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Global issue

* Increasing demand for energy
* Population growth
* Increasing wealth per capita
* Demand for new sources of energy
* Global warming and air quality
e Depletion of fossil fuels

Solution:
e Using hydrogen as a clean energy vector!

Benefits:

S e et

Clean energy

chain

 Highest energy content of any chemical fuel on a mass basis
e Abundant in the form of water, biomass or hydrocarbons
 If combusted or used in a fuel cell with pure oxygen, its only

product is water

 Can be used as a wide-scale clean energy vector

We synthesise, characterise, analyse and model a variety of
different types of nanoporous materials including:

* Metal-organic frameworks
* Polymers of intrinsic microporosity
» Activated carbons

« Zeolites
Example synthesis: ZIF-12
Synthetic route: Tl

Ammonia
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We do the analysis and modelling of excess

iIsotherms, in order to compare with
alternative storage methods, and to study

the fundamentals of the adsorption process.

m; = (pa— Ps) Vp 0,4

mg = excess uptake
P, = adsorbate density
pg = bulk density

Vp = pore volume

O, = fill factor

AX-21

EEN (@)
1 N J

w
" 1 "

Hydrogen uptake / wt %
N

Experimental

Hydrogen storage

Problem:

 Hydrogen has a very low density
 Conventional methods of increasing

Examples of

 Adsorb the hydrogen inside nanoporous materials!

the density is to compress or liquefy compression and
 BUT, these require unfavourable liquefaction H, tanks
conditions.
Solution:

Inelastic neutron scattering
We used inelastic neutron scattering

as it allowed for the verification of

Examples of porous
materials

Computer simulations
We use computer simulations in

our model order to verify our model, and to
T 3 o " study the molecular dynamics of
: JL the system
Sof e | Simulated
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Kinetics y = -1.8507x + 4.4182

We have studied the kinetics of
hydrogen adsorption for some
carbons and shown that the mass
transfer coefficients follow an
Arrhenius relationship

* Th

~ vl uiede vaivuiauund we are
able to produce design curves,
which compare the amount of
hydrogen stored via adsorption
vs. the amount stored via
compression at the same
conditions.

y =-0.3362x + 3.2068

Arrhenius plot
- TE7 of mass
transfer
coefficients as
a function of
temperature

In (K/ min™)

(1000/RT) / mol k™

e analysis has been expanded to calculate

the amount of hydrogen stored in tanks
containing varying quantities of adsorbent,
at any pressure or temperature.

——— Adsorptive storage
Compressed gas

| Compression
 favoured

Amount of stored hydrogen

high-pressure : cr:
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