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Abstract Wind power generation rapidly grows worldwide with declining costs and the pursuit of decarbonised
energy systems. However, the utilization of wind energy remains challenging due to its strong stochastic nature.
Accurate wind power forecasting is one of the effective ways to address this problem. Meteorological data are
generally regarded as critical inputs for wind power forecasting. However, the direct use of numerical weather
prediction in forecasting may not provide a high degree of accuracy due to unavoidable uncertainties, particularly for
areas with complex topography. This study proposes a hybrid short-term wind power forecasting method, which
integrates the corrected numerical weather prediction and spatial correlation into a Gaussian process. First, the
Gaussian process model is built using the optimal combination of different kernel functions. Then, a correction
model for the wind speed is designed by using an automatic relevance determination algorithm to correct the errors
in the primary numerical weather prediction. Moreover, the spatial correlation of wind speed series between
neighbouring wind farms is extracted to complement the input data. Finally, the modified numerical weather
prediction and spatial correlation are incorporated into the hybrid model to enable reliable forecasting. The actual
data in East China are used to demonstrate its performance. In comparison with the basic Gaussian process, in
different seasons, the forecasting accuracy is improved by 7.02%-29.7% by using additional corrected numerical
weather prediction, by 0.65-10.23% after integrating with the spatial correlation, and by 10.88-37.49% through

using the proposed hybrid method.
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Nomenclature

Abbreviations

NWP Numerical weather prediction

SC Spatial correlation

GP Gaussian process

AR Autoregressive model

ANN Artificial neural network

SVM Support vector machine

ARD Automatic relevance determination
SE Squared exponential kernel function
RQ Rational quadratic kernel function
Mat Matern kernel function

RMSE Root mean square error

MAPE Mean absolute percentage error
MAE Mean absolute error

Symbols

X Input set

Y Output set

m(x) Mean function

k(x,x) Covariance function

= |

Kernel function

Identity matrix

Signal variance

Length

Forecasting value of the testing sets
Output of the training sets

Mean value of GP based forecasting model
Variance of GP based forecasting model
Dimension of the input vector
Hyperparameter

Length-scale hyperparameters

Wind speed of target wind farm at time t

Wind speed of the neighbouring wind farms at

time t
Time delay between neighbouring wind farms

Distance between wind farm W and m

Kendall’s 7 rank correlation coefficient

Number of wind speed samples
The mean wind speed of the target wind farm

The mean wind speed of the neighbouring wind

farms

Forecasting wind power by method m
Weighted value by method m
Forecasting errors by method m
Forecasting errors by hybrid model

The variance of hybrid model




e(x) Gaussian white noise A Lagrange multiplier

f (@, 1)

2

\ Variance of Gaussian white noise

o Lagrange function

g(x) Sequence-added Gaussian white noise T Number of wind power samples

1 Introduction

Renewable energy has received significant attention due to the exhaustion of fossil energy and the deterioration of
the environment [1]. Many national and international policies mandate the significant increase of renewable shares in
the generation mix to achieve the 1.5 °C global warming target. Wind energy is one of the popular renewable energy
resources that has rapidly developed worldwide and projected to be one of the dominant energy sources in the future
[2]. Reports from the Global Wind Energy Council showed that the installed capacity of wind turbines worldwide
had reached 591 GW by the end of 2018, increasing by 51.3 GW [3]. However, due to its variability and
intermittency nature [4], wind energy can cause severe issues in maintaining a secure and stable electricity supply [5].
One important solution to manage wind variability is to provide accurate wind power forecasting so that dispatchers
can schedule countermeasures and adjust the maintenance plans in time [6].

Wind power forecasting techniques can be broadly categorised into statistical and physical methods. Conventional
statistical methods mainly include time series models, such as the autoregressive integrated moving average model
[7], autoregressive model (AR) [8], and the autoregressive moving average model [9]. These conventional methods
can perform well for systems with linearised simplification. However, they face difficulties in providing sufficient
accurate forecasting for wind energy with strong inherent nonlinearity. In recent years, artificial intelligence methods,
which are theoretically suitable for revealing complex nonlinear relationships in historical data, are extensively
applied to wind power forecasting [10]. Many methods, including artificial neural networks (ANNSs) [11], support
vector machine (SVM) [12], have been successfully adopted for improving wind power forecasting. Catalao et al.
[13] proposed an ANN model for a 3 h ahead wind power forecasting that used wavelet transform to decompose the
original wind power series. Liu et al. [14] developed a novel SVM-based forecasting model, which used the genetic
algorithm to ensure the generalisation of the SVM; the wavelet transform was used to decompose wind speed into

two components. Ren et al. [15] discussed a forecasting method based on support vector regression and ANN with



improved empirical mode decomposition to decompose the original wind series into simple ones. However, the
above statistical models have limitations as large size training sets are needed [16]. For instance, the insufficient
historical data of newly-built wind farms can increase the difficulty of training the wind power forecasting model. In
general, statistical methods are suitable for short-term forecasting.

Another kind of statistical method is Spatial correlation (SC); compared with a conventional statistical method
(e.g., time series models), the SC could consider the interaction between adjacent wind farms based on temporal
correlations [17], which is helpful to improve the forecasting accuracy [18]. SC methods use the data of
neighbouring wind farms to establish the wind resource model in the target wind farm [19]. Recently, the adoption of
the SC method in wind speed and power forecasting has been extensively studied. Li et al. [20] described a dynamic
SC model between geographically distributed wind farms for forecasting short-term wind power with the
backtracking framework built by the Kalman filter. Zhu et al. [21] investigated methods to forecast wind speed in
multiple sites by adding the SC model. The spatial features were extracted by the convolutional neural network and
long short-term memory. In the dynamic SC method, the geographical location and terrain of wind farms were
considered, and the forecast limitations caused by a rapid variation of wind speed could be overcome [22]. Tastu et
al. [23] considered the spatio-temporal dependencies of wind farms and proposed a forecasting model of wind power
errors. Khodayar et al. [24] presented a wind speed forecasting model which used the deep learning method to learn
the spatio-temporal features of neighbouring wind farms and the results show the effectiveness of the proposed
model. Zhao et al. [25] considered the increasing number of wind farms and their interdependencies. A spatio-
temporal wind power forecasting framework is introduced which demonmstartes the accuracy and efficiency of
method than other benchmark methods. Some studies also used the spatial and temporal covariance functions for
modelling the spatio-temporal data by considering its asymmetry [26], and built the corresponding matrix to reflect
the spatial correlation of wind data [27].

