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Abstract In this paper we propose and analyse adaptive finite element methods for computing the band
structure of 2D periodic photonic crystals. The problem can be reduced to the computation of the discrete
spectra of each member of a family of periodic Hermitian eigenvalue problems on a unit cell, parametrised by
a two-dimensional parameter - the quasimomentum. These eigenvalue problems involve non-coercive elliptic
operators with generally discontinuous coefficients and are solved by adaptive finite elements. We propose
an error estimator of residual type and show it is reliable and efficient for each eigenvalue problem in the
family. In particular we prove that if the error estimator converges to zero then the distance of the computed
eigenfunction from the true eigenspace also converges to zero and the computed eigenvalue converges to a true
eigenvalue with double the rate. We also prove that if the distance of a computed sequence of approximate
eigenfunctions from the true eigenspace approaches zero, then so must the error estimator. The results hold
for eigenvalues of any multiplicity. We illustrate the benefits of the resulting adaptive method in practice, both
for fully periodic structures and also for the computation of eigenvalues in the band gap of structures with
defect, using the supercell method.

MSC2010 Subject Classification: 65M50, 65M60, 65F15

1 Introduction

Photonic crystals (PCs) are constructed by assembling portions of periodic media composed of dielectric
materials and they are designed to exhibit interesting properties in the propagation of electromagnetic waves,
such as spectral band gaps. Media with band gaps have many potential applications, for example, in optical
communications, filters, lasers, switches and optical transistors; see [26,38,30,2] for an introduction. In this
paper we consider only 2D PCs, whose behaviour is periodic in the plane determined by two orthogonal
directions, and is constant in the direction normal to this plane.

The propagation of light in any kind of PC is governed by Maxwell’s equations. In 2D PCs, the 3D
Maxwell’s equations reduce to a two-dimensional one-component wave equation, which determines either the
electric field or the magnetic field. Because the problem is periodic, the Floquet transform [30,29] can be
applied to split each mode into a family of eigenvalue problems on a unit cell {2 of the periodic medium with
periodic boundary conditions. This family is parameterised by the quasimomentum r, which varies in the
first Brillouin zone - for a definition see § 2. All eigenvalue problems in the family have the weak form: seek
eigenpairs of the form (\,u) € C x HL(£2), with u appropraitely normalised, such that

/((V—i—i/ﬁ)v)*A(V—i—i/i)u = )\/ Buv in £, for all v € HL($2), (1.1)
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where 2 is the primitive cell of the photonic crystal and H!(2) is the space all functions of H'(2) satisfying
periodic boundary conditions on 92. Here, the (generally) matrix-valued function A is real symmetric and
uniformly positive definite, i.e.,

0< a < &A@ < a forall ¢€€C? with [¢|=1 andall z€ 2, (1.2)

where * denotes Hermitian transpose. The scalar function B is real and bounded above and below by positive
constants for all x € 2, i.e., B
0 <b< B(x) <b forall ze (2 (1.3)

We note that the eigenvalue problem, subject to the normalisation constraint on u, is a nonlinear problem for
the unknown pair (A, u).

In the theory in this paper we will assume (as is generally the case in applications), that A and B are both
piecewise constant on 2 and we will also assume that any jumps in A and B are aligned with the meshes used
in this work. However the algorithm will still run even if these constraints are not satisfied Due to the jumps
of the coefficients, the eigenfunctions of (1.1) could have localized singularities in the gradient, which could
diminish the rate of convergence of finite element methods on uniformly refined meshes.

A very popular practical numerical method for PCs is the Fourier spectral method (also called the “plane-
wave expansion method”), for example [37,26,11,34,36]. This method exploits the periodicity in the PC and
uses modern highly tuned FFT algorithms to obtain fast implementations. However the overall rate of conver-
gence of approximate spectra to true spectra is slow because the jumps in the dielectric destroy the exponential
accuracy which is achieved by Fourier spectral methods for smooth problems. Methods for accelerating the
convergence by artificially smoothing the jumps in the dielectric have also been proposed. These converge
quickly to a solution which contains a smoothing error and it turns out to be impossible to recover overall
exponential accuracy by this method - see [34-36] for a complete analysis. Other spectral methods include
[17] which uses an expansion in terms of eigenfunctions for the crystal without any defects. Semi-analytical
methods which impose considerable limitations on the geometry of the crystal are also considered, for example,
in [18].

We use adaptive finite element methods because they provide flexible solvers for PDE eigenvalue problems
and are able to deal optimally with the heterogeneous media problems encountered in PC models. There
are already a number of papers about low order finite element methods for PCs [4,10,14,15,24,28] and most
recently there has been considerable interest in p and hp methods, with the latter having the potential to
obtain exponential accuracy [16,32,39,40] . Accurate computations based on a priori hp refinement strategies
are shown in [39,40]. However, as far as we are aware, until now no one has used adaptivity based on a
posteriori error estimates on these problems.

Mesh adaptivity based on a posteriori error estimates has been widely used to improve the accuracy of
numerical solutions of PDEs (e.g. [1]). Recently the question of convergence of h-adaptive methods for elliptic
eigenvalue problems has received intensive interest. One of the first proofs was in [22], but this is only for
eigenproblems based on coercive bilinear forms. As we shall see the Hermitian form on the left-hand side of
the PC eigenvalue problem (1.1) is not coercive for all values of the quasimomentum &, so new methods of
analysis are required. Some of the methods presented in this paper were first developed in the PhD thesis [21],
where the convergence of adaptive methods for PCs was also discussed. Some previous numerical experiments
were reported in [23]. Recently there is much interest in adaptive methods for PDE eigenvalue problems in
general - see for example [12,33] for other applications.

The outline of the paper is as follows. The next section - §2 - briefly describes how problem (1.1) is derived
from Maxwell’s equations. Here we also prove some basic properties of the Hermitian form in (1.1) and we
introduce the finite element discretization. Then §3 proves some basic a priori estimates for finite element
approximation of PC eigenvalue problems. These are derived from the classical literature and are essential
for the main results of this paper which are contained in §§4 and 5. To give a flavour of the main results, let
(Ajn,ujn) denote a computed finite element eigenpair of (1.1) (where u; 5, is a finite element function and A\, ,,
approximates a true eigenvalue \; of arbitrary multiplicity), then in Definition 4.3 we define an a posteriori
error estimator 7; , (being a sum of computable contributions from each mesh element), and in Theorems 4.7
and 4.9 we prove that

dist(wjn, E1(Aj)) < Cnjn and |Aj, — A < C?ﬁ-,n, (1.4)

with C independent of the mesh, where E4();) denotes the unit ball in the exact eigenspace corresponding
to A; and the distance is measured in an energy inner product related to the Hermitian form in (1.1) (see
Lemma 2.1). Recalling that nonlinearity of the eigenvalue problem (1.1), it is not surprising that elementary
a posteriori error estimates usually involve additional terms on the right hand side. However, due to the a
priori results in §3 these are rigorously shown to be of higher order and so do not appear in our estimates.
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By (1.4), the eigenfunction and eigenvalue error both approach zero if the estimator 7;,, — 0. The converse
is established in §5, i.e., if the eigenfunction and eigenvalue errors both converge to zero, then so does the
error estimate 7);,,. (This is known as “efficiency”.) Finally, numerical experiments illustrating the results with
our method, compared to more standard FEM methods, are collected in §6. These include both results on
infinite periodic structures and on periodic structures with defect. We believe that the present paper is the
first contribution to the topic of the analysis of adaptive finite element methods for PC applications.

