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Abstract

Dielectric thermoplastic elastomers (TPEs) offer a number of advantages over traditional dielectric
elastomers or rubbers in terms of tailorable mechanical and electrical properties, higher mechanical
strain, and ease of processing and shaping. Such a combination of properties has attracted
increasing attention in flexible energy harvesting and storage applications. The combination of
styrene-butadiene-styrene (SBS) and poly(vinylidene fluoride) (PVDF) has the potential to
provide a combination of high elongation to break and increased relative permittivity, however the
immiscibility between SBS and PVDF results in the polymer blends with poor stretchability and
processing properties. In this work, a dual percolated structure was created in a thermoplastic
elastomer of SBS/PVDF (50/50 wt%), by coupling EVA as a compatibiliser for SBS/PVDF with
multi-walled carbon nanotubes (MWCNTSs) as a conductive filler that created percolation electrical
network. The elongation at break of SBS/PVDF was significantly enhanced by adding 20 wt% of
EVA due to the reduced phase dimensions and enhanced interfacial adhesion. The addition of
MWCNTs enabled the formation of a percolation network at 1 wt% in the SBS phase, followed
by a second percolation at 3 wt% in both PVDF and SBS phases. The relative permittivity of the
composite increased to 22.5 at 1 wt% MWCNT with a fan 6 of 0.5, and further increased to 34.9
with 2 wt% of MWCNT concentration while the fan 6 remained constant. /n-situ electrical testing
for the SBS/PVDF thermoplastic elastomer under strain showed that, at 1 wt% MWCNT, the non-

percolated PVDF islands acted as variable capacitors whose capacitance increased with degree of



stretching. For the dual percolated structure formed at 3 wt% of MWCNT, the capacitance and
conductivity of the composites were unaffected up to 30% strain. The high relative permittivity
and strains of over 100% means that the SBS/PVDF thermoplastic elastomer is readily suitable for
vibration control sensors, variable impedance devices, energy harvesters and artificial muscles and

actuators.
Highlights

e Super compatibilisation and modification effects of EVA for SBS/PVDF thermoplastic
elastomers investigated

e Dual percolation network that forms depends on the MWCNTSs concentration and phase
morphology of the polymer blends

e The dual percolated structure enhanced the relative permittivity and supressed the dielectric
loss, and was not disrupted up to an elongation at break at 30% strain

¢ Rheological dual percolation agreed with electrical dual percolation thresholds
Key Words

thermoplastic elastomer; compatibility; dielectric properties; composite; double percolation
threshold

Introduction

Dielectric elastomers are a class of electroactive polymers able to initiate a mechanical
deformation in response to an electric field or convert structural deformation into an electrical
output whilst operating under an applied field.[1] This electromechanical behaviour makes
dielectric elastomers of great interest for energy harvesting, actuation, artificial muscles and as
sensors.[2, 3] However, large voltages, and associated electric fields, are required to drive
dielectric elastomers with potential differences of up to 10 kV.[4] This issue primarily stems from
the low relative permittivity (&,.) of dielectric elastomers (i.e. €. ~ 2-3). However, both relative
permittivity and the drive voltage are key for developing actuating materials that can undergo large

strains, as seen from equation 1:[5]

T



where S is the uniaxial strain component induced by the applied field, & is permittivity of free
space, Y is the modulus of elasticity, V is the applied electric potential and d is the thickness of the
sample.[5]

Ferroelectric poly(vinylidene fluoride) (PVDF) has a high relative permittivity of &, ~ 12, due to
its highly polar chains, and a high breakdown strength, typically 590 MV m'.[6] The high
breakdown strength allows the material to be subjected to a high electric field without breakdown.
In addition, poled semicrystalline PVDF is piezoelectric due to the polarity and charge distribution
of the VDF units[1], and in energy harvesting devices, piezoelectricity can be used as an initial
charge input for the first cycle. As an example, a piezoelectric PVDF energy harvesting device
was able to harvest 112.8 uW at 35 Hz, which represented an energy density of 8.61 mW c¢m™.
The energy harvesting in this device was reported to be as high as ceramic based piezoelectric

energy harvesting devices.[7]

However, the feasibility of use for PVDF for large-strain applications is limited by its mechanical
properties, most notably a low elongation at break (10%) and high elastic modulus.[6, 8]
Therefore, the blending of PVDF with a dielectric elastomer to form a PVDF thermoplastic
elastomer (TPE) could elicit a material with appropriate electrical properties, such as high
permittivity and high elongation at break. Unfortunately, PVDF is incompatible with many
dielectric elastomers such as styrene-butadiene-styrene (SBS) and can lead to large phase

dimensions and poor mixing.[9]

