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Abstract

We develop a dynamic general equilibrium model to quantify the interaction

between climate policy, industry dynamics, and the elasticity of substitution be-

tween clean and dirty energy in the economy. The model incorporates empirical

observations that firms differ substantially in their potential for energy substi-

tution and that the economy is growing more capable of substituting clean for

dirty energy over time as environmental regulation becomes more stringent. Our

model highlights the effect of dynamic industry response on increasing the av-

erage elasticity of substitution in the economy due to the exit of least flexible

firms in response to climate policy. The higher average elasticity of substitution

increases the effectiveness of the policy at reducing emissions, resulting in a 35

percent decrease in the size of the carbon tax required to achieve carbon neu-

trality.
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1 Introduction

The transition from fossil fuels to renewable energy takes a central role in the policy

visions to halt the progress of global warming (IPCC, 2018). As a crucial factor that

governs the transition process, the degree of substitutability between clean and dirty

energy has been shown to strongly influence the predictions for sustainable growth and

optimal designs of climate policy.1 However, microfoundations behind the elasticity of

substitution between different types of energy are hitherto lacking in the literature. For

instance, is there heterogeneity across firms and sectors in their potential to substitute

clean for dirty energy? Is our economy becoming more capable of energy substitution

over time? If so, what are the drivers behind the evolution?

In this paper, we tackle these questions by developing a dynamic general equilib-

rium model that allows us to quantify the interaction between climate policy, industry

dynamics, and the elasticity of substitution in the economy. Our model builds on the

large macroeconomic literature of directed technical change and the environment (e.g.,

Acemoglu et al., 2012), but extends these models by incorporating firm heterogeneity

in the elasticity of substitution between clean and dirty energy in their production

process and endogenous exit and entry. These margins are critical for our investigation

of optimal climate policy and how it interacts with the economy-wide capability of

achieving energy transition.

Our economy comprises two main economic segments: industrial production and

energy services. In the industrial segment, incumbent firms produce differentiated

products by combining clean and dirty energy and incurring a fixed cost of operation

in terms of low-skilled labor. Forward-looking potential entrants make optimal entry

decisions based on their expected lifetime profits relative to the fixed cost of entry.

Firms are heterogeneous with respect to their elasticity of substitution between clean

and dirty energy, which affects their potential to cope with climate policy. Due to

the presence of the fixed cost, firms may exit if their operating costs increase and

profits drop below a certain threshold, which we characterize. The energy segment

of our model consists of the clean and dirty sector and provides energy inputs to the

1The elasticity of substitution between clean and dirty energy critically determines important
outcomes such as induced innovation in green technologies (Otto et al., 2007; Acemoglu et al., 2012;
Fried, 2018), the relative efficacy of different policy instruments (Lemoine, 2017; Greaker et al., 2018;
Hart, 2019), and the overall economic costs of climate change mitigation (Golosov et al., 2014). For an
in-depth discussion on the role of this parameter in the literature, see Section 2 in Jo and Miftakhova
(2022).
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heterogeneous firms in the industrial segment. As in Acemoglu et al. (2012) and Fried

(2018), among others, it is also the source of innovation-induced growth of the economy.

The interplay of firm heterogeneity, industry dynamics and climate policy leads

to an endogenous change in the equilibrium distribution of the elasticity of substitu-

tion across firms and therefore in the economy-wide potential for energy substitution.

Climate policy, or the consequent increase in the relative price of fossil-based energy,

induces least flexible firms to exit the market, while simultaneously allowing the entry

of firms that are relatively more capable of substituting clean for dirty energy and

therefore have lower operating costs and sufficiently high expected profits to cover the

sunk entry costs. This dynamic industry response increases the average elasticity of

substitution among active firms, creating larger demand shifts to clean energy in the

industry, as well as stronger innovation response in the energy sector.

The key features of our model are empirically motivated using microdata from the

French manufacturing sector for 1995-2015 that provide information on energy con-

sumption and expenditure by energy source and detailed firm characteristics. We first

provide empirical evidence on firm heterogeneity in their energy substitution capabili-

ties. Although the presence of heterogeneity along this dimension has been recognized

in the policy arena as well as by practitioners (Environment Agency, 2008), we are

not aware of existing empirical evidence establishing this pattern.2 Hence, we estimate

the elasticity of substitution between clean (electricity, steam, and renewables) and

dirty energy (all others) by quantile regression that allows us to examine heterogeneity

across firms in different quantiles of the distribution of the input ratio (dirty to clean).

We find that the estimated elasticity of substitution varies significantly across firms:

cleaner (dirtier) firms tend to be more (less) capable of substituting clean for dirty

energy.

Second, we empirically document that the average elasticity of substitution has

been increasing over time. In particular, it is noteworthy that the change has been

concurrent with climate policy becoming more stringent over the same time period

in France. This correlation provides strong motivating evidence for our model that

explores the interaction between climate policy and the economy-wide potential for

energy substitution.

For the quantitative analysis, we calibrate the parameters of our model by method

2For example, Environment Agency (2008) documents the presence of heterogeneity in the potential
for energy substitution across cement and lime producers, despite the industry generally thought of
as having very little potential for energy transition.

2



of moments to match key moments implied by the model with their empirical coun-

terparts in micro and macro data. It is important for our model to capture the re-

lationships between energy prices, industry dynamics, and production and innovation

in the energy sector. Thus, we target moments in the data that capture these fea-

tures to discipline our parameters. For instance, a crucial empirical moment for our

model to match is the average elasticity of substitution between clean and dirty fuels

among manufacturing firms that we estimate from our microdata. The model performs

well and matches the targeted and non-targeted moments closely, suggesting that the

model’s fit is reasonably strong.

We use our calibrated model to quantify the interaction between firm heterogene-

ity, industry dynamics and the average elasticity of substitution in the economy. We

compute a set of counterfactual stationary equilibria to understand the role of dynamic

industry response to climate policy. We compare two equilibria that achieve the same

policy goal of carbon neutrality but one where the channel of industry dynamics is at

play (the endogenous model) and the other where this channel is shut off (the exogenous

model). Three main findings emerge. First, failing to take into account the dynamic

industry response can lead to an overestimation of the optimal tax that achieves car-

bon neutrality by 35 percent. The exit of least flexible firms in the endogenous model

increases the average elasticity of substitution among active firms by 5 percent in the

new equilibrium. This enables larger demand shifts to clean energy in the industry,

lowering the required size of the tax to achieve the same emissions reduction target in

the endogenous model.

Second, the dynamic industry response via the endogenous elasticity of substitution

leads to a structural change in the economy: as inflexible firms exit the market, essential

resources (labor) reallocate to the clean energy sector, as demand for clean energy is

now higher. The mass of active firms falls by 3.4 percent in the endogenous model

and the market size of the clean relative to dirty energy sector increases twice as much

compared to the exogenous model, absorbing the freed labor from the industry. Finally,

innovation response is also stronger in the endogenous model: the relative technology

in the clean sector grows by 23 percentage points more when the channel of industry

dynamics is at work. The difference is again primarily driven by the stronger demand

response in the industry brought about by the higher average elasticity of substitution,

which creates stronger incentives to innovate in the clean sector.

Third, we investigate the implications of different policy instruments, namely, a
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carbon tax and a research subsidy to clean innovation, in the presence of endogenous

industry dynamics. Consistent with prior findings in the literature (e.g., Fischer and

Newell, 2008), a research subsidy tends to be more costly in terms of gross welfare than

a carbon tax as a single policy in our model. However, we find that dynamic industry

responses lower the welfare cost of the subsidy as the indirect price incentives generated

by improving clean technologies (as opposed to direct price incentives provided by the

tax) tend to induce larger demand shifts due to the increasing average elasticity of

substitution in the endogenous model. Further, our model shows that it is possible to

achieve carbon neutrality at lower welfare costs when a carbon tax is combined with a

research subsidy for clean technologies as emphasized in Acemoglu et al. (2012).

Our paper is most closely related to the literature on directed technical change and

climate in general equilibrium.3 Our theoretical framework extends the literature in

noteworthy dimensions. Most importantly, our model allows energy-consuming firms

to be heterogeneous in their capability to substitute clean for dirty fuels, in contrast to

most models featuring a single elasticity of substitution parameter (constant and exoge-

nous through the CES aggregate production function) applying to the whole economy.

Furthermore, endogenous exit and entry in response to climate policy induced by firm

heterogeneity in our model is able to reproduce the empirical observation that the econ-

omy as a whole becomes more capable of substituting clean for dirty energy over time

as climate policy becomes more stringent, which is a feature not captured by previous

models. Particularly related to our paper are Baccianti and Smulders (2021) where

the aggregate elasticity of substitution between clean and dirty inputs changes endoge-

nously through the interaction between sectoral heterogeneity in pollution intensities

and demand for polluting inputs, and Jo and Miftakhova (2022) where the elasticity

of substitution is endogenized as a function of the relative use of clean energy in the

economy. Yet, neither paper explicitly models industry dynamics through endogenous

entry and exit of firms, which is the central focus of our analysis. Finally, our paper

is related to the growing group of papers that emphasize the structure and dynamics

of the industries in the context of environmental regulation (Ryan, 2012; Fowlie et al.,

2016; Miller et al., 2017; Leslie, 2018), but is distinguished by our framework that

marries the issue of industry dynamics to directed technical change and by our focus

on how dynamic industry response affects the economy-wide elasticity of substitution

3See, for example, Acemoglu et al. (2012); Bretschger and Smulders (2012); Golosov et al. (2014);
Fried (2018); Greaker et al. (2018); Borissov et al. (2019); Hart (2019); Hassler et al. (2021); Baccianti
and Smulders (2021); Jo and Miftakhova (2022).
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which is a critical determinant of the cost of environmental policy.

The rest of the paper is organized as follows. Section 2 provides stylized empirical

facts that motivate our model. Section 3 presents the model. Section 4 describes

our data and quantitative analysis. Section 5 presents results from our quantitative

analysis. The last section concludes.

