



*Citation for published version:*

Gu, C, Zhang, X, Ma, K, Yan, J & Song, Y 2018, 'Impact analysis of electricity supply unreliability to interdependent economic sectors by an economic-technical approach', *Renewable Energy*, vol. 122, pp. 108 - 117. <https://doi.org/10.1016/j.renene.2018.01.103>

*DOI:*

[10.1016/j.renene.2018.01.103](https://doi.org/10.1016/j.renene.2018.01.103)

*Publication date:*

2018

*Document Version*

Peer reviewed version

[Link to publication](#)

*Publisher Rights*  
CC BY-NC-ND

Final published version available via: <https://doi.org/10.1016/j.renene.2018.01.103>

**University of Bath**

**Alternative formats**

If you require this document in an alternative format, please contact:  
[openaccess@bath.ac.uk](mailto:openaccess@bath.ac.uk)

**General rights**

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

**Take down policy**

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

# Impact Analysis of Electricity Supply Unreliability to Interdependent Economic Sectors by an Economic-Technical Approach

Chenghong Gu<sup>a\*</sup>, Xin Zhang<sup>b</sup>, Kang Ma<sup>a</sup>, Jie Yan<sup>c</sup>, and Yonghua Song<sup>d</sup>

*a: Dept. of Electronic and Electrical Eng., University of Bath, Bath, BA2 7AY, U.K*

*b: Electricity National Control Centre, National Grid, Wokingham, U.K.*

*c: North China Electric Power University, Beijing, China.*

*d: Zhejiang University, Hangzhou, Zhejiang, China*

**Abstract**—This paper proposes a novel framework to quantify the economic impact of electricity supply interruptions to other economic sectors considering their interdependency and increasing penetration of wind power. It is achieved by a novel integrated model that combines economic interdependency and electricity supply reliability. Leontief Input-Output model is used to determine the dependency of other economic sectors on electricity supply and electricity reliability theory is utilised to quantify electricity supply interruptions. The two models are combined to quantify two key indexes: the inoperability of different economic sectors and their losses under electricity supply unreliability. Further, an optimal model is designed to allocate available electricity to minimise the economic losses of these sectors when electricity supply is interrupted. Two UK electricity generation scenarios are used to demonstrate the concept. It is found that economic sectors have various degrees of dependency on electricity supply and their losses also differ significantly. In addition, more wind power penetration could jeopardize electricity supply adequacy and consequences to other sectors. The findings can assist policy makers to understand the importance of electricity security to other sectors and quantify potential economic losses so that new policies and regulations can be designed to mitigate the adverse consequences, such as developing the capacity market.

**Keywords** —Inoperability, Interdependency, Leontief input-output, Reliability, Wind power, Electricity supply.

## 1. Introduction

The modern society is growingly dependent on electricity supply, which is accomplished by the effort to decarbonise the energy sector to reduce greenhouse gas emissions [1]. Different economic sectors and infrastructure are now becoming closely linked, for example, natural gas and electricity systems are linked gas-fired generation and new power-to-gas techniques. The increasing interdependency brings many benefits but also challenges, where one consequence is that the failure impact in a system can propagate to others [2]. For example, the 2003 North America blackout was estimated to cause a total cost of about \$6 billion [3]. The consequence can be further worsened when electricity supply is interrupted with increasing non-dispatchable renewable, such as wind power [4].

Thus, it is essential to understand the dependency of economic sectors on electricity supply and quantify their losses in case of electricity shortage so that mitigation solutions can be adopted. Some pioneering work has studied the interdependency between electricity and other sectors from the technical

---

\* Corresponding author. Email address: cg277@bath.ac.uk

40 aspect [5]. Paper [6] proposes an economic feasibility analysis for a standalone house operated with a  
41 hybrid power plant consisting of gas generation, photovoltaic and wind generation. In [7], the authors  
42 propose a new concept of energy hub which consists of various resources for energy conversion and  
43 optimization. In paper [8], the authors introduce a new configuration for natural gas pressure drop stations  
44 by employing a solar thermal system. The introduced concept is assessed in terms of fuel providence and  
45 exergy destruction rate. Paper [9] introduces a new optimization model to analyse the interdependency  
46 between different energy infrastructures, such as natural gas, coal, and electricity. It is noted that the  
47 previous studies are mainly studying the physical interdependency of a limited number of energy  
48 infrastructures. Due to the lack of data, they use simplified models of some sectors and networks when  
49 examining the impact of failures on others. In addition, they have not quantified the economic loss of  
50 one sector due to the supply failure of other sectors/infrastructure.

51 The reliability of electricity systems assesses the impact of electricity supply interruptions to other  
52 sectors. Electricity system reliability mainly focuses on quantifying some key reliability indexes in  
53 predefined contingency events, such as potential load loss and occurrence probabilities of the events. It  
54 can be roughly divided into two categories: security which is to measure system's ability to withstand  
55 stability in response to disturbances, and adequacy which is to quantify the existence of sufficient supply  
56 to satisfy demand [10] [11]. In this paper, the reliability is referred to adequacy, which is also called  
57 operability in economics domain. They are assumed to be interchangeable here. In quantifying the  
58 economic loss of other sectors due to electricity shortage, electricity demand is normally classified into  
59 various categories, such as domestic, commercial, and industrial. Each type is assigned a specific Value  
60 of Lost Load (VOLL) [12] and the total economic loss is the summation of VOLL from all curtailed  
61 demand [13]. This concept has served the electricity system industry for decades, but it ignores the  
62 interdependency of other economic sectors, i.e. the propagating effect of electricity supply interruptions.

63 From the economic aspect, some work has investigated the impact of electricity supply interruptions  
64 on other economic sectors by using Inoperability Input-Output Model (IIM). The IIM developed from  
65 the original Input-Output (IO) model contributes to understanding infrastructure interdependency in  
66 abnormal conditions [14]. It has been applied to many areas for risk identification and mitigation, and is  
67 applicable to calculate the economic impacts of a given change to the economy. In paper [15], the authors  
68 use the IIM to measure the financial and inoperability impact of the 2003 Northeast Blackout. Paper [16]  
69 develops a static IO framework to analyse energy issues in the short run and discusses the potential  
70 barriers to its application. Papers [17, 18] use the IIM to assess and manage inherent risks in different  
71 interconnected economic systems. Paper [19] studies the marginal cost of GDP due to electricity deficits  
72 but the deficit probability is predefined but not quantified. Conclusively, the disadvantage of existing  
73 work in economics is that the inoperability of electricity supply is normally prefixed i.e. hypothetically  
74 assumed or obtained from historical data. It is unable to reflect electricity system's stochastic features.  
75 On the other hand in the electricity system domain, the impact quantification of supply unreliability is  
76 fairly rudimentary, which cannot reflect the interdependency of different economic sectors. Thus, it is  
77 essential to integrate the economic and technical interdependency techniques together to quantify the  
78 potential impact of electricity interruptions on other economic sectors in a coherent way.

79 This paper proposes a novel integrated technical-economic framework to assess and manage the

80 unreliability of electricity supply to other economic sectors. The IIM technique is adopted to analyse the  
81 economic dependency and energy system reliability is used to capture the technical dependency of other  
82 economic sectors on electricity supply considering the generation of wind power. The IIM is built by  
83 using national economic statistic data and the reliability of wind power is analytically modelled by a  
84 Markov Model. Three key inoperability indexes are designed to measure the dependency degree of  
85 different economic sectors on electricity supply. An optimal model is also introduced to manage available  
86 electricity to minimise the economic losses of other sectors when electricity supply is partially interrupted.  
87 The UK electricity supply scenarios with various wind penetration levels are utilized to illustrate the  
88 concept. Results reveal that the proposed framework can effectively measure and manage the impact of  
89 electricity supply inoperability on other sectors.