To increase the phase mixing between the two phases, PVDF can be dynamically vulcanised with
acrylonitrile butadiene rubber to make a TPE with enhanced mechanical properties.[10] The
crosslinks are formed during the melt mixing procedure to physically attach the two phases[11]
and the resulting polymers are termed thermoplastic vulcanises (TPVs). An alternative to TPVs
is to introduce a third polymer which is able to interact with both polymer phases and reside at the
interface between the two.[12] Poly(methyl methacrylate) (PMMA) has been used to effectively
compatibilise PVDF and polycarbonate blends, however, it was necessary to use 20-40 wt% of
PMMA. A copolymer of PMMA, methyl methacrylate-co-glycidyl methacrylate (MMA-co-
GMA) has also been used to compatibilise PVDF and polyamide 6 (PA6). The epoxy groups of
glycidyl methacrylate interacted with the carboxy and amino groups of PA6 and characterisation
showed that the crystallinity of both PVDF and PA6 was reduced by compatibilisation. However,
the elongation at break of PVDF/PA6 increased from 20% to 250% after the introduction of MMA -



co-GMA.[13] Similarly, a poly(amide) 11 and PVDF blend was compatibilised through the
addition of a vinyl acetate-maleic anhydride copolymer.[14] A final approach to increase phase
mixing is to chemically functionalise PVDF. One such example is to compatibilise thermoplastic
polyurethane with maleic anhydride (MA) grafted PVDF [15]; for example the fabrication of a
wind energy harvesting device utilising both PVDF and an elastomer to produce a flexible

piezoelectric sheet resulted in a maximum energy density of 200 mW m™2.[16]

The addition of a conductive filler to a thermoplastic elastomer in an effort to further tailor the
electrical properties can alter the phase morphology of blends, reduce the flexibility and elongation
of a composite. It can also affect the electrical properties by increasing the conductivity and relative
permittivity of the composite. Therefore, it is desirable to incorporate a minimal amount of filler
for the highest electrical properties. The incorporation of partially reduced graphene-oxide into
PVDF increased the relative permittivity to a maximum of €, ~225.[17] However, the introduction
of conductive carbon fillers increases the dielectric loss of the composite significantly due to an
increase in the leakage current.[18] This is more pronounced after the formation of a percolation
network, and the breakdown strength is reduced due to inhomogeneous electric fields present
within the polymer matrix.[19] In polymer blends, a double percolation event can be observed in
which a material undergoes two network formations to result in a two-step increase in electrical
conduction and relative permittivity. This arises due to the selective localisation of the filler in one
phase of the blend over the other, resulting in percolation in one phase before the other,[20] as a
result of inhomogeneous filler distribution. When a double percolation event can take place, the

first percolation event is typically observed at a lower than normal filler concentration.[21]

In this paper, we investigate the relationship of structure and properties of thermoplastic elastomer
(TPE) composites of SBS/PVDF with multi-walled carbon nanotubes (MWCNTs), in which
ethylene vinyl acetate (EVA) was used as a compatibiliser. The effects of the compatibiliser and
MWCNT on the mechanical, electrical and rheological properties of the TPE composites are
investigated. The enhancement of the dielectric properties of the TPE composites and the change
in dielectric properties during mechanical stretching are discussed, since the material is likely to
be subjected to high strain when used as an actuator or harvester. The materials are also subjected
to in-depth characterisation of the crystalline structures and phase morphology of PVDF. This
work shows the first successful formation of a SBS/PVDF TPE with EVA as a compatibiliser to



result in good mechanical properties and high relative permittivity, whilst maintaining a low

dielectric loss followed by its subsequent compositing.
Experimental
Materials

Styrene-butadiene-styrene (SBS, Vector 8508A) was purchased from Dexco. Poly(vinylidene
fluoride) (PVDF, Kynar 740) was purchased from Arkema. Ethylene vinyl acetate (EVA, ELVAX
3190) was purchased from DuPont. Non-functionalised thin multi-walled carbon nanotubes
(MWCNTs) produced by catalytic carbon vapour deposition (grade NC7000, purity > 90%) were
purchased from Nanocyl S.A., Belgium. The MWCNTs had an average diameter of 9.5 nm,
average length of 1.5 um and a density of 1.85 g cm™.[22] Carbon black grease was purchased

from MG Chemicals, UK, to act as a compliant electrode for electrical studies.
Preparation

SBS/PVDF (50/50 wt%) and EVA compatibilised SBS/PVDF (50/50) were prepared by melt-
blending using a HAAKE Rheomix OS Lab Mixer at 190 °C, 60 rpm for 10 mins. The EVA
content was 20 wt% of SBS/PVDF (50/50), denoted as SBS/PVDF/EVA (50/50/20) in this work.
0.3 ~ 3 wt% of MWCNTs were added to the composites, based on the total weight of the
SBS/PVDF/EVA blends and are denoted as 50/50/20/X, where X is the MWCNT wt%. The

samples were then compression moulded using a Rondol manual hot press at 190 °C and 10 kN.
Characterisation

Scanning electron microscopy (SEM) imaging was performed using a Carl Zeiss Sigma Field SEM
on cryofractured samples which were sputter coated using an Au/Pd target. Dynamic Mechanical
Thermal Analysis (DMTA) was performed on samples 5.0 mm x 10.0 mm x 1 mm in single
cantilever mode with a 50 um amplitude and a frequency of 1 Hz using a Triton Tritec 2000 DMA.
For EVA the temperature range of -120 °C to 60 °C was used and for all other samples the
temperature range was -120 °C to 135 °C. Differential Scanning Calorimetry measurements were
carried out using a Mettler Toledo DSC1 Star® between -40 °C and 225 °C at a heating and cooling
rate of 10 °C min’! for two cycles. Fourier transform infrared spectroscopy (FT-IR) was recorded
using a Bruker Tensor 27 at a resolution of 4 cm! with 32 scans for the background and the
samples. Contact Angle measurements were recorded using an Attension Theta Lite using H2O