Physical methods are mainly based on numerical weather prediction (NWP) and consider the manufacturer’s
power curves [28], which could mitigate the missing historical data. Considering the physical descriptions of surface
roughness and obstacles, fluid dynamics and thermodynamics are used to obtain the key information of physical
models at the hub height of wind turbines by observing initial conditions. Then, the refined wind speed data are fed

into the corresponding manufacturer wind power curve to obtain the forecasted wind power. Nielsen et al. [29] used



meteorological forecasting data from three different global meteorological models to obtain improved performance
of wind power forecasting. Bessac et al. [30] developed a forecasting model that combined multiple sources of
physical model outputs and achieved improved accuracy over several months. In contrast with statistical methods,
physical methods do not rely on historical data to train the forecasting model. Jung et al. [31] pointed out that
physical methods perform far better than statistical methods in long-term wind power forecasting. Nevertheless, the
fluid dynamics have a high correlation with climate phenomena, and the NWP is affected by initial conditions. Wind
power forecasting could have a significant error because the NWP is slowly updated and lags behind actual changes.
Its applicability will be limited for short-term wind power forecasting due to the high computational complexity in
solving NWP models.

Recently, hybrid methods that incorporate the practical aspects of different forecasting methods have stimulated
considerable research interest [32]. The combination of statistical and physical methods has received significant
interest, which can achieve better forecasting performance than independently [33]. Chen et al. [34] presented a
hybrid wind power forecasting model up to 24 h in advance based on the Gaussian process (GP) and NWP model. Li
et al. [35] developed a novel hybrid model integrating support vector machine with an improved dragonfly algorithm,
whose effectiveness was confirmed by actual datasets from a wind farm in France. Zhou et al. [36] used a
combination of extreme-point symmetric mode decomposition, extreme learning machine and particle swarm
optimisation to create a wind forecasting model. Azimi et al. [37] proposed a novel time-based K-means clustering
method that combined discrete wavelet transform and harmonic analytical time series models to accelerate the
forecasting. Dhiman et al. [38] developed a wind speed and power forecasting model based on the different variants
of support vector regression and wavelet transform. These hybrid models generally showed improved performance
compared with the individual conventional models because the shortcomings of each embedded model could be
systematically tackled.

Table 1 summarises some recently developed forecasting methods for wind power.

Table 1. Summary of the recent wind power forecasting methods

Authors | Year | Method Method Type of input data Data Forecasting
type source horizon

Karaku 2017 | Statistical | Polynomial AR Wind speed Cesme and | 24 h

et al. [8] method Bandon

Wan et | 2017 | Statistical | Extreme learning | Wind power Denmark | 3h

al. [39] method machine that trains




single hidden
feed-forward
network

layer
neural

Chang et | 2017 | Statistical | Radial basis function | Wind  speed  and | Taiwan 72h
al. [11] method neural network power
Lu et al. | 2018 | Statistical | Improved radial basis | Temperature and | Taiwan 24 h
[40] method function neural | wind  speed and
network power
Viet et | 2018 | Statistical | Artificial neural | Temperature and | Vietnam 24 h
al. [41] method network wind  speed and
power
Shahid et | 2020 | Statistical | Wavelets that utilise | Wind  speed and | European | 250 h
al. [42] method long short-term | direction and zonal
memory paradigm and meridional
components
Hu et al. | 2019 | Statistical | Convolution-based Wind power Australian | 30 min
[43] method spatial-temporal wind
power forecasting
model
Chen et | 2020 | Statistical | SC method using the | Wind  speed and | South 6h
al. [44] method related three | direction, Africa
neighbouring stations | temperature,
temperature gradient,
pressure and relative
humidity
Jiao et | 2018 | Hybrid Combined Wind power EirGrid 24 h
al. [45] method autoencoders and
backpropagation
algorithm
Zhao et | 2018 | Hybrid Sparsity-controlled Wind power Denmark | 1.5h
al. [25] method vector AR  and
spatiotemporal
models
Shen et | 2018 | Hybrid Combined empirical | Wind power America 100 h
al. [46] method mode decomposition
and random forest
Li et al. | 2018 | Hybrid SVM based on the | Wind speed and | Northwest | 72 h
[47] method cuckoo search | direction of China
algorithm
Ju et al. | 2019 | Hybrid Combined Temperature, fan | Northwest | 6 h
[48] method convolution  neural | status, generated | of China
network, lightGBM | power, wind speed
and SC and direction, motor
speed, daily power
generation and pitch
angle
Zhang et | 2019 | Hybrid Combined least | Wind power Jiangsu 33h
al. [12] method squares SVM and
deep belief network
Zhang et | 2019 | Hybrid Combined neural | NWP and wind speed | China 60 h
al. [49] method network and grey | and power

model



https://www.sciencedirect.com/topics/engineering/deep-belief-network

In summary, the above literature review indicates that time series methods, artificial intelligence methods, SC
methods and hybrid methods have been extensively used for wind power forecasting. Many studies have directly
used historical or NWP data. However, the data derived from NWP are biased with the actual data [50], how to
reduce its inaccuracy is an important issue [51]. Some studies proposed approaches considering the inaccuracy of
NWP [52], but many pieces of research still disregarded [53]. The literature review also shows that ANN is one of
the widely used statistical methods for wind power forecasting. However, the conventional ANN model has inherent
drawbacks of over-fitting and slow convergence speed. The GP model holds several advantages in terms of its well-
founded framework to identify the relationship between input variables and target variables compared with ANN
[54]. GP, an effective nonlinear, nonparametric and probabilistic prediction method, contains fewer parameters than
other statistical models to simplify forecasting [55]. Moreover, the GP-based model is self-adaptive to gain
hyperparameters and is flexible to implement [56]. However, the conventional GP model with one type of kernel
function may have limited forecasting capability due to the strong variability of wind speed. If the optimal kernel
function scheme is chosen from a combination of several kernel function types, more accurate forecasting results
could be produced.