90 The key innovations of this paper are that: i) it integrates economic IIM and technical reliability  
91 approaches to quantify the impact of electricity supply interruptions; ii) it designs new indexes to measure  
92 the inoperability of electricity systems on other economic sectors, and iii) it studies the impact of  
93 increasing wind power on the operability and economic losses of other sectors; iv) it introduces an  
94 optimal management strategy to minimise the economic losses of sectors with electricity supply  
95 interrupted. The study can benefit electricity system operators and policymakers to understand the  
96 importance of electricity supply security and take remedy actions to ensure supply reliability to other  
97 economic sectors.

98 The rest of this paper is organized as: Section 2 introduces the IO and IIM models. In section 3,  
99 electricity supply reliability with wind power is presented and Section 4 defines some interdependency  
100 indexes. Section 5 proposes an approach to quantify the impact of inoperable electricity supply and in  
101 Section 6, an optimal management model is proposed. Section 7 employs the UK case to demonstrate  
102 the proposed method. Section 8 concludes this paper.

## 103 2. Interdependency and The Input-output Model

104 This section briefly introduces the Leontief IO model and IIM for interdependency analysis, and the  
105 application to electricity supply.

### 106 2.1 Leontief Input-output Model for Interdependency Analysis

107 Figure 1 illustrates the interdependency of three sectors and their external demand. By taking the  
108 electricity supply as an example, one part of its output is consumed by itself, one part is exported to  
109 Sectors A and B for their production, and the remaining part is to meet external demand. In turn,  
110 electricity generation also needs the output from Sectors A and B to produce electricity. Thus, any deficits  
111 of electricity to either Sector A or B will adversely affect electricity production. This indicates the  
112 importance of considering the natural linkage/interdependency between different sectors in quantifying  
113 electricity supply security.

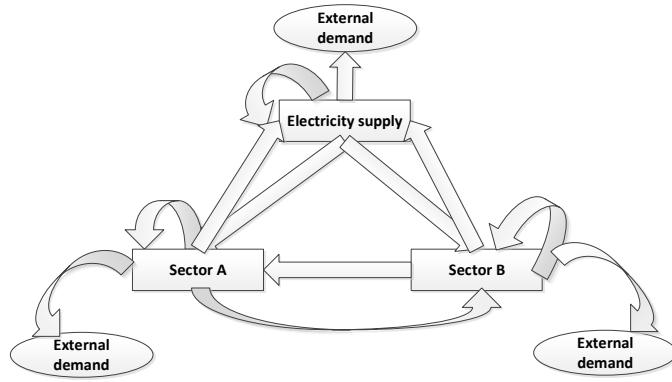



Fig.1. Input-output of a three-sector system

The Leontief IO model designed by Noble Laureate Leontief is an effective tool for examining the interactions and interdependency of different economic sectors. It provides a framework to analyse the economic impact for an equilibrium economic system with a set of interdependent subsystems or sectors. The IO model employs matrices to display the supply and demand between different sectors, called transactions table. An illustrative example is given in Table I with two sectors and one external demand column, where a row in the table displays the distribution of a producer's output and a column is the composition of inputs required by a sector in order to produce its output [20]. The total output of one section is the sum of the output to all sectors including itself and external demand.

Table I A two-sector Input-Output Table

| From sector | To sector |          | External demand | Total output       |
|-------------|-----------|----------|-----------------|--------------------|
|             | Sector 1  | Sector 2 |                 |                    |
| Sector 1    | A(1,1)    | A(1,2)   | C(1)            | A(1,1)+A(1,2)+C(1) |
| Sector 2    | A(2,1)    | A(2,2)   | C(2)            | A(2,1)+A(2,2)+C(2) |

Mathematically, the traditional Leontief I-O model is

$$\mathbf{X} = \mathbf{A} \cdot \mathbf{X} + \mathbf{c} \quad (1)$$

where,  $\mathbf{X}$  is the production vector,  $\mathbf{A}$  is the Leontief technical coefficient matrix, and  $\mathbf{c}$  is the final/external demand vector. All these parameters can be easily obtained by using the economic data in transactions tables [20].

Leontief inverse is defined as

$$\mathbf{B} = (1 - \mathbf{A})^{-1} \quad (2)$$

The most popular IO model is an economic formula and it can be easily transformed into an amount-based technical model to be applied for inoperability analysis [20].

## 2.2 Application of Input-output Model to Electricity Supply

Leontief IO model is a quantitative economic technique to represent the interdependency between different sectors of a national economy or regional economies. It has been widely used for investigating the interdependency of different economic sectors [19, 21]. It can also be applied to analysing electricity supply when it is considered to be as one sector so that its importance to other sectors can be quantified.

Take Table I as an example, where sector 1 is assumed to be the electricity supply sector. It produces

142 electricity to support its own production (with electricity amount  $A(1,1)$ ) and that of sector 2 (with  
 143 electricity amount  $A(1,2)$ ). Meanwhile, electricity is also consumed by other external sectors/demands  
 144 which do not produce products, such as domestic customers (with electricity amount  $C(1)$ ), called  
 145 external demand. Thus, if the total electricity production changes, it will affect not only its own  
 146 production but also the production of sector 2 and final demand. However, the standard IO model does  
 147 not provide the insight during abnormal cases and thus IIM is derived.

148 **2.3 Inoperability Input-output Model**

149 Leontief IIM proposed in [14] is widely used to evaluate the economic impact of supply perturbations  
 150 in one sector on other interdependent sectors. In the model, inoperability is defined as the output  
 151 difference between an as-planned scenario and the actual scenario. Electricity supply inoperability is  
 152 quantified by assessing the reliability of the power system, where LOLP is defined as its inoperability  
 153 index. The general form of IIM is [17]

154 
$$\mathbf{q} = \mathbf{A}^* \cdot \mathbf{q} + \mathbf{c}^* \quad (3)$$

155 which can be reorganized as

156 
$$\mathbf{q} = (\mathbf{I} - \mathbf{A}^*)^{-1} \cdot \mathbf{c}^* \quad (4)$$

157 where  $\hat{\mathbf{c}}$  is defined as the reduced level of final demand and  $\hat{\mathbf{x}}$  is the reduced level of production. Other  
 158 variables in (3) and (4) are defined as follows:

159 i)  $\mathbf{c}^*$  is demand side perturbation vector expressed in terms of normalized degraded final demand

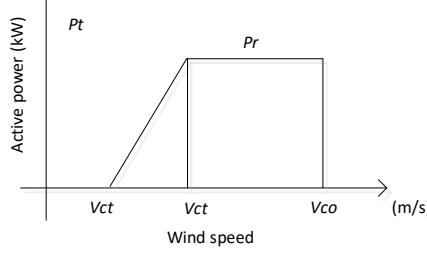
160 
$$\mathbf{c}^* = [\text{diag}(\mathbf{X})](\mathbf{c} - \hat{\mathbf{c}}) \quad (5)$$

161 ii)  $\mathbf{A}^*$  is the magnitude of interdependency of sectors in an inoperable case, derived from Leontief  
 162 coefficient

163 
$$\mathbf{A}^* = [\text{diag}(\mathbf{X})]^{-1} \mathbf{A} [\text{diag}(\mathbf{X})]^{-1} \quad (6)$$

164 iii)  $\mathbf{q}$  is the ratio of unrealized production, defined as “as-planned” production minus degraded  
 165 production divided by as-planned production

166 
$$\mathbf{q} = [\text{diag}(\mathbf{X})]^{-1} (\mathbf{x} - \hat{\mathbf{x}}) \quad (7)$$


167 **3. Reliability of Electricity Supply**

168 This paper is mainly concerned with the balance between electricity supply and demand, and the  
 169 impact of electricity supply unreliability on other sectors. Thus, only generation system adequacy is  
 170 quantified but power system modelling is not included [22]. Normally, Monte Carlo simulation and  
 171 analytical approaches are employed to assess system reliability when considering wind power. In this  
 172 paper, an analytical approach is adopted here because of its simplicity.