and CHzl, as the wetting solvents. Liquid drops of 2.5 ul were recorded on samples for a 3-second



period and the contact angle averaged over the period. Oscillatory Rheometry was tested using a
HAAKE Marslll Rheometer at 190 °C with a frequency range of 0.1 to 100 Hz. Impedance
spectroscopy measurements were carried out using a Princeton Applied Research Parstat MC with
a PMC-2000 card and a two-point probe between 10°~10° Hz on thin films of thickness between
100~200 pm and an electrode area of 5 cm X 5 cm. Samples were examined in terms of their
Polarisation-Electric Field (P-E) response using a Radiant RT66B-HVi Ferroelectric Test system
at room temperature with a maximum applied potential of 4kV and a test duration of approximately
10ms; the applied voltage (and associated electric field) was gradually increased to the maximum
value. The sample test areas were approximately 1.3-1.5cm?, and their thickness were 1.09-
1.21mm. The upper and lower surfaces of the material were covered by silver electrodes (Product
No.186-3600) to form electrical contacts.

Mechanical testing was performed using a Shimadzu Autograph AGS-X tester with samples
conforming to ASTM-D638-14 type V. The extension rate was 50 mm min™' (nominal strain rate
= 0.1095 s!) with a 10 kN load cell and tests were carried out at room temperature. Stress
relaxation was investigated by stretching the tensile specimens to 100% nominal strain at 50 mm
min! and holding the samples at constant strain until the stress reached equilibrium. Cyclic stress
softening was performed by deforming specimens to 100% strain and back to 0% under a
controlled elongation rate of 50 mm min’! for 5 cycles. To examine the frequency dependent
electrical properties as a function of strain, the dogbone samples were fitted into a Hounsfield test
machine with small wires attached to the gauge length of sample via a small bead of conductive
epoxy. The electrode along the gauge length of the sample was then formed via a conductive

carbon grease and connected to a Solatron 1260 and 1296 Dielectric Interface.

Results and Discussion
Compatibilisation of SBS/PVDF TPE

The elongation at break for PVDF is typically lower than 15 % due to its semi-crystalline nature.
This limits its use in applications that require a polymer to have good electrical properties, such as
high permittivity, and stretchability. Blending PVDF with SBS elastomer to produce a SBS/PVDF
(50/50) TPE further reduced the elongation at break to 11%, due to the poor compatibility between
the two polymers, see Figure 1. The selection of a compatibiliser is a key in modification of the
properties of SBS/PVDF TPEs. In this work EVA was evaluated for compatibilising SBS/PVDF



blends, as such the addition of 20 wt% of EVA to SBS/PVDF (50/50) significantly increased the
elongation at break to 205% and a tensile strength of 2.95 MPa.
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Figure 1 Characteristic stress-strain curves of SBS/PVDF/EVA and MWCNT containing

composites.

DMTA was performed to evaluate the compatibilisation effect that EVA introduces to SBS/PVDF
(50/50) blend, the storage modulus (E") and loss modulus (E"") in Figure 2a and 2b respectively
are used to determine tan d = E"' /E' in Figure 2¢ which indicates the glass transition temperature
(T%) of the respective polymers in the blend. In SBS/PVDF, the peaks at -83.8 °C, -37.6 °C, 92.4
°C and 118.6 °C are attributed to the 7, of the butadiene block of SBS, PVDF, the styrene block
and o-relaxation of PVDF, respectively.[23] The addition of 20 wt% EVA to SBS/PVDF
noticeably affects the 7,’s of the blend. Firstly, there is a minor increase in the 7, of the butadiene
block from -83.8 °C to -80.4 °C, indicating a van der waals interaction between the butadiene
block with the ethylene block of EVA. The T, of PVDF at -37.6 °C was replaced by a broad hump
with a peak value at -6.8 °C as the carbonyl groups on acetyl hydrogen bond with the fluoride
groups of PVDEF.[24] Since neat EVA should display a 7 at -17.4 °C, the shift in the 7 ’s of the
butadiene block and PVDF demonstrates the interaction of EVA with both SBS and PVDF, as

seen in Figure 2D.
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Figure 2: A) storage modulus of neat EVA, SBS/PVDF (50/50) and the compatibilised blend
SBS/PVDF/EVA (50/50/20), B) the loss modulus of neat EVA and both blends, C) the tan ¢ of
neat EVA and both blends showing the change in 7, upon addition of 20 wt% of EVA through its
compatibilising effect and D) a diagram of the structures of SBS, EVA and PVDF and the
interactions between SBS and PVDF with EVA

The compatibilisation effect of EVA is also reflected by the phase morphology change of the
blends. As shown in Figure 3A, the dimensions of both SBS and PVDF phases were at scale of
hundreds of micrometres and show clear phase separation. The addition of 20 wt% of EVA
significantly reduced the phase dimensions of both SBS and PVDF and resulted in PVDF as long
‘worm-like’ and ovoid shapes in the SBS matrix (Figure 3B). SBS and EVA demonstrate good
phase mixing due to the ethylene units interacting with the butadiene block. In addition, the EVA
carbonyls interact through hydrogen bonding with PVDF,[24] thus ensuring EVA resides at the
interface between PVDF and SBS (Figure 2D). This explains the stress-strain behaviour of the
SBS/PVDF TPEs in Figure 1.