This study, based on the GP model, proposes a novel hybrid wind power forecasting model by combining NWP
with the SC of wind farms. The rolling mechanism is a technology to constantly update training data of the
forecasting model. The wind speed data from NWP are corrected by selecting the key factors from high-dimensional
data by using the automatic relevance determination (ARD) method. The optimal hyperparameters in the GP model
are obtained by maximizing log-likelihood estimation. A combination of different kernel functions is used to
establish the optimal scheme for the GP model. The forecasting models are developed for different seasons to
effectively represent the seasonal variation of wind speed. The meteorologically and spatially detailed hybrid
model shows improved forecasting performance with few errors when the strengths of these modelling techniques
are appropriately combined. The main contributions of this study include the following:

e Anovel ARD is developed to improve the accuracy of the NWP data via selecting key factors, which are used
as the input to the corrected NWP wind speed model. This correction model effectively improves the accuracy

of wind speed and the overall performance of the forecasting model.



e An SC method is developed by using the data of neighbouring wind in adjacent areas of the target wind farm.
This method considers the geographical location and terrain of wind farms.

e Anovel hybrid forecasting method with a rolling mechanism is created based on the GP model with combined
kernel functions. The weighted values of sub-models are determined by the Lagrange multiplier method. The
meteorological and spatial factors are also comprehensively considered in the hybrid model to obtain improved
forecasting results.

The rest of this paper is organised as follows. Section 2 introduces the basic forecasting model based on the GP
with different kernel functions, the corrected NWP wind speed model and the SC between the reference and the
target wind farms. Section 3 implements the hybrid forecasting method based on the corrected NWP data and the SC
and describes the detailed modelling. Section 4 presents the case study and compares the forecasting accuracy of the

hybrid model with conventional models. Finally, Section 5 concludes the paper.

2 Basic model and methodology

The research methodology is presented in two parts. The first part presents the basic forecasting model based on
GP. The second part describes the corrected NWP data and SC method in addition to the basic model. The relevant
theory associated with the methods is also introduced in this section.

2.1 Basic forecasting model based on GP

2.1.1 Standard GP

The GP model is a supervised learning method that does not initially restrict the relationship between the target
and input variables to a specific form [56]. The GP model can also provide forecasted distributions rather than
merely point forecasting [57]. Given the complex patterns and relationships between wind power and

meteorological data, the GP model could be a promising method for wind power forecasting.
Assuming that an input set X ={Xi eR”i=1...,n} and an output set Y ={y,|i=12,...,n} will be used as
the training set, a GP  f(X) is completely specified by the mean and covariance functions such that

f(x) ~ N(m(x),k(x,x"), (1)

The mean function and covariance function are defined as follows:



m(x) = E[f (X)], @
k(x,x) = E[(f (x) =mO))(f (x') =m(xDI]. A3)

Supposing that the training set d consists of N observations, d ={(x;,y;)|i=1,...,n}, the whole input matrix

isa nxD matrix. Gaussian white noises are present, and the noise has zero mean and unit variance formulated as

follows:
e()~N(0,0,?), “4)
where o2 is the variance of Gaussian white noise. The novel sequence-added Gaussian white noise is expressed as
follows:
g(x) = f(x)+e(x). ®)
Thus, 9(X) also obeys the Gaussian distribution, and it can be modelled as follows:
g(x)~N(m(x),K(X,X)+o-n2I), ©)
where K is the covariance matrix with elements K =k(x;,%;), i,j=12,..,n. k is also called kernel function.
To simplify the process of hyperparameters optimization, the mean function m(X) is commonly set to zero, the

covariance matrix considered the noise is represented by K(X,X)+o,’l , and | presents an identity matrix. The
following four types of kernel functions [58] are considered in this study:

1) Squared exponential (SE) kernel function:

1 2
Kse (%, %) =07 exp(—znxi —xj” /|2J )
2) Rational quadratic (RQ) kernel function:
o
RQ (Xi 1 Xj) - Gf + zalz (8)

3) Matern (Mat) kernel function (v=3/2):

Kitat, ,, (6 %) = o; Hl%— MJexp {_Mﬂ )

4) Mat kernel function (v=5/2):



2
Ktat, ., (Xi2X;) = O7F

\£|xi—xj| 5||xi—xj||2 { x@|xi—xj|]
1+ | + X exp —f . (10)
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where o; represents the signal variance, and | denotes the length-scale parameter. Conventional GP models use

one type of kernel function, which may have certain issues in wind power forecasting, such as poor robustness and
generalization performance. A combined kernel function is created in the GP model to integrate the advantages of

different kernel functions.
The joint prior distribution of the forecasting value f. of the testing sets and the output Y of the training sets is

formulated as follows:

KX, X)+o?l k(XX
HWO’ (X, X) () ]) o
f. k(X., X) K (X, %)
where X. is a new input, and k(X,x.) is abbreviated as k., k(X,x.)=Kk(x., X)" =[K(%,X.),....K(X,,x.)]. The
mean value f, andvariance ). can be expressed as follows:
f. =kl (K+a21)ty, C100(12)
>o=k(x, %) -kl (K +a21) k.. (13)
2.1.2 ARD
The GP model is fully defined by its mean and covariance functions. In the conducted experiments, no fixed
covariance function is present in the GP. By contrast, a parametric function is used, and the parameters are inferred

by the observed values [56]. The process of inferring the parametric values, which is called learning

hyperparameters, is completed by maximizing the log-likelihood function:

In p(f,¢|9):—lln|K|—E ffK’lf*—Eln(zﬂ). (14)
2 2 2
A standard nonlinear gradient optimisation method is used for maximizing this function. The separate lengthscale
parameters can be combined with every input variable to extend this technique, and the relative importance of each
input can be inferred from the observed values. The ARD can be used to accurately obtain the relative importance by
its length-scale hyperparameters, which is formulated as follows:

kARD(x,x'):90[1+Z[):Ii(xi —xi')zj +b, (15)

i=1



where D represents the dimension of the input vector, and b is the deviation. All the hyperparameters about ARD

are contained in the vector #=(6,,L,b)" . The ARD method can be implemented through length-scale
hyperparameters L={l,,...,I;}. The input variable becomes highly sensitive, and the corresponding importance is

enhanced because the length |, is short.