2 Stylized facts

This section documents two stylized facts that motivate the key features of our model,

namely, firm heterogeneity in the capability to substitute clean for dirty energy and

a positive correlation between the economy-wide potential for energy substitution and

the stringency of climate policy. We use microdata from the French manufacturing

sector for 1995 - 2015. The data come from two main sources: the Enquête sur les

Consommations d’Énergie dans l’Industrie (EACEI) that provides information on en-

ergy consumption and expenditure by fuel and Fichier approché des résultats d’Esane

(FARE) that contains information on detailed firm characteristics. We aggregate the

consumption of different fuels to a clean and a dirty bundle for each firm in order to

investigate the elasticity of substitution between the two types of energy. Following

prior studies (Papageorgiou et al., 2017; Jo, 2020), we add up electricity, steam and

renewables into the clean bundle and all other types (natural gas, petroleum products,

etc.) into the dirty bundle. The unit costs for clean and dirty energy are obtained

by dividing the expenditure measures (that are similarly aggregated to the clean and

dirty bundle) by the corresponding consumption measures. Detailed descriptions of

the data are relegated to Section 4.1.

2.1 Firm heterogeneity in the elasticity of substitution

To document heterogeneity in the elasticity of substitution between different types of

energy across firms, we estimate the following equation with industry θs, region µr,

year fixed effects δt by quantile regression:

ln

(
bjt
gjt

)
= σ ln

(
pgjt
pbjt

)
+ θs + µr + δt + ϵjt (1)

where gjt, bjt are clean and dirty energy consumption of firm j in year t and pgjt and pbjt
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reflect the unit cost of clean and dirty energy, respectively.4 The quantile estimation

allows us to examine heterogeneity in firms’ capabilities of energy substitution across

different quantiles of the conditional distribution of the relative input ratio, ln(bjt/gjt).

The endogeneity of firm-level energy prices stemming from omitted variable bias

is recognized in the literature.5 Thus, we follow earlier studies (e.g., Linn, 2008; Sato

et al., 2019; Jo, 2020; Marin and Vona, 2021) and apply instruments based on national

energy prices. The instrument for the price of clean energy p̃gjt is constructed as follows:

p̃gjt = pgj0 ×
t∏

s=1

(1 + γgs ) (2)

where γgt is the growth rate in the national average price of clean energy between

t − 1 and t. Intuitively, the instrument applies the growth rates of the clean energy

price at the national level to the firm-specific pre-sample price of clean energy, thus

isolating variation caused only by changes in national energy prices that are unlikely

to be correlated with firm-level unobservables. The instrument for the price of dirty

energy is similarly constructed. We use these two instruments to instrument for the

log price ratio in equation (1).

Figure 1 graphically reports IV estimates of the elasticity of substitution between

clean and dirty energy across five different quantiles associated with the distribution

of the relative dirty energy consumption (our dependent variable). The graph shows

that the elasticity of substitution varies significantly across firms with different levels

of the relative dirty energy consumption even within the same sector (note that all

regressions include sector fixed effects). Firms in the 10th percentile (cleaner firms)

are associated with an elasticity of substitution over 3, while those in the 90th percentile

(dirtier firms) display a lower elasticity of substitution around 2.6. The estimates are

4It is known that exploiting time-variation in time-series data or panel data with fixed effects
captures short-term substitution, while exploiting cross-sectional variation captures long-term sub-
stitution (Arnberg and Bjørner, 2007). Therefore, we do not include firm fixed effects to be able
to interpret the estimates as a long-run elasticity of substitution, which is closer to the theoretical
interpretation of the parameter. Further, exploiting only within firm variation discards changes in
prices that induce entry, exit and the reallocation of inputs across firms, which is a key feature of our
theoretical model in the next section.

5For instance, there might be productivity shocks at the firm level that may affect energy demand
and the unit price of energy. That is, to the extent that firms take into account their factor-specific
productivity when choosing inputs, a positive productivity shock in the use of green energy, for
instance, would affect the relative input ratio by changing the demand for green energy, which in turn
may affect the price ratio through changes in quantity discounts (i.e., lower unit price due to higher
demand for green energy).
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Figure 1: Heterogeneity in the Elasticity of Substitution across Firms

Note: Estimates of the elasticity of substitution between clean and dirty energy from quantile regres-

sions. Lower quantiles refer to firms with lower relative shares of dirty energy (cleaner firms) and

higher quantiles refer to firms with higher relative shares of dirty energy (dirtier firms).

statistically different at 1 percent level. Across the whole distribution, we observe

a stable negative association between the relative dirty energy consumption and the

capability of energy substitution. OLS estimates reported in Table A1 show similar

patterns. The results provide evidence for a substantial degree of heterogeneity across

firms in their potential to substitute clean for dirty energy. We conjecture that the

heterogeneity in the elasticity of substitution across firms may lead to heterogeneity in

their ability to cope with climate policy that raises the relative price of dirty energy.

2.2 Substitution capability and the stringency of climate pol-

icy

Next, we examine how the economy-wide elasticity of substitution has evolved over time

and importantly, how it relates to the stringency of climate policy. For the purpose, we

now estimate equation (1) separately for each year between 1995 and 2015 in order to

obtain the elasticity of substitution at each point in time. The instruments and the set

of fixed effects same as in the previous section (without year fixed effects) are used in all

regressions. The IV estimates and the 95 percent confidence intervals are graphically

reported in Figure 2. We observe a clear upward trend in the average elasticity of

7



Figure 2: Evolution of the Average Elasticity of Substitution and the Stringency of
Environmental Policy

Note: Cross-sectional IV estimates of the elasticity of substitution for each year with 95 percent

confidence intervals. EPS index from OECD.

substitution among manufacturing firms: the estimated elasticity of substitution more

than doubles over the 20-year period, increasing from just above 2 in 1995 to over 5 in

2015.

We now explore if there exists any correlation between the observed increase in

the elasticity of substitution over time and the stringency of environmental policy. To

measure policy stringency in the environmental domain, we use the Environmental

Policy Stringency (EPS) index from the OECD for the same time period. Figure 2

shows that environmental policy was becoming more stringent over the examined 20-

year period in France. It is noteworthy that this movement in the index was concurrent

with firms on average growing more capable of substituting clean for dirty energy over

time, pointing to a positive correlation between the two measures. We now turn to our

modeling framework.

3 Model

In this section, we introduce our theoretical framework and characterize the stationary

balanced growth equilibrium.
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3.1 Final good and industrial output

3.1.1 Final good technology

The final good Y is produced competitively using the output of a continuum of in-

termediate firms in a Dixit and Stiglitz (1977) form with an elasticity of substitution

ϵ > 1:

Y =

[∫
j∈J

y
ϵ−1
ϵ

j dj

] ϵ
ϵ−1

. (3)

The demand for each differentiated intermediate good yj and the price index for good

Y are given by profit maximization as:

yj = Ap−ϵ
j , A ≡ Y P ϵ and P =

[∫
j∈J

p1−ϵ
j dj

] 1
1−ϵ

. (4)

where pj is the price of intermediate good yj. We choose the final good as the numeraire

and set its price to unity, i.e., P = 1 and A = Y .

3.1.2 Intermediate good production

Production of intermediate goods by firms requires a fixed cost of operation fp in terms

of unskilled labor. Once the fixed cost is covered, each intermediate firm j produces

their output by combining clean/green (gj) and dirty/brown (bj) inputs according to

the CES production function:

yj = φj

(
ajg

σj−1

σj

j + (1− aj)b

σj−1

σj

j

) σj
σj−1

where φj > 0 denotes a productivity parameter, aj ∈ (0, 1) a distribution parameter

and σj > 0 the firm-specific elasticity of substitution between clean and dirty inputs.

In order to distinguish firms by their elasticities of substitution, the CES production

function has to be normalized to a benchmark point. This is because the productivity

parameter φj and the distribution parameter aj are intrinsically linked to the elasticity

of substitution (see, for example, Klump and de La Grandville (2000), León-Ledesma

et al. (2010), and Klump et al. (2012) for relevant theoretical discussions), which makes

it difficult to differentiate firms only by the substitution elasticity while holding other
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parameters constant.6 Thus, with benchmark values of input demands, output and

input prices denoted as {g0, b0, y0, pg0, pb0}, the normalized production function reads:

yj = y0

κ0(gj
g0

)σj−1

σj

+ (1− κ0)

(
bj
b0

)σj−1

σj


σj

σj−1

,

where κ0 = pg0g0/(pg0g0+pb0b0) is the expenditure share of the clean input at the point

of normalization. Since firms differ only with respect to their elasticity of substitution

once normalized, we drop j and index firms from now on by σ; for instance, we refer

to yj as y(σ).

With pg and pb representing the input prices and τ a tax on the dirty input, the

variable cost of production cσ(pg, pb) reads:

c(σ) = c0

[
κ0

(
pg
pg0

)1−σ

+ (1− κ0)

(
pb + τ

pb0

)1−σ
] 1

1−σ

(5)

with c0 ≡ (pg0g0 + pb0b0)/y0 represents the benchmark variable cost. By Shephard’s

lemma, the demand for each input can be written as:

g(σ) = y(σ)

(
κ0
c(σ)

pg

)σ (
g0
y0

)1−σ

,

b(σ) = y(σ)

(
(1− κ0)

c(σ)

pb + τ

)σ (
b0
y0

)1−σ

.

(6)

The following lemma establishes that a firm with a higher elasticity of substitution

is able to produce at a lower cost compared to another firm producing the same amount

of output with a lower elasticity of substitution.

Lemma 1. All else equal, the variable cost of production c(σ) is decreasing in σ.

Proof. See Appendix A2.

6In macroeconomics literature, this is particularly important when examining the effects of varia-
tion in the elasticity of substitution on economic growth over time or across countries (Klump et al.,
2012). As the substitution elasticity varies, the ‘dimensional constants’ (the productivity and distri-
bution parameters) also vary in the CES function, making it hard to isolate the impact of varying
elasticities of substitution. de La Grandville (1989) and Klump and de La Grandville (2000) among
others have emphasized the importance of normalizing CES functions as a way to deal with this
dimensional problem when analyzing the theoretical consequences of variation in the elasticity of
substitution.
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The Dixit-Stiglitz structure in (3) supports monopolistic competition in the supply

of each differentiated variety y(σ). Profit maximization of intermediate firms implies

that each firm charges a price that includes a constant markup over its variable cost

c(σ):

p(σ) =
ϵ

ϵ− 1
c(σ). (7)

Firm revenue is then given by p(σ)y(σ) = Y p(σ)1−ϵ (see (4)) and firm profit is

written as:

π(σ) = (Y/ϵ)p(σ)1−ϵ − wlifp, (8)

where wli represents the wage rate of (unskilled) labor in the industrial segment. Note

that since the cost of production is declining in the elasticity of substitution according

to the lemma above, a higher σ is associated with cheaper production, a lower market

price, and higher revenues and profits (because demand is elastic with ϵ > 1), holding

all else constant.

