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ABSTRACT 

Inverse gas chromatography, IGC, has been used to investigate the surface 

properties of two calcined kaolins and of polyethylene composites 

containing calcined kaolin.  The results reveal differences in the two kaolins 

that were not found in XPS spectra nor in their influence on the melting 

behaviour of the polymer.  The kaolin that had a markedly higher surface 

energy and stronger Lewis acid behaviour was found to shower greater 

photooxidative degradation in accelerated weathering tests.  This novel 

application of IGC derived surface characterisation of solids further extends 

the usefulness of the method in this type of work.   

 
Keywords: Inverse Gas Chromatography;  Calcined kaolin;  surface energy;  

polyethylene; photo-oxidation 
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INTRODUCTION  

Kaolin, or china clay, is found in many parts of the world and is an important commercial 

product 1. Among its uses is as a mineral additive in a range of polymer composite materials. For 

many applications, the kaolin has to be modified, for example by coating with a modifying agent 

or being subjected to heat treatment. Calcined kaolins – kaolins that have been heated to > 1000 

ºC for an extended period of time - are added to polyethylene (PE) agricultural films to improve 

their infra red barrier properties 2.  However, addition of such minerals may reduce the lifetime 

of the polymer films by catalysing photo-oxidation and degradation or by inhibiting the action of 

stabiliser systems 3, if insufficiently stabilised.  These effects, in addition to factors related to 

film preparation and processing, are critically related to the surface chemistry of the filler so that 

an understanding of the interactions between the polymer and the kaolin is important for 

predicting composite performance.   

One technique that has found extensive use in studying the properties of solid surfaces 

and their interactions with polymers is inverse gas chromatography, IGC.  Previous work has 

demonstrated its utility in characterising kaolins and their chemical modifications. 

A number of workers have demonstrated the usefulness of IGC for investigating the 

surface energies of a range of mineral solids4, 5.  Small amounts of “probe” solvents are injected 

into a flow of carrier gas over the material under investigation and the retention time depends on 

the interactions between the probe and the surface.  By using probes with a range of properties, 

the nature of the surface can be defined with good accuracy.  The technique has been applied to 

the measurement of a number of physicochemical properties of a range of polymers4, 6, 7.  Some 

of the earliest reports of the use of IGC involved the measurement of crystallinity in 

polyethylene. 8-10  More recently it has been used to investgate the modification of fillers used in 

polymer blends involving polyethylene11,12 as well as the solution thermodynamic13 and 

surface14 properties of the polymer.  
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IGC been used to characterise a varied range of solid surfaces including silicas15, 

activated carbons 16, filler materials and pigments 17-19 and pharmaceutical agents 20,21.  IGC 

studies of a number of different clay minerals have also been reported.  Bandosz et al.22 studied 

the effect of introducing metal cations into pillared smectites.   Alkane and alkene probes were 

used to show that, after calcination, the Lewis acid sites were reduced with lower π-bonding 

interactions.  The study was extended23 to include surface polymerisation and carbonisation as 

well as 24 the effect of heat treatment or high temperature reaction with propylene on taeniolites.  

In other work, montmorillonite and bentonite 25 matrices were also modified by a similar 

technique and the sorption properties of the surfaces characterised.  The surface properties of 

illites (another 2:1 clay) and kaolinites this type of clay from various origins were measured by 

IGC and  the use of branched alkane probes allowed characterisation of the surface morphology 

26.  This 27 was later extended to use a finite concentration technique to characterise the 

heterogeneity of the clay surfaces.  Thus, the technique is well suited to the studies involved 

here. 

 In the work described here, two commercial grades of calcined kaolin have been 

characterised by IGC and compounded into polyethylene composites.  The filled polymers were 

also studied by IGC and blown films prepared from each material.  These were subjected to 

accelerated weathering and the extent of degradation and changes in some mechanical properties 

were measured.  The results were related to changes in the surface thermodynamic properties of 

the minerals.  

