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Cost-Benefit Analysis of Phase Balancing
Solution for Data-scarce LV Networks by
Cluster-Wise Gaussian Process Regression

Wangwei Kong, Kang Ma, Member, IEEE, Lurui Fang, Student Member, Renjie Wei, Student
Member, and Furong Li, Senior Member, IEEE

Abstract—Phase imbalance widely exists in the UK’s low
voltage (415V, LV) distribution networks. The imbalances not
only lead to insufficient use of LV network assets but also cause
energy losses. They lead to hundreds of millions of British pounds
each year in the UK. The cost-benefit analyses of phase balancing
solutions remained an unresolved question for the majority of the
LV networks. The main challenge is data-scarcity — these networks
only have peak current and total energy consumption that are
collected once a year. To perform a cost-benefit analysis of phase
balancing for data-scarce LV networks, this paper develops a
customized cluster-wise Gaussian process regression (CGPR)
approach. The approach estimates the total cost of phase
imbalance for any data-scarce LV network by extracting
knowledge from a set of representative data-rich LV networks and
extrapolating the knowledge to any data-scarce network. The
imbalance-induced cost is then translated into the benefit from
phase balancing and this is compared against the costs of phase
balancing solutions, e.g. deploying phase balancers. The developed
CGPR approach assists distribution network operators (DNOs) to
evaluate the cost-benefit of phase balancing solutions for data-
scarce networks without the need to invest in additional
monitoring devices.

Index Terms—cost-benefit analysis, Gaussian process
regression, low voltage, phase balancing, phase imbalance, power
distribution, three-phase system

[. INTRODUCTION

HREE-PHASE imbalance exists in the majority (>70%) of

UK’s low voltage (415V, LV) networks [1] because of the
uneven load allocation and random load behavior [2], [3], [4].
Phase imbalance causes additional energy losses [5], [6] and
extra network investment costs [7], [8]. The additional energy
losses include losses caused by phase residual currents and
imbalance-induced transformer copper losses. The additional
network investment costs include the additional investments on
both LV transformers and network feeders, because phase
imbalance wastes network capacity.

Phase balancing solutions include phase swapping [9], [10],
demand-side management [11] and deploying phase balancers
based on power electronics [12]. To justify any phase balancing
solution, it is important to perform a cost-benefit analysis of the
solution before making any investment decision. However, up
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until now, no published work performs a cost-benefit analysis
of phase balancing solutions for the majority of the UK’s LV
networks that only have a minimal amount of data, e.g. data
collected only once a year. These networks are referred to as
data-scarce LV networks.

A number of references investigate imbalance-induced
energy loss, which is a key input for the cost-benefit analysis.
Reference [6] improves the backward-forward sweeping
method to calculate the power loss in an imbalanced
distribution network. Reference [13] introduces an imbalance
factor to evaluate line losses under the imbalanced situation.
Reference [14] performs a loss analysis based on a power flow
algorithm for imbalanced radial distribution networks.
References [15] and [16] perform power loss analysis for PV
penetrated systems with full data of the network topology, load
and generation. Reference [17] developed a statistical approach
as a combination of clustering, classification and range
estimation to estimate imbalance-induced energy losses for
data-scarce networks.

This paper addresses a different problem from [17]:
Reference [17] estimates the imbalance-induced energy loss
only, whereas this paper performs a cost-benefit analysis of any
phase balancing solution on data-scarce networks. This paper
significantly extends [17] by considering a comprehensive
range of imbalance-induced costs, including the additional
reinforcement cost (ARC), the imbalance-induced energy
losses caused by phase residual currents, and the imbalance-
induced transformer copper losses. Furthermore, this paper
develops a completely different methodology from [17]:
Reference [17] develops a combined approach of clustering,
classification and range estimation, whereas this paper develops
a regression methodology tailored for the cost-benefit analysis
of phase balancing solutions.

This paper addresses a real need for the UK industries: to
identify, among a mass population of LV networks, a subset of
networks that are worth phase balancing, i.e. where the benefit
from phase balancing outweighs its cost [18], [19]. However,
existing solutions require full data from distribution networks.
There is a gap in performing cost-benefit analyses of phase
balancing on data-scarce LV networks. This paper directly
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addresses the industrial need by bridging the gap. This paper for
the first time performs a cost-benefit analysis of phase
balancing for any data-scarce LV network. To this end, this
paper develops a new cost-benefit analysis framework for phase
balancing on data-scarce LV networks. The core of the
framework is a customized cluster-wise Gaussian process
regression (CGPR) approach, which accounts for a full range of
imbalance-induced costs. The approach estimates the total cost
of phase imbalance for any data-scarce LV network by
extracting knowledge from a set of representative data-rich LV
networks and extrapolating the knowledge to any data-scarce
LV network. The imbalance-induced cost is then translated into
the benefit from phase balancing and is compared against the
costs of candidate phase balancing solutions, e.g. deploying
phase balancers.