Figure 3: Phase morphology of (a) SBS/PVDF (50/50) showing phase separation, (b)
SBS/PVDF/EVA (50/50/20), (c) SBS/PVDF/EVA/MWCNT (50/50/20/1) with  MWCNTs
selectively localised in the SBS phase and (d) SBS/PVDF/EVA/MWCNT (50/50/20/3) showing a
growing phase separation between the SBS and PVDF phase.

Selective localisation of MWCNT in SBS/PVDF TPEs

The mechanical and electrical properties of SBS/PVDF TPEs will be affected by the dispersion of
MWCNTs, in particular, the selection localisation of MWOCNTs in either phase of
SBS/PVDF/EVA. Contact angle measurements were carried out to provide theoretical evidence
for the locality of the MWCNTs in the SBS/PVDF/EVA TPEs. The MWCNT exhibit a different
affinity to the polymer phases, primarily through electrostatic interactions, n-n stacking or van der
waals forces. To determine this, the wetting coefficient, w,, is calculated from the interfacial
surface tensions between the MWCNTs and SBS, EVA and PVDF and from the interfacial surface

tensions between the polymers, as shown in equation 2:[25]



YMWCNTs-polymer1~YMWCNTs—polymer2
wa — poly poly (2)
Ypolymeri,2

where YMwcNTs-polymert 18 the interfacial tension between MWCNTSs and Polymer 1, ymMwcNTs-polymer2
is the interfacial tension between MWCNTs and Polymer 2 and ypolymer1,2 18 the interfacial tension

between Polymer 1 and 2. As such,

(1) when w, < 1, the MWCNTs prefer to reside in Polymer 1,
(i1) if w, is between 0 and 1 then the MWCNTs are at the interface between both polymers
and,

(i1)  if wais> 1, the MWCNTs prefer to reside in Polymer 2.

The interfacial tension between the two components is calculated using the geometric mean in

equation 3:[26]

Yiz=Y1+v2—2 (Jhdyzd + \/V1py2p> 3)

where y; is the total surface energy of component i and 7 and y/ are the dispersive and polar parts
of the surface energy of component 7 respectively. To calculate the surface energy, the geometric

mean method was used, as shown in equation 4 and 5:[27]

Yiv = (1 + cosf) =2 (JVSdVVLdV + \/Vspvylfjv> 4)

Ysv = V& + vy (5)

where 6 is the observed contact angle, ysv and yLv are interfacial surface-vapour and liquid-vapour
respectively, and the respective superscripts d and p are for the disperse and polar components of
surface tension. For the contact angle measurements, distilled H>O and CHzl> were chosen. The

surface energy data of the solvents are shown in Table 1.[28]

Table 1 Surface energy data of H,O and CH:lI»;[28] superscripts d and p are for the disperse and

polar components of surface tension.

Solvent YLV yLvd YLvP
[N m1] [N m1] [N m1]
H-O 72.8 21.8 51.0




CH:I> 50.8 48.5 23

The observed contact angles for SBS, PVDF and EVA are shown in Table 2. The wetting
coefficient, w,, was calculated using equations 2 — 5 and the theoretical interfacial tension for
MWCNTs[29]. Table 3 shows the results obtained to determine which polymers the MWCNTs
prefer to reside in. From the contact angle measurements, the MWCNTs preferentially reside in

both SBS and the SBS/EV A interface.

Table 2 Measured contact angle of SBS, PVDF and EVA in both H,O and CH:I»

Material | 0 for H2O [°] 0 for CH:I; [°]
SBS 98.8 72.4
PVDF 102.2 67.2
EVA 94.2 63.9

Table 3 Calculated wetting coefficient, w,, of the polymer systems and the preferred residence of

MWCNTs, calculated from equations 2 — 5

Polymer 1 | Polymer 2 ®a | Preferred Polymer
PVDF SBS 1.3190 SBS
EVA SBS 0.6658 SBS/EVA
PVDF EVA 5.82 EVA

SEM imaging in Figure 3C and D shows experimentally the locality of the MWCNTSs upon
compositing the thermoplastic elastomer. MWCNTs reside in the SBS phase and as the
concentration of MWCNTs is increased, a gap is formed between the SBS matrix and the
EVA/PVDF phase. The phase dimensions of the EVA/PVDF phase also increase in size. This
suggests that the presence of the MWCNTS at the SBS/EVA interface reduced the compatibility
between SBS and EVA. The decrease in compatibility is rationalised by considering the
interactions present between SBS and MWCNTs. MWCNTs interact through n-r stacking with

the styrene portion. However, during melt mixing the butadiene section undergoes oxidative



degradation to form free radicals. These free radicals can react with open MWCNT ends and
defects.[30, 31] As the number of MWCNTs present increases, the degree of MWCNT bonding
with the butadiene block increases, reducing the availability of butadiene to interact with the

ethylene units of EVA.

The effect of MWCNTSs on the compatibility of the TPEs is also demonstrated in the stress-strain
curves in Figure 1. The addition of 0.3 wt%, 0.5 wt% and 1 wt% MWCNTs further increased the
tensile strength of SBS/PVDF/EVA from 2.95 MPa to approximately 4.5 MPa. However, this
reduced the elongation at break of the PVDF TPE from 205% to 110%, 127% and 111%
respectively for the three samples. The MWCNTs reduced the elasticity of the SBS component
due to their n-m interactions with the styrene block and the reinforcement of the butadiene block

via the alkene groups,[30, 31] which inhibits the compatibilisation of SBS with EVA.