 

EXPERIMENTAL 

Materials:   The kaolins were natural kaolins from Imerys Minerals that had been calcined under 

standard conditions.  The compositions of each are detailed in Table 1. The two CAlcined Clays 

– termed here CAC1 and CAC2 were from the same feed source, with CAC2 having undergone 
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a secondary refining process, reducing residual levels of iron, magnesium, titanium and 

potassium.  The polyethylene used was a low density PE (Borealis LE 1870) with a melt flow 

index of 2.0 and density of 922 kg m-3.  

The calcined kaolins were compounded into PE at a loading of 50 wt% with an APV 

MP2030 twin screw extruder at a die temperature of 180 °C and screw speed of 250 rpm.  The 

masterbatches were dried overnight at 60 °C in a Conair Churchill desiccant dryer.  Samples 

were diluted with the original polymer in a Betol BK 32 film extruder to produce 30 µm 

thickness films with a 5 wt.% loading of kaolin.  Films were also prepared from the virgin 

polymer as a comparison. 

Weathering of polyethylene films:  Twelve samples (25 x 150 mm) from each of the three films 

(PE, PE-CAC1 and PE-CAC2) were subjected to accelerated ageing in a QUV Weatherometer 

under standard conditions28 according to ASTM D4392-92 Cycle A.  The test method uses 

UVA-340 lamps with a peak emission at 343 nm, simulating a significant proportion of natural 

sunlight.  A sample of each film was periodically removed and analysed up to two hundred hours 

exposure time, after which the films had embrittled and lost most of their mechanical strength. 

Analytical methods:  Scanning electron microscopy (SEM) was performed on a Phillips-

Electroscan 2020 SEM which was also used for elemental surface analyses.   Thermal transitions 

for the polymer were measured by differential scanning calorimetry (DSC) with a Perkin-Elmer 

V1.8TA using a scan rate of 10 °C min-1 under a nitrogen atmosphere. 

Degradation of the films was monitored by FTIR29 using a Nicolet Magna-IR 550 

spectrometer30.  The tensile strength and elongation of the films were measured on a Monsanto 

T10 mechanical tester, with 100N load cell and with a sample size of 25 x 60 mm. 

Chromatography:  Chromasorb W, AW  DMCS treated, 100-120 mesh, was used as an inert 

support for the PE and filled materials which were coated at a level of 10% w/w from hot AnalR 

cyclohexane.  The exact loading of the stationary phase was determined by repeat calcination at 
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1000 °C in a CEM AirWave 7000 microwave furnace, accounting for the presence of the kaolins 

by using data from blank runs. Packings of the calcined kaolins were prepared by compaction 

under pressure followed by crumbling and sieving to give aggregates of 425 – 850 µm particle 

size.  Stainless steel columns ¼ in o.d. of length 0.90 – 1.0 m were packed with 10-15 g of 

stationary phase.  The columns were connected to the GC and pre-conditioned at 150 °C for 24 

hours, before further conditioning for twelve hours at the required temperature.   

A Perkin-Elmer Autosystem XL gas chromatograph employing FID detection was used. 

The column temperature was measured to ± 0.2 °C on a Chrompack RDT thermometer that was 

calibrated against an NPL calibrated Tinsley Type 5840 platinum resistance thermometer.  

Looped-valve tubing before the column inlet permitted inlet pressure and flow to be measured to 

± 0.3 cm3 min-1 with a FP-407 (Chrompack) solid state calibrated dual flow and pressure meter.  

Oxygen-free nitrogen was used as the carrier gas and was passed through a Perkin-Elmer three-

stage drying and purification system, before entering the chromatograph. Barometric pressure 

was measured at the beginning and end of each run using a BDH precision aneroid barometer.  

The mean of the two was used for all calculations.  The instrument was located in a temperature-

controlled laboratory maintained at 23 °C ± 1 °C.   