The CGPR approach supports the distribution network
operators (DNOs) to perform cost-benefit analyses of phase
balancing solutions on data-scarce LV networks. In this way,
DNOs can decide whether phase balancing is economically
feasible and which phase balancing solution yields the greatest
net benefit compared to alternatives.

The remainder of the paper is organized as follows: Section
Il presents an overview of the methodology; Section III
introduces the formulas for calculating imbalance-induced
costs; Section IV presents the cost-benefit analysis framework,
including the CGPR approach; Section V performs a case study
and Section VI concludes the paper.

II. OVERVIEW OF METHODOLOGY

To perform an accurate cost-benefit analysis of a phase
balancing solution, full time-series of phase voltage and current
data are required as the input data. However, these data are not
available from the majority of UK’s LV networks. In this paper,
we have the time-series of phase current and voltage data of 800
representative data-rich LV networks throughout a year. These
networks are located within the business area of a UK DNO and
the data are the deliverables of the “Low Voltage Network
Templates” project [20]. When conducting the trial project and
collecting network data, Western Power Distribution
specifically chose networks of a diverse and heterogeneous
nature so that the dataset is representative. These 800 networks
cover various customer types (domestic, commercial and
industrial customers) and geographical areas (urban, suburban,
and rural areas). For example, Cardiff contains a large number
of commercial customers and load; Monmouthshire is a
representative for the rural area [20].

Fig. 1 presents an overview of the CGPR approach. The key
to this approach is to evaluate the imbalance-induced cost
(including the cost of additional energy losses and the cost of
additional network investment) for data-scarce LV networks.
The approach consists of three stages:

Stage I: The 800 data-rich networks are clustered into three
groups, i.e., urban, suburban and rural, by applying the k-means
clustering method.

Stage II: Input features are selected for regression and these
features are available from data-scarce LV networks. Then,
utilizing the data-rich LV networks, Gaussian process

regression (GPR) models are trained for each cluster of the LV
networks to model the relationship between the selected
features and the two imbalance-induced costs, i.e. the ARC and
additional energy loss cost (AELC). The trained models are
applied to data-scarce networks that only have the
aforementioned features to estimate the imbalance-induced
costs. An advantage of the approach is that it only requires
features that are available from the majority of UK’s data-
scarce LV networks. Cross-validations are performed to
validate the estimated imbalance-induced costs.

Stage III: The total imbalance-induced cost is calculated
based on the estimations of the ARC and AELC. The
imbalance-induced cost is then translated into the potential
benefit from phase balancing. This benefit is compared to the
cost of the phase balancing solution. This leads to a conclusion
of whether the phase balancing solution is economically
feasible or not as well as which phase balancing solution yields
the greatest net benefit compared to alternatives.
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|

III. IMBALANCE-INDUCED COST FOR INDIVIDUAL DATA-RICH
NETWORKS

This section presents the methods to calculate the
components of the imbalance-induced cost for LV networks.
The imbalance-induced cost consists of the ARC and the
AELC. The AELC is broken down into the cost of energy losses
caused by phase residual currents and the cost of transformer
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copper losses. The future cost is discounted back to form the
present value. Then, the cost-benefit analysis is performed
based on present values.

The present value of the ARC is detailed in [7]

ARC = foy(DIB) ~ 3k;DIB; + k,DIB,

logUpn
log (1+71) M (1)

Subject to k, = Asset, - (1 +d) log (147)

x €f{f,t}
where DIB; and DIB; are the degrees of phase imbalance for
main feeders and LV transformers, respectively. The
mathematical definitions of DIB; and DIB, are given by (3)
and (4), respectively. Asset,, is the future asset reinforcement
cost, where subscript y can be either f (feeder) or t
(transformer); d is the discount rate; Uy is the asset utilization
rate and r is the load growth rate.
The factors Uy, DIB; and DIB, are given by (2), (3) and (4),
respectively [7].

_3maxtbel B0 @)

N
Casset

where Py is the power on phase @ and Cygs, is the asset
capacity.
max{Pq)}—%

DIB; = 9 €{A,B,C}, )

where P; is the total power of three phases when the maximum
phase power occurs. Py is defined in (2).
P @
DIB, = —
t Pt
where Py, is neutral line power. P; is defined in (3).