The wind power forecasting framework based on GP includes the following three steps:

Step 1: Select the inputs for the GP model by using the historical records and NWP data, such as wind speed, wind
direction and temperature. The training and testing parts of the data are also determined.

Step 2: Establish an adequate covariance function for the given dataset. The optimal kernel function scheme can
be obtained by combining different kernel functions.

Step 3: Obtain the hyperparameters of the GP model by maximizing the log-likelihood function of the GP model.
Thereafter, the wind power in the testing sets is forecasted by the well-trained GP model, and the forecasted results

are obtained.

2.2 Wind speed correction model
If wind power forecasting entirely relies on historical data of the target wind farm, then the time horizon of the
forecasting model is generally less than 12 h. The forecasting horizon can be increased by using NWP data [59]. The
NWP model simulates the weather condition by solving the mathematical models of the atmosphere with powerful
computers. The NWP data (e.g. wind speed and direction, temperature, humidity and air pressure) with the high
spatial resolution is needed for high forecasting accuracy due to the high spatial variability of wind resources.
However, the uncertainties from the model initialisation of NWP is unavoidable, and its accuracy is also affected by
the measuring technique. Many wind farms are located in remote regions with rich wind resources. However, these
farms have some discrepancies with the location of stations that provide NWP data. Therefore, NWP data are not
always consistent with actual values, and the existing error of NWP data cannot be neglected.

Considering that the little error of NWP data could cause a huge error of forecasted wind power, an NWP wind
speed correction model is established by using the NWP data and actual values to improve the forecasting
performance. Accordingly, the performance of wind power forecasting is improved. The NWP wind speed correction

model consists of the following main steps:



Step 1: Determining statistically significant inputs. A set of ARD results is performed to examine the correlation
between the wind speed correction model and the input factors. The factors that are relevant to the wind speed
correction model are selected by the ARD model. These factors are used as inputs for the correction model.

Step 2: The NWP wind speed and the selected inputs from the first step are used as the inputs of the wind speed
correction model, and the corrected wind speed is obtained based on the GP.

2.3 SC model

In geographically distributed wind farms, the wind speed in the target wind farm and neighbouring wind farms
could be strongly correlated. Given that some wind farms are located in regions with complex topography, the
mutation of wind speed is difficult to capture when forecasting is only based on the data of the target wind farm [25].
When using SC method, the data of the observation sites in different directions are required. However, the difficulty
of data collection in different sites limits the application of SC. Assuming that the region is located in a flat terrain, a
spatial translation for these sites could be adopted to address this problem. As the example shown in Fig. 1, the
selected observation site in the target wind farm W and those in neighbouring wind farms m;, m, and m; are
not in a direct line. Accordingly, a line is drawn through the target wind farm W, which locates between

neighbouring wind farms m,, m, and m;. Vertical lines are drawn through wind farms m,, m, and m,, and

intersection points m;, m, and mj are obtained. When the distance between wind farms and the corresponding
intersection point is short, the data of the intersection points can be used as the data of the neighbouring wind farms.

Fig. 2 illustrates the wind speed series in neighbouring wind farms m,, m, m, and in target wind farm W.
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Fig. 1. Spatial translation of wind farms
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Fig. 2. Wind speed series of m,, m,, W and m,

The similarity of the wind speed series suggests a high correlation with a certain time delay between the four

wind farms (i.e. an SC exists between neighbouring wind farms). Accordingly, the wind speed or power of the target
wind farm can be forecasted by using the data of the neighbouring wind farms. Wind power can be forecasted many

hours ahead, and the adverse effect of the inaccuracy of NWP data can be mitigated. The relationship between wind
farm m; and target wind farm W is formulated as follows:

Vy (1) =V (t—7), (16)
where v, (t) is the wind speed of target wind farm W at time t, v, (t) is the wind speed of wind farm m, at
time t, and 7, represents the time delay of wind farm m; relative to the target wind farm W . The relationship
between the time delay and the wind speed could be expressed as follows:

7 = Ly, mi / Vi (1), (17)

where L, is the distance between wind farm m; and target wind farm W .

To analyse the SC of wind speed, the historical data of the target and neighbouring wind farms are used to
identify the time delay when the highest correlation occurs between their wind speed series. The Kendall’s tau (7))

rank correlation coefficient is an essential index to represent the strength of the relationship between two variables.

For variables Vv,, and Vv, , the correlation coefficient 7 is formulated as follows:

N, - N,

C

Thn-n/2° (18)

where N, is the number of concordant pairs, N, is the number of discordant pairs, N is the number of samples,

re[-11]. The correlation coefficient 7 can be also expressed as the difference between the probability of

concordant and discordant pairs:



7= P{(Vw,l _Vw,z)(Vm,l _Vm,z) > 0}_ P{(Vw,l _Vw,z)(vm,l _Vm,z) < O} (19)

where Vv, and V,,, denote the first and second sample of the wind speed value at the target wind farm,

respectively; and v, and V., are the first and second sample of the wind speed valueat neighbouring wind

farms, respectively. The correlation is high when the coefficient is large. The Kendall’s 7 rank correlation
coefficients of the wind speed series between the neighbouring and the target wind farms would be obtained with
different time delays. With regard to a time period of wind speed data, the large Kendall’s 7 rank correlation
coefficients correspond to the specific time delay reflecting the similarity of the wind speed series between two wind
farms. Thus, the time delay with a large Kendall’s 7 rank correlation coefficient would be selected for forecasting

the wind speed of the target wind farm by using the data of neighbouring wind farms.