 After conditioning, a series of ~ 0.1µL aliquots of the vapour of the probes used were 

injected by Hamilton syringe over a range of temperatures.  All probes were chromatographic 

grade (BDH). Retention times were recorded and processed by the PE-Nelson Turbochrom data 

management software.  Methane was used as a non-interacting marker to determine the void 

volume of the column. Each value reported is the result of at least three elutions agreeing to 

within experimental uncertainty. 
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RESULTS AND DISCUSSION 

Characterisation of polymers and kaolin surfaces 

The primary measurement in IGC is the net retention volume, Vn, given 31 by 

Vn = J f (tr – t0)         (1) 

where tr is the retention time taken for the probe, t0 that for the non-interacting marker and  f is 

the carrier gas flow rate corrected to standard temperature and pressure and corrected for the 

pressure drop along the column31.  J is the correction factor for pressure drop across the column 

and carrier gas compressibility, given with the column inlet and outlet pressures, pi and po 

respectively by: 

J = ( )
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 In work with polymers6, it is usual to present the data as a van’t Hoff type retention 

diagram and the data for five alkane probes on PE is shown in Figure 1.  The results show the 

usual shape for the retention diagram of a semi-crystalline polymer6, 9.  The low temperature 

linear regions correspond to interaction of the probe only with the amorphous regions and 

surface of the polymer. The probe does not enter the crystalline regions.  In the high temperature 

region, the probe interacts with the whole polymer sample.  The non-linear region corresponds to 

non-equilibrium retention around a phase transition.  In the case of a melting transition, the 

melting point, Tm is taken as the lowest temperature at which bulk equilibrium sorption takes 

place i.e. the highest temperature at which crystalline regions exist.    The results in Figure 1 

show this to be 111 °C. Measurement of Tm by DSC gave a value of 112 ºC confirming the 

accuracy of the IGC value.   

The retention diagrams for the two composite materials are shown in Figures 2 and 3.  

Although there is rather more scatter and curvature in the data, the melting points are clearly 

discernable and were also measured to be 110 - 111 °C in each case.  Thus, there is no 
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significant effect of the filler on the melting point of the polymer. There is noticeably more 

curvature in these plots than in Figure 1, making accurate determination of Tm more difficult.  

This is caused by the higher enthalpy of interaction introduced by the kaolin (see below) which 

leads to a larger temperature dependence and hence not strictly linear behaviour. 

 Below Tm, the slopes of the lines in Figure 1 are given by -∆Hºs/R according to the 

relation 

∆Hs°= ( )T

V
R n

1
ln

∂

∂
−             (2) 

where ∆Hºs is the enthalpy of solution of the probe in the amorphous polymer.  This comprises 

the enthalpies of condensation and mixing for the probe-polymer pair.  The calculated values for 

the alkane probes in the homopolymer and the composites are given in Table 2.  Also shown are 

the values for the kaolins used as the fillers, the retention diagrams for these materials being 

illustrated by that for CAC1 in Figure 4.  The retention diagram for CAC-2 was very similar in 

appearance and showed no remarkable features.  These differ from Figures 1 – 3 since there are 

no phase transitions in the temperature range studied; hence the plots are linear.  In addition the 

retention is solely due to surface interactions so that the enthalpy of adsorption, ∆Ha° is being 

measured.   

 The values obtained for PE are low and differ little from the enthalpies of vaporization of 

the probes which range32 from 25.8 kJ mol-1 for pentane to 34.4 mol-1 for octane (these values 

correspond to the boiling temperatures).  As expected, this is an indication that there are no 

strong interactions in these systems and the enthalpy of mixing is close to zero. The data from 

the two calcined kaolins, between which there was little difference, show that strong interactions 

do occur on these surfaces.  Previous work33 has shown that the kaolins retain polar groups on 

the surface after calcination and these can polarise the alkanes leading to higher enthalpies of 

adsorption.  
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The results for the filled materials are intermediate between those of the fillers and the 

polymer matrix but are closer to the former.  In these materials, retention will comprise bulk 

sorption into the amorphous PE and adsorption onto the filler surfaces.  The results obtained are 

clearly not a weighted average of the two contributions and indicate that interaction of the probes 

with the kaolin is not completely masked by the PE matrix.  Since the probe-PE mixing is 

athermal, the temperature dependence of retention will be dominated by the enthalpy of 

condensation and the interaction with the kaolin. 