A. Imbalance-induced energy loss

The imbalanced-induced energy loss contains two
components: the energy loss caused by a phase residual current
[17] and the transformer copper loss.

1) Energy loss caused by phase residual current

The energy loss caused by phase residual current is
calculated considering different earthing systems [21], e.g.,
Terre-Neutral-Combined (TN-C) and Terre-Neutral (TN-S)
systems [22]. The majority of the UK’s LV distribution
networks follow the TN-S earthing system [22]. Therefore, this
paper considers the TN-S earthing system.

The estimation of energy loss caused by the phase residual
current is given in [17]

Ne
Ejoss = Z Iprcz(t) "Ry At
t=1

where Lyyo(£) = [I2(£) + I3(t) + I2(t) -

L(®)Is() = IOl (t) = LOIc(®]?
where I4(t), Iz (t) and I (t) are current values for the phases
A, B and C at time t, respectively; L. (t) denotes the phase

)

residual current at time t; R,, denotes the neutral wire resistance.

N, is the number of hours within the year.
The neutral line energy loss for the Nth year is

ElossN = Ejpss (1 + r)Z(N_l) (6)

where N represent the Nth year; r is defined in (1); and E} ¢ iS

defined in (5).
2) Transformer copper loss cost

Phase imbalance increases the transformer copper loss
beyond that under the phase balanced scenario. The transformer
copper loss under the balanced case is given in [23]:

Ne
Etrans = 3 Z I? (t) "Ry, - At (7
t=1

where I (t) is the balanced phase current at time t and R,, is the
resistance of the transformer winding; N, is the number of
hours within a year.
The transformer copper loss under the imbalanced case is
also given in [23]
N¢
E; = Z(IAz(t) + 55 (6) + 15 (8)) * Ry, - At ®)
t=1
where I4(t), Iz (t) and I (t) are current values for the phases
A, B and C at time t, respectively; R,, and N, are defined in
(7).
As a result, the imbalance-induced transformer copper loss
is:
Ey i = Ei — Etrans )

where all variables are defined in (7) and (8).
The transformer copper loss for the Nth year is

B = Ep i (1+1)20 (10)

where r is the load growth rate; all other variables are defined
in (7), (8) and (9).

B. The present value of the total imbalance-induced cost

As stated above, the total additional energy loss is the sum of
losses caused by the phase residual current and transformer
copper. Therefore, the total imbalance-induced energy loss in
year N is given by

EtotN = ElossN +E; v (1D
where Ejo, and E; ;y are defined in (6) and (10), respectively.

The total AELC of the Nth year is transferred to the present
value.

E T
AELC = foy(Erory) = O f"i” ik (12)
where 7 is the energy price; d is the discount rate; and E o, is
defined in (11).

The imbalance-induced energy losses incur costs every year
until the three phases are rebalanced. In contrast, the ARC is a
one-off investment when the asset capacity is reached.
Therefore, the present value of the total imbalance-induced cost
is given by

N
fev.n = frv(DIB) + Z fPV(Etotn)
n=1

where the function fp, (DIB) is defined in (1); the function
fov(Etot,,) is defined in (12).

In this paper, the present value of the total imbalance-induced
cost is referred to as the imbalance-induced cost for simplicity.

(13)
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IV. METHODOLOGY

A. Clustering

In this section, a CGPR approach is presented as a
combination of clustering and a Gaussian process regression
(GPR). As mentioned in the previous section, the imbalance-
induced cost includes two parts: ARC and AELC. Fig. 2 shows
the relation between the annual peak currents and the ARCs for
the 800 LV networks. It can be seen that three distinctive
relationships exist.

4
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0 200 400 600 800

1000 1400
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Fig. 2. The relationship between annual peak current and ARC

The underlying reason is that the ARCs are strongly
correlated to the type of the LV networks, i.e. urban, suburban,
and rural types. The three different relationships justify the
development of a cluster-wise regression as opposed to a simple
regression. Cluster-wise regression is an effective way of
addressing problems with multiple regression models [24] [25].

As shown in Fig. 1, k-means clustering is used to cluster the
networks into 3 groups (rural, suburban and urban) by the
annual peak demands. This corresponds to Stage I in Fig. 1. The
direct output of the clustering is which cluster each LV network
belongs to (i.e. the cluster label for each LV network). From the
outputs, it is straightforward to derive the range of annual peak
currents for each cluster of the LV networks. In this way, given
any LV network, determine which range its annual peak current
falls into. This reveals the cluster to which the network in
question belongs, i.e. whether the network is an urban,
suburban, or rural one.