3.1.3 Firm entry and exit

Our setup of firms’ exit and entry closely follows Melitz (2003). There is a large pool of

ex-ante identical potential entrants. Entry into the market entails an initial investment

fe > 0 in terms of unskilled labor, which is thereafter sunk. Once the entry cost is paid,

firms then draw their substitution elasticity parameter σ from a common distribution

ϕ(σ) with a positive support (0,∞); we denote with Φ(σ) its cumulative distribution.7

An entrant with a bad draw of σ may exit immediately and never produce. If a firm

remains in the market and produces, it faces an idiosyncratic shock that forces it to

exit the market at a constant rate δ. As in Melitz (2003), the specification of a common

distribution ϕ(σ) and the exit rate δ exogenously determine the shape of the equilib-

rium distribution of the substitution elasticity and the ex ante survival probabilities.

However, the simple model is nevertheless able to endogenously determine the range

of substitution elasticities for surviving firms and therefore the average economy-wide

capability for energy transition, which are critical margins for our investigation on how

climate policy interacts with the average elasticity of substitution in the economy.

With r representing the discount rate, a firm’s value at the time of entry v(σ) is

7We view this set up of firms drawing their level of elasticity of substitution as firms facing uncer-
tainty about their potential for input substitution once production begins. For example, there may
be uncertainty about the best-practice technologies at the time of firm establishment or about the
conditions of energy supply contracts due to poor management.
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equal to the discounted expected lifetime profits:

vt(σ) = max

{
0,

∞∑
s=0

(
s−1∏
u=0

1

1 + rt+s−u

)
(1− δ)sπt+s(σ)

}
.

With growth stemming from technological innovation in the energy segment of our

economy (will be introduced in the next section) profits in (8) grow with the aggregate

economy-wide technology Q (see Appendix A3), which in turn grows at a constant

rate of g in a stationary equilibrium. Thus, we normalize profits by Q such that

π̃(σ) ≡ π(σ)/Q is constant. The equilibrium stationary value of a firm then reads as:

ṽ(σ) = max

{
0,

∞∑
s=0

(
(1− δ)(1 + g)

1 + r

)s

π̃(σ)

}
= max

{
0,

1

ω
π̃(σ)

}
(9)

where ω ≡ r−g+δ(1+g)
1+r

is an augmented discount factor that incorporates the probability

of exogenous destruction and growth.

Since firms face fixed costs of operation and profits increase in σ, an entering firm

with a bad draw of σ may be forced to exit the industry immediately and never produce,

thus earning zero profits. This decision defines a cutoff level elasticity of substitution

σ∗ that solves π̃(σ∗) = 0, the zero cutoff profit condition, below which firms exit and

do not produce. The distribution of active firms conditional upon successful entry is

then endogenously determined by σ∗ as:

ψ(σ) =

{
ϕ(σ)

1−Φ(σ∗)
if σ ≥ σ∗

0 otherwise
(10)

with 1 − Φ(σ∗) being the ex-ante probability of successful entry. Subsequently, the

average elasticity of substitution of active firms as a function of the threshold σ∗ is

given by:

σ̄(σ∗) =

∫ ∞

σ∗
σψ(σ)dσ. (11)

The last two equations reveal how the shape of the equilibrium distribution of

elasticities is tied to the exogenous ex-ante distribution ϕ(σ) while allowing the range

of elasticities ψ(σ) and hence the average elasticity of substitution levels in the economy

σ̄(σ∗) to be endogenously determined.

All active firms (other than the cutoff firm that makes a zero profit) earn positive
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profits, which implies that the average profit π̄ must be positive. Free entry suggests

that the expectation of future profits conditional on successful entry must be equal to

zero in order to prevent unbounded entry. From (9), we derive the free entry condition:

1− Φ(σ∗)

ω
π̄ = wlife (12)

where the average profit reads π̄ =
∫∞
σ∗ π(σ)ψ(σ)dσ.

3.1.4 Industry aggregates

The zero cutoff profit condition and the free entry condition jointly determine the cutoff

elasticity level σ∗:

J(σ∗) = ωfe/fp, J(σ∗) ≡
∫ ∞

σ∗

[( c(σ)
c(σ∗)

)1−ϵ

− 1
]
ϕ(σ)dσ. (13)

Although there is no closed form solution for σ∗, it can be computed numerically

given the exogenous distribution ϕ(σ) and input prices.8 The following proposition

characterizes how the cutoff elasticity of substitution relates to the size of the tax on

dirty inputs.

Proposition 1. All else equal, the cutoff level of elasticity of substitution σ∗ is non-

decreasing in the tax on the dirty input τ .

Proof. See Appendix A2.

A higher tax on the dirty input increases the cost of production c(σ), which lowers

the profits in (8). According to lemma 1, firms with lower levels of σ that cannot easily

switch to the relatively cheaper clean input will experience a larger increase in their

operating costs and a larger decrease in profits. For some of these firms (close to the

cutoff level of elasticity of substitution), the fall in profits can be substantial enough to

make them unable to meet the fixed cost of operation and to exit the market, pushing

up the survival cutoff level of the elasticity of substitution.

Once σ∗ is determined, we can characterize all aggregate variables such as aggregate

revenue and profit as well as the mass of active firms in the industry (see Appendix

8We note that while σ is non-negative by definition, J(σ∗) is technically defined on (−∞,∞), which
implies that σ∗ may also be negative. Restricting the parametric space such that J(0) > ωfe/fp holds,
ensures that σ∗ is non-negative.
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A3 for details). With M denoting the mass of active firms, the aggregate demand for

the clean and dirty inputs, respectively, reads:

G =

∫ ∞

σ∗
g(σ)Mψ(σ)dσ =Mḡ,

B =

∫ ∞

σ∗
b(σ)Mψ(σ)dσ =Mb̄,

(14)

where g(σ) and b(σ) are defined in (6); ḡ and b̄ denote averages.

In addition, let Me denote the mass of potential entrants. In a stationary equilib-

rium, the additional value from the mass of successful entrants must exactly replace

the changing value of incumbents according to the augmented discount factor ω that

accounts for the probability of exogenous exit as well as growth:

(1− Φ(σ∗))Me = ωM. (15)

The aggregate labor employed in the industry Li is distributed between the labor

used by the entrants Le (both successful and unsuccefful) and the labor employed by

incumbents Lp, which leads to: Li = Lp + Le = Mfp +Mefe. From (12) and (15),

we note that the aggregate industry profit ΠI exactly covers the aggregate entry cost

incurred by entrants: ΠI = wliLe.

3.2 Energy sector

We now turn to the energy sector that supplies the two energy inputs used by inter-

mediate goods producers in the industrial segment described above.

3.2.1 Energy inputs

Clean and dirty energy inputs are produced competitively and are available to every

industrial firm of the economy. The production function for each of the two inputs

combines (unskilled) labor and a unit mass of machines in a constant returns to scale

fashion:

G = L1−αg
g

∫ 1

0

x
αg

gi q
1−αg

gi di,

B = L1−αb
b

∫ 1

0

xαb
bi q

1−αb
bi di.

(16)

Variable qki, with k ∈ {g, b}, denotes the technology embodied in machine xki and
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αk ∈ (0, 1) is the factor share of machines in sector k. A representative producer

of input k maximizes profits by choosing labor Lk and machines xki, while taking

prices (the wage rate and the price of machines) and the level of machine-embodied

technology as given. Note that labor is mobile between the industrial sector and the

energy sector, which is an important margin for our quantitative analysis we present

in the next section. Labor market clearing requires that Lg + Lb ≤ L − Li, where

L is the fixed exogenous supply of unskilled workers in the economy and Li is the

aggregate labor employed in the industrial sector. The profit maximization problem of

a representative input producer is described in detail in Appendix A3.

3.2.2 Machines

There exists a unit mass of machine producers in each energy sector. The machine

producers sell their machines to the energy input producers in their specific sectors.

A machine xki costs one unit of the final good to produce. The market for machines

is monopolistically competitive, such that the machine producers earn positive profits.

In addition, each sector-specific machine producer hires scientists at the market wage

for scientists wsk, with k ∈ {g, b} to innovate on the embodied technology of their

machines. The evolution of technology for machine producer i in sector k is:

qkit = qkt−1

(
1 + γsηkit

(
Qt−1

qkt−1

)θ
)
, k ∈ {g, b}. (17)

Note that time subscript t is introduced to make the state dependence in the evo-

lution of technology explicit: technology in sector k builds on the existing level of

technology qkt−1. skit denotes the number of scientists hired by machine producer i in

sector k in period t. Parameter η captures the degree of diminishing returns to scien-

tific research and γ addresses efficiency in innovation. We allow cross-sector spillovers

in innovation by the parameter θ ∈ [0, 1], following Fried (2018). This is to incorporate

the empirical observation that innovation has been taking place in both sectors, rather

than only in one sector.9 Thus, the specification captures the intuition that if sector

k is relatively backward, then there are many ideas from the other sector that have

not yet been applied in sector k. This “low-hanging fruit” increases the productivity

of research in sector k.

9In France, for example, all energy sources (fossil fuels, nuclear, and renewables) show active R&D
activities measured by non-zero expenditure since the 2000s (IEA, 2019).
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Variable qk denotes the aggregate (average) technology level in sector k:

qkt =

∫ 1

0

qkitdi. (18)

The aggregate economy-wide technology Qt is defined as the average of the tech-

nologies in the two sectors. On a balanced growth path, Q grows at a constant rate of

which we denote with g.