2 Photonic crystal eigenvalue problem and numerical method

In general, PCs are of practical interest because of their band gap properties - i.e., monochromatic electro-
magnetic waves of certain frequencies may not propagate inside them. Since fabrication is simpler in 2D than
in 3D and since the 2D case still includes many important applications, (e.g., [27]), considerable numerical
interest has focussed on the 2D case - e.g. [4,11,14,17,32,34,39,40] - and the present paper obtains the first
rigorous theory for adaptive finite element methods in this case.

The mathematical development (see e.g. [30]) begins with the eigenvalue problem for Maxwell’s equations

Vwa:—%“’un V-uH, =0,

Vwa:%’aEw, V-¢E, =0. (21)

where E,, is the electric field, H,, is the magnetic field, ¢ and u are, respectively, the dielectric permittivity
and magnetic permeability tensors, and c is the speed of light in a vacuum. We assume the medium is periodic
in the (x,y) plane and is constant in the third (z) direction and that the material is non-magnetic (so u = 1).
The problem (2.1) splits naturally into two independent problems, called transverse magnetic (TM) and
transverse electric (TE) modes, as explained in [30]. On the assumption that the medium is isotropic (so € is
scalar-valued), the problems are

2
Auy, + w—quw =0 (TM case) , (2.2)
c
and
1 w?
V- E(Vuw) + U = 0, (TE case) . (2.3)

Both problems (2.2) and (2.3) may be written in the abstract form as that of seeking (A, w) with « # 0 such
that
V- (AVu) 4+ A\Bu = 0. (2.4)

The anisotropic case (where € is a tensor) may also be included in this formulation - see e.g. [32]. Since A or
B may be discontinuous, (2.4) has to be understood in an appropriate weak form. So far (2.4) is posed over
all of R?, with periodic data.

A 2D periodic medium can be described using a lattice L := {R = njry + nors , ni,ne € Z} , where
{ri,r2} is a basis for R%. The (Wigner-Seitz) primitive cell for L is the set {2 of all points in R? which are
closer to 0 than to any other point in L - see [3]. When (2 is translated through all R € L, we obtain a covering
of R? with overlap of measure 0. The reciprocal lattice for L is the lattice L generated by a basis {kj,ka},
chosen so that r; - k; = 276, ; , 4,5 = 1,2, where d; ; is the Kronecker delta and the primitive cell for the
reciprocal lattice is called the first Brillouin zone, which we denote here by IC [3].

For example, if L is the square lattice generated by {e1,e2} (where e; are the standard basis functions in
R?), then 2 = [—0.5,0.5]?, L is generated by {2re;, 2mes} and the first Brillouin zone is K = [—m, +7]2. Such
square lattices are used in all numerical experiments in Section 6.

The Floquet transform - see, e.g. [30] - may them be used to show the equivalence of the problem (2.4) to
a family of problems on the primitive cell {2 parametrized by quasimomentum x € K. This is the family

(V+ik) - A(V+ik)a+ABu = 0 on 2, keK, (2.5)

where @ is the Floquet transform of w and A is the corresponding eigenvalue which now depends on . This
equation should again be understood in the weak form - a rigorous derivation can be found for example in [9)].
In order to recover the spectrum of the problem (2.4), it is sufficient to compute the union of all the spectra
of the problems in the family (2.5) for all k € K, and these problems have discrete spectrum since the domain
§2 is compact. For more details see [30, page 19]. Writing (2.5) in weak form gives precisely (1.1).

Throughout L?(£2) denotes the usual space of square integrable complex valued functions equipped with
the weighted norm

Iflos = b DY2 . bf.g) = / Bfg . (2.6)
N
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H'(£2) denotes the usual space of functions in L?({2) with square integrable gradient, with H'-norm denoted
|lfll1, and H1(£2) denotes the subspace of functions in f € H'(£2) which satisfy periodic boundary conditions
on 2. We will also need the fractional order spaces H!*%(£2), s € [0,1]. When we want to restrict these
norms to a measurable subset S C 2, we write || fllo.5.s, [|f|l1,5, ete.

Problem (1.1) can be rewritten as: seek eigenpairs of the form (A\j,u;) € R x HX(£2) such that

ag(uj,v) = Aj b(uj,v), forall wveHN) } (2.7)

ujllo,p =1

where

ay(u,v) = /Q((V +ir)v(x))*Alx)(V + ir)u(z)) . (2.8)

It is easy to see that a, is a Hermitian form on H}!({2). which is bounded on H'({2) independently of x € K.
Moreover by the positive definiteness of A assumed in (1.2), we have

ap(u,u) > g/ (V +ir)ul> >0, forallue HX(R). (2.9)
Q
Thus the spectrum of (2.7) is real and non-negative

However a,(u,u) is not always strictly positive (for u # 0), since if £ = (0,0) then a,(1,1) = 0. Thus we
introduce the shifted Hermitian form:

(u,0)s.a.8 = ax(u,v)+ o b(u,v), forall u,v € HX(2), (2.10)
with a fixed shift
o= maléc|/i|2g/b + 1. (2.11)
RE

As the following result shows, this shifted form is coercive on H(£2) (i.e., (u,u), 4 5/|[ul|? is bounded below
by a positive constant for all u € H1(£2)). This shifted form is used in the theory below, but is never used in
computations.

Lemma 2.1 (-,-)s 4.5 is an inner product on H(£2) and we denote the induced norm by || - ||x. .5,
Proof. We shall show that

||u||i’A’B = (u,u)p,A4,B > ca||u||%, forall ke K, ue H;(Q) , (2.12)

when ¢, = min{a/2,b}. Since (-,-), is a Hermitian form on H1(2), this proves the result.
By definition of a,(,-), we have:

ax(u,u) :/Q((Vu)*AVu) + (KT AR)[ul* + i{((Vu)*Ax)u — (k¥ AVu)a}

Z/Q(Vu)*AVu + (KT AR)|ul? — 2Im{((Vu)*Ar)u} .

It is straightforward to show that

1/2

Im {(Vu)*Ax)u} < [(Vu)*Ax| Ju| < {(Vu)* AVu}'? {KTAR} " |u]

and by an application of Cauchy-Schwarz in Ly (£2) we obtain

/QIm{((Vu)*Aﬁ)u} < {/Q(w)*Aw}l/2 {/Q(ETAK) u|2}1/2 .