3 Hybrid forecasting method
This section presents the study of short-term wind power forecasting by using a hybrid method involving the
corrected NWP and SC. This section is divided into two: the process of creating a hybrid weighted model and the

standard forecasting accuracy evaluation.

3.1 Process of hybrid weighted model

In the hybrid weighted model, the embedded forecasting methods have varying degrees of importance. To achieve
a satisfactory forecasting performance, different weighted values are calculated and assigned to each forecasting

method according to their relative importance. Fig. 3 shows the block diagram of the hybrid model.
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Fig. 3. Hybrid weighted wind power forecasting model

Assuming that M types of forecasting methods are present, B, P,, P, ... P, are the forecasting wind

powers by each forecasting method, and o, ®,, @5, ... @, represent the corresponding weighted values. The

hybrid model can be formulated as follows:

P=wP +o,P, +o,P+..+0,P,

m
i=1
where e, €,, ... e, are the forecasting errors of each method, and o,, o,, ... o; are the corresponding

variance, i=1,2,... M The variance of the hybrid model is formulated as follows:

m

Y. Cov(me, o) . (21)

j=L i

M=

o(e) =Y 0 o(e) +

Il
JiN

Given that the various methods are independent of each other, the covariance between them is zero. Therefore, the

following equation is obtained:

o6) =Y 0o
i-1 . (22)

The minimum forecasting error can be obtained by using the Lagrange multiplier method to minimise the
variance. Thereafter, the weighted values of each method in the hybrid model are calculated. The Lagrange function

is formulated as follows:

f(a),/l):ia)iza(ei)+/1(1—ia;|), (23)

i=1
The partial derivatives of @, and A are obtained. The weighted values can be calculated when the partial
derivatives are zero.

Fig. 4 shows the flowchart for implementing the developed hybrid wind power forecasting method, which involves

the following key steps:
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Fig. 4. Steps of wind power forecasting by the hybrid method
Step 1: Read the historical and NWP data, such as wind speed and direction, temperature, humidity and air

pressure.

Step 2: Although wind power mainly depends on wind speed, the other meteorological factors may have
effects. The ARD method is used to determine the appropriate input for improving the generalisation performance.
The variables, which have a remarkable correlation with wind power, are used as inputs. The wind power
forecasting model is established by GP, and the forecasted result P, is obtained.

Step 3: A wind speed correction model is created through the deviation between the forecasting and the actual
values due to the low quality of NWP data. The corrected wind speed is used as input for the wind power
forecasting model, and the forecasted result P, is obtained.

Step 4: The Kendall’s 7 rank correlation coefficients between the target wind farm W and its neighbouring
wind farms are calculated, and the time delay with the highest correlation is then obtained. The wind speed of W

at time t can be forecasted by the historical wind speed data of neighbouring wind farms m; and m,. The



forecasted wind speed and other meteorological factors of W, such as wind direction and temperature, are used as
inputs for the hybrid wind power forecasting model. The corresponding forecasted wind power P, and P, of

W are then obtained.

Step 5: The weighted value of each method is calculated by the Lagrange multiplier method to develop the
hybrid model. Thereafter, the forecasting wind power P,, P, and P, are combined, and the novel hybrid

forecasted result is obtained.
Step 6: The performance of each method is analysed, and the wind power forecasting value with high
accuracy is obtained.

3.2 Rolling mechanism

To ensure the accuracy of the forecasting model, in the GP, only the recent data are used as the training sample.
The rolling mechanism, which is under the condition that the length of the input data is fixed, can constantly update
the training data. At the time t, the input data can be expressed as s (t) =[x® (t— L), x®" (t—L+1),---,x® (t =1)],
where L is the length of the training sample, x®(t—1) is the data of the i th variable at a time t—1. When new
input data are obtained, they are added into the training sample, and the oldest data with the same length are removed.

Atthe time t+1, the training sample is expressed as s® (t+1) =[xV (t — L+1), X" (t —L +2),---, " (1)].
3.3 Forecasting accuracy evaluation

Three performance metrics are used to evaluate the forecasting accuracy of different methods: root mean square
error (RMSE), mean absolute percentage error (MAPE) and mean absolute error (MAE), which are defined as

follows:

1 -
RMSE = ?Z(Pi -R)?, (24)
i=1
1L|P-P
MAPE:?Z L__1x100|, (25)

i=1 i

MAE =2 3| (R -R)I. 26)



where P, is the actual wind power, pI is the forecasted wind power, and T represents the number of testing

samples.

4 Case study
The proposed hybrid forecasting method is applied to wind farms in East China. Section 4.1 provides the data

description, and Section 4.2 presents the simulation results and extended analysis.

4.1 Data description

The actual meteorological data from the wind farms in East China, acquired from the national meteorological
information centre [60], are used in the forecasting model. One hundred twenty sample points at 1 h time interval are
chosen to analyse and verify the proposed model. Approximately 80% of data are used for training, and 20% of data
are utilised for testing. Different forecasting modules are used for four seasons because the wind speed in four
seasons significantly varies. Fig. 5 shows the mean monthly wind speed from 2013 to 2018 in the target wind farm.
Fig. 6 shows the typical annual distribution of wind speed. These figures demonstrate that the average wind speed
from March to May is higher than those of the rest of the year. The distributions of wind speeds also vary in high and
low wind speed seasons. Thus, the analysed data are divided into four periods according to seasons—spring (from
March to May), summer (from June to August), autumn (from September to November) and winter (from December

to next February).