Each machine producer chooses the quantity of machines, the machine price, and the

number of scientists to maximize her profits. She takes the existing levels of technology

as given. Scientist market clearing requires that Sgt + Sbt ≤ S where S is the fixed

exogenous supply of scientists in the economy and Skt is the number of scientists in

sector k in period t. Appendix A3 discusses the profit maximization problem of machine

producers in detail.

3.3 Household

The representative household is inhabited by L workers, S scientists, a unit mass of

intermediate goods producers and a unit mass of machine producers in each energy

input sector. The relative supplies of workers and scientists are fixed. Additionally,

we assume that both workers and scientists are mobile across sectors so that they can

switch sectors without incurring adjustment costs (again, low-skilled labor is mobile

across economic segments, i.e., the industry and the energy sector, as well as between

the two energy sectors). The representative household’s budget constraint is given by:

C = wliLi + wlgLg + wlbLb + wsgSg + wsbSb +Πg +Πb + T (19)

where Πg and Πb are aggregate profits earned by machine producers in the clean and

dirty energy sector, respectively.10 T denotes non-distorting lump-sum transfers, which

in equilibrium are T = τB, where τ , again, is the carbon tax on the dirty energy

consumption.

The aggregate resource constraint implies the final good can be consumed or used

for production of machines:

10Note that profits earned by active intermediate goods producers in the industrial segment of the
economy exactly cover the aggregate entry costs incurred by entrants, and therefore do not enter the
household’s budget constraint as income.
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Y = C +

∫ 1

0

(xgi + xbi)di. (20)

3.4 Equilibrium

A stationary decentralized equilibrium consists of prices for intermediate goods (p(σ)),

prices for energy inputs (pg, pb), prices for machines (pxg , p
x
b ), wages for low-skilled

workers and scientists (wli, wlg, wlb, wsg, wsb), the cutoff level of elasticity of substitution

(σ∗), a mass of active firms (M), a mass of potential entrants (Me), allocation of

low-skilled workers (Li, Lg, Lb), allocation of scientists (Sg, Sb), energy inputs choices

(g(σ), b(σ)), and machines (xgi, xbi) such that (i) g(σ), b(σ) and p(σ) maximize the

intermediate goods producers’ profits; (ii) xgi, xbi and Lg, Lb maximize the energy

input producers’ profits; (iii) pxg , p
x
b , Sg, Sb, xgi, xbi maximize the machine producers’

profits; (iv) Li, Lg, Lb and Sg, Sb maximize the representative household’s utility; (v)

σ∗ is given by (13); (vi) M and Me satisfy (15); (vii) p(σ) clear the intermediate

goods market; (viii) pg, pb clear the energy input markets; (ix ) pxg , p
x
g clear the machine

markets; and (x ) wli, wlg, wlb and wsg, wsb clear labor markets for low-skilled workers

and scientists, respectively.

Although the equilibrium is relatively complex, all equilibrium objects can be writ-

ten in closed form, given the cutoff level of elasticity of substitution and energy input

prices, which we compute numerically. We use this computation in the method of

moments procedure outlined in the next section.

4 Quantitative analysis

To quantify the interplay between firm heterogeneity, industry dynamics and climate

policy, we calibrate our model using micro- and macro economic data between 1995 and

2015 for France. Following the literature, we directly calibrate a group of parameters

from the data series. Next, we jointly calibrate the remaining parameters to match

moments implied by our model to their empirical counterparts. We describe our data

sources and estimation procedures in the next sections.
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4.1 Data

We use the same microdata from the French manufacturing sector as in Section 2. It

comes from two main sources. The first dataset is the EACEI collected by the French

National Institute of Statistics and Economic Studies (Insee) that provides plant-level

information on energy use and expenditures by fuel. It covers a representative sample

of manufacturing plants with at least 20 employees. The second dataset is the FARE,

also collected by Insee. Being a census, the FARE contains information on key firm-

level characteristics such as industry, employees, date of creation and cessation, and

financial information for the universe of businesses operating in France.11

To merge the two datasets, we aggregate the plant-level information from the EA-

CEI to the firm-level. Since the EACEI covers only a sample of manufacturing plants

(although representative in all covered sectors), we only keep firm-year pairs for which

all plants of a firm were surveyed in the EACEI to ensure that the aggregation of en-

ergy use and expenditure is comprehensive at the firm level. The final dataset covers

around 13,000 firms in 19 manufacturing industries for the period between 1995 and

2015.

We aggregate the consumption of different sources of energy to a clean and a dirty

bundle for each firm, with the clean bundle including electricity, steam and renewables

and the dirty bundle consisting of all other fuels (natural gas, petroleum products,

etc.). The firm-specific unit cost of each type of energy is constructed by dividing the

expenditure measures (that are similarly aggregated to a clean and dirty bundle) by the

corresponding consumption measures. The variation in the unit costs of energy across

firms is largely driven by quantity discounts in the French context (Marin and Vona,

2021). Table A2 provides key descriptive statistics by industry. We use the microdata

to obtain key moments such as the average elasticity of substitution between clean and

dirty energy and entrants’ share of employment.

We define the industrial segment of our model (the final and intermediate goods

production) as manufacturing. The energy sector is split into clean and dirty. The

clean sector corresponds to renewables and electricity, a large proportion of which

(over 75 percent) is generated by nuclear energy in France (Eurostat, 2021). The dirty

sector corresponds to mining and quarrying in the data that comprises mining of coal

and lignite, extraction of crude petroleum and natural gas, mining of metal ores, other

mining and quarrying, and mining support service activities. The data sources of

11FARE replaced Fichier de comptabilité unifié dans SUSE (FICUS) in 2008.
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various moments at the sector level are summarized in Table A3.

4.2 External calibration

We take one period to be five years. The discount rate is set to 1.5 percent and we

take the elasticity of substitution between different intermediate products to be ϵ = 2.9.

The labor share in the dirty energy sector 1−αb is set to 0.26, which corresponds to the

average labor cost share in total operating costs in mining and quarrying (Eurostat,

2022b). We normalize the workforce to unity. During our sample period (1995 - 2015),

on average 0.8 percent of workers were engaged in research activities in France (OECD,

2021b). Thus, we set the number of scientists to 0.008.

The parameter θ determines the strength of the cross-sector spillover in innovation.

All else equal, weaker spillover (small θ) will strengthen the effect of directed technical

change with all innovation occurring in one sector. On the other hand, stronger spillover

(large θ) will lead to a stable interior balanced growth path where innovation occurs in

both clean and dirty energy sector. Given that green technologies are relatively more

advanced in the context of France due to the prominence of nuclear energy in France’s

energy system, a small θ will rapidly lead to a corner solution where innovation only

occurs in the clean sector. Thus, we choose a conservative benchmark value of 0.65

for the parameter. We check the robustness of our results to alternative values of this

parameter in the sensitivity analysis. Following Fried (2018), the level of diminishing

returns to innovation parameter η is set to 0.78. The impact of this parameter on our

results is also explored in the sensitivity analysis. Table 1 collates the values of the

parameters discussed so far.

Table 1: External Parameter Values

Parameter Description Value

r Discount rate 0.015

ϵ Elasticity of substitution between goods 2.9

αb Machine share in dirty energy 0.74

θ Cross-sector spillover 0.65

η Diminishing returns 0.78

L Number of workers 1

S Number of scientists 0.008
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The exogenous distribution ϕ(σ) from which firms draw their elasticities of subsitu-

tion is assumed to follow the gamma distribution defined on a positive support (0,∞)

with shape parameter a and scale parameter b. The resulting mean and the variance of

the distribution is ab and ab2, respectively. To parameterize the distribution, we first

note that the average elasticity of substitution we observe from the data — the point

estimate — is estimated from the sample of surviving firms. However, the underlying

exogenous distribution should also capture firms that exit or cannot enter the market

due to their low elasticities of substitution. To operationalize the idea, we note from

Figure 1 that dirtier firms tend to display lower levels of input substitution capabil-

ity. Based on this observation, we make the assumption that the dependent variable

ln(bjt/gjt) in equation (1) is truncated from above: firms that are very dirty and thus

likely to have a low elasticity of substitution are not observed in the data. This as-

sumption allows us to formulate the problem at hand as a sample selection problem

(also known as incidental truncation). Then, the popular Heckman’s two-step proce-

dure can be applied to recover the average elasticity of substitution of the underlying

distribution.

The estimation method applied to our microdata yields 2.84 for the average substi-

tution elasticity of the underlying distribution, which is as expected smaller than the

point estimate that does not correct for the positive selection bias or relates to surviv-

ing firms only, 2.98. Appendix A4 explains the estimation in detail. In the baseline, we

set a = 2.84 and b = 1 so that the resulting average of the distribution is equal to 2.84.

We try other combinations of a and b that keep the average of the distribution constant

but differ in the associated variance of the distribution in the sensitivity analysis.12

Finally, for parameters that normalize the CES production function across inter-

mediate goods producers, we assume g0 = b0 = y0 = 1 without loss of generality. pg0

and pb0 are set to 0.67 and 0.33, respectively, according to the average unit prices of

clean and dirty energy among French manufacturing firms based on the EACEI data.13

12An alternative approach to calibrate ϕ(σ) would to use the distribution implied by the point
estimate (2.84) and its standard error. However, the estimate is very precisely estimated with a
small standard error (0.13) (Table A5), while the quantile estimates in Figure 1 and their associated
standard errors suggest that there exists more substantial heterogeneity than implied by the standard
error of the point estimate. Thus, we fit a gamma distribution on a positive support (since σ is defined
on (0,∞)) such that its mean matches the point estimate and try different standard deviations of the
distribution in the sensitivity analysis. As will be shown in the next sections, this parameterization
fits the data well on the targeted and non-targeted moments.

13We rescale the actual average prices (0.929 euro per TOE for clean and 0.473 euro per TOE for
fossil energy) so that they add up to one. Given g0 = b0 = y0 = 1, this ensures internal consistency
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These values lead to the distribution parameter κ0 and the variable unit cost c0 of 0.67

and 1, respectively, according to their definitions.