Further increasing the MWCNT concentration to 2 wt% significantly decreased the elongation at
break to 61.7%, which is a result of the increased incompatibility between SBS and PVDF. Finally,
with a 3 wt% of MWCNTs in the composite, the tensile strength increased significantly to 7.48
MPa and a further reduction in the elongation at break to 30.6%.

Stress relaxation testing was performed on the TPE and composites with an elongation at break of
greater than 100%. This investigated how the MWNCTs affected the stress relaxation behaviour
of the network of entangled polymer chains due to slipping over time. The percentage (%) of
maximum stress of the composites, at time = 0 mins, decreased in a similar way for all materials
tested, and reached between 45 and 48% of the maximum stress after 60 minutes, see Figure 4A.
This showed that the MWCNTs had a minimal impact on the entanglement of the polymer chains

in the composites within the investigated time range.
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Figure 4: A) The decrease in stress as a comparative percentage to maximum stress against time.
B) Cyclic stress softening curves of the first and fifth cycle for SBS/PVDF/EVA (50/50/20) and
MWCNT containing composite blends.

The effect of MWCNTs on the hysteresis energy loss of the TPEs was investigated by cyclic tensile
testing. All materials exhibit a pronounced hysteresis and cyclic stress softening, as can be seen
in Figure 4B. For EVA compatibilised SBS/PVDF (50/50), the hysteresis energy loss is 55.4%
after 5 cycles, showing the highly viscoelastic nature of this blend. The large loss is attributed to
the energy dissipation within the TPE. As 0.3 wt% MWCNT are introduced into the composite,
the hysteresis energy loss increases substantially to 70.1%, showing that the viscous portion of the
composite has increased. Subsequently, as the MWCNT concentration increases further to 1 wt%
the hysteresis energy loss continues to increase, albeit at a slower rate, and reached 75%. The
increase in the viscous loss is attributed to the growing incompatibility between the polymer phases
as MWCNT concentration increases, causing more damage in the polymer matrix on the first

elongation.[32, 33]

The presence of the compatibiliser EVA and the selective localisation of MWCNTs in the blends
affected the crystalline structures of PVDF. DSC was used to determine the change in percentage
crystallinity, X.(%), of PVDF and EVA upon increasing concentration of the MWCNTSs, where
the heat of fusion for 100% crystalline PVDF and EVA was taken to be 104.7 J g-! and 277.1 J g
! respectively.[34, 35]



Table 4 shows the X.(%) changes upon formation of the SBS/PVDF/EVA TPE, compared to neat
PVDF and EVA. This resulted in a large decrease in the X.(%) compared to the neat polymers.
The X«(%) for PVDF decreased by 12.3% whereas X.(%) for EVA decreased by 61.3%. This was
attributed to the addition of EVA acting as a compatibiliser for SBS and PVDF, resulting in high

concentrations of amorphous regions due to better phase mixing.

Table 4: DSC crystallinity data indicating how the components of SBS/PVDF/EV A (50/50/20) are
affected by mixing and by compositing

Material X«(%) PVDF | X.(%) EVA

PVDF 48.7 -
EVA - 22.0
SBS/PVDF/EVA (50/50/20) 42.7 8.51
SBS/PVDF/EVA/MWCNTs (50/50/20/0.3) 45.1 8.70
SBS/PVDF/EVA/MWCNTs (50/50/20/0.5) 45.2 9.42
SBS/PVDF/EVA/MWCNTs (50/50/20/1) 45.0 11.0
SBS/PVDF/EVA/MWCNTs (50/50/20/2) 46.3 11.4
SBS/PVDF/EVA/MWCNTs (50/50/20/3) 47.4 11.8

The effect of compatibilisation on the degree of crystallinity (X %) of a-phase and B-phase in
PVDF was studied by FTIR. Thus, the intensity of the two a-phase peaks at 763 cm™ and 615 cm
! were compared to the two B-phase peaks at 840 cm™ and 1275 cm! respectively, seen in Figure
S1. Table S1 details how the ratios between the peaks changes between neat PVDF and
SBS/PVDF/EVA and demonstrates how the origins of crystallinity changes in PVDF. In neat
PVDF, the B-phase has a greater intensity than the a-phase. However, by blending with SBS and
EVA, the ferroelectric B-phase decreases whilst the non-polar a-phase increases to become more
dominant. Some of the B-phase is converted to a-phase crystallinity whilst some regions become

amorphous as observed by the decrease in X.(%) from DSC.

DSC demonstrated that increasing the concentration of MWCNTs increased X.(%) for both PVDF
and EVA, as seen in Table 4. This is because MWCNTs are able to act as heterogeneous nucleating
sites for crystallisation.[36] The addition of 0.3 wt% of MWCNTs resulted in an increase in X.(%)
for PVDF from 42.7% to 45.1% with a minimal change in EVA. Further increases in the MWCNT



concentration showed an increase in X«(%) for EVA to 11.0% whilst the X.(%) for PVDF remained
constant. This fits well with the contact angle results, as the MWCNTs inhibit the interaction
between SBS and EVA, reducing the compatibility between the two polymers and thus increased
the X.(%) of EVA. Further increases in MWCNT concentration show a smaller increase in X.(%)
for EVA and a much larger increases for PVDF as the MWCNTs begin to also reside in this
polymer phase. The large change in X.(%) between 1, 2 and 3 wt% MWCNT is observed in the

mechanical properties through the significant reduction of the elongation at break, Figure 1.