1200

B. Gaussian process regression

The output of Stage I is used to train Gaussian process
regression (GPR) models to model the relationship between the
selected features and the imbalance-induced costs (i.e., AELC
and ARC). The imbalance-induced costs are calculated using
data from data-rich networks.

Then, the networks are treated as data-scarce networks and
the selected features are used as the input to the trained GPR
models. The GPR models output estimated imbalance-induced
costs.

The regression process consists of the following steps:

1) Feature selection

For the majority of the UK’s LV networks, the annual peak
current () and annual total energy consumption (E;o¢q) are
readily available. According to [17], the average phase current
values can be obtained with minimal efforts from either the per-
phase energy meters or the protection system for data-scarce

networks. The average phase current values are transformed
into a virtual phase residual current:

Ly = \/1‘,3 +L2+ I —TL, - I - (14)
where I;, I, and I, are the yearly average phase current values
for phases A, B, and C, respectively.

Two input feature vectors are defined to suit different levels
of data availability in data-scarce networks. The first feature
vector (V¢) contains two features (I and Epprq)):

Vi1 = [i »Etotatl (15)
This feature vector is applicable in the absence of the average
phase current values. The second feature vector (vf,) contains

three features (I, E;oq; and L)

Vf2 = [i' Etotalllprc] (16)

This feature vector requires that the data-scarce network have
the average phase current data.
2) Gaussian Process Regression model training

In this step, regression models are trained for each cluster of
LV networks. The regression models map the feature vectors
defined in step 1) to the ARC and AELC (the ARC and AELC
are calculated in Section III) separately. In this paper, the
Gaussian process regression (GPR) is adopted. The reasons
why the GPR is adopted are: 1) Gaussian process models allow
the quantification of uncertainty, considering both intrinsic
noises in the problem and parameter errors in estimation [26];
2) the case studies confirm that the GPR achieves the best
performance among classical regression models.

Take the GPR that maps the feature vectors to the ARC as an
example. The GPR model is given by

p (ARC.| ARC,v;, vy ) ~ N (1, 57) (17)

where  u* = K(vs,ve)(K(vp,vs) + 0%1) ARC

=K (vf*,vf*) +0%l -K (vf*,vf) (K(vf, vf) +

021)_11( (vf, vf*)
where p (ARC* | ARC, vy, vf*) is the probability distribution
for ARC estimation; vf and ARC are the feature vector and the
ARC for the data-rich networks, respectively; v; and ARC, are
the feature vector and the predicted ARC for the data-scarce
network, respectively; the ARC is given by (1); N (u*,Z¥)
denotes a Gaussian distribution with the mean u* and
covariance X*; K is a kernel matrix given by the squared
exponential kernel function [26]; o2 is the noise variance; and
I is the identity matrix. The feature vector v¢ could be v¢; and
Vg, as given in (15) and (16), depending on the choice of
features.

The GPR is detailed in [26]. The above GPR model is
developed for each cluster of the LV networks. The GPR is
detailed in [26]. The GPR model for the AELC estimation is the
same as that for the ARC estimation as shown in (17), except
that the ARC is replaced by the AELC. The results are

compared with linear regression, which is detailed in [27] and
which is not repeated in this paper.
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C. Cross-validation

The CGPR approach is validated through k-fold cross-
validation. This is a popular validation method as explained in
[28]. The cross-validation is detailed as follows: the full dataset
of 800 data-rich LV networks, including the features and the
accurate ARC and AELC results, are randomly separated into &
(k=10 in this paper) equal-sized groups. In each iteration of the
k-fold cross-validation, one group of the LV networks are
reserved as the validation set, whereas the remaining nine
groups serve as the training set. The CGPR model is trained
using the training set only. Then, the trained CGPR model
predicts the imbalance-induced costs on the validation set,
which are treated as if they were data-scarce. The outputs are
estimated imbalance-induced costs for the LV networks in the
validation set. These results are compared against the accurate
imbalance-induced cost (the calculated costs from data-rich
networks) results so that the CGPR model is validated. Each
group is selected as the validation set once and there are ten
iterations. It should be emphasized that throughout the process,
the validation set and the training set are strictly separated from
each other and the validation set is not used for training. The .-
fold cross-validation is detailed in Fig. 3.

Read data from 800 LV networks
(features, ARC, AELC)

Randomly separate the data into k
(=10) equal-sized groups

[
' ¥
Set group i as Set the remaining 9 groups as
validation set training set

Train CGPR model on the training set

!

Estimate the imbalance-induced costs for the validation
set using the trained CGPR model, treating the validation
set as data-scarce networks
(]

For the validation set, compare the estimated costs
against the accurate costs to validate methodology

!