I W 2073 1 2016
2014 3 2017
3l _ B 2015 C—J 2018 |

N
a
T

s
g

Wind speed (m/s)

0 1 2 3 4 5 6 7 8 9 10 11 12
Month
Fig. 5. Mean monthly wind speed
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The choice of the optimal kernel function amongst the several candidates as per Section 2.1 should be motivated

by the intended usage of the forecasts. The forecasting results using various combinations of kernel functions are

also compared. The combined form of kernel functions is given as follows:

K(X, X ) =k (X, X) + Ky (X, X) .

Ten types of wind power forecasting results are generated and shown in Fig. 7, which uses either a single type of
kernel function or their combinations based on SE, RQ, Mat (v=5/2) and Mat (v=3/2). The corresponding

performance metrics are represented in Table 2.
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Fig. 7. Wind power forecasting based on the different kernel functions

Table 2. Performance metrics of the forecasting model based on the GP with different kernel functions

Kernel function

RMSE (MW) | MAPE | MAE (MW)

SE

6.069902 0.395229 5.653775

25



RQ 6.156618 0.39465 5.647139
Mat(v=3/2) 6.77634 0.405166 | 6.091823
Mat(v=5/2) 6.812558 0.405619 6.11798

SE +RQ 5.730346 0.327676 5.01388
SE+Mat(v=3/2) 4.24602 0.25317 4.807119
SE+Mat(v=5/2) 5586123 0.330217 | 4.914534
RQ+Mat(v=3/2) 6.291651 0.337668 | 5.354872
RQ+Mat(v=5/2) 6.196443 0.341961 | 5.305759

Mat(Vv=3/2)+Mat(v=5/2) 5.899431 0.337354 | 5.108981

Table 2 illustrates that the error of the forecasting model with combined kernel functions is generally less than that
with a single function type because the combination can thoroughly obtain data characteristics. The best forecasting
performance is found when the kernel function SE and Mat (v=3/2) are combined. In the following study, this

optimal combination is used for forecasting by the GP.

4.2 Analysis of the simulation results

4.2.1 Impact of the meteorological factors on wind power
(1) Analysis of ARD

The ARD method is applied to determine the relevance between the input and the output data. This study takes the
wind power forecasting model as an example. The most influential meteorological factor to the forecasted wind
power can be identified by ARD. In the given dataset, the relevance values of wind speed, wind direction,
temperature, air pressure and humility are found as 1.0681, 5.8007, 8.6758, 8.3907 and 7.3568, respectively. This

finding indicates that wind speed is the most significant input for the forecast, followed by wind direction.
(2) Analysis of heat map

A heat map is introduced to further investigate the different meteorological factors’ correlation to wind power. This
map displays the relationship between all measured factors. The columns and rows in the heat map are organised
according to the meteorological factors that affect wind power. The deep colour depicts an increased correlation,
whereas the lighter one denotes a decreased correlation. The correlation between different factors can be effectively
displayed. The visual clustering is also reduced [61], and the heat map analysis of various factors is shown in Fig. 8.
In this figure, the correlation coefficient between wind speed and wind power reaches a maximum of 0.9, followed
by that between wind direction and wind power (0.31). However, the correlation coefficients between wind power

and the other three factors are low. This finding is consistent with the analysis of ARD. All meteorological factors



have some correlations with each other. The correlation coefficient between wind speed and wind direction is up to

0.34.
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Fig. 8. Heat map of various factors

(3) Analysis with multi-factors

An input factor is eliminated each time, and wind power is forecasted to verify the conclusion of the ARD results

and heat map. The results of the different cases are shown in Fig. 9.
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Fig. 9. Wind power forecasting value with eliminating input factor
The difference between the forecasting wind power and the actual value is the highest when the wind speed is
eliminated. This notion indicates that wind speed has the greatest influence on forecasting wind power. The second-
largest deviation is shown when the wind direction is excluded, which is considerably lower than the wind speed

case and closer to the other cases. The values of RMSE, MAPE and MAE and their variances are listed in Table 3.



The variances of performance metrics are just marginal when temperature, humidity and air pressure are eliminated.
The greatest variance of RMSE, MAPE and MAE (48.5144 MW, 3.46059 and 35.48947 MW, respectively) is seen
when the wind speed is eliminated. From these results, the dominating role of wind speed for wind power forecasting

is further confirmed.

Table 3. Comparison of the performance metrics with different methods

Methods RMSE (MW) | Variance of RMSE | MAPE | Variance of MAPE | MAE (MW) | Variance of MAE
Elimination of temperature 8.406627 1.16060 0.32550 0.07232 6.440736 1.63361
Elimination of humidity 8.543051 1.29702 0.31779 0.06461 6.417485 1.61036
Elimination of air pressure 8.282949 1.43692 0.48369 0.23051 6.881641 2.07452
Elimination of wind direction 10.12328 2.87725 0.57038 0.31720 8.473269 3.66614
Elimination of wind speed 55.76044 48.5144 3.71377 3.46059 40.29659 35.48947
Considering all factors 4.24602 \ 0.25317 \ 4.807119 \

Note: Variance of RMSE/MAPE/MAE represents the difference of RMSE/MAPE/MAE between the condition with a certain factor elimination and

that includes all factors.