4.3 Method of moments

The remaining parameters {αg, δ, fe, fp, γ} are jointly calibrated using the quantitative

implications of our model. For the first four parameters, we use method of moments

that chooses the parameter vector so as to minimize the distance between several key

moments implied by our model and the corresponding moments in the data. The

approach iteratively searches across sets of parameter values for αg, δ, fe and fp until

the model’s moments are as close as possible to the empirical moments. Additionally,

we target the annualized growth rate of GDP per capita of 2 percent on the balanced

growth path, which pins down the innovation efficiency parameter γ.

It is important for our model to capture the relationships between energy prices,

industry dynamics, and production and innovation in the energy sector. We use four

moments in the data — the average elasticity of substitution between clean and dirty

energy in the manufacturing industry, the size of manufacturing relative to the energy

sector in terms of employment, the market size of the clean relative to dirty energy

sector (again in terms of employment), and R&D expenditure in green technologies as

a share of total research expenditure in the energy sector — to discipline our parame-

ters. In particular, a crucial moment from our model to match its empirical counterpart

is the average elasticity of substitution between clean and dirty energy among active

manufacturing firms, σ̄. Using the microdata on French manufacturing firms, we esti-

mate equation (1) across all firms to obtain the target empirical moment of 2.98. The

same instruments as in Section 2.1 are used to address endogeneity concerns and the

estimation controls for industry, region, year fixed effects.

The empirical moment that captures the relative size of the manufacturing sector

in the economy is 0.887, calculated as the share of labor employed in manufacturing in

the sum of labor employed in manufacturing and the energy sector (ILOSTAT, 2022).

The market size of the clean relative to dirty energy sector is measured by the relative

employment in those sectors (Acemoglu et al., 2012) and equal to 5.92 according to the

Structural Business Survey 1996-2008. The share of R&D expenditures in clean energy

sources (renewables and nuclear) in total research expenditures in the energy sector is

0.87 (IEA, 2020). As mentioned above, the relatively large share of green R&D is due

of the normalization parameters: y0 =
pg0

κ0
g0 and pb0 = (1−κ0)y0

b0
(León-Ledesma et al., 2010).
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to the prominence of nuclear energy (and a large amount of R&D resources devoted to

it), which generates around 75 percent of electricity in France.

Table 2: Internal Parameter Values

Parameter Description Value

αg Machine share in clean energy 0.941

fe Fixed cost of entry 0.538

fp Fixed cost of operation 0.020

δ Exogenous rate of destruction 0.085

γ Scientist efficiency 7.642

Table 2 summarizes our parameter estimates. The calibrated αg is 0.94, which is

consistent with green energy technologies such as nuclear and solar, being highly capital

intensive. The model predicts a sizable fixed-cost advantage for operating firms: their

fixed cost of operation is around 4 percent of the entrants’ fixed cost. The exogenous

rate of destruction is calibrated to approximately 1.7 percent per year (8.5 percent over

a five-year period). The scientist efficiency parameter γ = 7.64 matches the targeted 2

percent long-run annual growth rate.

Table 3 reports the values of the moments used for calibration, which match the

data very closely. While all parameters are calibrated jointly by the targeted moments,

the average elasticity of substitution and the size of the industry pin down primarily the

internal parameters associated with the industry, fe, fp, and δ. For instance, a higher

rate of exogenous destruction δ requires the probability of successful entry to be also

higher, which lowers the cutoff level of elasticity of substitution and consequently its

average.14 The market size of the clean relative to dirty energy sector and the research

expenditure moment pin down the labor share in clean energy parameter 1 − αg. All

else equal, a higher market size of clean relative to dirty energy is associated with a

higher labor share in clean energy. It also raises the share of R&D in clean technologies

by raising the profitability in innovation in that sector.

14This is because in a stationary equilibrium, the additional value from successful entrants must
exactly replace the change in the value of incumbents due to the exogenous destruction and growth
(see (15)).
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Table 3: Targeted Moments of Model and Data

Moments Model Data

Average elasticity of substitution 2.977 2.977

Industry size 0.887 0.887

Market size of clean relative to dirty 5.293 5.293

Share of R&D in green 0.871 0.871

4.4 Goodness of fit

We evaluate the performance of our model by looking at several non-targeted moments,

namely, firm entry and the labor cost share in the industry as well as the clean-to-dirty

capital ratio in the energy sector. Firm entry is measured through employment shares

using the microdata from FARE, restricting the sample to manufacturing industries

covered in EACEI. The data on labor cost shares in manufacturing come from Eu-

rostat (2022b). The amount of capital in the clean relative to dirty energy sector is

measured by the ratio of gross investment in tangible goods in electric power gen-

eration, transmission and distribution to the same measure in mining and quarrying

(Eurostat, 2022b).

Table 4: Non-targeted Moments of Model and Data

Moments Model Data

Entrant share 0.059 0.063

Labor cost share in industry 0.187 0.161

Capital in clean relative to dirty 37.8 26.4

Table 4 shows that the values of these non-targeted moments are comparable across

the model and the data, suggesting that the model’s fit is reasonably strong. The share

of entrants and the labor cost share in manufacturing are very similar across the model

and the data. The relative amount of capital in the clean energy sector implied by our

model is higher than the corresponding empirical moment. It is mostly driven by the

machine share parameter in the clean sector αg calibrated to a very high number (0.94

in Table 2) to fit the French context where the clean sector is much larger in terms of

its market share as well as innovation activities compared to the dirty sector.
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Additionally, we calculate the standard errors of the calibrated parameters by boot-

strap. Doing so requires computing the standard errors of the data moments. The

standard error of the first moment in Table 3 is available from the regression (Table

A5). For the last three moments, we compute their standard errors from the annual

data series (when the moments themselves are the averages of the series). Then, we re-

sample the empirical moments 500 times with each iteration being its original moment

plus a random error drawn from a normal distribution with mean zero and standard

deviation equal to the standard errors computed from the data. Finally, we calibrate

the model parameters by targeting these randomly generated empirical moments and

derive their standard errors from their distribution across these 500 calibrations. The

standard errors reported in Table A6 imply a reasonable degree of precision for all the

parameter estimates.

5 Results

5.1 Carbon tax and industry dynamics

We compute a set of counterfactual stationary equilibria to understand and quantify

the effects of dynamic industry response to climate policy. First, we consider two

economies that begin on the same baseline balanced growth path, but in one model,

which we refer to as the endogenous model, the cutoff level of elasticity of substitution

changes in response to climate policy, thus affecting firms’ entry and exit decisions

and the average energy substitution capability among active firms as described in our

theoretical model. In the other model, which we refer to as the exogenous model, this

channel is shut off. Thus, the cutoff as well as the average elasticity of substitution is

fixed at the baseline level.

Our goal is to compare the size of the carbon tax that achieves carbon neutrality

in the new long-run equilibrium across these two economies, in line with France’s long-

term climate policy of reaching net zero emissions.15 It translates to a 76.5 percent

reduction in emissions from the baseline growth path, which we take to be 2015 in our

model.16

15Conforming to the European Green Deal in the European Union approved in 2020, France aims
to achieve carbon neutrality by 2050 which we consider sufficiently long-run, corresponding to our
new long-run equilibria.

16Achieving carbon neutrality entails a reduction in emissions at least by 80 percent compared to
1990 level in addition to large investments in carbon sinks and the utilization of carbon capture and
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Figure 3: The Impact of the Optimal Carbon Tax on the Distribution of the
Substitution Elasticity among Active Firms

We find that the carbon tax required to achieve the policy goal is 214 and 138 euros

per tCO2 (in 2015 euros) in the exogenous and endogenous model, respectively.17 The

optimal tax in the endogenous model is 35 percent lower compared to the one in the

exogenous model. The difference is driven by the change in the equilibrium distribution

of elasticity of substitution induced by industry dynamics. In the endogenous model,

firms with limited substitution capability that cannot easily switch to the relatively

cheaper clean energy experience an increase in operating costs, hence a decrease in

profits. Some of these firms (close to the cutoff elasticity of substitution) are forced to

exit the market when they can no longer cover the fixed cost of operation. Figure 3

graphically shows the impact of the carbon tax on the equilibrium distribution of the

substitution parameters across active firms in the endogenous model. When the tax

is implemented, the cutoff level of elasticity of substitution σ∗ is pushed to the right

and firms with the level of substitution capability between σ∗
b and σ∗

p are forced to exit

the market in the new equilibrium. Consequently, the average elasticity of substitution

among active firms is higher in the long run as a result of the climate policy.

The higher elasticity of substitution in the industry where demand for energy inputs

are determined increases the effectiveness of the carbon tax by shifting the demand for

storage (Eurostat, 2022a). Since France has already reduced their emissions by 15 percent by 2015,
achieving the target mitigation rate of 80 percent requires a further 76.5 percent reduction in emissions
from the 2015 level.

17For reference, the effective carbon price in 2021 was 93 euros per tCO2 in France (OECD, 2021a).
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clean energy by a larger margin in response to the same size of the tax. This in

turn lowers the required tax to achieve the same emissions reduction target in the

endogenous model, compared to the exogenous model. In addition, the larger shifts in

demand lead to stronger incentives to innovate in the clean sector where the demand is

now higher. Over time, more innovation in the clean sector reduces the relative price

of clean energy, which induces further shifts in demand towards clean energy among

industrial firms.

The higher effectiveness of the carbon tax in the endogenous model can also be

demonstrated by applying the optimal tax from the endogenous model (138 euros per

tCO2) to the exogenous model. We find that the same tax leads to a 10 percentage

points lower reduction in emissions when the channel of endogenous industry dynamics

is shut off (66 percent reduction compared to the 76 percent reduction in the endogenous

model). This exercise illustrates that failing to account for dynamic industry response

to climate policy and the subsequent change in the economy-wide capability of energy

substitution can lead to a substantial overestimation of the optimal carbon tax.

