonicity and concavity properties
mentioned in the previous remarks still hold. We can then
extend the results of Proposition 1 and Theorem 1, repeating
the steps of the corresponding proofs for the new interval
&p. With the same reasoning detailed at the beginning of
this proof, applying the maximum theorem, we can show that
h is concave with respect to Epor on &p. Therefore, h is
also Lipschitz continuous in the same variable on the interval
[INEpin, XN | Ess(vi)] C p.

APPENDIX C
PROOF OF THEOREM 2

For the feasibility of E* notice that, at any time instant
t € [0,T], it holds:

Efor(t) = h(Etor (1))

= <Z‘i H(E,*(t),w)) —P(t) = ZEi*(t)'

Taking into account that individual generated power P;s
are unconstrained, it is always possible to determine
input profiles Pr(r), with i = 1,...,N, which satisfy
N, P*(t) = P(t) and the constraint on the state deriva-
tive Ef(t) =TI(E}(t),v;) — P*(t). Consider now an arbitrary
state trajectory E(-) which is feasible for (11) and de-
fine, at each time instant ¢, the corresponding total energy

—F (1)

Eror(t) = YN, E(t). Such function is differentiable since it
holds:
= N _
Eror (1) = ) TI(Ei(t),vi) — P:(1). (48)
i=1
From the definition of A, it follows:
Eror(t) < h(Eror(1)) — P() Vi € 0,T]. (49)

Considering that E7o7(0) = E},7(0) and applying the com-
parison theorem [17, Theorem 7], we can conclude that
Eror(t) < Efop(t) for all > 0 including = T and therefore
E*(-) is optimal for problem (11).

APPENDIX D
PROOF OF THEOREM 3

Notice that, when (30) holds, each individual turbine is
represented by the same index i(E*(t)) =i over the whole
time interval [0, 7] and therefore occupies always the i-th place
in the ordering with respect to Ilg. We now introduce the
following change of coordinates for system (29):

i
E=YE P=PR
j=1

where E and P represent, respectively, states and inputs of the
dynamical system in the new coordinates. Accordingly, the
state derivatives can be expressed as:

X i i i
Ei:; Ejvy) Z :Z
Jj= j=1 j=1

(50)

i

] 17 ] Z

j=1

(S

One can verify that the system described by (50) and (51)

is monotone for the orders induced from orthant Rﬁo for the

state £ and RQ’O for the control P. To prove this, we apply

[18, Corollary III.3] and show that the following inequalities
are satisfied:

OE; i=1,....N

aEi>0 <o

= 52
9E; = b, = 42

It is straightforward to verify from (51) that the partial
derivatives with respect to P; are never positive. For the case
of derivation with respect to £; the only non trivial case is
1 < j < i, for which we have:

o

0

(J+1))
0

QO
ot

- = Mg(Ej—Ej1,v)) ~Te(Ejp1 —Ejv
>

. g (E;v;) —g(E

Vi (jfrl)’v(j+1))

where the inequality holds as a result of (27) and condition
(30) of constant indexing assumed in the theorem statement.
Having established the monotonicity of the dynamical system
described by (50) and (51), we denote by &2 the set of power
profiles P : [0,T] — [Pyin, Puax|" that are feasible for (26)
and remind that P* is obtained by applying the feedback law
¢, as specified in Definition 2. From expression (28) of ¢, it
is straightforward to verify that P* € &. Moreover, when ¢
and the corresponding P = P* are applied, all state derivatives
Ei(t) are maximized over the set of feasible profiles & at
all t € [0,7T] and i € {1,...,N}. To see this, notice from
(51) that P;(z ( ) appears with negative sign in all derivatives

E;(t) with i > j and the total sum Z] 1 P;(t) is fixed and

equal to P,(t). This means that all E;(¢) are maximized by
allocating maximum feasible power on the turbines j with
highest j or, in other words, by applying ¢. Therefore, from the
monotonicity of the dynamical system in the new coordinates,
each state component £(¢) is maximized by ¢ at all 7 € [0,T].
The proof is concluded by noticing that Ey(T) = 2?;1 E;(T)
corresponds to the objective function of problem (26) and
therefore E3(T) = E;or(T) is optimal for (26), as claimed
in the theorem statement.



APPENDIX E
PROOF OF PROPOSITION 5

We show that, if (38) holds, there exists at least one power
profile P(-) that satisfies the constraints in (36). In order to
construct P, denote the set of turbines that have reached the
desired terminal state by .# (E) := {i: E; = Es(v;) }. The power
profile can now be defined through the following feedback law
fori=1,...N:

H(ESS(V,'),V,') ie eg.(E)
Gi(E) = (53)
max (H(E,', Vi) . F(E),PM[N) i ¢ ﬁ(E)
where the function r(E) is defined as follows:
PL—Yic7 ) TU(Ess(vi), vi)
r(E) =
Hror(E) — Liez &) (Ess (vi),vi) (54)

PL—Yicz(£) L(Ess(vi), vi)
Yi¢.7 (&) L(Ei, vi)
It is straightforward to verify that ¢ satisfies the constraint on

the minimum total generated power. In fact, for an arbitrary
E, it holds:

Y @)= Y T(E,vi)-r(E)=P.— P(E).
i¢ 7 (E) it 7 (E) i€ (E
(55)
We define now E(-) as the unique solution, for i =1,...,N,
of the following system of differential equations:
Ei(t) =TI(Ei(t),v;) —@:(E(t))  Ei(0)=E?. (56)

The corresponding power profile will be equal to the feed-
back law @ evaluated along E, with P(t) = @;(E(t)) for
i=1,...,N. To show that E satisfies the final state condition in
(36), considering that E;(1) =0 if E;(1) = Ey(v;), it is sufficient
to verify the following:

E,(O) >0

dG(E)
JE;

Vi¢ F(E°) (57)

Vi, j & F(E)
VE €1, (E,‘OaEss(Viﬂ

>0 (58)
where §;(E) denotes the time derivative of the i-th compo-

nent of E when the feedback @ is applied. Specifically, for
i ¢ Z(E), it holds:

H(E,', V,') [1 — r(E)] if H(E,', Vl') . V(E) > Pyin
G(E)=
H(Ei,vi) *PMIN lf H(E,’,V,‘) I”(E) S PMIN~
(59
For the inequality in (57) notice that E;(0) = &(E®). If one
replaces E° in (59), for the case II(E;,v;)-r(E) > Py it is
sufficient to consider that r(E?) < 1 since P, < I7or (E). The
inequality in the other case is verified from (37). For condition
(58), this is always satisfied when I1(E;, v;) - r(E) < Pyyy since
I > 0. In the opposite case, it holds r(E) > 0 since I1(E;,v;)
and Py are both nonnegative quantities. Furthermore, for
the considered E, we have P, < Izor(E?) < Tzor(E) and

therefore r(E) < 1. From expression (59) and the positivity of
Ilg, condition (58) holds if the following inequality is satisfied:
or(E)  Tg(E;,v;) [PL—Yier ) (Es(vi),vi)] <0. (60)
T P 2 ’
IE; Mror(E(1)) — Lier ) P(1)]

This is true since the positivity of [Py — ¥e 7() I1(Egs (vi), vi)]
follows from the fact that (E) and its denominator in (54) are
both greater than zero. The proof is concluded by noticing that
also the constraints in (36) on the single power P; are satisfied
since @;(E) > Pyn by definition and r(E) < 1.
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