173 **3.1 Reliability of Wind Turbine**

174 Figure 2 provides a typical wind power output curve. For simplicity, the impact of air density, swipe  
 175 area of wind turbines, air pressure, etc. are not considered. A wind turbine is supposed to have the rated  
 176 capacity of  $P_r$  and its actual output under each wind speed group in healthy conditions can be obtained

177 by using (8) [23]. If the wind turbine is unhealthy, the power output is assumed to be zero.



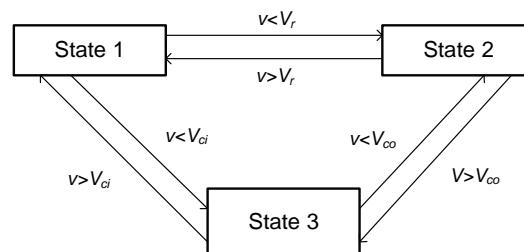
178

179 Fig.2 A typical wind turbine power curve.

180

$$P_t = \begin{cases} 0, & 0 < v < V_{ci} \\ (a + b \cdot v + c \cdot v^2) \cdot P_r, & V_{ci} < v < V_r \\ P_r, & V_r < v < V_{co} \\ 0, & v > V_{co} \end{cases} \quad (8)$$

181 where,  $P_t$  is wind turbine output,  $V_{ci}$  is wind cut-in speed,  $V_{co}$  is cut-out speed,  $V_r$  is rated output speed,  $P_r$  is rated output, and  $v$  is actual wind speed.  $a$ ,  $b$  and  $c$  are coefficients.


183 Because wind turbine output is between zero and its rated capacity, the active power output can be  
 184 split into a finite number of steps to reduce total output states by using Markov Chain based on wind  
 185 speed distributions. The transition rates and durations of all states can be obtained by analysing historic  
 186 wind speed and turbine output data. For simplicity, it is assumed that a wind turbine has three states,  
 187 given in Figure 3 [24]. In state 1, the wind speed is within the cut-in speed and rated output speed and  
 188 thus it can produce electricity (up state); in state 2, the wind speed is within rated output speed and cut  
 189 out speed and it can produce electricity (up state); in state 3, the wind speed is below cut-in speed or  
 190 above cut-out speed, and thus the wind turbine is shut down (down state). The arrows between the states  
 191 represent the transition of state from one to the other as long as the wind speed (indicated by  $v$  in the  
 192 figure) falls into the defined group. For example, assuming the turbine initially resides in State 3 (down  
 193 state), when wind speed  $v$  is bigger than cut-in speed  $V_{ci}$  but lower than rated speed  $V_r$ , it will transit to  
 194 state 1. If  $v$  is smaller than cut-out speed  $V_{co}$  but higher than rated speed  $V_r$ , it will transit to State 2.

195 The classification is given in equation (9)

196

$$\begin{cases} \text{State 1 (up state):} & V_{ci} \leq v < V_r \\ \text{State 2 (up state):} & V_r \leq v < V_{co} \\ \text{State 3 (down state):} & 0 \leq V_{ci} \text{ or } v \geq V_{co} \end{cases} \quad (9)$$

197



198

199 Fig.3. State transition for a three-stage wind turbine.

200 The probability for a wind turbine to reside in each state in Figure 3 is decided by the probability of  
 201 wind turbine in health status multiplied by the probability of wind speed in corresponding ranges. The

202 probability of each state thus is

$$203 \quad \begin{cases} S1: & p = (1 - FOR) \cdot p(V_{ci} \leq v < V_r) \\ S2: & p = (1 - FOR) \cdot p(V_r \leq v < V_{co}) \\ S3: & p = (1 - FOR) \cdot \{p(0 \leq v < V_{ct}) + p(v \geq V_{co})\} \end{cases} \quad (10)$$

204 where,  $FOR$  is the forced outage rate of a wind turbine and  $p(\cdot)$  represents the probability of the  
205 corresponding wind speed.

206 The number of wind turbine states is normally arbitrary, decided by anticipated accuracy. More  
207 accurate results will need more turbine states in order to model its performance under various wind speed  
208 steps. Because wind turbine and wind farm capacity is normally smaller compared to other conventional  
209 generation units, thus only a few states are desirable for reducing computational burden. Once the  
210 reliability modelling for a wind turbine is obtained by (10), the reliability of wind farms with multiple  
211 turbines can be derived based on the single-turbine model via using Markov model. It is not covered here  
212 due to space limitation and more details can be found in [25].

### 213 3.2 Reliability Quantification of Electricity Supply

214 Once wind farm reliability is obtained, a complete capacity outage probability table for a generation  
215 system with wind power can be easily derived by a recursive algorithm through the following steps [10]:

- 216 ▪ To develop capacity model, i.e. capacity outage probability table, for individual generation unit;
- 217 ▪ To develop load model from given historic load profiles;
- 218 ▪ To combine generation capacity outage probability table with the load model to obtain the  
219 probabilistic model of system capacity adequacy.

220 The final reliability indexes are the summation of those calculated in each wind speed step multiplied  
221 by the occurrence probability. Mathematically, a given reliability index  $W$  can be obtained by

$$222 \quad W = \sum_{i=1}^m w_i \cdot Prob_i \quad (11)$$

223 where,  $w_i$  is the reliability index in a wind speed step  $i$ ,  $Prob_i$  is its probability, and  $m$  is the total number  
224 of wind speed steps.

### 225 4. Inoperability dependency Indexes

226 Apart from inoperability, some dependency indexes are also defined in this paper to examine the  
227 dependency degree of one sector on electricity supply under inoperable cases. Here, the diagonal and  
228 off-diagonal elements of matrix  $(I - A^*)^{-1}$  are represented by  $\{a_{ii}^*\}$  and  $\{a_{ij}^*\}$ . Correspondingly, the  
229 following three indexes are designed:

- 230 i) The diagonal entity is defined as the self-dependency inoperability index to illustrate the  
231 inoperability degree of sector  $i$  due to its own output shortage

$$232 \quad \gamma_{i,i} = a_{ii}^* \quad (12)$$

- 233 ii) The off-diagonal entity is defined as the cross-dependency inoperability index to measure the  
234 inoperability of sector  $i$  due to the output shortage of sector  $j$

$$235 \quad \gamma_{i,j} = a_{ij}^*, \quad \text{where } j > i \quad (13)$$

236     iii) Index of Power Dispersion (IPD) is used to measure the impact of one sector on all other sectors,  
 237        which is derived from Leontief inverse, defined as

$$238 \quad IPD_i = \frac{\sum_{j=1}^n B_{ij}}{n(\sum_{i=1}^n \sum_{j=1}^n B_{ij})} \quad (i, j = 1, 2, \dots, n) \quad (14)$$

239        where,  $B_{ij}$  is the element in Leontief inverse matrix given in equation (2).

240        The three indexes will be used in this paper to measure the importance of electricity supply to other  
 241        economic sectors.

## 242        5. Inoperability of Electricity Supply System and Its Impact on Other Sectors

243        In this section, electricity supply reliability is integrated into the economic IIM to examine the  
 244        dependency of different economic sectors on electricity supply and quantify the potential economic  
 245        losses during electricity supply outage.