Figure 5 shows how the a/P phase intensity ratio changes upon addition of MWCNTs and Table
S1 shows FTIR peak intensity data in transmission mode. A higher concentration of o or 3 phase
resulted in a stronger peak with a lower transmission value in the recorded spectra. Therefore, a
higher concentration of a-phase crystallinity resulted in a decrease in the o/ phase intensity ratio

and a higher concentration of B-phase increased the o/f intensity ratio.

Upon addition of 0.3 wt% of MWCNTs, the o/p phase intensity ratio increases demonstrating a
small increase in the B-phase of PVDF. However, between the additions of 0.3 and 2 wt% of
MWCNTs, the o/p ratio decreases between the two peak sets. This shows that the a-phase
crystallinity in PVDF is growing slowly with respect to the B-phase. However, the addition of 3
wt% MWCNTSs demonstrates a large decrease in the o/p intensity ratio. This is due to an increase
in the a-phase compared to the B-phase and demonstrates that MWCNTs also reside in PVDF

between 2 wt% and 3 wt% concentration.
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Figure 5: The change in the o/p phase intensity ratio with MWCNT concentration. A higher ratio

value indicates more B-phase is present in PVDF.

Rheological dual-percolation characterisation

Oscillatory rheology was used to investigate the microstructure of the composites, see Figure 6. In
these elastomeric composites, a large increase in the storage and loss modulus is observed between
SBS/PVDF/EVA/MWCNT (50/50/20/0.5) and (50/50/20/1). This indicates that the increase of
MWCNT addition starts to initiate a percolating network, and restricts polymer chain movement.
Since the MWCNTs are mainly residing in the SBS phase, it demonstrates that a percolation
threshold of MWCNTs was achieved between 0.5 and 1 wt%. The effect of the percolation
threshold is most noticeable at low frequencies since at high frequencies the samples will tend to

plateau.[22]

While the rheology demonstrates that the composites exhibit a second percolation event between
SBS/PVDF/EVA/MWCNT (50/50/20/2) and (50/50/20/3), as there is a large increase in the
storage and loss modulus for these samples. This may be explained by the migration of MWCNTs
from SBS to PVDF phase at the higher concentration, and the formation of a second percolating
network in the PVDF phase. The morphology of the composites with a range of MWCNTs

concentrations are shown in Figure S2



Plotting the complex viscosity (|n"]) vs frequency provides further evidence for reaching
rheological percolation. The complex viscosity shows that the viscosity increases significantly in
the samples at the two percolation events between 0.5 ~ 1 wt% and 2 ~ 3 wt% MWCNTs, as seen

in Figure 6B. Therefore, a rheological double percolation structure was demonstrated.
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Figure 6: Rheology characterisation to show A) storage modulus against frequency and B) 7|
against frequency of SBS/PVDF/EVA (50/50/20) and MWCNT containing composites

Electrical dual-percolation characterisation

As shown in Figure 7, SBS/PVDF/EVA (50/50/20) had a low relative permittivity of &, ~ 3.8 at
10° Hz, which is only fractionally higher than neat SBS and EVA despite containing a significant
portion of PVDF. This low ¢, fits well with DSC and FTIR results that the crystallinity decreases
upon addition of EVA and that the a-phase becomes dominant at the expense of the B-phase,
resulting in a low relative permittivity. For TPE composites, the relative permittivity increased to
& ~ 5.6 with an addition of 0.3 wt% of MWCNT. Both samples maintained a low electrical tan o.
A larger increase in relative permittivity to &, ~ 13.4 for 0.5 wt% MWCNT was observed, whilst
the fan J remained low at 0.1 at 10° Hz. This indicates that addition of 0.5 wt% of MWCNT nears
the percolation threshold for the composite due to the characteristic rapid increase in relative
permittivity, but low increase in tan 6. Once 1 wt% of MWCNT was added, the fan 0 increased

significantly to 0.5 at 10° Hz, with an increase in relative permittivity to &, ~ 22.5. The large



increase in the tan ¢ indicates that the first percolation threshold has been reached in the SBS
phase. As such, the SBS/PVDF TPE composite exhibits a loss above a desirable level for low loss
dielectric applications. Increasing the MWCNT concentration to 2 wt% further increased the
relative permittivity to &, ~ 34.9, whilst the tan J remained consistent at 0.47. As the fan J
remained constant, it demonstrated that the leakage current was suppressed by the insulating PVDF
phase. This is evidenced by the increasing frequency dependency of the composites as the
insulating PVDF phase firstly caused a build-up of charge at the interface of the polymer phases,
increasing the Maxwell-Wagner-Sillars polarisation.[37] Secondly, the increase in MWCNTs

introduced more voids and defects for space charge accumulation.