Thus calling o = { [, Vu*AVu}l/z, and 8 = { [, (/@TAH)|u|2}1/2 we have from the arithmetic-geometric mean
inequality, i.e 208 < da? + 6132, that for any § € (0, 1)
ap(u,u) > a?+p% =228 > (1-0)a>+(1-61)p3?
Hence, for any o € R we have
an(u,u) + o blu,u) > (1—0)a |ulf + (1 -6 Halsl® + ab) [lull}
> min{(1 — d)a, (1 — 6~ )als|* + ob}|ul} -
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Now choosing § = 1/2 and since 0 = amax,cx |k|?/b+ 1 we see that
min{(1 — &)a, (1 — 6 Y)a|x|* + ob} = min{a/2, —a|k|* + ob} > min{a/2,b} = c, .

]

Now, to discretize (2.7), let T, ,n = 1,2, ... denote a family of conforming, shape-regular (see, e.g., [1]) and

periodic triangular meshes on (2. These meshes may be computed adaptively. With H, denoting the diameter

of element 7, we define H™ := max,c7,{H,}. On any mesh 7, we denote by V,, C HL(£2) the finite

dimensional space of continuous functions which are affine on each element 7 € 7,,. The discrete formulation
of problem (2.7) is: seek eigenpairs of the form (\j,,u;,) € R x V,, such that

a,{(uj,mvn) - )\j,n b(uj,na”n) ) for all Up € V” } (2 13)
ltjnllos =1 |

3 A priori convergence results

In this section we gather together some a priori estimates for PC eigenvalue problems. These results are mostly
classical so we only give a few details for results which are not easily found in the literature. Suitable references
are [5-7,44]. With the shift o from (2.11), the shifted versions of problems (2.7) and (2.13) are:

Seek eigenpairs of the form ((j,u;) € R x HX($2) such that

ax(uj,v) + o b(uj,v) =¢ bluj,v), forall veHN02) } (3.1)
[wjllo, B =1; '
Seek eigenpairs of the form ((jn,ujn) € R x V,, such that
A (Wjm, Un) + 0 b(Ujn,Vn) = Cn b(Ujn,vn), foral wv,eV, } (3.2)
[wjnllo, B =1. '

The following proposition is self-evident:

Proposition 3.1 The eigenpairs of (2.7) and (3.1) are in one-one correspondence. In fact, (uj, \;) is an
eigenpair of (2.7) if and only if (u;,(;), with ¢; = A\; + 0, is an eigenpair of (3.1). Similarly (w;,, \jn) is an
eigenpair of (2.13) if and only if (wjn,Cjn), With jn = Xjn + 0, is an eigenpair of (3.2).

It follows from Lemma 2.1 that all eigenvalues of (3.1) and all N = dimV,, eigenvalues of (3.2) are
positive. We can order them as 0 < (1 < (2...and 0 < (1., < (2. < AN . Moreover, we know (e.g. [6])
that (;,, — (;, for any j, as H® — 0 and (by the minimax principle) that ¢;, is monotone non-increasing,
i.e.

CGm = CGm > ¢, forall j=1,...,N, andall m>n. (3.3)

Hence \j, — Aj, for any j, as H;'** — 0 and
Ain = Ajm > Aj, forall j=1,...,N, andall m>n. (3.4)

)

Let u; and u,,, be any normalised eigenvectors of (2.7) and (2.13). Then

(U = Ujns Uj — Ujn) = Qi (Uy, Uj) + @n(Ujn, Ujn) — 2Re{aw(ug, ujn)}
= )\j + >\j,n — 2)\j Re{b(uj,uj,n)}
= (Njn — A7) +2X;5 (1 — Re{b(uy,ujn)})
= (/\j,n — A]) -+ >‘j b(u] — Uj7n7u]' — ujﬂl) . (35)
Combining this with (3.4), we obtain

(U5 = g, Uy = Ujn) = |an(uy — U, s —uzn)| = [Ny =Xl + A llug —ujnllf 5 - (3.6)

The distance of an approximate eigenfunction from the true eigenspace is a crucial quantity in the conver-
gence analysis for eigenvalue problems especially in the case of non-simple eigenvalues.
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Definition 3.2 Given a function v € L?(£2) and a finite dimensional subspace P C L%(£2), we define:

dist = mi — .
ist(0, Phos = min flo — wllos

Similarly, given a function v € H:(£2) and a finite dimensional subspace P C HX(£2), we define:

dist(v,P)s,a,p = min v —w|. a5,
weP

where || - ||..,4,5 s defined in Lemma 2.1.

Now let \; be any eigenvalue of (2.7), let E()\;) denote the (finite dimensional) space spanned by the
eigenfunctions of \; and set F1()\;) = {u € E())) : |[ul]lo,p = 1}. Let Ty, denote the orthogonal projection of
H! onto E();) with respect to the inner product (-, ), 4,5 defined in (2.10).

Lemma 3.3 Let (Aj,,u;,) be an eigenpair of (2.13). Then
1wjn — wjllo,p = dist(wjn, B1(Nj))o.B , (3.7)

if and only if
i — wjlle,a,5 = dist(ujn, B1(Aj))s,4,B - (3.8)

Proof. Since E(\;) is finite dimensional, the minimizers in (3.7) and (3.8) exist. Moreover
0 = (Tyw,(I=Tx)v)eas = (Nj+0)b(Th,w,(I—Ty)v) forall v,weLF(2)NHLL). (3.9)
Hence for any v; € E();) we have the decomposition
wn =0 = (I =D)ujn + Doy (ujn —vj) = (I =D)ujn + (Trujn —v5),

which is orthogonal both with respect to (-,-)s.4,5 and (-, -)o,5. Thus

lujm —vil5 5 = I —Tx)uinlls 5 + 1Txujm —villo 5

[wjm —vill2 ap = I =T ujnllz 4+ 1Txujm —v5l2 a5 -

Hence u; satisfies (3.8) if and only if it minimizes ||Th;u;., — v;||2 4 p- The latter quantity is equal to

(Aj = )|ITx;uj.n — vi]|§, 5 and hence u; satisfies (3.8) if and only if it satisfies (3.7). [
In order to make further progress we need some assumption on regularity of solutions of elliptic problems

associated with (-,)x. 4.5.

Assumption 3.4 We assume that there exists a constant Cep > 0 and s € (0, 1] with the following property.
For f € L*(02), if v:=8f € HL(Q) solves the problem (v,w), a5 = b(f,w) for allw € HL($2), then

IS fll1+s < Cenll fllo5 (3.10)

where || - |11 s the norm in the Sobolev space H'T5(2).

This is a standard assumption which is satisfied in a wide number of applications such as problems with
discontinuous coefficients (see eg. [22] for more references).

From now on we shall let C' denote a generic constant which may depend on the true eigenvalues and
vectors of (2.7) and other constants introduced above, but is always independent of n.