 To further characterise the nature of the surfaces, the approach of Balard and co-

workers27 was used to calculate the surface energies.  Following the approach pioneered by 

Fowkes 34 the surface energy of the solid, γs can be split into two components, arising from 

intermolecular dispersion forces, γs
d, and one due to other specific interactions, γs

sp 

γs
d = γs

d  +  γs
sp          (4) 

The non-specific or dispersive component of the substrate surface energy, γs
d, can be 

calculated from the elution data for alkane vapours, which are assumed to interact only by 

dispersion interactions.  The free energy change for the adsorption of a single methylene group, 

∆G°a
, CH2, is found from the difference in free energies of adsorption for succeeding alkanes in an 

homologous series 

∆G°a
, CH2  =  - RT ln ⎟

⎟
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where n is the number of carbons in the alkane.  γs
d can then be calculated from 35, 36  

γs
d = 

( )
( )

22

2

2γ
1

2,

CHCH

CH
a

Na
G∆−

         (6) 

where N is Avogadro’s number; γCH2 is the surface tension of a hypothetical surface containing 

only methylene groups and aCH2  is the cross-sectional area of a methylene group (≈ 0.06 nm2).  

∆G°a
,CH2  is found at constant temperature from a linear plot for a series of alkane probes of RT ln 
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(Vn) versus the number of carbon atoms.  An example of the plots is shown in Figure 5.  The 

plots for the other system were similar; all the systems showed the expected linear relationship 

and calculated values of γs
d are given in Table 3. 

The γs
d results for CAC1 and CAC2 were considerably higher than the polymer, again 

reflecting the polar nature of the kaolin surface.  Results for CAC2 were between 5 to 20 mJ m-2 

lower than those for CAC1, considered significant in terms of the uncertainty of the 

measurements.  These values would suggest that CAC1 has the more polar and hence reactive 

surface.  The results for PE are in good agreement with published data37 for the surface free 

energy for polyethylene of 31 mJ m-2.  It should be noted that in this case, the values are strictly 

not those of γs
d.  Here, the differences in retention between successive alkanes will represent the 

increment in the free energy of solution.  However, in the alkane systems, the athermal mixing 

means that the values are all similar.  However, such an approach would not be valid for 

polymers with significant enthalpies of mixing.  The same comments can be applied to the 

composite materials where again the surface free energy contribution was dominated by 

absorption into polyethylene.        

To investigate the differences between the two kaolins, SEM micrographs of the filled 

composites were recorded, those for CAC1 being shown in Figure 6. The images of the materials 

revealed a rough surface, giving the appearance of having the calcined kaolin particles 

encapsulated in the polymer matrix.  There were no visible differences between films containing 

the two fillers.  From the XPS analysis of the materials illustrated in Figure 7, the surfaces 

comprised a large proportion of silicon and aluminium, as would be expected from a calcined 

kaolin, the PE being shown by the large carbon peak.  Importantly, no significant differences 

were seen between the two composites.    

 The nature of the interactions at the kaolin surfaces were further characterised by using 

non-alkane probes to estimate specific interactions and hence γs
sp.  Saint-Flour and Papirer 38, 39 
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suggested that a plot of ∆Gºa  as a function of the saturated vapour pressure of alkane probes 

should give a straight line which could act as a standard, deviation from which gives a measure 

of the specific interactions for other probes.  A number of workers have used this approach and 

demonstrated its usefulness and equivalence to more thermodynamically rigorous treatments.  In 

this work, the results will be used qualitatively as a comparison of the two systems; quantitative 

application of the concepts is more subject to interpretation. 

 From the retention volumes for probes on PE at 100 ºC, Figure 8 was constructed and 

specific interactions, γs
sp were calculated and are shown in Table 4.  Also indicated is the nature 

of the probe in terms of its acid-base character as well as the data for the two kaolins illustrated 

for CAC2 in Figure 9.   