Save the errors

i=itl

/ Output mean errors /

Fig. 3. The flow chart of k-fold cross-validation

D. Removal of outliers

Following the cross-validation, 11% of the networks are
identified as the outliers and are removed. This percentage is
derived by wusing Chebyshev’s inequality. Chebyshev’s
inequality is a widely adopted method for removing outliers

[29]. When the distribution of the data is unknown, the
Chebyshev’s inequality is given by:

1
PUX— kS ko) 21— (18)

where X is the set of sample data, p is the mean of the sample
data, o is the standard deviation and k is a factor.

It is common practice to regard data samples that occur
beyond 36 (i.e., k=3) from the mean as outliers [30], [31].
Therefore, the outliers account for approximately 11% of the
whole population of networks. Note that outliers are an
objective existence and they can be identified and removed
from consideration for better performance.

E. Net benefit calculation

The trained CGPR model takes the features of any given
data-scarce network as the input and outputs the estimated
imbalance-induced cost.

Note that the phase balancing solutions may not be able to
fully rebalance the three phases. Therefore, the benefit from
phase balancing is given by the difference of the total
imbalance-induced costs before and after phase balancing

Bl v ~ (19)

and fp';f_xr are the estimated total imbalance-

before
PVy

_ gafter
PV_N

before
where f5, I’;

induced cost before and after phase balancing, respectively; the
superscript ds means data-scarce; the subscript PV_N
represents present value for N years.

Then, the benefit is compared with the cost of the phase
balancing solution to determine whether it is beneficial to apply
the phase balancing solution in question. Hence, the net benefit
of applying the phase balancing solution is given by

B® ~ BEj v — fpb (20)

where Bg‘s,_N is the total benefit of phase balancing for the data-
scarce networks; f,, is the cost of applying a phase balancing
solution.

Note that the net benefit B4 can be negative, which means
that it is not economically feasible to deploy the phase
balancing solution.

V. CASE STUDIES

This section presents case studies. The input data are shown
in Section V-A. The results from the cluster-wise regression
model are presented in Section V-B. Section V-C gives the
discussions. Section V-D gives the cost-benefits analysis for
two phase balancers (ZM-SPC [32] and EQU18 [33]) and active
network management (ANM) scheme, respectively. The case
study is based on the time-series phase current and phase
voltage data from the 800 data-rich LV networks throughout a
year.

A. Imbalance-induced cost for data-rich networks

This sub-section presents the calculation of imbalance-
induced cost for data-rich networks. To derive the additional
energy losses (defined (5) - (10)), the neutral wire resistance
(Ry,) is set as 0.244 Q/km [17]. The winding resistances (R,,)
are calculated from [34] and presented in Table I.
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To derive the additional reinforcement costs (defined in (1) -
(4)), the investment costs of the feeder and transformer are
given in Table I. The discount value (d) is set as 5.0% [1] and
[35]. The load growth rate () is set as 0.82% [36].

TABLE I. PARAMETERS FOR DIFFERENT AREAS [34], [37]

Assets Area Urban Suburban Rural
Transformer investment

cost (K£) 26.4 16.1 5.8
Main feeder investment

cost (k&/km) 67.2 16.4 15.0
Main feeder length (km) 0.2 0.3 0.4
No. of feeders connected 5 35 15
from transformers

Winding resistance (£2) 0.0163 0.0265 0.0413

This paper assumes that the phase currents are 120° apart
from each other. This is because there is hardly any LV network
that has phasor measurements, as distribution network
operators cannot justify the investment in phasor measurements
in terms of the return on investment. Therefore, it is valid to
assume that the phase currents are 120° apart from each other
while phasor measurements are absent.

The phase residual current is the minimum, under the
assumption that the phase currents are 120° apart from each
other. Therefore, this assumption corresponds to a conservative
cost-benefit analysis. If the actual phase currents are not 120°
apart, the phase residual current will increase, so will the
imbalance-induced energy losses and the associated cost. This
means that the potential benefit from phase balancing will also
increase, hence the net benefit will increase.

In this paper, a power factor of 0.9 is assumed and the
harmonic distortion is not considered. The harmonic distortion
results in the decrease of power factor and eventually increases
the ARC. Besides, the harmonic currents cause additional
energy losses which lead to higher AELC. Therefore, it shows
that the estimation of the imbalance-induced costs is
conservative, resulting in conservative net benefits, i.e. the
lower bounds of the net benefits. The actual net benefits can be
higher than the estimated value.

Fig. 4 shows the present values of AELC and ARC for urban,
suburban and rural networks. The average AELC is
approximately twice as much as the average ARC. The rural
networks correspond to the least AELC and the greatest ARC
among all three types of networks. In contrast, the urban
networks correspond to the greatest AELC and the least ARC.