Theorem 3.5 Suppose 1 < j < dimV,,. Let \; be an eigenvalue of (2.7) with corresponding eigenspace E(\;)
of any (finite) dimension and let (Xjn,u;n) be an eigenpair of (2.13). Then, for HX™ sufficiently small,

(i)
A= Njnl < (dist(ujn, E1(A))k,a,8)%  and  |Aj— Nja| < CHR™)?; (3.11)

(i)
diSt(Ujﬁn, E1(>\j))0,B S C(H,Tax)sdist(uj’n, El()\j))n,A,B 5 (312)

(iii)
diSt(Uj’n7E1()\j))n’A,B S C(H:lnax)s . (313)
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Proof. First consider part (i). Since A\; > 0 and ¢ > 0, the first estimate in (3.11) follows directly from (3.6).
To obtain the second estimate in (3.11), we recall a standard error estimate for elliptic eigenvalues (see e.g.
[6, (1.1)]) which, appled to problems (3.1) and (3.2), gives

Ain =X = Njm+0)—(j+0) < C sup  inf u—vn|}4p-
ugEl(,\j)%EVn

Combining this with standard finite element error estimates and recalling (3.4), we get

N =Nl < COHE™)* sup lull?y, (3.14)

u€E1(N\;)

For u € Eq1()\;), Assumption 3.4 implies ||ul1+s < Ceu(Aj 4+ 0)|lullo,5 < Cenu(Aj + o), which yields the
result.
To obtain (ii), we use the following estimate [6, (3.31a)]:

Ty Wjn — U,
1T % = Uymllo. < Cny,, where 7, = sup inf [|Sg—xxAaB ., (3.15)
”T/\jujm _u]}n”fi,A,B ger2(o) XEVn
llgllo,z=1

and S is the solution operator defined in Assumption 3.4. Analogously to (3.14) we have n,, < C(H*)* and
hence (3.15) implies

1T wjn — ujmllop < CHZ™) T\ ujn — UjnllsaB
= C(H*)dist(ujn, E(Nj)) k4B
< C(Hp™)dist(ujn, E1(Nj))k,A,B (3.16)

where we used the inclusion E1(\;) C E();). Since ||u;nllo,5 =1, (3.16) also implies that

1T, ujnllo. B — 1‘ < T ujn = ujnllo,n
< C(H)™)*dist(wjn, E1(Nj)) 4,8 - (3.17)
Combining (3.16) and (3.17), we obtain
T)\.’u, in
dist(w;,n, £1(A; < |22,
( J» 1( J))07B ||T)\juj,nHO,B Js o5
< T U — Ujn + 1= [Ty, ujmllo 5| 1T, wjnllo.5
0.B
= [mtin = an] | usntan -1
0.B
< CHR™) dist(ujn , E1(Aj))sA.8 -
which is (3.12).
Finally, for part (iii), we note that (3.6), Lemma 3.3 and (3.11) imply ,
dist(ujn, Bx(Nj)nap < COHE™)® + X dist(ujn, E1(\))3 5 (3.18)

which, via (3.12), implies (3.13).

4 A posteriori error estimator and reliability

Our a posteriori error estimator is presented in (4.1) below. Its most important characteristics are reliability
and efficiency. In broad terms reliability means that the ratio of the actual error to the error estimator is
bounded above by a positive constant independent of the mesh, while efficiency means that this ratio is
bounded below by a positive constant independent of the mesh. We prove reliability and efficiency for (4.1) in
this and the following sections.

Notation 4.1 From now on, we write A < B when A/B is bounded above by a constant independent of n.
The notation A= B means A < B and A 2 B.
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The residual estimator 7, is defined as a sum of norms of element residuals and edge residuals, which
are all computable quantities. We denote by F,, the set of all the edges (including boundary edges) of the
elements of the mesh 7. For f € F,,, we denote by 71(f) and m2(f), the two elements sharing f € F,, and we
let Hy denote the length of f. We let ny denote the unit normal on the edge f, which is assumed to point
from 7 (f) into 72(f). To simplify the notation, we define the functional [-]; as follows

Definition 4.2 We can define for any function g : £2 — C which is continuous on each element of the mesh
Tn and for any f € F,

T) = lim z) — lim g(x)|, withzef.
95 () (feﬁmg( ) ieﬁmg( )) f

T—x T—x

Definition 4.3 (Residual Estimator) The definition of the residual estimator n; ,, involves two functionals:
the functional Ry(-,-), which expresses the contributions from the elements in the mesh:

Ri(u,N)(z) == ((V +ir) - A(V +ix)u + ABu)(z), withz €int(r), 7€ Ty,
and the functional Rp(-), which expresses the contributions from the edges (faces) of the elements:

Rp(u)(z) == [ng- A(V + i/ﬁ)u}f(;v)7 with x € int(f), feF,

(Recall that the jumps of the coefficients are assumed to be aligned with the meshes.) Then the residual estimator
N;n for the computed eigenpair (\j ,,u;r) is defined as:

1/2
D { S B2 Riug e )l + Hf|RF<uj,n>|3,f} . (4.1)
7—67—71 fej:n

In Theorem 4.8 we prove reliability of the estimator 7;,, for eigenfunctions, and in Theorem 4.9 we prove
reliability of the estimator T]JQ»,n for eigenvalues. (The appearance of the square in the latter estimator reflects
the known higher rate of convergence for eigenvalues in the a priori estimates in §3.) The proofs of these
theorems require first proving Theorems 4.6 and 4.7, in which additional terms G;, and ng appear on the
right-hand side. These terms, which we subsequently show are genuinely higher order, reflect the non-linearity
of the eigenvalue problem, as mentioned above.

In order to prove reliability in Theorem 4.6 and Theorem 4.7, we need two preliminary lemmas:

Lemma 4.4 Let (A, u;,) be an eigenpair of the discrete problem (2.13) and (\j,u;) be an eigenpair of the
continuous problem (2.7). Then denoting by e;n = u; — u;jn, we have

1 .
b(Ajuj — Ajntljn, €jn) = 3N+ Xjn) bejin, €jn) + i(Ajn — Ap)Im by, wjp). (4.2)

Proof. Using the sesquilinearity of b(-,-) and exploiting the fact that (\;,,u;,) and (\;,u;) are respectively
two normalized eigenpairs of (2.13) and of (2.7), we have

b(Aju; = Ajntjn, €jn) = bAjU; — Njntjn, ) — b(Ajuj — Ajntjn, Ujn)
=X+t An = A bug,uin) — Ay buy,ujn)
= ()\] + /\j,n)(l — Re b(uj,uj,n)) + i()‘]’ﬂ’b — )\])Im b(uj,uj,n) . (43)
Another use of sesquilinearity gives us:
bejms €n) = bluj uz) + b(ujn, ujm) — bluj,wjn) — buj, ujn)
(4.4)
=2 —2Re b(Uj,Ujm) .