Next, to compare welfare in the two economies, we compute consumption-equivalent

changes in welfare by considering the fraction of baseline consumption that will ensure

the same level of consumption in the new equilibria as in the baseline. The gross

welfare costs of climate policy are 7 percentage points lower when dynamic industry

response is taken into account.18

Table 5 provides more details on the mechanisms behind the effect of endogenous

industry dynamics. Panel A reports the equilibrium objects related to the industrial

part of the economy. As explained before, the cutoff level of elasticity of substitution

σ∗ increases from 0.79 in the baseline to 1.1 in the endogenous model (39 percent

increase), pushing up the average elasticity of substitution among active firms σ̄ by

approximately 5 percent. The implication of this can be seen in the mass of active

firms M in the manufacturing industry. While there is a slight increase in the number

of active firms in the exogenous model, there are 3.4 percent fewer firms in the new

equilibrium of the endogenous model due to the exit of least flexible firms.19

18In our quantitative analysis, we generally observe a reduction in welfare with policy interventions.
This is largely because our model does not incorporate the impact of lower emissions and a higher
environmental quality on welfare. Other studies that integrate the environmental quality in the
economy with climate policy often find that reductions in welfare are lower or potentially positive
when the positive impact of the improved environmental quality on welfare is taken into account (e.g.,
Bretschger, 2021).

19The change in the number of active firms in the exogenous model results from the changing average
price that intermediate goods producers charge, which goes up in response to the carbon tax. The
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Table 5: The Impact of the Optimal Carbon Tax

Percentage difference
from baseline

Baseline Endogenous Exogenous
model model model

Panel A. Industry
σ∗ 0.79 39.1 0.0
σ̄ 2.98 4.8 0.0
M 16.05 -3.4 1.0

Panel B. Energy sector
Lg/Lf 5.29 188.3 173.0
qg/qf 10.05 260.3 237.2
Sg/S 0.87 9.2 8.9

Emissions - -76.5 -76.5
Carbon tax - 138.1 213.9
Welfare cost - 13.0 20.1

Notes: The baseline model is the balanced growth path with no car-
bon tax. The percentage differences compare equilibrium objects in
the endogenous and exogenous model that achieve the same emis-
sions reduction target.

The equilibrium objects relevant for the energy sector in Panel B show that the

production and innovation response is generally stronger in the endogenous model

compared to the exogenous model. For example, the relative market size (measured in

labor) of clean energy (Lg/Lf ) increases by 15 percentage points more in the endoge-

nous model than in the exogenous model. The driver behind the difference is partly

the low-skilled labor (previously employed to cover the fixed cost of operation) released

from the manufacturing industry with the exit of firms with limited capability to sub-

stitute clean for dirty energy, which is now going into the clean energy sector where the

demand is higher. This finding is in line with empirical evidence on the reallocation of

labor (Walker, 2011) or creation of green jobs in response to environmental regulation

(Vona et al., 2018; Popp et al., 2020).

Furthermore, the economy in the endogenous model features the relative technol-

ogy in the clean sector (qg/qf ) and the share of scientists working in clean technologies

increase in the average price of intermediate goods is associated with an increase in the mass of active
firms due to the normalization of the final good’s price. See (A.4) in Appendix A3.
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(Sg/S) that are 23 and 0.3 percentage points higher in the new growth path, respec-

tively, compared to the economy in the exogenous model. This stronger innovation

response in the endogenous model is induced by larger demand shifts toward clean

energy in the industry facilitated by the higher average elasticity of substitution in the

new stationary equilibrium.

5.2 Sensitivity analysis

We examine the robustness of our results to four parameters {a, b, θ, η} that are neither

internally calibrated by method of moments nor directly come from the data series.

To begin, the parameters a and b form the underlying exogenous distribution ϕ(σ)

and are set to 2.84 and 1, respectively, in the baseline calibration so that the mean

of the distribution (computed as ab in the gamma distribution) matches the empirical

target of 2.84. Alternatively, we try two other combinations of a and b that preserve

the same mean as in the baseline but are associated with the standard deviation (SD)

that is larger and smaller than the baseline level.20 Economically, a larger SD in the

distribution ϕ(σ) indicates a larger degree of firm heterogeneity, while a smaller SD

implies a weaker degree of heterogeneity in the energy substitution capability across

firms. Further, we try values of θ and η that are 15 percent smaller and larger than their

baseline values. A smaller (larger) θ implies weaker (stronger) cross-sector spillovers in

innovation, while a smaller (larger) η implies lower (higher) efficiency in innovation. For

each set of alternative parameterization (6 in total, two sets of a and b, two values for

θ and η each), we recalibrate the model to match model moments with their empirical

targets as close as possible.

Table A7 reports results from the sensitivity analysis. We note that our main

results are relatively sensitive to the parameterization of the exogenous distribution

ϕ(σ). The difference between the required tax in the endogenous and exogenous model

is smaller when firm heterogeneity is more pronounced, the difference being 26 percent

compared to 35 percent in the baseline. This results from the larger required carbon

tax to achieve the same goal of carbon neutrality in the endogenous model (larger by

13 percent compared to 138 euros per tCO2 in the baseline). Intuitively, the cutoff

level of elasticity of substitution has to increase by a larger magnitude when firms

20Specifically, the two sets are a = 2.84/2, b = 1∗2 and a = 2.84∗2, b = 1/2. The standard deviation
(SD) of the first and second alternative set are 2.38 and 1.19, respectively, each larger and smaller
than the SD of 1.68 in the baseline model. See Figure A1 for illustration.
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are more spread out across the distribution in order to reduce emissions by the same

amount, which is accomplished by a larger carbon tax. The larger carbon tax in the

endogenous model reduces the difference in the optimal tax between the two economies.

Weaker firm heterogeneity has the opposite impact: the difference in the required tax

between the endogenous and exogenous model is now slightly larger (37.5 percent).

When firms are more similar to one another with respect to their energy substitution

capability, a slight increase in the cutoff elasticity of substitution is enough to induce a

sizeable exit of inflexible firms. The average elasticity of substitution among surviving

firms is therefore more responsive to the same amount of the carbon tax, increasing its

effectiveness on reducing emissions in the endogenous model compared to the exogenous

model.

The results are not sensitive to the values of the other two parameters. Generally

speaking, weaker (stronger) cross-sector spillovers and higher (lower) innovation effi-

ciency strengthen (weaken) the innovation response in the energy sector in response

to climate policy. However, the difference in the required tax between the endogenous

and exogenous model is very similar to the baseline.

5.3 Subsidy to clean research and industry dynamics

In this section, we compare the implications of different policy instruments, namely,

a carbon tax and a subsidy to clean innovation, in the presence of endogenous in-

dustry dynamics. To do so, we compute the size of a research subsidy required to

achieve the same policy goal as before in the new long-run equilibrium and compare

the implications of key equilibrium objects associated with the two policy instruments.

We find that optimal research subsidy that achieves carbon neutrality in the new

long-run equilibrium is very large, 73 percent. As a result, the gross welfare cost is

higher (or welfare is lower) by 0.7 percentage points in the economy with the subsidy

compared to the economy with the carbon tax.

Research subsidies as a single policy being more costly than a carbon tax is con-

sistent with findings in prior studies (e.g., Fischer and Newell, 2008). Given that all

policy instruments operate through price incentives that shift demand toward clean

energy, this is primarily due to subsidies providing only indirect price incentives by

advancing clean technologies which lower the price of the clean input over time, rather

than directly affecting final energy prices as in the case of a carbon tax. Another fac-

tor contributing to the difference in our context is cross-sector spillovers in innovation.
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Table 6: Comparison of Tax and Subsidy

Percentage difference
from baseline

Baseline Tax Subsidy
Panel A. Industry
σ∗ 0.79 39.1 39.1
σ̄ 2.98 4.8 4.8
M 16.05 -3.4 -3.6

Panel B. Energy sector
Lg/Lf 5.29 188.3 111.8
qg/qf 10.05 260.3 1,087.3
Sg/S 0.87 9.2 12.7

Emissions - -76.5 -76.5
Welfare cost 13.0 13.7

Notes: The baseline is the balanced growth path with no policy
intervention. The percentage differences compare equilibrium ob-
jects in the economy with the carbon tax and those in the econ-
omy with the subsidy to clean innovation. The level of each pol-
icy is computed to achieve the same emissions reduction target.

This makes the effect of directed technical change weaker as research directed to clean

technologies also benefits dirty technologies through spillovers, dampening the price

effect induced by the increasing productivity in the clean relative to dirty sector.

Table 6 reports equilibrium objects associated with the two different policy instru-

ments that achieve the same emissions reduction target in the long run. The baseline

and tax outcomes are identical to the values in Table 5, but reproduced for conve-

nience. Panel A shows that the two policies lead to changes of similar magnitudes in

the equilibrium objects relevant for the industry. The average elasticity of substitution

goes up by 4.8 percent in response to the tax and the research subsidy. The difference

is more pronounced in Panel B with equilibrium objects relevant for the energy sector.

We find that, without direct price incentives, clean technologies in the economy with

the research subsidy have to expand by four times as much in order to achieve the

same policy target, compared to the economy with the carbon tax. This drives up the

amount of the subsidy required to meet the target, making it more costly than the

carbon tax in terms of associated gross welfare costs.

Yet, we note that endogenous industry dynamics still plays a role. Turning back to

30



the exogenous model, the difference in the welfare costs between a carbon tax and a

research subsidy is more than twice as large (1.6 percentage points as opposed to 0.7

percentage points in the endogenous model) when the channel of industry dynamics

is shut off (Table A8). Intuitively, indirect price incentives generated by subsidies to

clean innovation lead to larger demand shifts toward clean energy in the endogenous

model where the average elasticity of substitution goes up in response to climate policy.

It makes the the research subsidy less ineffective in the endogenous model, resulting in

a smaller difference in the welfare costs (although it is still more costly than the tax)

compared to the difference in the exogenous model.

5.4 Optimal combination of different policy tools

Prior studies have shown that a combination of policies generally outperforms single

policies (Goulder and Parry, 2008). Thus, in this section we use our model to char-

acterize an optimal combination of a carbon tax and a research subsidy that achieves

the policy goal with the minimum welfare costs. To do so, we compute the size of

the subsidy required to achieve carbon neutrality in the new equilibrium for different

levels of the carbon tax ranging between the current carbon tax in France (93 euros per

tCO2) and the required tax to achieve the policy goal in our model as a single policy

(138 euros per tCO2) and compare associated welfare costs.

Panel A of Table 7 shows that the combination of policies that achieves the policy

target with the minimum welfare costs involves a carbon tax of 114 euros per ton of CO2

and a 23 percent subsidy for research in clean technologies. Compared to the single

policy scenarios, the tax and the subsidy are lower by 18 and 68 percent, respectively.