The reason for this is that the rural networks have the largest
DIB (degree of imbalance) values, which causes the greatest
ARC, in both LV transformers and main feeders among the
three types of networks. However, the rural networks have the
lowest loading levels, which lead to the lowest energy losses on
the neutral lines and LV transformers. As a result, the rural
networks have the largest average ARC but least average
AELC. On the contrary, urban networks have the lowest DIB,
which leads to the lowest ARC. They have the highest energy
loss because of their high loading levels. Therefore, the urban
network has the least AELC but largest ARC.
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Fig. 4. The AELC and ARC for the 800 LV networks

B. Cluster-wise Gaussian Process Regression

In this section, the CGPR results are shown, where the cost-
benefit analyses are performed over a time horizon of 10 years.

The ARC and AELC estimation are calculated using four
regression methods: linear regression (LR), cluster-wise LR
(CLR), GPR and CGPR. Results from all methods are validated
through 10-fold cross-validations. The results obtained by
applying these four regression methods are compared with each
other in terms of the root mean squared error (RMSE). As
mentioned in Section IV-A, two feature vectors are used as
input, the first vector v, contains two features (I'and E;ppqp),
while the second vector vy, contains three features (I, Erorar
and l_prc). Therefore, the performances of different regression
methods are compared with each other.

Fig. 5 presents the RMSE values of using LR, CLR, GPR and
CGPR with two and three features. In Fig. 5 - a) (i.e., the ARC
estimation using two features), the GPR model performs better
than the LR model and the CGPR model performs better than
the CLR model in terms of RMSE. The RMSE of CLR is
2,537.94, while the RMSE of CGPR is 1,443.24.

In Fig. 5 - b) (i.e., the AELC estimation using two features),
the GPR model has a similar performance to the LR model and
the CGPR model also has a similar performance to the CLR
model. The RMSE of CLR is 4,885.80 while the RMSE of
CGPR is 4,752.92.
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Fig. 5. Comparison of RMSEs of ARC and AELC estimation with different
regression methods

In Fig. 5 - ¢) (i.e., the ARC estimation using three features),
the GPR method performs better than LR; the CGPR method
performs better than the CLR method. The RMSE of the CLR
is 2,466.06, while the RMSE of CGPR is 1,554.89.

In Fig. 5 - d) (i.e., the AELC estimation using three features),
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the GPR method performs better than the LR; the CGPR
method performs better than the CLR method. The RMSE of
CLR is 2,199.55, while the RMSE of CGPR is 1,487.71. As a
result, CGPR has the best performance among all methods.
For the CGPR model with three features as input, with 95%
confidence, the range of RMSEs are [910.84, 1,309.20],
[913.59, 1,184.83] and [1,916.03, 3,291.87] for rural, suburban
and urban networks, respectively. The suburban networks have
the smallest range of the RMSE while the urban networks have
the largest range of the RMSE. Therefore, the GPR model
performs the best on the imbalance-induced cost estimation for
suburban networks among the three types of networks.

C. Discussions

Using Chebyshev’s inequality, 11% of the networks are
identified as outliers. Fig. 6 shows the comparison of the mean
average percentage error (MAPE) before and after the removal
of outliers. When using two features, the MAPE of the ARC
drops from 29.95% to 23.76% and the MAPE of AELC
decreases from 53.86% to 40.75%. When using three features,
the MAPE of the ARC drops from 30.06% to 23.32% and the
MAPE of AELC decreases from 53.87% to 21.33%.

60% 53.86% 53.87%
50%
0.75%
40% 77
o 29.95% 30.06%
<§t 30% 3.76% 3.32%
20% 7 7
7 77
0% 7, s
ARC ARC AELC
2 Feature 3 Features

m Before removal 7 After removal

Fig. 6. Comparison of results before and after removing outliers

One of the main reasons why the MAPE is approximately
23% is that the CGPR approach only requires two or three
features from data-scarce LV networks. Another reason is that
only one year’s data is used to estimate the imbalance-induced
costs over the future 10 years (or 30 years), resulting in an
accumulation of errors over the years. Among the three types of
networks, the MAPE values for suburban networks are the
lowest. In other words, the cost estimations for suburban
networks demonstrate the best performance among the three
types of networks. On the other hand, the cost estimations for
rural networks demonstrate the worst performance among the
three types of networks.

In general, there is a lack of monitoring in the UK’s millions
of LV networks. The two sets of features are chosen in this
paper because they are either routinely collected by distribution
network operators or are readily available to be collected. Using
these features leads to a feasible cost for data collections and
the feasibility of the cost-benefit analyses, if scaled up from
individual networks to a mass population of networks.
Therefore, the features are chosen to best suit the existing level

of monitoring in the UK’s LV networks and making the
methodology scalable to the whole LV networks.