4.2.2 Wind power forecasting results based on the corrected NWP

The quality of input data is crucial for accurate and reliable forecasting. However, these complexities are often
found in the dataset, which may significantly affect the forecast. In this study, a correction model is created between
the NWP wind speed data and their actual value to mitigate their adverse effect. The meteorological factors, which
play an essential role in the NWP wind speed correction model, are chosen as the input for the correction model. The
wind speed data from the NWP are also used as the input. The accuracy of wind speed can be improved by the

correction model proposed in Section 3. A comparison of the original NWP wind speed and the corrected value is

shown in Fig. 10.
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Fig. 10. Wind speed series before and after correction in four seasons



The wind power forecasting results before and after wind speed correction in different seasons are shown in Figs.
11-14. In these figures, the forecasting value after the correction is generally more close to the actual value, thereby
indicating the performance improvement by using the wind speed correction model. The results also show that the
accuracy of wind power forecasting reduces during high wind speed periods. In terms of seasonal variation, the
forecasting error in summer is higher than that in winter because the former has the highest average wind speed in
the year. During the day, the deviation between the forecasting and the actual power is relatively larger at the 4th and

22nd h in spring, at the 18th and 20th h in summer, from 12th h to 15th h in autumn and at the 3rd h in winter

because these hours coincide with higher wind periods.
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Fig. 11. Wind power forecasting value based on the corrected NWP data in spring
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4.2.3 Wind power forecasting results with consideration of the SC

The wind speed series of wind farms within a certain geographic range have correlations with each other. The SC
between the target wind farm and farms nearby can be calculated using Kendall’s 7 rank correlation coefficients
with different time delays. Fig. 15 shows the comparison of wind speed series between wind farm m; and target
wind farm W in each season and the correlation coefficients over different time delays. The amount of time delay
over which the correlation coefficient reaches its peak value exhibits seasonal variations. From spring to winter, such

times delays are —4, —6, —2 and —1 h. Nevertheless, these negative values indicate that the wind speed series in wind



farm m, is always ahead of that in wind farm W,
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Fig. 15. Kendall’s 7 correlation coefficient series of wind speed between m, and W in different seasons
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Fig. 16 presents the forecasted wind speed of the target farm W by using the SC method with a wind farm m,

in different seasons. The adopted SC method is effective because the forecasted value is close to the actual value in

the figure.
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The wind speed of the wind farm m, fromthe (k—At)th htothe kth his used as an input for the wind speed

forecasting model. Accordingly, the wind speed of the target wind farm W from the kth hto the (k+At)th his

defined as the output. Other factors, such as temperature and humidity, are also considered to forecast wind power.

Fig. 17 shows the wind power forecasting results of the target wind farm W in different seasons based on the GP

model. The blue curve is the forecasted wind power of the farm W by using the SC method, and the green curve is

the actual value. The histogram represents forecasting errors. Fig. 17 demonstrates that the forecasted wind power is

generally close to the actual value even though the errors in spring and winter are much larger than those in summer

and autumn because of the high wind speed and high connection between the wind power and the wind speed.
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Fig. 17. Wind power forecasting value based on the SC between m, and W in different seasons

Fig. 18 shows Kendall’s 7 correlation coefficient series between wind farm m, and target wind farm W in

different seasons. The figure presents that the time delays for the highest correlation coefficient are 3, 3, 1 and 1 h

from spring to winter. These positive values indicate that the wind speed series in wind farm m, lag behind target

wind farm W,
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Fig. 18. Kendall’s 7 correlation coefficient series of wind speed between m, and W in different seasons

Fig. 19 depicts the corresponding forecasted value of wind speed based on SC between the wind farm m, and

target wind farm W . The result shows that the forecasted wind speed is close to the actual data in four seasons,

thereby proving the effectiveness of the SC method between wind farms within a certain geographic scale.
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Fig. 19. Forecasted wind speed by SC of m, and W in different seasons

The wind speed from the kth h to the (K+At)th h of wind farm m,; is used as the input for the wind

speed forecasting model, with the wind speed of the target wind farm W from the (k—At)th htothe kth has

the output. The other meteorological factors, such as temperature and humidity, are also considered for the wind

power forecasting model. Fig. 20 shows the forecasting results of the target wind farm W The forecasting errors

are much high in spring and winter, which coincide with large wind power.
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Fig. 20. Wind power forecasting value based on the SC between m, and W in different seasons

Table 4 lists the indexes that reflect the correlations between the target wind farm W and neighbouring wind

farms m, and m,. The average wind speed in spring is the highest, followed by those in winter and summer. The

correlation coefficient between the target and the neighbouring wind farms reaches the peak value in spring,

followed by those in winter and autumn, and the smallest value is in summer.

Table 4. The indexes about SC in the neighbouring wind farms

Spring Summer Autumn Winter
Indexes
my my mz m; m; m; my m;
Average wind speed 2.7854 | 3.5947 | 1.4552 | 2.1417 | 1.7364 | 2.3969 | 2.5781 | 3.0218
Time delay 4h 3h 6h 3h 2h 1h 1h 1h
Correlation coefficient 0.9253 | 0.7696 | 0.4692 | 0.4573 | 0.4988 | 0.5271 | 0.8063 | 0.7467

4.2.4 Results from the hybrid weighted forecasting model

The novel hybrid wind power forecasting model is created by combining the corrected NWP

and SC. The



combination of these sub-models is achieved by assigning each one with a specific weighted value (Table 5). These
weighted values vary amongst models and also change in different seasons. Thus, the annual forecasting can be

divided into four scenarios.

Table 5. Weighted values of the hybrid model in four seasons

Index Spring Summer Autumn Winter
[ w3 w3 [ [2)) w3 w1 (2] 3 1 [GF) 3
Weighted 0.489 0.239 0.272 0.344 0.314 0.342 0.353 0.316 0.331 0.343 | 0.322 0.335
value ) ) ) ) ) ) ) ) ) ) ) '

Figs. 21-24 show the forecasted wind power by seasons and the corresponding error. The blue curve shows the

forecasted wind power based on the corrected wind speed. The green curve shows the forecasted wind power based

on the SC between wind farm m,; and target wind farm W The red curve shows the forecasted wind power based

on the SC between wind farm m, and target wind farm W. The cyan curve shows the forecasted wind power

based on the novel hybrid model. The purple curve shows the actual wind power. The histograms from right to left
show the forecasting errors of the four methods. In these figures, the hybrid model outperforms all the other
mentioned methods by much higher forecasting accuracy, thereby indicating the considerable advantage that can be

gained from the hybrid forecasting method.