As PE is non-polar and can be considered to be chemically inert, no significant polar 

interactions would be expected.  This is reflected in the results in Table 5 where the interaction 

energies range from –2.7 kJ mol-1 for acetone to + 0.9 kJ mol-1 for THF. There is no correlation 

of acidic and basic probes deviating above or below the line indicating that the surface is 

essentially neutral in these respects.  

 Kaolin surfaces are known to be acidic and this is also reflected in the results in 

Table 4.  No elution peaks could be detected for strongly basic probes due to their strong 

interaction with the surface, the probes possibly becoming bound irreversibly or the peaks being 

so broad as to be unquantifyable.  The strongly acidic probe, methanol, could not be detected, 

although carbon tetrachloride interacted weakly, with the datapoints falling below the alkane 

line.  Cyclohexane was eluted to determine the accessibility of the surface to a bulky probe 

species, the similarity of the results for CAC1 and CAC2 indicating similar accessibility and 

porosity.  For CAC2, the interactions were 20 – 30% lower than CAC1.  It is also noteworthy 

that the acetone probe was detected after elution from CAC2, but was not detected for CAC1. 

These results suggest therefore that both kaolins have polar surfaces, primarily acidic in nature 
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but that CAC1 is the more acidic of the two. There are negative apparent interaction energies for 

cyclohexane and carbon tetrachloride with the clays, implying lower interaction than with the 

corresponding alkane.  In the former case, the nature of the interactions interactions would be the 

same and the lower value is presumably due to steric factors preventing the bulkier cyclohexane 

from accessing sites that are available to the linear compound.  The same argument can be made 

for the relatively bulky CCl4 probe. Thus the results for these probes may reflect changes in the 

morphology of the surface in addition to changes in its chemical nature. The degree of porosity 

and/or intercalation would be lower in the treated clays.  Depending on its orientation at the 

surface, chloroform could also present a surface area similar to that of CCl4. 

Thus, IGC detected differences in the surface properties of the two kaolins even though 

they could not be differentiated by XPS.  It was therefore of interest to determine whether these 

differences would affect the performance of the composites in use. 

Weathering of polyethylene and composite films 

Blown films prepared from the two composite materials and from the unfilled PE were exposed 

to accelerated aging.  Unlike films in commercial applications, no stabilisers were added. To 

investigate the change in mechanical properties, the elongation at break was measured as a 

function of exposure time, the results being shown in Figure 10.  

 After an initial increase due to chain relaxation during heating in the weatherometer, all 

the samples showed reduced elongation at break until 200 hr weathering after which time they 

were brittle and had lost mechanical integrity.  This is a result of degradation of the polymer 

structure, in particular chain breakage and reduction in molecular weight40. However, there were 

clear differences between the films.  Both filled materials degraded faster than the parent 

polymer; the composite with CAC1 degraded faster than that with CAC2. 

 These results were mirrored by FTIR measurements on the films.  The presence of 

carbonyl functionality in the polymer is an indicator of oxidation due to PE chain degradation 40-
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42.  The growth of the peak 1715 cm-1 in the infra-red spectra of the films is shown in Figure 11.  

The rate of degradation shown by this indicator again follows the trend PE-CAC1 > PE-CAC2 > 

PE. 

Further discussion 

Both the change in mechanical properties and the extent of polymer oxidation showed that PE 

containing CAC1 was less stable to UV photooxidation than films containing the CAC2 filler.  

Both composites were less stable than the parent homopolymer.  XPS spectra indicated no 

differences between the two kaolins and neither was found to influence the crystallisation 

behaviour of the polymer.  However, IGC was able to distinguish clear differences between the 

surface properties of the two minerals.  CAC1 was found to have a higher dispersive component 

of the surface free energy indicating that some sites of higher energy were present.  These were 

shown by the use of probes with varying donor-acceptor character to give CAC1 a more acidic 

surface than CAC2.   