### 246        5.1 Integrating Reliability to Generation System

247        Suppose that an electricity supply system has  $N$  scenarios of generation loss and  $M$  wind speed steps,  
 248        and thus in total there are  $M \times N$  scenarios to be considered. In one scenario, there might be load  
 249        curtailment, i.e. demand perturbation. The inoperability of electricity supply in the  $i^{th}$  wind speed state  
 250        under the  $j^{th}$  generation loss case is defined as

$$251 \quad \tilde{q}_{i,j} = \begin{cases} 0 & OP_{i,j} \geq Pd_{i,j} \\ \frac{OP_{i,j} - Pd_{i,j}}{Pd_{i,j}} & OP_{i,j} < Pd_{i,j} \end{cases} \quad (15)$$

252        where,  $\tilde{q}_{i,j}$  is electricity supply inoperability,  $Pd_{i,j}$  is electricity system demand, and  $OP_{i,j}$  is available  
 253        electricity supply in the period.

254        Thus, the total electricity system inoperability is

$$255 \quad \tilde{q} = \sum_{i=1}^M \left\{ \left( \sum_{j=1}^N \tilde{q}_{i,j} \cdot Pro_j \right) \cdot Pw_i \right\} \quad (16)$$

256        where,  $Pro_j$  is generation loss probability,  $Pw_i$  is the probability of the  $i^{th}$  wind speed step,  $M$  is the total  
 257        number of wind speed steps, and  $N$  is the total number of generation loss scenarios.

258        The impact of electricity supply inoperability will propagate to other sectors because of their  
 259        interdependency, thus causing more perturbations in other sectors where consequence could affect in  
 260        turn affect electricity production. This impact will be studied by integrating electricity system  
 261        inoperability with the IIM.

### 262        5.2 Integration of Supply Reliability to IIM

263        Suppose that electricity supply is inoperable/unreliable and its inoperability level is specified as  $\tilde{q}$ .  
 264        The final external demand perturbation is to be determined, defined as  $\mathbf{c}^*$ . For other economic sectors,  
 265        their final external demand perturbations are specified beforehand and their inoperability indexes are to  
 266        be determined, defined as  $\mathbf{q}$ . In a matrix format, the IIM matrix  $(\mathbf{I} - \mathbf{A}^*)$  can be broken down into the  
 267        following submatrices

$$268 \quad (\mathbf{I} - \mathbf{A}^*) = \begin{pmatrix} \mathbf{A}_{11}^* & \mathbf{A}_{12}^* \\ \mathbf{A}_{21}^* & \mathbf{A}_{22}^* \end{pmatrix} \quad (17)$$

269 Reorganizing (4) and submitting (17) into it produces

270 
$$\begin{pmatrix} \mathbf{A}_{11}^* & \mathbf{A}_{12}^* \\ \mathbf{A}_{21}^* & \mathbf{A}_{22}^* \end{pmatrix} \cdot \begin{pmatrix} \mathbf{q} \\ \tilde{\mathbf{q}} \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{c}}^* \\ \mathbf{c}^* \end{pmatrix} \quad (18)$$

271 By resolving (18), the following solutions are obtained

272 
$$\begin{cases} \mathbf{q} = \mathbf{A}_{11}^{*-1} \cdot (\tilde{\mathbf{c}}^* - \mathbf{A}_{12}^* \cdot \tilde{\mathbf{q}}) \\ \mathbf{c}^* = \mathbf{A}_{21} \cdot (\mathbf{A}_{11}^{*-1} \cdot (\tilde{\mathbf{c}}^* - \mathbf{A}_{12}^* \cdot \tilde{\mathbf{q}})) + \mathbf{A}_{22}^* \cdot \tilde{\mathbf{q}} \end{cases} \quad (19)$$

273 To summarise, the known variables are: i) inoperability level of electricity supply, i.e. unreliability, which is obtained by implementing electricity supply reliability in Section III; and ii) the final demand perturbation of other economic sectors, which are assumed to be zero if not specified. The variables to be quantified are: i) the final demand perturbation of electricity supply; and ii) the inoperability indexes of other economic sectors.

278 **5.3 Economic Loss due to Inoperability**

279 The inoperability indexes provide the impact of electricity supply interruptions to other dependent sectors. Here, an economic loss index is defined as well to capture the economic losses of other sectors 280 due to electricity supply shortage. For a specific sector, the index under each inoperable case of electricity 281 supply is quantified by multiplying the inoperability with as-planned output

283 
$$Loss_k = \tilde{q}_k \cdot x_k \quad (20)$$

284 where,  $x_k$  is the planned production of sector  $k$  and  $\tilde{q}_k$  is its inoperability.

285 The total expected economic loss for sector  $k$  due to electricity supply shortage is

286 
$$Loss_k = \sum_{i=1}^M \left\{ \left( \sum_{j=1}^N \tilde{q}_{i,j} \cdot Proj_j \right) \cdot Pw_i \cdot x_i \right\} \quad (21)$$

287 **6. Minimising economic loss**

288 This section proposes an optimization model to minimize the total economic loss of all other sectors 289 due to electricity supply interruptions by optimally allocating the available electricity after interruptions. 290 The control variables are allocated available electricity supply to various sectors,  $q_k$ . The objective is to 291 reduce the total economic loss for other sectors, defined in (22). At the same time, the optimisation should 292 meet three constraints: equality constraints derived from (18), upper and lower boundaries of demand 293 perturbations and sector inoperability indexes given in (23).

294 
$$obj. \min cost = \sum_{i=k}^n q_k \cdot x_k \quad (22)$$

295 
$$s.t. \begin{cases} \mathbf{A}_{11}^* \mathbf{q} = \tilde{\mathbf{c}}^* - \mathbf{A}_{12}^* \cdot \tilde{\mathbf{q}} \\ 0 \leq \mathbf{c}^* \leq 1 \\ 0 \leq q_k \leq 1 \end{cases} \quad (23)$$

296 where, the external demand perturbation is

297 
$$\mathbf{c}^* = \mathbf{A}_{21}^* \cdot \mathbf{q} + \mathbf{A}_{22}^* \cdot \tilde{\mathbf{q}} \quad (24)$$

298 By rearranging (24) and submitting it to the first inequity in (23), the following two equations can be

299 obtained

$$\begin{cases} \mathbf{0} \leq \mathbf{A}_{21}^* \cdot \mathbf{q} + \mathbf{A}_{22}^* \cdot \tilde{\mathbf{q}} \\ \mathbf{A}_{21}^* \cdot \mathbf{q} + \mathbf{A}_{22}^* \cdot \tilde{\mathbf{q}} \leq \mathbf{1} \end{cases} \quad (25)$$

301 By reorganising (25), it produces

$$\begin{cases} -\mathbf{A}_{21}^* \cdot \mathbf{q} \leq \mathbf{A}_{22}^* \cdot \tilde{\mathbf{q}} \\ \mathbf{A}_{21}^* \cdot \mathbf{q} \leq \mathbf{1} - \mathbf{A}_{22}^* \cdot \tilde{\mathbf{q}} \end{cases} \quad (26)$$

303 The two inequality constraints in equation (26) can be integrated as one in (27), where the new  
304 coefficient matrixes are formed by the coefficient matrixes of the original two inequality constraints.

$$[-\mathbf{A}_{21}^*, \mathbf{A}_{21}^*] \cdot \mathbf{q} \leq [\mathbf{A}_{22}^*, (\mathbf{1} - \mathbf{A}_{22}^*)] \cdot \tilde{\mathbf{q}} \quad (27)$$

306 This linear optimisation is resolved by many mathematical solvers, such as GAMS and CPLEX.

## 307 7. Case Study

308 This section uses UK electricity generation to demonstrate the proposed framework and quantify the  
309 impact of electricity interruptions on other economic sectors. It also examines the optimal allocation of  
310 electricity to other sectors to minimise economic loss when electricity supply shortage appears.