Relative to the tax-only scenario, we find that the combined policies improve welfare

slightly by 0.07 percent in our model, which is consistent with the finding in Acemoglu

et al. (2012) that welfare costs can be lowered by combining a carbon tax with a

research subsidy rather than relying solely on a carbon tax.

Relative to the subsidy-only scenario, welfare improves by 0.9 percent with the

combined policies. The larger welfare gain compared to moving from the tax-only

scenario to the combined policies (0.07 percent) is explained by equilibrium objects in

Table A9 which shows that the combination of policies achieves the emissions reduction

target without expanding clean technologies as much as the subsidy-only case requires,

growing 3.6 times larger in the new equilibrium as opposed to 10 times larger in the

subsidy-only equilibrium (Table 6).
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Table 7: Welfare Comparison between Single and Combination of Policies

Single Combination
policy policy

Tax Subsidy
Panel A. Endogenous model
Tax 138.1 - 113.8
Subsidy - 0.726 0.23
Welfare cost 13.0 13.7 12.9

Panel B. Exogenous model
Tax 213.9 - 190.7
Subsidy - 0.853 0.23
Welfare cost 20.1 21.7 20.0

Notes: The table compares policy outcomes in models that use either
a carbon tax or a research subsidy as a single policy and in a model
that applies a combination of the two policies. Welfare costs show
percentage reductions in consumption relative to baseline welfare on
the baseline balanced growth path without any policy intervention.

In Panel B, we find that the combined policies outperform single policies even when

the channel of industry dynamics is shut off. With the tax and the subsidy lower by

11 and 73 percent compared to the respective single-policy scenarios, welfare improves

by 0.07 percent compared to the tax-only scenario, which is similar to the observation

from the endogenous model. Compared to the subsidy-only scenario, however, the

welfare gain from applying the combination of policies is much larger in the exogenous

model than in our endogenous model (2 percent increase compared 0.9 percent increase

in the endogenous model). This is again because the subsidy is more ineffective in the

exogenous model that does not take into account dynamic industry response than it

is in the endogenous model, as discussed in the previous section. Hence, reducing the

amount of the subsidy leads to larger welfare gains in the exogenous model where the

subsidy tends to be more ineffective.

6 Conclusion

In this paper we build a microfounded model of directed technical change with hetero-

geneous firms. The rich features of the model including heterogeneity across firms in

their capabilities to substitute clean for dirty energy and endogenous exit and entry
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allow us to fully explore the interaction between climate policy, industry dynamics and

the average elasticity of substitution. These features of our model are also empirically

motivated from microdata. For our quantitative analysis, we calibrate the parameters

of our model from micro and macro data through method of moments. Our model fits

the key targeted moments well and also performs well on nontargeted moments.

We use the model to examine and quantify the effects of endogenous industry dy-

namics on the effectiveness and operation of different policy instruments. We find that

accounting for dynamic industry response to climate policy is crucial in the analyses

of optimal climate policy: failing to take into account industry dynamics can lead to

an overestimation of the optimal carbon tax by 35 percent. Our model also reveals

that climate policy can free up resources (labor) from the least flexible firms that exit

the market as a consequence of climate policy, which is then reallocated to the clean

energy sector. Further, we find that a subsidy to clean innovation, which is generally

more costly than a carbon tax, is also more cost effective when industry dynamics is

taken into account.

Several follow-up research questions are left for future research. First, our analysis

can be made richer by allowing the firms to invest in improving their capability to

substitute clean for dirty energy over time. Currently, there is no mechanism for

investment within industrial firms, which leads to their immediate exit when they can

no longer cover the fixed cost of operation. Moreover, exploring the determinants of the

elasticity of substitution at the firm level would also be informative. In our model, firms

randomly draw their level of elasticity of substitution from an exogenous distribution,

as in Melitz (2003) where firms randomly draw their productivity levels. However,

some knowledge in the determinants of firms’ capability of energy substitution at the

firm level will be useful in providing firms with the right incentives that could lead to

an optimal level of substitution capability.
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Appendix

A1 Descriptive statistics and more empirical results

Table A1: Quantile regression: Elasticity of substitution between clean and dirty
energy

Quantiles 0.1 0.25 0.5 0.75 0.9

σ̂ 1.841*** 1.950*** 1.870*** 1.651*** 1.369***

(0.024) (0.017) (0.014) (0.014) (0.015)

Observations 65,884 65,884 65,884 65,884 65,884

Notes: OLS estimates from quantile regression of equation (1). Each col-

umn reports estimates for the quantile specified in the first row of the table.

All regressions include sector, region, year fixed effects. Standard errors are

clustered at the firm level.
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Table A2: Descriptive statistics: EACEI and FARE

Rates of Growth

EC/ED PC/PD EC/E ED/E PC PD Rev/E

Industry (1) (2) (3) (4) (5) (6) (7)

Steel -0.017 -0.035 0.013 -0.008 -0.000 0.032 0.083

Metals -0.017 -0.028 0.011 -0.010 0.000 0.030 0.021

Minerals -0.037 -0.028 -0.007 0.004 0.010 0.040 0.076

Plaster, lime, cement 0.072 -0.038 0.050 -0.033 0.009 0.050 0.079

Ceramic 0.041 -0.030 0.016 -0.010 0.004 0.035 0.043

Glass 0.051 -0.031 0.018 -0.020 -0.000 0.032 0.041

Fertilizer 0.017 -0.041 0.009 -0.005 -0.003 0.038 0.061

Other chemicals 0.114 -0.028 0.031 -0.021 0.009 0.040 0.040

Plastic, rubber -0.117 -0.034 0.007 -0.009 -0.001 0.034 -0.019

Pharmaceutical 0.013 -0.028 0.011 -0.010 0.002 0.032 -0.013

Steel processing 0.024 -0.026 0.010 -0.010 -0.001 0.027 0.032

Machinery 0.039 -0.029 0.012 -0.012 -0.004 0.029 0.017

Electronics 0.035 -0.028 0.005 -0.006 0.001 0.032 0.009

Transport equipment 0.044 -0.027 0.009 -0.009 -0.003 0.026 0.027

Shipbuilding 0.060 -0.035 0.012 -0.014 -0.010 0.029 0.034

Textile 0.017 -0.030 0.009 -0.007 0.001 0.040 0.031

Paper 0.045 -0.030 0.011 -0.010 -0.001 0.030 0.006

Rubber products -0.100 -0.030 0.003 -0.004 0.000 0.031 0.024

Plastic products 0.067 -0.027 0.002 -0.004 0.002 0.030 0.032

Notes: Calculated for 1995-2015. Rev/E in column (7) denotes energy intensity measured

by revenue per unit energy consumption (in kTOE).
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Table A3: Data Sources for Macro Moments

Description Source

Labor cost share Eurostat

Scientists per 1000 workers OECD

Employment in manufactoring and energy ISOSTAT

Employment in clean and dirty sector Structural Business Survey

Fuel specific R&D expenditure IEA

Investment in clean and dirty sector Eurostat

Notes: Labor cost share and investment in the clean and dirty sector are avail-

able for 2009-2015. Employment in manufacturing and energy is available for

2010-2020. Employment in clean and dirty sector is available for 1996-2008.

Scientists per 1000 workers and fuel specific R&D expenditure is available for

1995-2015.

A2 Proofs

Proof of Lemma 1: The proof follows de La Grandville and Solow in de La

Grandville (2017, p.111). One can show that

sign

{
∂ log c(σ)

∂σ

}
=

sign

{
H

(
κ0

(
pg
pg0

)1−σ

+ (1− κ0)

(
pb + τ

pb0

)1−σ
)

− κ0H

((
pg
pg0

)1−σ
)

− (1− κ0)H

((
pb + τ

pb0

)1−σ
)}

,

with H(z) ≡ z log z being a convex function. The negative sign of ∂ log c(σ)
∂σ

follows from

the definition of convexity.

Proof of Proposition 1: First note that J(.) is monotonically decreasing with
dJ(σ∗)
dσ∗ < 0 and limσ∗→∞

dJ(σ∗)
dσ∗ = 0, given ϵ > 1 and lemma 1. Moreover, dJ(σ∗)

dτ
> 0 for

ϵ > 1 since dc(σ)
dτ

< dc(σ∗)
dτ

for σ > σ∗ according to lemma 1. Then, dσ∗

dτ
≥ 0 follows from

(13) and the monotonicity of J(.).
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A3 Characterization of the equilibrium

Industry aggregates Once σ∗ is determined by (13), we can characterize the

distribution of all firm performance measures such as sales, revenue and profit. Let

M denote the mass of active firms in the industrial segment of the economy. The

aggregate revenue, profit and market value are, respectively:

RI = Y =

(∫ ∞

σ∗
y(σ)

ϵ−1
ϵ Mψ(σ)dσ

) ϵ
ϵ−1

=M
ϵ

ϵ−1 ȳ, (A.1)

ΠI =

∫ ∞

σ∗
π(σ)Mψ(σ)dσ =Mπ̄, (A.2)

VI =Mv̄, (A.3)

with average profit π̄ and firm market value v̄ defined before. In equation (A.1),

ȳ ≡
(∫∞

σ∗ y(σ)
ϵ−1
ϵ ψ(σ)dσ

) ϵ
ϵ−1

is the average firm output andM
ϵ

ϵ−1 measures gains from

specialisation in the use of intermediates, a common feature in the endogenous growth

literature (Romer, 1990; Grossman and Helpman, 1991). The aggregate price index P

(set to unity) is given by:

P ≡ 1 =

(∫ ∞

σ∗
p(σ)1−ϵMψ(σ)dσ

) 1
1−ϵ

=M
1

1−ϵ p̄ =⇒ p̄ =M
1

ϵ−1 , (A.4)

where p̄ =
(∫∞

σ∗ p(σ)
1−ϵψ(σ)dσ

) 1
1−ϵ . In turn, with (4), (A.4), the aggregate variable

cost of production is:

K =

∫ ∞

σ∗
c(σ)y(σ)Mψ(σ)dσ =

ϵ− 1

ϵ
Y. (A.5)

The industry’s balance equates profits with revenues minus variable and overhead

costs:

ΠI = Y −K − wliLp. (A.6)

Also from (12) and (15), we derive ΠI = wliLe. This implies that the aggregate

profits from active firms in (A.6) exactly cover the aggregate entry costs incurred by

entrants. Combining the two expressions, we derive the total total unskilled labor

employed in the industrial segment of the economy:
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LI =
Y/ϵ

wli

. (A.7)

From (8), (A.6), (A.7), and (12), the mass of active industrial firms is written as:

M =
LI

ω
1−Φ(σ∗)

fe + fp
. (A.8)

Input producers’ optimization problem The energy input producer chooses

labor and machines to maximize profits taking prices as given:

max
Lki,xki

pkL
1−αk
ki

∫ 1

0

xαk
ki q

1−αk
ki di− wlkLki −

∫ 1

0

pxkixkidi. (A.9)

where pk is the market price of energy input k and pxki is the price of machine i in sector

k ∈ {g, b}. The demand for machines is then:

xki =

(
αk
pk
pxk

) 1
1−αk

Lkqki (A.10)

where 1/(1 − αk) captures the price elasticity of demand for machines. This implies

that the equilibrium production level of each energy input is written as:

G =

(
αg
pg
pxg

) αg
1−αg

Lgqg,

B =

(
αb
pb
pxb

) αb
1−αb

Lbqb.