The insertion of (4.4) into (4.3) concludes the proof.
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Lemma 4.5 Let (\j,,u;,) be an eigenpair of problem (2.13) and let (\j,u;) be an eigenpair of problem
(2.7). Then, for any v € HL(£2),

a1y = s v) = B = Ajurtty a0 EZ/RIwm.m ZI/Ran NCE)

TE€ETR feFn
Proof. The result is obtained by integration by parts. We start from the left-most term in (4.5). Using the fact
that (A;,u;) is an eigenpair of (2.7) yields

aﬁ(uj_ujymv) = am(uj,v) - aﬂ(ujﬂwv) = /\j b(ujvv) - a'#”»(”jﬂ?”)

= Njn D(Ujn,v) — ax(ujn,v) + b(Aju; — Njntjn,v) . (4.6)
Now apply element-wise integration by parts to a,(ujn,v) in (4.6), yielding:

A (Uj — Uj o,y ¥ Z / ( (V+ik) - AV +ik)ujn + AjnB uj’n>v

TETn

- Z AV +ir)ujnlr 0 + b(Ajuj — Ajntjn,v) .
feFn

We now use these lemmas to prove reliability for eigenfunctions. Recall the Scott-Zhang quasi-interpolation
operator I,, : H'(£2) — V,, (defined in [42]), which satisfies, for any v € H'(§2):

b~ Lvlor S Hollolhwery: and o~ Loollo s S HF [0l - (47)

where w(7) (respectively w(f)) denotes the union of all elements sharing at least a vertex with 7 (resp. f) .

Theorem 4.6 (Reliability for eigenfunctions) Let (\;,,,u; ) be a computed eigenpair with X; ., converg-
ing to an eigenvalue \; of (2.7). Then

diSt(ujynaEl(Aj))n,A7B 5 Njn + Gj,"v (48)

where .
dist(u;.n, B1(N))5. 5
diSt(Ujm, El(/\j))n,A,B '
Proof. Given w; ,,, define u; € E1();) to simultaneously minimize (3.7) and (3.8) in Lemma 3.3. Again, we
define e; p, := uj — ujp.

Note first that, since (Aj,u;) and (Ajn,uj ) respectively solve the eigenvalue problems (2.7) and (2.13),
we have, for all w,, € V,,,

1
Gj’n = 5()\] + )\j,n + 20’) (49)

”ej,nHi,A,B = ax(€jn, Cjn — Wn) + x(Uj, wn) — ax(Wjn,wn) + o b(€jn,ejn)
= ax(€jn, €jn = wn) + b(Ajuj — Ajntjn, wn) + 0 b(€jn, €jn)
= ax(€jn, €jn = wWn) — b(Ajuj — Ajntijn, €jn — Wn)
+ b(\juj — NjnUjnm, €jn) + 0 b(€jn,ein) - (4.10)

Looking first at the final two terms in (4.10) we see from Lemma 4.4

1
5(/\3' + Njin +20) bejn, €jn)
(4.11)

+ i()\jm - )\J) Im b(uj,ujm) .

b(Ajuj — Ajnjns€jn) + 0 b(€jn,ejn) =

Combining this with Lemma 4.5 in (4.10) we get:

Hejn”nAB_ Z /Rl ujna j,n (ejn wn)

TET,

- Z/RF u]n ejn wn)

fer

+ §(>\J + )\j,n + 20’) b(ej’n, ejyn) + i(>\j,n — )\]) Im b(uj,uj,n) . (412)
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Taking the real part of (4.12) and applying the triangle inequality, yields

> Riujn, Ajn)(€jm — wn)
T€Tn 7

S [ ety =)

JE€Fn

”ej,n”i,A,B <

1
+ + 5()\J + )‘jﬂ + 20)b(6j,n, ejm). (4.13)

In particular we are allowed to choose w,, = Ie;, where I,, is the interpolation operator defined above, with
properties (4.7). Substituting this in (4.13) and using Cauchy-Schwarz, together with (4.7), we obtain:

lejmllZan < > IR (ujn, Ajn)llo.rllejn — Tnejmlor
TE€T

1
+ > IRe(wn)losllejn = nenllos + 5 X+ Ajn +20) blejn, €jin)
FEFn

S Y Hel| Ri(tgm, Ajn)llo.rllejnl1.wer)
T7€TH

1
+ HY [ Re(uin)losllenlliwg + 500+ Ajm +20) b(ejn, €5n)- (4.14)
2
FEFn

Since (by an argument analogous to the proof of Lemma 2.1), [|ejnll1,wr) S ll€jnlls,a,B.w) and
lejnlliwry S llejmlle,a,Bwis), another application of the Cauchy-Schwarz inequality yields

1/2
lesml2an < m-,n{ S e lapom + 3 ||ej,n||i,A,B,w<f>}
T€ETH feFn (415)

+ 5+ X + 26{) b(ejn,€jn)
S Mallesnlleans + 50 +Xjn +20) lejn

0.5 -

Finally, in order to conclude the proof we just have to divide both sides of (4.15) by ||€;.n||x,4,5, and recall
Lemma 3.3.

]
The next theorem, which is similar to Theorem 4.6, shows the reliability for eigenvalues.
Theorem 4.7 (Reliability for eigenvalues) Under the same assumptions as in Theorem 4.6, we have:
|>\j,n _>\j| S 77]2@ + G;,n 5
where
1 dist(ujn, E1(A\))3 p 1
= =N+ Ay + 2 ’ : =(Njn — Aj + 20)dist(ujn, E1 (M) 5 -
= g A ) G B O s T 20 T A 2 Lo 5
Proof. With u;,u;, and e, , as in the proof of Theorem 4.6, we use (3.6) to obtain
[Ajm = Ajl = ax(€jm €jm) — Aj blejn,€5n) - (4.16)
Hence noticing that a.(ejn,€jn) < ax(€jn,€jn) +0b(€jn,€jn) = ||€j,n||i,A,B = dist(ujn, E1(Xj))k,A,B,

and substituting (4.8) into (4.16) we obtain
N = Nl < Min + Gy dist(ujin, B1(A)))w,a,8 — Ajdist (u)n, B1(3))5 5
= njn dist(ujn, E1(A;))e,a,8 + %()‘j,n +Xj + 20) dist(ujn, E1(A\))5 5
— Ay dist(ujn, B1(A\))5 5

1 .
7()\j,n — )\j + 20’) dlSt(UjJ“ El(/\j))g,B

= Mjn dist(ujn, B1(Aj))r a8 + 5
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Then using (4.8) again we have

dist(w;,n, E1(X))5 5
dist(wjn, E1(Aj))r,a,B

1
‘)‘jm — )\]| S 77]2',n + 57]]'7“()\]',71 + )\j + 20’)

1
3 O = A+ 20) dist (0, B (03))3 -

u
Now the two final results of this section show that G, in Theorem 4.6 and G'; ,, in Theorem 4.7 are indeed
“higher order terms”.