When all inputs (e.g the corrected wind speed, the obtained wind speed by SC method, wind direction, temperature,
humidity and air pressure) are incorporated into a single forecasting model, there would be another forecasting result.
To justify the advantages of the hybrid forecasting method furtherly, the forecasting results when incorporating all

inputs into the GP model are compared with the hybrid model.
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Table 6 provides the performance metrics of different forecasting methods. The novel hybrid model significantly
performs better than conventional models. The RMSE values are reduced by 0.33078-1.5919, 0.01102-0.15111,
0.31536-0.76779 and .46431-1.53667 MW in spring, summer, autumn and winter, respectively. The MAPE values
are reduced by 0.0287-0.12918, 0.0494-0.21913, 0.03481-0.2738 and 0.07372-0.16959 in spring, summer, autumn
and winter, respectively. The MAE values are reduced by 0.17644-2.69465, 0.01448-0.28154, 0.35463-1.14045 and
1.15365-2.72491 MW in spring, summer, autumn and winter, respectively. The assessment of the improvement in
the forecasting accuracy is formulated as follows:

K = Snwe = Cmix 10004 ' (28)

eNWP
where ey, Iisthe RMSE value by the Gaussian forecasting method based on the corrected NWP data, and e, is
the RMSE value by the hybrid model. The accuracy of using the hybrid method is 37.49% higher than that by
utilising the original NWP data in spring. The accuracy values in summer, autumn and winter increase by 10.88%,
31.88% and 35.67%, respectively. The average increase in accuracy is 28.98%.

Table 6. Performance metrics by each wind power forecasting method

Spring Summer Autumn Winter

Method RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE
NWP data | 4.2460 | 0.253L | 4.8071 | 1.3891 | 0.4029 | 0.8746 | 2.4085 | 0.3925 | 2.2018 | 4.3083 | 0.2873 | 4.8938
ﬁg&;egft‘; 29849 | 01527 | 22889 | 1.2699 | 03744 | 0.7147 | 22394 | 0.535 | 1.6105 | 3.2360 | 0.1692 | 3.3226

SC b:rt]"(;’fz” M| 40060 | 0.2268 | 4.3515 | 1.3801 | 05441 | 09817 | 1.9561 | 0.1571 | 1.4159 | 3.5224 | 0.2523 | 4.0443
sC baert]gfz” M | 38117 | 0.1836 | 3.6731 | 1.2490 | 0.4809 | 0.7578 | 2.1617 | 02324 | 15187 | 3.3428 | 0.1914 | 3.6061
Inputs 35728 | 0.1772 | 2.9637 | 1.2932 | 04261 | 0.7332 | 1.8362 | 0.1978 | 1.3466 | 3.1832 | 0.1736 | 2.9373




incorporated
into GP

Hybrid model | 2.6541 | 0.1240 | 2.1124 | 1.2380 | 0.3250 | 0.7002 | 1.6407 | 0.1187 | 1.0613 | 2.7717 | 0.1177 | 2.1689

A comparison of the hybrid model with other existing models in Table 1 is discussed to evaluate the forecasting
performance of the proposed model. The proposed hybrid forecasting method has an RMSE of 2.6541, a MAPE of
0.1240 and an MAE of 2.1124 in spring at 24 h ahead (Fig. 21). The forecasting accuracy by the hybrid method is
higher than that by other methods in Table 6. The performance metric is lower than those of some methods (Table 1).
For example, the wind power forecasting model of the long short-term memory embedded with wavelet kernels has a
MAPE between 0.4212 and 0.4983 for forecasting with 250 h ahead [43]. A novel convolution-based spatial—
temporal wind power forecasting model reports an RMSE of 5.9-10.1 at 30 min ahead [44]. The forecasting model
combining autoencoders and the backpropagation algorithm has an average MAPE of 15.96% at 24 h ahead [46].
The combined forecasting model based on the neural network and grey model has a MAPE of 16.2% at 60 h ahead
[50]. The constructed convolution neural network and lightGBM model reported a MAE of 2.28 at 6 h ahead [60].
Various datasets need different forecasting accuracy values; however, the forecasting effect cannot be judged by only
using these performance metrics. Nevertheless, considering the range of errors, the proposed model still has

improved performance.

5 Conclusion

A novel hybrid model built on the GP model is developed for short-term wind power forecasting in this study.
Unlike the original GP model, the hybrid model also integrates the corrected NWP data and SC between
geographically distributed wind farms. The basic GP model is established using the optimal combination of different
kernel functions. The SC method, calculated using the Kendall’s 7 correlation coefficient is adopted to strengthen
input data of the target wind farm for wind power forecasting. When integrating these methods into the hybrid
forecasting model, the weighted values are adaptively assigned according to their importance using the Lagrange
multiplier method, which could ensure the small error of the hybrid forecasting model. In the case study, the
proposed hybrid forecasting method is applied to the actual data of wind farms in East China. In comparison with the
conventional GP model, the forecasting performance in terms of RMSE is improved by 7.02-29.7% with the
corrected NWP, 0.65-10.23% with the SC method and 10.88-37.49% with the hybrid model. The hybrid model has

proven its significant value in improving the forecast accuracy and reducing the operational risk of real wind farms




given that it clearly outperformed the other methods.

The presented wind power forecasting model is generally suitable for short-term wind power forecasting because
of the applicability of quarterly data training. The observations and training data are updated constantly to improve
the model performance. For applications purpose, the presented forecasting model could utilize the information of
spatial factors comprehensively, and is further capable for improving the accuracy of NWP data when considering
the meteorological factors. The effectiveness and advantages can be inferred from the results of simulation. This has

important implications for the real operation of wind farms.

In future work, advanced artificial intelligence and machine learning methods would be introduced to assist the
automatic scene division on the complex input data. According to the concept of data dependence, a similar type of
input data with similar spatial and temporal characteristics is collected in the same scenario. The scene division
method will use central semantic to reflect the complex data characteristics and classify the data into different
scenarios. In this way, the forecasting results of the next period can be obtained to effectively improve the

applicability of wind power forecasting models.
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