The suppression of fan J after the first percolation event, accompanied by a high relative
permittivity of up to & ~ 34.9 and a strain at break of over 100%, means that the PVDF
thermoplastic elastomer composite provides a combination of mechanical and electrical properties
that make it readily suitable for vibration control sensors, variable impedance devices, energy
harvesters and artificial muscles and actuators.[1] After the inclusion of 3 wt% of MWCNT, a
second percolation event is observed for the PVDF phase. This caused the relative permittivity to
increase to &, ~395.0 at 10° Hz with a very large tan J of 123.8. This second percolation threshold
is because of the localisation of a MWCNT network in the PVDF/EVA phase. The observation
of the dual percolation events by both rheological (Figure 6) and electrical (Figure 7)
characterisation indicates that the percolation of MWCNT influences both the electrical response

and rheology of the composites.

The existence of a double percolation threshold in the elastomeric composites is further supported
by the changes in the AC conductivity and phase angle between all of the samples. The addition
of 0.3 wt% MWCNT showed a less than one order of magnitude increase in AC conductivity
compared to 0 wt% of MWCNTs, from 1.8 x 10 S m™! to 9.4 x 10° S m’!. In addition, the phase
angle showed that both samples remained fully insulating. Increasing the MWCNT concentration
to 0.5 wt% increased the AC conductivity by another order of magnitude to 7.6 x 10®* S m™! and
the sample showed a deviation from fully insulating in its phase angle at low frequencies as the
composites began to develop a frequency dependency (< 100 Hz). The addition of 1 and 2 wt% of
MWCNT yields similar AC conductivities at 6.3 x 107 Sm™ and 9.2 x 10”7 S m™! respectively as
the first percolation network had been formed in the SBS phase. The phase angle for both is almost

identical across the frequency range and shows an insulating nature (90°) at high frequency which



tends to fully conducting at low frequency (0°). Finally, for inclusion of 3 wt% of MWCNT the
second percolation event in the PVDF/EVA phase increased the conductivity by four orders of
magnitude to 2.7 x 103 S m! at 10° Hz. The phase angle shows that the sample was conductive

across the entire frequency range.
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Figure 7: A) relative permittivity, B) tan J, C) AC conductivity and D) phase angle of
SBS/PVDF/EVA (50/50/20) and MWCNT containing composites.

Figure 8 shows the polarisation-field (P-E) loops of all the samples tested. As shown in Figure 8A,
the SBS/PVDF/EVA sample with no MWCNT filler exhibited straight and linear polarisation-
field loops, which indicates the material acting as a simple dielectric capacitor (C) since OQ=CV

and the charge, Q, is related to the y-axis (polarisation) and the voltage, V, is related to the x-axis



(electric field). This is in agreement with the low loss and phase angle of 90° in Figure 7B and D

respectively; however these measurements are at much higher electric fields. Figure 8B shows that

the sample containing 0.3 wt% MWCNT exhibits a less linear and more open polarisation-field

loop. Such a response is typical of a ‘lossy dielectric’ due to the presence of some electrical

conductivity in the sample and is not due ferroelectric properties.[38] Figure 8C both show that

samples with higher MWCNT content (0.5 wt%) exhibit a more circular polarisation-field loop;

and this indicates that the material is moving from the lossy dielectric response in Figure 8B to a

conductor, and indicates the percolation of MWCNT in the material, as indicated by the rise in AC

conductivity in Figure 7B. Finally Figure 8D shows the sample containing 1 wt% MWCNT. This

shows that the sample is conducting even at low fields and has moved completely away from a

lossy dielectric response to a circular polarisation-field loop.
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Figure 8: Polarisation- electric field (P-E) loop data of SBS/PVDF/EVA containing MWCNT of
(A) 0 wt%, (B) 0.3 wt%, (C) 0.5 wt% and (D) 1 wt% MWCNT.

Electrical dual percolation under mechanical stretching



To understand to change in microstructure and electrical properties during deformation the
capacitance (C) and phase angle () was measured as a function of frequency as the material was
strained, as shown Figure 9. During deformation there is likely to be changes in both sample

geometry and microstructure; therefore C and @ were monitored since capacitance is dependent on

(Aereo)

sample geometry and microstructure (since C = ’

), while phase angle is only dependent on

n

microstructure and insensitive to changes in geometry (since 8 = tan™! (ZZ—,), where Z'is the real
impedance and Z"' is the imaginary impedance).

For the SBS/PVDF/EVA blend, Figure 9A, the capacitance is relatively frequency independent at
low frequencies and this is due to the material simply acting as a dielectric; a small relaxation at
higher frequencies is observed. This also can be seen in Figure 9B, with a phase angle of ~90° at
low frequency. The capacitance increases with strain in Figure 9A, and this is primarily due to
material thickness decreasing with increasing tensile strain; this is also reflected in the limited

change in phase angle in Figure 9B.

The SBS/PVDF/EV A composite with 1 wt% MWCNT is above the first percolation threshold with
MWCNTs only in the continuous SBS phase. The capacitance is highly frequency dependent at
low frequencies, Figure 9C, and this is due to the presence of electrical conductivity[39] due to
percolation of MWCNTs in the SBS phase. This can also be observed in the phase angle which
moves towards 0° at low frequency, see Figure 9D. The low frequency region does not change
significantly with strain and this may indicate that the percolated network of MWCNTs has not
changed to any significant extent during deformation. The intermediate frequency region behaves
similarly to the response seen for SBS/PVDF/EVA, Figure 9A, with a frequency plateau in
capacitance and a small relaxation at higher frequencies. Interestingly, the capacitance is most
dependent on strain in this intermediate frequency region (10>-10° Hz) where the phase angle
approaches ~90°. For this material, the change in phase angle with strain in Figure 9D indicates a

change in the microstructure during deformation.

