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Hydrogen 

Materials Hydrogen Storage in Porous Materials 

Example synthesis: ZIF-12 

Analysis 
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We synthesise, characterise, analyse and model a variety of  

different types of  nanoporous materials including: 

• Metal-organic frameworks 

• Polymers of  intrinsic microporosity 

• Activated carbons 

• Zeolites  

Hydrogen storage 

Benefits: 

• Highest energy content of  any chemical fuel on a mass basis 

• Abundant in the form of  water, biomass or hydrocarbons 

• If  combusted or used in a fuel cell with pure oxygen, its only 

product is water 

• Can be used as a wide-scale clean energy vector 

Problem: 

• Hydrogen has a very low density 

• Conventional methods of  increasing 

the density is to compress or liquefy 

• BUT, these require unfavourable 

conditions. 
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Computer simulations 

The analysis allows us 

to determine the 

optimum conditions 

for physisorption 
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Synthetic route: 
 

 (CH3COO)2Co · 4H2O + BIM             Co(PhIM)2 

 

Methanol 

Toluene 

Ammonia 

 

RT 

3 hrs 

• The analysis has been expanded to calculate 

the amount of  hydrogen stored in tanks 

containing varying quantities of  adsorbent, 

at any pressure or temperature. 

An example design curve  An example design curve  

• From these calculations we are 

able to produce design curves, 

which compare the amount of  

hydrogen stored via adsorption 

vs. the amount stored via 

compression at the same 

conditions. 

• We found that there is a critical 

pressure, above which 

compression always stores 

more hydrogen than 

adsorption. 
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Examples of  porous 

materials 

Examples of  porous 

materials 

• Increasing demand for energy 

• Population growth 

• Increasing wealth per capita 

• Demand for new sources of  energy 

• Global warming and air quality 

• Depletion of  fossil fuels 

 
Solution: 

• Using hydrogen as a clean energy vector! 

Global issue 

Solution: 

• Adsorb the hydrogen inside nanoporous materials! 

Examples of  

compression and 

liquefaction H2 tanks 

Examples of  
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ZIF-12 XRD. Red: 

experimental data; 

Black: from CIF file 

ZIF-12 XRD. Red: 

experimental data; 

Black: from CIF file 

We used inelastic neutron scattering 

as it allowed for the verification of  

our model 

We use computer simulations in 

order to verify our model, and to 

study the molecular dynamics of  

the system 

Systems 

We do the analysis and modelling of  excess 

isotherms, in order to compare with 

alternative storage methods, and to study 

the fundamentals of  the adsorption process. 

mE = (rA – rB) VP θA mE = (rA – rB) VP θA 

mE = excess uptake 

ρA = adsorbate density 

ρB = bulk density 

VP = pore volume 

ΘA = fill factor 

mE = excess uptake 

ρA = adsorbate density 

ρB = bulk density 

VP = pore volume 

ΘA = fill factor 

Kinetics 
We have studied the kinetics of  

hydrogen adsorption for some 

carbons and shown that the mass 

transfer coefficients follow an 

Arrhenius relationship 

y = -0.3362x + 3.2068 

y = -1.8507x + 4.4182 
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