Utilities use load factors to estimate loss factors, which are
then used to determine the energy losses of the system.
Reference [38] discussed the ways of determining the energy
losses using load factor and loss factor. Two values for the
coefficient ‘a’ are suggested by [38], i.e.,a=0.16 and a=0.3.
Both the values are adopted and the lower error of using this
method to the estimate energy loss cost is 67.09%. The reason
for the large error is that it is difficult to determine the values of
‘a’ for a data-scarce distribution system. Besides, the
distributions system has multiple branches connected to the
main feeder which results in a higher estimation error.
However, the developed CGPR approach only incurs an error
of 21.33% when estimating the AELC. The developed CGPR
approach performs better than the method adopted by utilities.

The estimated AELCs using CGPR are compared with the
actual values for validation. A random selection of the
comparison results (10 networks out of 800 ones) are presented
because of the page limitation. As shown in Fig. 7, the
estimation results follow a similar trend to the actual results.
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Fig. 7. Comparison of actual and estimated total imbalance-induced cost

The use of two features and three features are compared with
each other. The latter is highly recommended as it incurs a much
lower error. However, the use of two features still has its value
just in case some LV networks do not have three features (i.e.
they only have yearly peak current and total energy
consumption). In the absence of the third feature (i.e. the yearly
average phase currents), one way to perform cost-benefit
analyses is to use the two-feature-version of the methodology;
an alternative way is to collect the third feature from the
networks, but this incurs a data collection cost. This cost can be
prohibitively high when the cost-benefit analyses are to be
scaled up to a mass population of networks. Therefore, a trade-
off should be made between the data collection cost and the
accuracy of the methodology for cost-benefit analyses.

Within the dataset of 800 LV networks, 11.2%, 44.4%, and
44.4% are urban, suburban, and rural networks, respectively.
The same dataset was used to: 1) develop 11 representative LV
substation load profiles [20], [25]; 2) classify four types of
phase imbalance in terms of the imbalance direction [39]; 3)
estimate the imbalance-induced energy losses in the neutral and
ground for data-scarce LV networks [17]. These publications
prove the diversity and heterogeneity within the dataset.
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Furthermore, the dataset corresponds to a geographical area of
a similar size and is of a similar nature (a mixture of urban,
suburban, and rural networks) to that used in [40].

Given that the model is trained on the dataset from South
Wales, UK, the model is applicable to networks within the
region of a similar nature to South Wales (a mixture of urban
areas like Cardiff, suburban and rural areas like
Momonthshire). Caution has to be exercised when applying the
trained model on substantially different areas, e.g. central
London which is extremely urban and which is unlike anywhere
else in the UK. The CGPR methodology is generic. If it is to be
applied to other countries or the central London area, it should
be trained on the dataset representative of the area in question.

D. Net benefit calculation

Given any data-scarce network, its imbalance-induced costs
calculated through CGPR are used for a net benefit calculation.
These costs are translated into the benefits of phase balancing
for the data-scarce network using (13).

Table II shows the two selected types of phase balancers,
along with their costs and lifetimes. The net benefits by
applying two phase balancers are calculated using (20).

TABLE II. COSTS OF PHASE BALANCERS

T ZM-SPC EQU18 ANM
ype [32] 33] [41] [42]
Lifetime (Years) >10 >30 >20
Total costs (£) 4,890 2,381 73,600

The net benefits from phase balancing for data-scarce
networks are estimated over the respective lifetime of the two
phase balancers and the ANM scheme, i.e. 10 years for ZM-
SPC, 30 years for EQU18 and 20 years for the ANM scheme.
This paper assumes that power-electronics-based phase
balancers and the ANM scheme can achieve full phase
balancing because they can perform high-resolution real-time
balancing.

As stated in the previous section, it is highly recommended
using three features as the input for the proposed CGPR
approach. In this section, the net benefits are estimated using
three features. Fig. 8, Fig. 9 and Fig. 10 show the distribution
of the estimated net benefits using three features from phase
balancing by ZM-SPC for the rural, suburban and urban
networks, respectively. Results show that approximately 70%
of rural networks, 80% of suburban networks and 90% of urban
networks benefit from ZM-SPC.
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Fig. 8. The distribution of mean net benefits for rural networks from phase
balancing by ZM-SPC
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Fig. 9. The distribution of mean net benefits for suburban networks from phase
balancing by ZM-SPC
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Fig. 10. The distribution of mean net benefits for urban networks from phase
balancing by ZM-SPC

With 95% confidence, the range of net benefits from ZM-
SPC for rural, suburban and urban networks are [£2,814.66,
£5,106.51], [£3,461.50, £5,346.27] and [£7,591.93,
£12,977.50], respectively.