Theorem 4.8 Under the same assumptions of Theorem 4.6 we have that if H'** is small enough, then

diSt(Uj,',L,El()\j))&AB S Njn - (4.17)

Proof. Again write e;, 1= u; — u;,, where u; € Ei(});) is the simultaneous minimizer of (3.7), (3.8). From
Theorem 4.6 we have

diSt(’lem, El(Aj))n,A,B S MNjn + Gj,n . (418)
Now, applying Theorem 3.5(ii) we have
diSt(“jmv El(/\j))aB
diSt(Ujm, El(Aj))n,A,B
1
5 5()\] + )\j,n + 20)(H:lnam)25 diSt(Uj7n,E1 ()\j))ﬁ,A)B . (419)

1
Gin = 5 (A + Ajn +20)

Supposing that H* is small enough, we obtain \;,, < A; and

. 1.
Gj,n < ()\jJrO') (Hg“”)zsdlst(ujvn,El()\j))ﬁ,A,B < §d13t(uj,n,E1(/\j))n,A,B-

~

Then from (4.18), we have dist(uj n, E1(A\j))s,a,B S 7jn » as required. |

Theorem 4.9 Under the same assumptions as Theorem 4.8 we have:

Proof. Again write e; , := u; — u; ,,, where u; € E1(});) is the simultaneous minimizer of (3.7), (3.8). Then we
have, from (4.16),

Njn = Ajl = an(ejm,ejn) — Ajblejn,€n) < anl€jn,€jn) - (4.20)

Noticing that a.(ejn,€jn) < dist(uj,n,El()\j))i,AB and substituting (4.17) in (4.20) we obtain the result.
u

5 Efficiency

While the reliability estimates in the previous section show the error is bounded above by a positive constant
times an error estimator as the mesh is refined, the “global efficiency” estimate, which we obtain in this section
(Corollary 5.6), obtains a corresponding lower bound. In order to prove Corollary 5.6, we need first a weaker
result called “local efficiency”, which is obtained in Lemma 5.4.

We shall use bubble functions, which are smooth and positive real valued functions with support on an
element and are bounded by 1 in the L* norm. They are constructed using polynomials and so satisfy inverse
estimates which are collected in the next proposition. We define for any edge f, the set A, which is the
union of the two elements sharing f. In particular we need for any element 7 a real-valued bubble function
1, with support in 7 which vanishes on the boundary of 7 and for any edge f, and we need a real-valued
bubble function ¢, with support in Ay and which vanishes on the boundary of A. In [8, p.587] - see also [45,
Lemma 3.3] - such bubble functions ., 1y are constructed which satisfy the following properties:
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Proposition 5.1 There are constants, which only depend on the reqularity of the mesh T,, such that

[vllo,r S 112 %o, (5.1)
Yol S H Hvllor (5.2)
lwllo.s < N0} wllo.s, (5.3)
Wy wlia, S Hp oy, (5.4)
oy wlo.a, S Hy?wllo. (5.5)

hold for all T € Ty, all f € F,,, and for all polynomials v and w.

In the next two lemmas we bound the L2 norms of the residuals R; and Ry on 7 (defined in Definition 4.3
above) in terms of the energy norm of the error on 7.

Lemma 5.2 Let (A, u;,) be an eigenpair of (2.13) and (\;,u;) be an eigenpair of (2.7). Then for any
element T € T, we have

He || Rr(Wn, M) llor S I1AY2(V + i) (w) — uj)]

0 + He | Ajinttjn — Ajtijllo.s.r - (5.6)

Proof. Let 1, be the bubble function introduced above and set w, = ¥, Rr(u;n,A; ). Because we are using
linear elements, and since A, B are assumed to be constant in the interior of each element, the residual Rj is
a linear function on 7. This fact together with (5.1) and the positivity of ¥, leads to

IRs (50 ) B S YR Ny =l Rais )P
= /Rl(ujm, Ajn)Wr
= / (V+ik) - AV +ik)ujn + Ajn B ujy) Wy . (5.7)
Hence integrating by parts and using the fact that w, vanishes on 97, we get
IR (ujm, N5 S —an(tjn, wr) + Ajnb(ujm, wy).
Since u; satisfies (2.7) and since w, € H} (1) C HL(£2), we have

IR (s A lI5 S = (W — ujwe) + b(Njnttjn — Njug, wy) .

~

Hence by the Cauchy-Schwarz inequality we obtain
1R (wjns Aj)ller S A2V +i8) (uy = wjn) | |42V = im)w, ||,
+ Ajinttjn = Ajusllo.B.r lwrllo,B.r
S AV +ir) (uy = wjn) o, llwrlli e
+ Xjntn = Ajujllosr wrllos,r-

For the final step we use the definition of w, and (5.2) to obtain from (5.8):

IRr (wjms NG S [HY AV + i) (uy — wio)o.r

HAjntsn — Ajugllo,B,r | 1B (jns Ajn)llors

then multiplying each side by H.||Rr(u;n, )\Jn)||ai yields the result. ]
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Lemma 5.3 Under the same conditions as Lemma 5.2, for any f in F,

1/2 .
HY | Re(usnllos S 30 (1YY +im)(us = ugm)lor + Hy Mgt = Ages]
TEA}

O,B,T) . (5.9)

Proof. Let ¢ be as in Proposition 5.1, and set wy := 1y Rp(u;,). Applying (5.3), recalling that w, vanishes
on all edges except f and then using Lemma 4.5, we obtain

IRe(us)3; S 1022 Re(us)B, = /f Re(us)my = 3 /f Ry (1)

Z Rl(uj,n,/\j,n)wf — aﬁ(uj — ujm,wf) + b()\ju] — )\jmujm,wf) . (510)
TEA‘f o

Then, using the Cauchy-Schwarz inequality on (5.10), we get:

1Re (w5 S D IRr(wg0 Aga)llor lwgllor
TGAf

+ [[AY2(V + ik) (u; — ujp)

0,4, [AY2(V —ir)wylo,a,

+ 1Ny ntgn — Ajugllo,s,a, wello,s,a; - (5.11)

Now, we have to estimate each of the three terms on the right-hand side of (5.11). The first term can be
treated using (5.5) and (5.6):

1/2
ST IR s X llor Twpllor S HF? S 1R (wjn, Ajin)
TEA; TEA;

0or Y <Hrl||A1/2(V+iﬁ)(Uj—Uj,n)llo,T + IIAj,nt,n—AjUjllo,B,T> - (5.12)
TEAf

0,7 ||RF(uj,n)||07f

1/2
< H? |Rp(ujn)]

To treat the second term on the right hand side of (5.11), note that we can use (5.4) and (5.5) to obtain:

1AYV2(V —iw)wrllo.a, S lwsllo,a, + lwy

1,Af
(5.13)
1/2 ~1/2
S (H + H') [ Re(ugn)lo.s
To treat the last term on the right hand side of (5.11), note that by (5.5),
1/2
lwrllosa, S lwrlloa, S HY? [Re(uwin)loy - (5.14)

Now substituting (5.12), (5.13) and (5.14) in (5.11) we get:

1R () g S 1 Re(win)llos [(H? +H7 ) ca, 1AYA(Y +i0) (05 = usn) o

1/2
+ Hy? [Nty — Ajusllo,5r ] :

To conclude the proof we have to multiply both sides by H}/2||RF(Uj7n)||(I} and note that HpH- ' < 1.
[

In Lemma 5.4 we prove a local version of the efficiency, this result is extended to the whole domain {2 in
Theorem 5.5.