 These polar sites must therefore be influential in catalysing UV photo-oxidation and 

degradation.  The carbonyl functionality arises in the degraded polymers as a result of radical 

chain reactions causing  C-H and C-C bond breakage followed by oxidation40, 43.  The presence 

of trace metals and chemical irregularities in the polymer chain formed during fabrication and 

processing acts as initiation centres for photo-oxidation.  Reactive sites at filler surfaces also 

enhance UV absorption and the formation of reactive intermediates.  In this regard, the slightly 

higher proportion of heavy metals in CAC1 compared with CAC2 may be significant.  However, 

they do not completely explain the results. 

 The findings here support the work of Hancock et al.44 who compared the photo-

degradability of stabilised polyethylene films containing hydrous kaolins and calcined kaolins.  

Films containing hydrous kaolins degraded significantly faster than those containing calcined 

kaolins, even though the two kaolins had comparable levels of heavy metals, known to catalyse 
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photo-oxidation.  These differences were attributed primarily to the number of surface active 

Lewis acid sites, rather than the presence of heavy metals.  In previous work33 we have shown 

that the hydrous kaolins from which CAC1 and CAC2 were derived have a significantly higher 

γs
d, are more polar have a higher surface acidity than the calcined materials. Thus, the presence 

of Lewis acid sites at the surface appears to play a significant part in the susceptibility of kaolin-

filled PE films to photooxidation.   

 In contrast to the films studied here, in commercial applications correctly formulated 

stabiliser systems are added to the films to prolong in-service lifetimes and multiseason films are 

in common use throughout Europe.  Studies using flow microcalorimetry on LDPE films with 

silica additives45 showed the interactions between all the components are complex but are 

influenced by the surface area and porosity and also by surface chemistry in terms of 

hydrophilicity and surface energy.  IGC can be used to investigate interactions in 

multicomponent systems and may have a part to play in further characterising these polymer 

composite systems.  In addition, the surface properties of the kaolins are important in 

determining the mechanical properties of the polymeric films and these are also amenable to 

study by IGC.  The model used here is relatively simple and more sophisticated versions are 

available which allow more detailed interpretation of molecular behaviour at surfaces 46 – 48.  

However, even with the straightforward model employed here, the utility of IGC to distinguish 

between solid surfaces is clear. 

 

CONCLUSIONS 

The results described here further reinforce the application of IGC in characterising the surfaces 

of fillers in polymer systems.  Differences between the surface properties of two calcined kaolins 

were determined despite the similarity of their crystallisation behaviour and their XPS spectra.  

The kaolin with the markedly higher surface energy and stronger Lewis acid behaviour was 
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found to shower greater photo-oxidative degradation in accelerated weathering tests.  Further 

work is now in progress to establish a firm correlation between surface energy and 

photochemical behaviour.  This may be used for commercial improvements for such additives in 

the near future. Thus, the work illustrates another potential use of IGC in predicting the 

behaviour and performance of polymer composites.   
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Table 1:  Physical and chemical properties of calcined clays  

  CAC1 CAC2 
ISO brightness  88.8 92.0 
ECC yellowness   4.9 4.6 
BET surface area 

2
 7.0 7.1 

Particle size (wt.%) > 10 µm 5 6 
 > 5 µm 15 17 
 < 2 µm 49 49 
 < 1 µm 12 12 
 < 0.5 µm < 5 6 
 < 0.25 µm < 5 < 5 
Composition SiO2 55.8 55.9 
 Al2O3 41.0 41.5 
 Fe2O3 0.59 0.41 
 TiO2 0.06 0.02 
 CaO 0.01 0.02 
 MgO 0.19 0.11 
 K2O 2.21 1.90 
 Na2O 0.01 0.01 
 Loss on 

ignition 
0.30 0.20 

 

 

Table 2:   Isosteric enthalpies of interaction for n-alkanes on PE, clay fillers and clay-

filled PE composites 

 Enthalpy of Interaction (kJ mol-1) 

Probe PE1 CAC12 CAC22 PE-CAC1 
composite 3 

PE-CAC2 
composite 3 

Pentane 24 ± 2 38 ± 2 39 ± 4   
Hexane 27 ± 2 48 ± 3 46 ± 2   
Heptane 25 ± 2 62 ± 2 61 ± 2 52 ± 3 49 ± 2 
Octane 31 ± 1 79 ± 2 70 ± 3 59 ± 2 58 ± 3 
Nonane 31 ± 2    62 ± 3 60 ± 2 
Decane 34 ± 2   66 ± 2 63 ± 2 