### 311 7.1 Input Data

312 Two electricity development scenarios by UK's National Grid for 2018/19, Slow Progression (SP)  
313 and Low Carbon Life (LCL) under various wind penetrations are used for demonstration [26]. The LCL  
314 scenario is a world of high affordability and low sustainability. High penetration of low carbon generation  
315 and demand is desirable in this scenario. Government policies are mainly focused on the long-term with  
316 consensus around decarbonisation, which is delivered through purchasing power and macro policy. The  
317 SP scenario is a world of high affordability and low sustainability. By contrast, the penetration rate of  
318 low carbon generation and demand is relatively slow compared to low carbon life scenario. Although  
319 there are political wills and market interventions, slower economic recovery in this scenario delays  
320 delivery against environmental targets. The UK planned electricity generation capacity in 2018-2019  
321 under the two scenarios is provided in Table II. The installed capacity is 75.3GW and 79.6GW  
322 respectively, and the LCL scenario has more renewable energy particularly wind power. The peak  
323 demands in SP and LCL are fairly close, 54.1GW and 54.2GW respectively. The typical data from UK's  
324 National Grid is used to represent electricity demand profiles [27] and the peaks are enlarged to match  
325 the peaks in the two SP and LCL scenarios. The economic data from UK Office for National Statistics  
326 is utilized for deriving the Input-Output model [28].

327 The availability levels of all generation technologies in the first column of Table II are from UK's  
328 electricity regulator the Office of Gas and Electricity Markets (Ofgem) [29]. As seen, traditional  
329 generation with relatively simple engineering complexity has much higher availability, such as pump  
330 storage of 0.97, but complex generation such as nuclear has a low reliability of 0.81. Wind power plant  
331 has a high reliability of 0.95.

332

333

334

335

Table II Installed Generation Capacity in the UK (MW)

| Generation          | Availability | SL     | LCL    |
|---------------------|--------------|--------|--------|
| <b>Biomass</b>      | 0.88         | 2,353  | 2,353  |
| <b>Coal</b>         | 0.88         | 12,342 | 13,316 |
| <b>Gas-CCGT</b>     | 0.94         | 31,408 | 30,346 |
| <b>Gas-CHP</b>      | 0.94         | 1,699  | 1,544  |
| <b>Hydro</b>        | 0.84         | 1,122  | 1,122  |
| <b>Nuclear</b>      | 0.81         | 8,981  | 8,981  |
| <b>OCGT</b>         | 0.94         | 735    | 735    |
| <b>Oil</b>          | 0.82         | 0      | 0      |
| <b>Pump storage</b> | 0.97         | 2,744  | 2,744  |
| <b>Tidal</b>        | 0.84         | 0      | 20     |
| <b>Wind</b>         | 0.95         | 15,566 | 18,486 |
| <b>Total</b>        | N/A          | 75276  | 79647  |

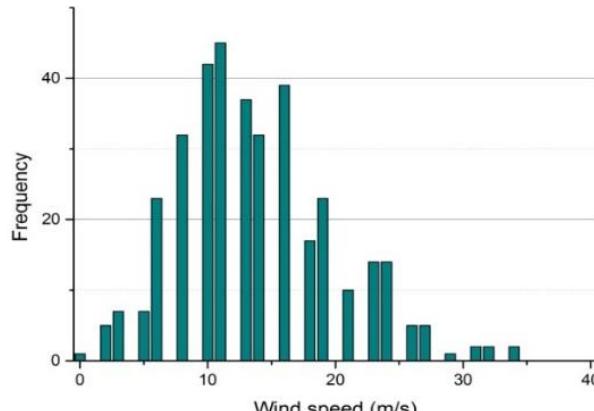



Fig. 4. Distribution of typical UK wind speed.

Table III Wind Power Output and the Probabilities

|                                   | W1   | W2   | W3   | W4   | W5   | W6   |
|-----------------------------------|------|------|------|------|------|------|
| <b>Output level of wind power</b> | 100% | 80%  | 60%  | 40%  | 20%  | 0%   |
| <b>Probability</b>                | 0.32 | 0.19 | 0.24 | 0.09 | 0.08 | 0.08 |

The distribution of wind speed from a typical UK wind farm in Figure 4 is used to quantify wind power output. For simplicity, the wind power output is modelled as a generator with six output states and the following parameters are assumed: cut-in speed of 3 m/s, rated output speed of 14m/s, and cut-out speed of 25m/s. Table III gives the probability of the wind power output in relation to the total installed capacity and wind speed in Figure 4. The percentage means the output level of wind power corresponding to different wind speed. For example, the 100% output means that the wind power can produce its rated capacity output as the wind speed is above rated speed but below cut-out speed. When wind speed drops below rated speed, the output will decline as well. As seen, the wind power can provide rated power with a probability of 0.32, followed by 60% output with a probability of 0.24. For output lower than 40% of rated capacity, the probability is relatively small with a sum of 0.25.

## 7.2 Interdependency Analysis

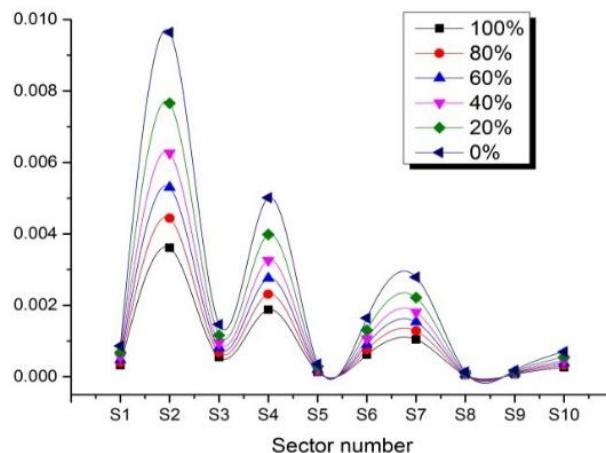
By utilising the proposed method on the UK generation case, all obtained indexes are given in Table IV, including the self-interdependency and cross-dependency inoperability indexes of other sectors on electricity, and the power dispersion degree of electricity supply on other sectors.

355 As seen, electricity sector has the largest self-interdependency index of 2.21, indicating that it is the  
 356 most highly dependent on its own output to produce electricity. By contrast, S7-public administration  
 357 sector has the least index of 1.01, which means it is less dependent on its own output. In terms of  
 358 dependency on electricity, S2-mining has the highest ratio of 0.23 followed by S4-construction sector of  
 359 0.12, indicating that their production can be seriously interrupted by electricity supply shortage. The IPD  
 360 reflects the dispersion level of one sector to others. When bigger than 1, it indicates the sector has a  
 361 higher impact on other sectors: the higher the value is, the bigger the impact. As seen, electricity supply's  
 362 IPD is 1.28, ranking the fourth after sectors S2-S4. It means that electricity supply is fairly important to  
 363 other sectors. By contrast, S3-manufacturing sector has the largest IPD index of 1.68.