Fig. 11, Fig. 12 and Fig. 13 show the distribution of the
estimated net benefits using three features from phase balancing
by EQUI8 for the rural, suburban and urban networks,
respectively. Results show that approximately 94% of rural
networks, 97% of suburban networks and 99% of urban
networks benefit from EQU18.
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Fig. 11. The distribution of mean net benefits for rural networks from phase
balancing by EQU18
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Fig. 12. The distribution of mean net benefits for suburban networks from phase
balancing by EQU18
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Fig. 13. The distribution of mean net benefits for urban networks from phase
balancing by EQU18

With 95% confidence, the range of net benefits from EQU18
for rural, suburban and urban networks are [£11,153.87,
£14,975.80], [£15,218.09, £18,974.98] and [£26,926.63,
£39,441.18], respectively.

Fig 14, Fig 15 and Fig 16 show the distribution of the
estimated net benefits using three features from phase balancing
using ANM for the rural, suburban and urban networks,
respectively. Results show that approximately 1% of rural
networks, 1% of suburban networks and no urban network
benefit from the ANM scheme.
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Fig. 14. The distribution of mean net benefits for rural networks from phase
balancing by the ANM scheme
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Fig. 15. The distribution of mean net benefits for suburban networks from phase
balancing by the ANM scheme
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Fig. 16. The distribution of mean net benefits for urban networks from phase
balancing by the ANM scheme

With 95% confidence, the range of net benefits from
applying the ANM scheme for rural, suburban and urban
networks are [£-63,127.49, £-60,249.45], [£-60,396.22, £-
57,564.91] and [£-53,102.38, £-45,313.21], respectively. The
net benefits are negative, meaning that adopting the ANM
scheme for phase balancing is not cost-effective. However, it is
worth mentioning that the ANM scheme typically brings other
benefits such as relieving thermal overloads and voltage
violations, apart from phase balancing.

Comparing the RMSEs (given in Section V-B) with the net
benefits from phase balancing, it can be found that the RMSEs
are insignificant.

Fig. 17, Fig. 18 and show the probability that the phase
balancing solutions by ZM-SPC and EQU18 would produce a
positive net benefit for any data-scarce LV network with 95%
confidence, respectively. The probability of having positive net
benefit assist DNOs to make the decision on whether to invest
in phase balancing.

For example, the CGPR is used to estimate the net benefit for
a data-scarce network 10036 from ZM-SPC. The network
10036 is a rural network and its estimated net benefit is £5001.
Thus, with 95% confidence, the corresponded probability of
network 10036 having a positive net benefit is 96.6%. If the
DNO set the acceptable probability as 90%, the network 10036
is therefore identified as worth for phase balancing.
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Fig. 17. The probability of having positive net benefits from phase balancing
by ZM-SPC
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Fig. 18. The probability of having positive net benefits from phase balancing
by EQU18
There is a way to strengthen the robustness of the CGPR
model. The CGPR model already outputs the data-scarce LV
networks where it is highly likely that a given phase balancing
solution will deliver more benefit than cost. In this way, the
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CGPR model serves as a filter. For these networks (which are a
subset of the whole population of networks) that the CGPR
model identifies as being worthy of phase balancing, the DNO
can further check the cost-benefit of phase balancing on these
networks by collecting time-series data from these networks
and performing accurate cost-benefit analysis.

VI. CONCLUSIONS

This paper addresses a previously unresolved problem faced
by the distribution network operators (DNOs), i.e., the cost-
benefit analysis of phase balancing solutions for the vast
majority of the low voltage (LV) networks that are data-scarce.
To this end, this paper develops a new cluster-wise Gaussian
process regression (CGPR) approach.

The approach is validated by the case studies considering two
types of phase balancers and the active network management
(ANM) scheme. The phase balancers are ZM-SPC and EQU18
with different costs and lifetime. The maximum potential net
benefits for all types of LV networks are calculated for each
phase balancer. Given any data-scarce network and phase
balancing solution, the probability that the solution will produce
a positive net benefit is quantified.

A major advantage of the approach is that it only requires the
annual peak current and the total energy consumption
throughout a year — these data are collected only once a year.
The developed approach offers a cost-effective and efficient
way to help DNOs understand: 1) whether a phase balancing
solution is economically feasible for any data-scarce network;
2) if yes, the maximum potential net benefit from the solution.
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