The SBS/PVDF/EVA with 3 wt% of MWCNT is above the second percolation threshold for both
the SBS and PVDF phase, and the capacitance does not vary significantly with deformation up to
its elongation at break. This is likely to be due to the percolation network of MWCNTs throughout
the composite being unaffected by strain, Figure 9E. The high degree of percolation in this

composite is indicated by the phase angle approaching 0° at low frequencies, Figure 9F.
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Figure 9: Variation in capacitance with extension for SBS/PVDF/EVA TPEs containing
MWCNTs of (A) 0 wt%, (C) 1 wt% and (E) 3 wt%. Variation in phase angle with extension for
the TPEs containing MWCNTs of (B) 0 wt%, (D) 1 wt% and (F) 3 wt%.



We can now put forward a mechanism to understand these responses considering the material as a
dual percolated composite and as a resistor-capacitor network,[40] where the resistor (R)
represents the conductive phase and the capacitor (C) represents the capacitive phase. As shown
in Figure 10A, in the SBS/PVDF/EVA composite with 1 wt% MWCNT above the first percolation
threshold, the composite can be considered as a conductive SBS containing percolated MCNWTs
(which acts as the resistor, R) along with discrete islands of insulating PVDF with no percolated
MWCNT (which acts as the capacitor, C). At low frequencies (f) the AC currents will flow
thorough the conductive SBS matrix, since R/ >>27fC, and the phase angle approaches 0° (see
Figure 9C and E). At higher frequencies the AC conductivity of the capacitive regions increases
and when R ~ 271fC, the capacitive PVDF regions contribute to the AC currents so that the phase
angle approaches 90° as the frequency increases. If the 1 wt% composite material is initially
unstrained the PVDF layers can be considered to be relatively low capacitance (since they have a
relatively high thickness). As the material is deformed and aligned in the direction of strain, the
thickness of the PVDF islands will decrease and their capacitance is increased; as a result the
condition R ~ 2mfC is observed at lower frequencies for the strained material. This can be seen
in Figure 9D where the frequency of minimum phase angle (~ 90°) is achieved at increasingly
lower frequencies as the material is deformed. For the SBS/PVDF/EVA composite with 3 wt%,
the material is above the second percolation threshold and both the SBS and PVDF phases are
conductive and therefore the structure consists of a purely resistive network, as shown in Figure
10B. In this case, no significant changes in capacitance and phase angle are observed with strain,
and the limited change in electrical properties of this fully percolated 3 wt% MWCNT material
during deformation indicates that the MWCNT network is relatively unaffected for the strain levels

up to its elongation at break (~30%).
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Conclusions

This work reports the formation and structure-property characterisation of stretchable
thermoplastic elastomer (TPE) composites of EVA-compatibilised SBS/PVDF blends and
MWCNTs. The addition of 20 wt% of EVA significantly altered the phase morphology, and
resulted smaller PVDF phases dispersed in the SBS matrix.

The EVA compatibilisation of SBS/PVDF system also helped to achieve good stretchability of the
blend, but also led to changes in the a- to B-phase ratio of crystallinity. In neat PVDF, the -phase
has a greater intensity than a-phase crystallinity. However, by blending with SBS and EVA, the
a-phase increased to become more dominant, while the B-phase decreased - some of the B-phase
was converted to a-phase crystallinity whilst some regions became amorphous as observed by the
decrease in degree of crystallinity, as shown by DSC. An initial rheological percolation threshold

for the MWCNTs was achieved between 0.5 and 1 wt%, with a second percolation event between
2 and 3 wt%.

A dual-percolation in electrical and rheological behaviour was found for the composite systems,
and was driven by the content and localisation of MWCNTSs within respective blend phases.

Particularly, the first percolation threshold was reached within the SBS phase at lower loadings of



MWCNT (1-2 wt %), and led to relatively modest increases in the dielectric permittivity (&, ~ 23-
35 at 10° Hz). The inclusion of 3 wt% of MWCNT led to the second percolation event (localisation
of a MWCNT network in the PVDF/EVA phase), and caused a significant increase in relative
permittivity of around &, ~ 395.0 (at 10° Hz), and recording a large fan § of 123.8. The existence
of'a double electrical percolation threshold in the composites was further supported by the changes
in the AC conductivity and phase angle between all of the samples. Changes in the dielectric
properties of materials above the first percolation threshold are due to the non-percolated PVDF
islands acting as variable capacitors, whose capacitance increases with degree of stretching as the

phase dimension becomes thinner.

In general, the composite system reported in this work results in a good combination of mechanical
properties, and high relative permittivity, whilst maintaining a low dielectric loss. The combination
of high permittivity, low dielectric loss and appropriate mechanical properties means that the
EVA-compatibilised SBS/PVDF TPE composite systems can be considered as a suitable material
system for vibration control sensors, variable impedance devices, energy harvesters and artificial

muscles and actuators.
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