364

365

Table IV Indexes for all sectors


| Sector                                | Self-dependency | On electricity | IPD  |
|---------------------------------------|-----------------|----------------|------|
| <b>S1:Agriculture</b>                 | 1.39            | 0.02           | 0.92 |
| <b>S2:Mining</b>                      | 1.10            | 0.23           | 1.31 |
| <b>S3:Manufacturing</b>               | 1.61            | 0.04           | 1.68 |
| <b>S4:Construction</b>                | 1.97            | 0.12           | 1.61 |
| <b>S5:Distribution and catering</b>   | 1.04            | 0.01           | 0.65 |
| <b>S6:Transport and communication</b> | 1.38            | 0.04           | 0.80 |
| <b>S7:Finance and business</b>        | 1.51            | 0.07           | 0.87 |
| <b>S8:Public administration</b>       | 1.01            | 0.00           | 0.69 |
| <b>S9:Education health</b>            | 1.08            | 0.00           | 0.57 |
| <b>S10:Other</b>                      | 1.14            | 0.02           | 0.61 |
| <b>S11:Electricity</b>                | 2.21            | -----          | 1.28 |

366

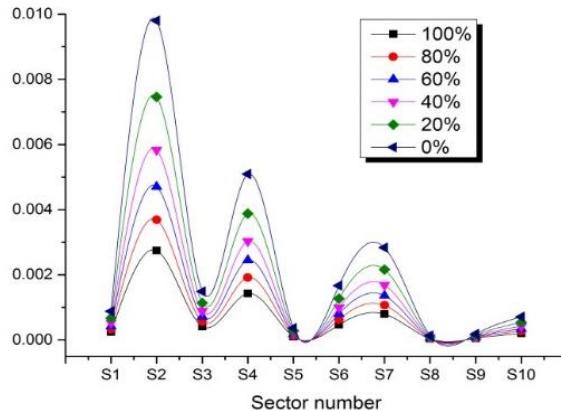
### 7.3 Inoperability of Different Economic Sectors under Electricity Interruptions

367 This subsection provides the inoperability indexes of all sectors in response to electricity supply  
 368 interruptions under both SP and LCL scenarios.

370



371


Fig.5. Inoperability under various wind speed (SP scenario).

372

373 Figures 5 and 6 are results of inoperability of all sectors under various wind speed levels from 0% to  
 374 100% in Table IV. Apparently, in both scenarios, S2-mining has the highest inoperability level around  
 375 0.01 with zero wind output, followed by S4-construction around 0.005. With increasing wind output,

376 inoperability indexes drop gradually. At all wind output levels, the inoperability indexes in LCL scenario  
 377 are lower than those in SP scenario. It is because that although LCL scenario has slight more demand,  
 378 the wind installed capacity is much higher by around 4.5GW compared to SP scenario. Thus, the shortage  
 379 of electricity supply can be partially picked up by the increasing generation capacity.

380



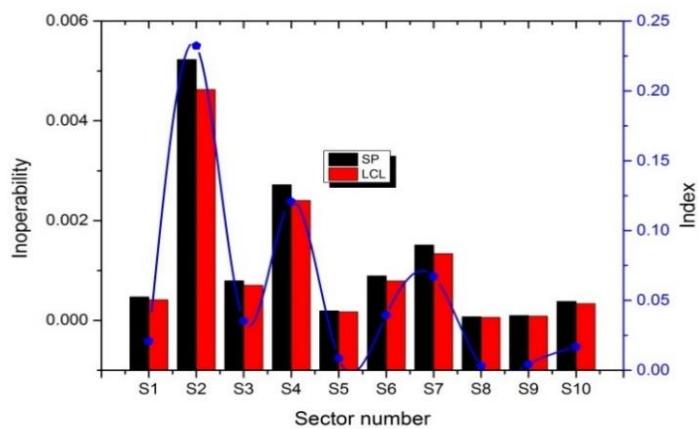

381

Fig.6. Inoperability under various wind speed (LCL scenario).

383

384 The expectations of inoperability indexes of all sectors are given in Figure 7, calculated by using the  
 385 results in Figures 5 and 6. Generally, they are all lower in LCL scenario than those in SP scenario. For  
 386 example, S2 has the highest inoperability indexes of 0.0052 in SP scenario and 0.0046 in LCL scenario,  
 387 and S8 has the least of 0.003 and 0.001 respectively. It is mainly due to that although peak demand in  
 388 LCL scenario is approximately 0.1GW higher than that in SP scenario, the installed generation capacity  
 389 is also higher by 4.6GW. From another aspect, it can be seen that the inoperability indexes in the two  
 390 scenarios match well with the proposed interdependency indexes on electricity supply in Table IV (the  
 391 third column). For example, S2 has the biggest inoperability and its interdependency inoperability index  
 392 on electricity supply is also the biggest of 0.232. By contrast, sectors S4, S7, and S6 have relatively high  
 393 inoperability indexes in a descending order, which match the interdependency inoperability indexes on  
 394 electricity supply as well.

395



396

Fig.7. Comparison of inoperability and interdependency indexes.

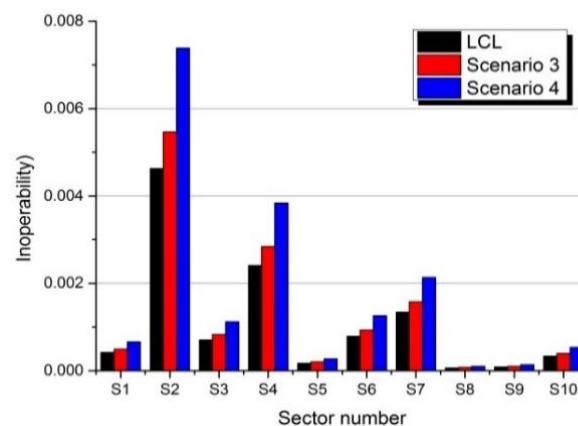
398           **7.4 Economic Loss**

399       The expected economic losses of other sectors due to electricity supply interruptions are quantified in  
 400       Table V. Clearly, all sectors have higher losses in the SP scenario than in the LCL scenario. Particularly,  
 401       Sector S7-finance and business suffers the largest loss of £38.77 million in SP and £34.31 million in  
 402       LCL. It is because that although S7 has small inoperability indexes of 0.0015 and 0.0013 in both cases,  
 403       it has the largest output of £25,642 million. Thus, small perturbations of electricity supply could cause  
 404       severe disruptions to its production. It is followed by sector S4- construction with a loss of £12.16 million  
 405       and £10.76 million respectively in both scenarios. Sector S8-public administration has the least economic  
 406       loss across all sectors.

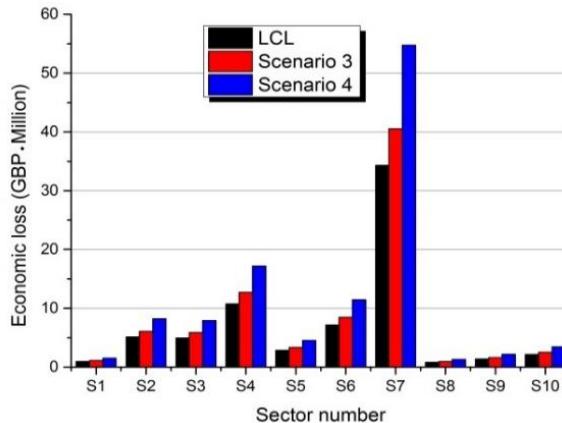
407

408           Table V Expected Economic Loss of Sectors (£million)

| <b>Sector</b> | <b>SP</b> | <b>LCL</b> | <b>Sector</b> | <b>SP</b> | <b>LCL</b> |
|---------------|-----------|------------|---------------|-----------|------------|
| <b>S1</b>     | 1.08      | 0.96       | S6            | 8.12      | 7.18       |
| <b>S2</b>     | 5.81      | 5.15       | S7            | 38.77     | 34.31      |
| <b>S3</b>     | 5.60      | 4.96       | S8            | 0.91      | 0.81       |
| <b>S4</b>     | 12.16     | 10.76      | S9            | 1.55      | 1.37       |
| <b>S5</b>     | 3.21      | 2.84       | S10           | 2.44      | 2.16       |


409

410           **7.5 Sensitivity Analysis of Wind Power Penetration**


411       The impact of increasing wind power on other economic sectors is investigated by studying two extra  
 412       scenarios in this subsection, scenario 3 and scenario 4. In both two new scenarios, system peak demands  
 413       are assumed to be equal to that in the LCL scenario, i.e. 54.234GW. However, in scenario 3, it is assumed  
 414       that 50% of coal generation is replaced with wind power, and in scenario 4 all coal generation (100%) is  
 415       replaced with wind power.