 
1   Enthalpy of solution;    
2  Enthalpy of adsorption;    

3 Enthalpy of solution + adsorption.
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Table 3:  Dispersive component of surface free energy data for fillers and filled PE’s 

 

 Dispersive component of surface free energy (mJ m-2) 

Temperature 
(ºC) 

CAC1 CAC2 PE-CAC1 
composite 

PE-CAC2 
composite 

PE 

80 139 ± 4 128 ± 4 32 ± 1 30 ± 2 33 ± 1 
90 137 ± 5 117 ± 4 32 ± 2 33 ± 1 32 ± 2 
100 132 ± 4 115 ± 3 34 ± 2 35 ± 2  
110 126 ± 4 111 ± 5 36 ± 2 32 ± 1  
120 130 ± 3 113 ± 4 34 ± 1 33 ± 2  
130 124 ± 2 111 ± 3 33 ± 1 35 ± 2  
140 113 ± 2 108  ± 4 36 ± 2 34 ± 1  

 

 

 

 

Table 4:  Specific interaction data for PE at 100 ºC. 

 
 Specific interaction –∆Gspecific (kJ mol-1) 

Probe PE CAC1 CAC2 Probe character

Acetic acid -1.3 ± 1.2   Strong acid 
Chloroform 0.1 ± 1.1   Weak acid 
Carbon tetrachloride 0.8 ± 1.3 -2.7 ± 0.9 -2.1 ± 0.6 Weak acid 
Cyclohexane 0.6 ± 1.5 -4.3 ± 1.1 -3.8 ± 1.0 Non-polar 
Acetone -2.7 ± 1.6 NPD 1.0 ± 0.4 Amphoteric 
Hexene -1.4 ± 0.9 4.0 ± 0.9 3.4 ± 0.6 Weak base 
Octene -2.1 ± 1.2 3.8 ± 0.7 3.0 ± 0.9 Weak base 
Toluene 0.7 ± 1.0    
THF 0.9 ± 0.8 NPD NPD Base 
Pyridine -1.9 ± 1.4 NPD NPD Strong base 
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CAPTIONS FOR FIGURES 

 

Figure 1:   van’t Hoff retention diagram for alkanes on PE. 

Figure 2:   Retention diagram for CAC1 – PE composite.  

Figure 3:   Retention diagram for CAC2 – PE composite.   

Figure 4:   Retention diagram for CAC1.   

Figure 5:   Plot of ∆ Ga versus T for CAC1.     

Figure 6:   SEM images of the PE-CAC1 composite material.   

Figure 7:   XPS spectra of the filled PE-CAC composites  

Figure 8:   Plot of  ∆Ga versus log Po for PE.     

Figure 9:   Plot of ∆ Ga versus log Po for CAC2.         

Figure 10:    Peak elongation versus weathering time for PE films. 

Figure 11:   Area under the carbonyl peak in the FTIR spectra versus weathering time for PE 

films. 
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Figure 1:   van’t Hoff retention diagram for alkanes on PE. 
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Figure 2:   Retention diagram for CAC1 – PE composite.  
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Figure 3:   Retention diagram for CAC2 – PE composite.   
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Figure 4:   Retention  diagram for CAC1.   
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Figure 5:   Plot of ∆ Ga versus T for CAC1.     
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Figure 6:   SEM images of the PE-CAC1 composite material.   
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Figure 7:   XPS spectra of the filled PE-CAC composites 
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Figure 8:   Plot of  ∆Ga versus log Po for PE.  
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   Figure 9:   Plot of ∆ Ga versus log Po for CAC2.         
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Figure 10:    Peak elongation versus weathering time for PE films. 
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Figure 11:   Area under the carbonyl peak in the FTIR spectra versus weathering time for PE films. 
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