(A.11)

Finally, the inverse demand function for low-skilled labor reads:

wlk = (1− αk)

(
αk

pxk

) αk
1−αk

(pk)
1

1−αk qk, k ∈ {g, b}, (A.12)

The two expressions above, (A.11) and (A.12), suggest that on the balanced growth

path (BGP), G and B as well as the wage rate wlk will grow with the aggregate tech-

nology Q (since qg and qb, and subsequently Q, grow at the same constant rate g on

BGP). Note also the wage for low-skilled labor wlk is the same as the wage in the

industrial sector of the economy in equilibrium.
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Machine producers’ optimization problem The machine producers produce ma-

chines to sell to the energy input producers. As mentioned in the main text, each

machine costs one unit of the final good to produce. Each machin producer chooses

price, quantity of machines, and the number of scientists to maximize profits. The

optimization problem is given by:

max
pxki,xki,ski

pxkixki − xki − wsski (A.13)

which is subject to the evolution of technology (17) and the demand for machines

(A.10). The optimization of the machine producer in the clean energy sector yields:

wsg = ηγαg(1− αg)s
η−1
git

(
Qt−1

qgt−1

)θ (
qgt
qgit

)αg qgt−1

qgt
pgG, (A.14)

xgi =
(
α2
gpg
) 1

1−αg Lgqgi, (A.15)

where for (A.14) we employed (A.11). The optimization problem of the machine pro-

ducer in the dirty sector is similar. With the usual assumption of symmetry across

firms, each firm in sector k ∈ {g, b} has the same level of technology qki = qk (such that

in (A.14) qk/qki = 1), sales xki = Xk, profits πki = Πk, and scientific labor ski = Sk.

Equation (A.14) sets the marginal cost of scientific labor equal to its marginal

benefit in innovation. Note that in equilibrium, wsg = wsb holds, implying a no-

arbitrage condition for active research in both sectors. Equation (A.15) combined with

the inverse demand function for machines gives pxk = 1/αk.

A4 Calibration of the exogenous distribution ϕ(σ)

In our model, firms draw their substitution elasticity parameter σ from a common

distribution ϕ(σ) with a positive support (0,∞). We assume ϕ(σ) follows the gamma

distribution which is also defined on a positive support (0,∞) and has two parameters:

shape parameter a and scale parameter b. Since firms with a bad draw of σ immediately

exit the market without producing, they are not observed in the data. Thus, the average

elasticity of substitution estimated from the sample of active firms by using (1) is likely

to be larger than the average substitution elasticity of the underlying distribution, or

in other words, the observed sample of firms contains positive sample selection bias.

Formulating the problem at hand as a sample selection problem (also known as

incidental truncation), we apply the popular Heckman’s two-step procedure to correct
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Table A4: Probit estimation: Exit and survival probability

(1) (2) (3)
Exit Exit Survival

log
pgit
pbit

0.108*** 0.002 -0.002

(0.024) (0.033) (0.033)
Age -0.003*** -0.003*** 0.003***

(0.001) (0.001) (0.001)
Energy intensity 0.026*** 0.015 -0.015

(0.008) (0.009) (0.009)

Industry FE ✓ ✓
Region FE ✓ ✓
Year FE ✓ ✓

Observations 55,228 55,228 55,228

Notes: Probit estimation results. The dependent vari-
ables are written below the column number.

for the selection bias and recover the average elasticity of the underlying distribution.

The first step is to estimate the selection equation by Probit. Although we do not

observe potential entrants that fail to enter the market due to their bad draws of σ,

it is possible to identify firms that exit in the next period in our data. In light of our

model, we view these firms as exiting due to their low elasticities of substitution. We

first explore whether this view is reasonable. Table A4 reports the Probit estimates of

the exit probability predicted by the log price ratio, the main explanatory variable in

(1), as well as other variables that may affect exit probabilities but do not enter (1).

Variables have expected signs. In column (1), we find that a higher unit price of clean

energy relative to dirty energy is associated with a higher probability of exit. This is

consistent with our model that dirtier firms that generally pay a higher unit price of

clean energy due to lower quantity discounts are more likely to exit the market. Age is

negatively correlated with exit probability, implying that younger firms are more likely

to exit than older, established firms. Finally, energy intensity measured by energy

consumption per employee is positively correlated with exit probability.

Since firms observed in the data are surviving firms, we use the estimation in

column (3) where the dependent variable is transformed as survival (1- exit) in order

to construct the Inverse Mill’s Ratio (IMR) term that corrects for the selection bias.
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Table A5: The average elasticity of substitution between clean and dirty energy

(1) (2)
ln (bjt/gjt) ln (bjt/gjt)

log
pgit
pbit

2.977*** 2.835***

(0.137) (0.130)
IMR -1.753

(1.082)

Industry FE ✓ ✓
Region FE ✓ ✓
Year FE ✓ ✓

Observations 65,884 53,765

Notes: IV estimates using instruments de-
veloped in Section 2. Standard errors are
clustered at the firm level.

Then, we estimate equation (1) using the same instruments developed in Section 2 with

the IMR term as an additional control. Importantly, we treat firms that would exit in

the next period as having exited in the current period already and hence treat their

information on energy consumption and prices as missing (or truncated), estimating

the second step only on the set of firms that continue to survive in the market.21 The

average elasticity of substitution with and without correcting for the selection bias are

presented in Table A5. As expected, the estimate in column (2) with the IMR term is

smaller than the estimate in column (1) that does not account for the positive selection.

In the baseline calibration, we set a to 2.84 and b to 1 so that the resulting average

of the exogenous distribution is equal to the estimate in column (2). We try other

combinations of a and b that keep the average of the distribution constant but differ

in the associated variance of the distribution in the sensitivity analysis: for example,

a = 2.84/2 and b = 2 and a = 2.84∗2 and b = 1/2. Figure A1 plots these distributions.

21An typical example of the Heckman’s two step procedure in labor economics is to estimate Probit
in the first step to predict the probability of labor market participation on a sample of individuals and
estimate the effect of some explanatory variables of interest (e.g., education, experience) on income in
the second step on the sample of those who do participate in the market and whose income is observed
in the data. See Greene (2008) for details.
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Figure A1: Exogenous distributions of ϕ(σ)

Note: Gamma distributions with different shape (a) and scale (b) parameters that have the same

average but different standard deviations.

A5 Additional results from quantitative analysis

Table A6: Mean and Bootstrap Standard Errors of the Internal Parameters

Parameter Description Mean

(SE)

αg Machine share in clean energy 0.940

(0.02)

fe Fixed cost of entry 0.517

(0.25)

fp Fixed cost of operation 0.021

(0.02)

δ Exogenous rate of destruction 0.105

(0.04)

γ Scientist efficiency 7.941

(0.136)
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Table A7: Optimal Carbon Tax in 6 Sensitivity Analyses

Optimal tax

Endogenous Exogenous Difference

Variation model model in percentage

Stronger firm heterogeneity 155.8 210.5 -26.0

Weaker firm heterogeneity 100.0 160.0 -37.5

Larger θ 153.9 229.9 -33.1

Smaller θ 118.7 194.3 -38.9

Larger η 121.5 197.1 -38.3

Smaller η 156.3 232.4 -32.7

Baseline 138.1 213.8 -35.4
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Table A8: Comparison of Tax and Subsidy in the Exogenous Model

Percentage difference

from baseline

Baseline Tax Subsidy

Panel A. Industry

σ∗ 0.79 0 0

σ̄ 2.98 0 0

M 16.05 0.9 0.6

Panel B. Energy sector

Lg/Lf 5.29 173.0 72.0

qg/qf 10.05 237.2 1,858.9

Sg/S 0.87 8.9 13.4

Emissions - -76.5 -76.5

Policy - 213.9 0.85

Welfare cost 20.1 21.7

Notes: The exercises are run in the exogenous model. The base-

line is the balanced growth path with no policy intervention. The

percentage differences compare equilibrium objects in the econ-

omy with the carbon tax and those in the economy with subsi-

dies to clean innovation. The level of each policy is computed to

achieve the same emissions reduction target.

48



Table A9: The Effect of Combined Policy Instruments

Percentage difference

from baseline

Baseline Endogenous Exogenous

model model model

Panel A. Industry

σ∗ 0.79 39.1 0.0

σ̄ 2.98 4.8 0.0

M 16.05 -3.5 1.0

Panel B. Energy sector

Lg/Lf 5.29 171.4 157.0

qg/qf 10.05 359.1 330.0

Sg/S 0.87 10.2 10.0

Emissions - -76.5 -76.5

Welfare cost 12.9 20.0

Notes: The baseline is the balanced growth path with no policy in-

tervention. The percentage differences compare equilibrium objects

in the economy in the endogenous and exogenous models that apply

a combination of policies associated with the minimum welfare costs.
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