416

417



418           Fig.8. Comparison of inoperability across scenarios.



419

420

421

Fig.9. Comparison of economic loss across scenarios.

422

Figure 8 compares the inoperability indexes of all 10 sectors in LCL, 3 and 4 scenarios. Apparently, the indexes dramatically increase with more wind power penetration, particularly for those sectors severely dependent on electricity supply. For example, the inoperability of S2-mining increases from 0.0007 in LCL scenario to 0.0008 in scenario 3, and to 0.0011 in scenario 4. The values for S4-construciton and S7-finance also increase by 0.0004 from LCL scenario to scenario 3. The inoperability indexes for other sectors follow the same growing patterns.

423

The economic losses of all 10 sectors under the three scenarios are depicted in Figure 9, which also climb dramatically with increasing wind power generation. Complying with the results in Table V, sector S7 has the highest economic losses in all three scenarios, where the value is as high as £54.76 million in scenario 4. S4-construction also suffers high losses, £10.76 million, £12.71 million and £17.18 million in LCL, scenarios 3 and 4 respectively. For all sectors, S8 and S1 have the least economic losses because of their lower dependency levels on electricity supply, which are £1.29 million and £1.53 million in scenario 4.

424

The results in the two figures illustrate that the inoperability and economic losses of all economic sectors increase exponentially with growing wind power penetration. It is mainly because that wind power is relatively intermittent compared to traditional generation, and thus reliability is low. The sectors with higher dependency indexes on electricity supply have bigger inoperability indexes if electricity supply is interrupted. By contrast, economic losses are decided by both inoperability indexes and their total production, which vary over sectors.

425

## 7.6 Optimal Available Electricity Allocation

426

This section provides the results of optimal allocation of electricity supply to its own external demand and other sectors when the supply is interrupted. Both electricity supply inoperability and the perturbations of external demand of other sectors are assumed to be 0.1. The objective is to minimise the total economic loss of other sectors. The obtained economic losses are presented in Table VI, which are also compared with the case without optimal allocation. As seen, the total reduced cost for all sectors is £114.5 million, with sector 2 enjoying the maximum reduction of £48.2 million.

427

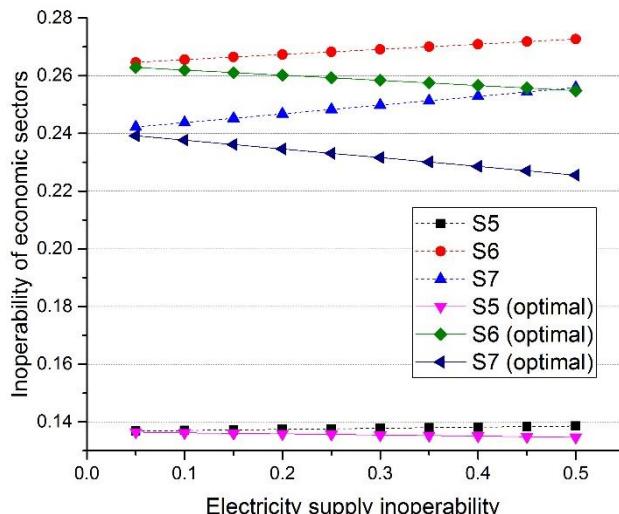
428

429

450

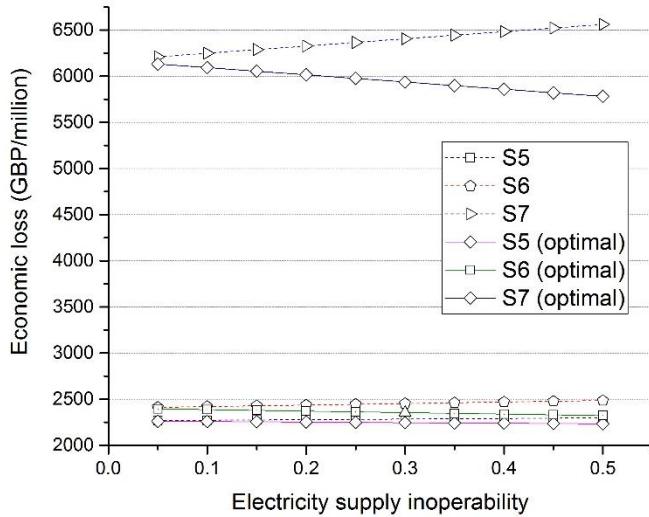
Table VI Optimal Economic Loss of Sectors (£million)

| Sector    | Without optimisation | With optimisation | Sector     | Without optimisation | With optimisation |
|-----------|----------------------|-------------------|------------|----------------------|-------------------|
| <b>S1</b> | 640.3                | 635.9             | <b>S6</b>  | 612.9                | 604.6             |
| <b>S2</b> | 833.3                | 784.9             | <b>S7</b>  | 562.5                | 548.5             |
| <b>S3</b> | 609.6                | 602.2             | <b>S8</b>  | 252.3                | 251.6             |
| <b>S4</b> | 855.4                | 830.2             | <b>S9</b>  | 272.5                | 271.6             |
| <b>S5</b> | 316.3                | 314.5             | <b>S10</b> | 362.2                | 358.7             |
|           |                      |                   | <b>Sum</b> | 5317.3               | 5202.8            |


451

452 In order to obtain more insights, a sensitivity analysis of other sector's inoperability and economic  
 453 losses with respect to electricity supply inoperability is conducted here in two scenarios: the old case  
 454 without optimal management and with the optimal management.

455 Figure 10 provides the inoperability of three selected sectors, S5, S6, and S7. As seen, with increasing  
 456 electricity supply inoperability from 0.05 to 0.5, the operability indexes of all three sectors increase,  
 457 represented by the dashed lines, particularly for S6 and S7, clime very quickly. The inoperability of S5  
 458 increases slightly always around 0.14 as it is less dependent on electricity supply. For the inoperability  
 459 indexes in the optimal management case represented by the solid lines, they are always below those in  
 460 the old case, particularly for S6 and S7 whose indexes drop with increasing electricity supply shortage.


461 The economic losses of the three sectors are depicted in figure 11. Apparently, S7 has the largest  
 462 economic loss in all electricity supply shortage cases with the largest, which reaches £6500 million with  
 463 electricity inoperability of 0.5. This value drops to around £5700 million with the optimal management.  
 464 For both S5 and S6, their economic losses are always below £2500 million in all electricity shortage case.  
 465 Apparently, their losses are much lower with the optimal management compared to the case without any  
 466 optimal management.

467 The results here justify that without more unreliable electricity supply, different economic sectors will  
 468 suffer losses that are decided by their dependency degree on electricity and their planned output. The  
 469 new optimal management can effectively reduce the losses by allocating avoidable electricity to various  
 470 sectors during electricity shortage.



471

472 Fig.10. Comparison of inoperability under various electricity supply inoperability



473

474

Fig.11. Comparison of economic losses under various electricity supply inoperability

475 **8. Conclusions**

476 This paper proposes a new framework to quantify the impact of electricity supply interruptions on  
 477 other sectors by introducing a novel technical-economic model. It is the first effort to integrate economic  
 478 interdependency with technical electricity supply reliability for interdependency analysis. The designed  
 479 indexes can effectively capture the dependency degree of economic sectors on electricity supply and  
 480 their economic losses in electricity shortage. By extensive demonstration, the following key findings are  
 481 observed:

482 

- 483 ▪ The value of economic losses of different sectors due to electricity supply interruptions is decided  
 by the scales of both inoperability indexes and their total normal production.
- 484 ▪ The growing penetration of wind power jeopardizes electricity system reliability and consequently  
 affects other sectors in electricity shortage. The inoperability indexes and economic losses increase  
 exponentially with increasing wind power penetration.
- 485 ▪ The proposed optimal management model can effectively reduce economic loss for other sectors  
 by efficient allocating available electricity during interruptions.