Lemma 5.4 (Local efficiency) Under the same conditions as Lemma 5.2, define

Mg = > HZ|Ri(ujn, Nn)lls . + Hy |Re(uin)llf s -
TEAf

Then

IS (IIAW(V +ir)(uj —uin)llo, + HINjnwjn — Ajusl
TEAf

3,B,T>- (5.15)
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Proof. Combine the results from Lemma 5.2 and Lemma 5.3. [ ]

Theorem 5.5 (Global efficiency) Under the same assumptions as Lemma 5.2, suppose also that
uj € E1()\;) minimizes the distance in Lemma 3.3. Then

Min S dist(ujn, Ex(A\))2ap + 1HeNjnttgn = Ajus)lle 5 - (5.16)

Proof. Summing (5.15) over all edges f and recalling (4.1) yields

B S 2 Mns S D { > <||A1/2<v+m>< — )R+ H2 Aty — Ajujn%,B,T)}. (5.17)

feEFn feF, \reAy

The subsets Ay, for each value of f, are not all disjoint, but the maximum number of overlapping subdomains
Ay at any point in the interior of an element is 3. So (5.17) yields the result. |
The following corollary explains why Theorem 5.5 really is a statement about global efficiency.

Corollary 5.6 Under the same assumptions as Theorem 5.5 and with the extra assumption that H** is
small enough, we have
Tj,n S dlSt(u] n; E1(>\ ))n A,B -

Proof. By Theorem 5.5 (recalling that ||u;,|lo,5 = 1), and then Theorem 3.5, we obtain

2
NG S N —uinllzan + (HR) (Nn = NP + A [lujn —uills 5)
2 2g
S luy—wimllas + (HE) (lug —winlltas + A (HZ) llug —ujnll? a5)
2+42s
S (1 + (H’:Lnax) ) ”UJ - uj,n”i,A,B ~> dlSt(Uj mEl()\ ))K AB >
and the result follows. -

The next corollary is very important for computations, since it proves that n;, — 0 is equivalent to
convergence of the computed eigenpair in an appropriate sense.

Corollary 5.7 Let (A}, u;n) be a computed eigenpair and assume also that H'* is small enough.
(1) If nj, — 0 as n — oo, then both dist(w; ., E1()\j))x a5 and |A;, — A;| tend to zero;
(1) If dist(u; pn, E1 (A ))57A7B — 0 as n — oo, then both )‘Jm — A;j and 1., — 0 as n — oo.

Proof. Part (i) follows directly from Theorems 4.8 and 4.9. To obtain (ii), notice that if dist(uw; n, E1(\;))s,4,B —
0, then by Theorem 3.5 we have A;,, — A; and by Corollary 5.6, we also have 7;,, — 0 as n — oo.
u

6 Adaptive FEM and numerical experiments

In this section we present an adaptive algorithm and study numerically its performance for various problems
related to the TE case mode of problem (1.1). In this case A is piecewise constant, B = 1 and there are
typically localized singularities in the gradient of the eigenfunctions at corner points of the interface in the
dielectric €, leading to a strong need for adaptivity. We shall use the a posteriori error estimator 7;,,, introduced
in §4 (which we shall refer to as the “standard” estimator), and we shall compare the results to those using a
slightly different estimator, below referred to as the “modified” estimator, and defined by

1/2
Njn :{ Z 2ot R (Ujns Jn)”OT + Z Hyasy ||RF(ujn)||Of} ) (6.1)

TETn feFn

where a; = Amax|r, af = max{Amax|r (f)s Amax|r(s)} » and Apax denotes the maximum eigenvalue of
A. Since n;, and 7);, are equal up to multiplication by a constant (independent of the mesh), all the results
in §84 and 5 also hold for 7; ,,. We shall see below that in some cases 7; , performs much better than 7;,. An
error estimator similar to 7;,,, for elliptic PDEs with discontinuous coefficients is presented in [8], where also
its robustness with respect to the jumps in A is proved. In this work we observe that with fixed A, and for some
values of quasimomentum x, the modified estimator performs better than the standard estimator. However
for other values of k the two estimators perform similarly. This observation merits further investigation, but
to avoid making the paper longer we do not discuss it further here.
Our adaptivity algorithm uses the following standard marking strategy.
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Definition 6.1 (Marking Strategy) Given a parameter 0 < 6 < 1, the procedure is: mark the elements in
a minimal subset M,, of T, such that

1/2
( Z 7732',71,7) 2 enj,nv (62)

TEM,
where 1j ., 5:
2. 2 2 1 2
P = B2 Rs i N B+ S SH | Rl (63)
feor
1t is straightforward to see that (ZreTn njz}nﬁ)l/Q = Njn. Also when the “modified” error estimator 1; ., is

used an analogous marking strateqy is employed.

Our adaptive algorithm is given in Algorithm 1 and requires specification of the two parameters; tol (the
accuracy tolerance) and max,, (the maximum number of allowed mesh refinements). For the refinement step
in the algorithm we have used standard “red refinement” (see, e.g., [13]). Eigenpairs are computed via Arnoldi’s
method using ARPACK [31] with the associated linear systems implemented by the sparse direct solver ME27
from the HSL archive [41,25].

Algorithm 1 Adaptivity algorithm

Require: 7o, j, &

n=0

repeat
Compute (Ajn,ujn) on Ty
Compute njn,, for all 7 € T,
Mark the elements using the marking strategy (Definition 6.1)
Refine the mesh 7, and construct 7,41
n=n+1

until 7;, < tol OR n > max,

6.1 TE case problem on periodic medium

We first consider the TE problem for a periodic medium with square inclusions. The unit cell is the unit square
with a square inclusion of side 0.5 centered inside it. We choose A to take the value 1 inside the inclusion
and the value 0.05 outside it. This is a realistic example, since expected jumps in dielectric properties of real
photonic crystals are of this order. The jump in the value of A could produce a jump in the gradient of the
eigenfunctions across the boundaries of the subdomains. As above, the eigenfunctions lie in H*T!(§2), with
s> 1/2—¢, for all € > 0 in general. However, since we resolve exactly the interface, we see a convergence speed
coming from the regularity of the eigenfunctions in each subdomain, which is u € H5*1(§2;) where s > 2/3.
From Theorem 3.5(i,iii) we have that using uniform refinement, the rate of convergence for eigenvalues should
be at least O(Hx)2s,

Tables 1 and 2 illustrate the performance of the standard and modified error estimators for computing
the smallest non-zero eigenvalue of (1.1) in the case of quasimomentum x = (0,0). Here n is the refinement
number as in Algorithm 1 and 3 = —log(|A\; — Ajn|/|Aj — Ajn—1])/log(#DOFs, /#DOFs,,_1) is a computed
estimate of the convergence rate. Tables 3 and 4 give the analogous results for quasimomentum s = (7, 7).
We can see that in both cases the adaptive methods perform better than the uniform refinements, however
the “modified” error estimator performs even better than the “standard” one, in fact for both values of s
less DOFs are necessary for the “modified” error estimator compared to the “standard” one to reach the
same accuracy. In fact this observation holds for any x which is far enough from the origin. and this is the
main reason behind the introduction of the error estimator 7; ,. For this problem the exact eigenvalues \ are
unknown, so in all four tables the errors which are displayed are computed using very accurate approximations
of the exact eigenvalues, computed on a very fine mesh involving about a million of DOFs.