486 The research can enable policymakers to understand the impact of electricity interruptions on different  
 487 economic sectors and quantify their losses so that more informative policies can be designed to ensure  
 488 secure electricity supply, such as the capacity market. In the future, more accurate demand profiles and  
 489 detailed network models of each typical sector will be included to conduct more accurate modelling and  
 490 analysis.

494 **Acknowledgement**

495 This work is in part supported by EPSRC project (EP/M000141/1).

496 **Reference**

497 [1] K. Xie and R. Billinton, "Energy and reliability benefits of wind energy conversion systems,"  
 498 *Renewable Energy*, vol. 36, pp. 1983-1988, 7 2011.

499 [2] S. M. Rinaldi, J. P. Peerenboom, and T. K. Kelly, "Identifying, understanding, and analyzing  
 500 critical infrastructure interdependencies," *Control Systems, IEEE*, vol. 21, pp. 11-25, 2001.

501 [3] B. Parks, "Transforming the Grid to Revolutionize Electric Power in North America," presented  
 502 at the Edison Electric Institute's Fall 2003 Transmission, Distribution and Metering Conference,  
 503 2003.

504 [4] J. Yan, Y. Liu, F. Li, and C. Gu, "Novel Cost Model for Balancing Wind Power Forecasting  
 505 Uncertainty," *IEEE Transactions on Energy Conversion*, vol. PP, pp. 1-1, 2016.

506 [5] M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, *et al.*, "Renewable Power-  
 507 to-Gas: A technological and economic review," *Renewable Energy*, vol. 85, pp. 1371-1390, 1  
 508 2016.

509 [6] S. Sarker, "Feasibility analysis of a renewable hybrid energy system with producer gas generator  
 510 fulfilling remote household electricity demand in Southern Norway," *Renewable Energy*, vol.  
 511 87, Part 1, pp. 772-781, 3 2016.

512 [7] M. Geidl, G. Koeppel, P. Favre-Perrod, B. Klockl, G. Andersson, and K. Frohlich, "Energy  
 513 hubs for the future," *Power and Energy Magazine, IEEE*, vol. 5, pp. 24-30, 2007.

514 [8] M. Farzaneh-Gord, A. Arabkoohsar, M. Deymi Dasht-bayaz, L. Machado, and R. N. N. Koury,  
 515 "Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat  
 516 and controllable heaters," *Renewable Energy*, vol. 72, pp. 258-270, 12 2014.

517 [9] M. Geidl and G. Andersson, "Optimal Power Flow of Multiple Energy Carriers," *Power  
 518 Systems, IEEE Transactions on*, vol. 22, pp. 145-155, 2007.

519 [10] R. N. Allan and R. Billinton, *Reliability Evaluation of Power Systems*, 2nd ed.: Springer, 1996.

520 [11] J. C. Ketterer, "The impact of wind power generation on the electricity price in Germany,"  
 521 *Energy Economics*, vol. 44, pp. 270-280, 7 2014.

522 [12] LondonEconomics. (2013). *The Value of Lost Load (VoLL) for Electricity in Great Britain*.  
 523 Available:  
 524 [https://www.gov.uk/government/uploads/system/uploads/attachment\\_data/file/224028/value\\_1\\_ost\\_load\\_electricity\\_gb.pdf](https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/224028/value_1_ost_load_electricity_gb.pdf)

526 [13] P. Henneaux and D. S. Kirschen, "Probabilistic Security Analysis of Optimal Transmission  
 527 Switching," *Power Systems, IEEE Transactions on*, vol. PP, pp. 1-10, 2015.

528 [14] P. Jiang and Y. Haimes, "Risk management for Leontief-based interdependent systems," *Risk  
 529 Analysis*, vol. 24, pp. 1215-29., 2004.

530 [15] C. W. Anderson, J. R. Santos, and Y. Y. Haimes, "A Risk-based Input–Output Methodology  
 531 for Measuring the Effects of the August 2003 Northeast Blackout," *Economic Systems  
 532 Research*, vol. 19, pp. 183-204, 2007/06/01 2007.

533 [16] R.-H. Wu and C.-Y. Chen, "On the application of input-output analysis to energy issues,"  
 534 *Energy Economics*, vol. 12, pp. 71-76, 01/01 1990.

535 [17] J. R. Santos and Y. Y. Haimes, "Modeling the Demand Reduction Input-Output (I-O)  
 536 Inoperability Due to Terrorism of Interconnected Infrastructures," *Risk Analysis: An  
 537 International Journal*, vol. 24, pp. 1437-1451, 2004.

538 [18] K. G. Crowther and Y. Y. Haimes, "Application of the inoperability input—output model (IIM)  
 539 for systemic risk assessment and management of interdependent infrastructures," *Systems  
 540 Engineering*, vol. 8, pp. 323-341, 2005.

541 [19] P. S. Vasconcelosa and L. G. T. Carpioa, "Estimating the economic costs of electricity deficit  
 542 using input–output analysis: the case of Brazil," *Applied Economics*, vol. 47, pp. 916-927, 2015.

543 [20] R. E. Miller and P. D. Blair, *Input-Output Analysis: Foundations and Extension*, 2nd ed.:  
 544 Cambridge University Press, 2009.

545 [21] M. Arbex and F. S. Perobelli, "Solow meets Leontief: Economic growth and energy  
 546 consumption," *Energy Economics*, vol. 32, pp. 43-53, 1 2010.

547 [22] G. Li, Z. Bie, Y. Kou, J. Jiang, and M. Bettinelli, "Reliability evaluation of integrated energy  
 548 systems based on smart agent communication," *Applied Energy*, vol. 167, pp. 397-406, 4/1/  
 549 2016.

550 [23] R. Billinton and W. Wangdee, "Reliability-Based Transmission Reinforcement Planning  
 551 Associated With Large-Scale Wind Farms," *Power Systems, IEEE Transactions on*, vol. 22, pp.  
 552 34-41, 2007.

553 [24] F. A. Bhuiyan and A. Yazdani. 2010, Reliability assessment of a wind-power system with  
 554 integrated energy storage. *IET Renewable Power Generation* 4(3), 211-220. Available:  
 555 <http://digital-library.theiet.org/content/journals/10.1049/iet-rpg.2009.0070>

556 [25] A. S. Dobakhshari and M. Fotuhi-Firuzabad, "A Reliability Model of Large Wind Farms for  
 557 Power System Adequacy Studies," *Energy Conversion, IEEE Transactions on*, vol. 24, pp. 792-  
 558 801, 2009.

559 [26] NationalGrid. (2014). *Electricity Ten Year Statement 2014*. Available:  
 560 <https://www.nationalgrid.com/sites/default/files/documents/37790-ETYs%202014.pdf>

561 [27] NationalGrid. (2016). *Historical Demand Data*. Available:  
562 <http://www2.nationalgrid.com/uk/Industry-information/Electricity-transmission-operational->  
563 [data/Data-Explorer/](http://data/Data-Explorer/)

564 [28] ONS. (2015). *Input-Output Supply and Use Tables*. Available:  
565 <http://www.ons.gov.uk/ons/rel/input-output/input-output-supply-and-use-tables/index.html>

566 [29] Ofgem. (2014). *Electricity Capacity Assessment Report 2014*. Available:  
567 [https://www.ofgem.gov.uk/ofgem-publications/88523/electricitycapacityassessment2014-](https://www.ofgem.gov.uk/ofgem-publications/88523/electricitycapacityassessment2014-fullreportfinalforpublication.pdf)  
568 <fullreportfinalforpublication.pdf>

569