Theorem 4.9 shows that for sufficiently fine meshes (apart form a hidden constant), 77]2',” provides an upper
bound for the eigenvalue error. This is also true for 7;, by the remarks above. To numerically investigate
the implications of this result, we approximate numerically the hidden constant C, = |[\; — Aj,| /n]%” in

Theorem 4.9. Similarly, we compute C, = IAj — A /ﬁ?n As can be seen in Tables 5 and 6, the computed
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Uniform Njn
0=0.5 0=0.8
n [ |)\J — >\j,n| [ #DOFS n [ |)\] — >\j,n| [ #DOFS [ ﬂ n [ P‘J — )\j,n‘ [ #DOFS [ [’3
1 0.0584 400 1 0.0584 400 - 1 0.0584 400 -
2 0.0188 1600 6 0.0155 1584 0.9623 || 3 0.0187 1460 0.8798
3 0.0063 6400 9 0.0064 3764 1.0277 || 5 0.0048 5670 1.0025
4 0.0021 25600 13 0.0018 12626 1.0541 || 6 0.0021 10711 1.3050
5 0.0007 102400 16 0.0006 29583 1.1846 || 8 0.0005 40698 1.0864

Table 1 Comparison for x = (0,0) and with j = 2 between the uniform refinement and the adaptive method with the
“standard” error estimator.

Uniform Mjn
0=0.5 0=0.8
n [ |)\J — >\j,n| [ #DOFS n [ |)\] — >\j,n| [ #DOFS [ ﬂ n [ P\] — )\j,n‘ [ #DOFS [ B
1 0.0584 400 1 0.0584 400 - 1 0.0584 400 -
2 0.0188 1600 5 0.0139 1356 1.1746 || 3 0.0138 1452 1.1165
3 0.0063 6400 8 0.0058 3437 0.9360 || 5 0.0032 5824 1.0478
4 0.0021 25600 12 0.0017 11101 1.0522 || 6 0.0018 11342 0.8904
) 0.0007 102400 15 0.0006 26334 1.1829 || 7 0.0007 23044 1.2318

Table 2 Comparison for k£ = (0,0) and with j = 2 between the uniform refinement and the adaptive method with the

“modified” error estimator.

Uniform Njn
=05 =038
n [ |)\J — >\j,n| [ #DOFS n [ |)\] — >\j,n| [ #DOFS [ ﬂ mn [ P\] — )\j,n‘ [ #DOFS [ B
1 0.0505 400 1 0.0505 400 - 1 0.0505 400 -
2 0.0155 1600 6 0.0158 1686 0.8086 || 4 0.0089 2922 0.8718
3 0.0050 6400 11 0.0040 7622 0.9073 || 5 0.0053 6264 0.6742
4 0.0016 25600 15 0.0016 22344 0.8396 || 7 0.0015 24110 0.9299
5 0.0005 102400 19 0.0005 55426 1.3181 9 0.0004 86668 1.0845

Table
the “standard” error estimator.

3 Comparison for k = (m,7) and with j = 2 between the uniform refinement and the adaptive method with

Uniform Nj.n
=05 =038
n [ |)\J — >\j,n| [ #DOFS n [ |)\] — >\j,n| [ #DOFS [ ﬂ mn [ P‘J — )\j,n‘ [ #DOFS [ B
1 0.0505 400 1 0.0505 400 - 1 0.0505 400 -
2 0.0155 1600 5 0.0122 1398 1.1314 || 3 0.0118 1546 1.0727
3 0.0050 6400 9 0.0036 4984 0.9626 5 0.0028 6348 1.0228
4 0.0016 25600 12 0.0016 12505 0.8736 6 0.0015 14749 0.7578
5 0.0005 102400 17 0.0005 32822 1.2407 || 8 0.0003 57480 1.1161

Table

the “modified” error estimator.

4 Comparison for k = (m,7) and with j = 2 between the uniform refinement and the adaptive method with

values of C,. and C, remain almost constant as the mesh is refined and also they do not seem to be affected by
variations in the value of x. This implies that both the error estimators n; , and 7; , decay in the same way as
the true error, which is important in practice since it means that 7;, and 7;, can be used as an indicator of
the size of the true error, even when the true error is not available. However, it is easy to see that the value of
C, doesn’t change as much as the value of C,., this suggests that the “modified” error estimator follows better
the behavior of the true error. Also the “modified” error estimator performs better than the “standard” one
because for the same n, the true error |\j — A; ,| is smaller using the “modified” error estimator. In Figure 1
we depict the mesh coming from the fourth iteration of Algorithm 1 with 8 = 0.5. As can be seen the corners
of the inclusion are much more refined than the rest of the domain. In Figure 2 we depict the eigenfunction

corresponding to the smallest positive eigenvalue of the problem with quasimomentum (0, 0).
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T =Xl [ m3 TG TN =Nl [ 5 [ G ]
0.0584 0.1126 | 0.5182 0.0584 1.2280 | 0.0475
0.0543 0.0974 | 0.5571 0.0425 0.9520 | 0.0447
0.0414 0.0751 | 0.5513 0.0330 0.6746 | 0.0489
0.0314 0.0538 | 0.5830 0.0231 0.4848 | 0.0477
0.0232 0.0371 | 0.6242 0.0139 0.3172 | 0.0439
0.0155 0.0253 | 0.6135 0.0105 0.2378 | 0.0440
0.0103 0.0191 | 0.5398 0.0080 0.1752 | 0.0457
0.0083 0.0142 | 0.5807 0.0058 0.1266 | 0.0460
0.0064 0.0103 | 0.6168 0.0039 0.0900 | 0.0437
10 0.0049 0.0074 | 0.6618 0.0027 0.0671 | 0.0402
11 0.0028 0.0053 | 0.5342 0.0022 0.0511 | 0.0425
12 0.0022 0.0040 | 0.5504 0.0017 0.0386 | 0.0439
13 0.0018 0.0030 | 0.5877 0.0013 0.0290 | 0.0434
14 0.0014 0.0023 | 0.6122 0.0009 0.0215 | 0.0396

o 00| ~1| o o wis| wol b0 || 3

Table 5 Comparison for x = (0,0) and with j = 2 between the “standard” error estimator and the “modified” error
estimator with 6 = 0.5.

T =Xl [ 3 TG TN =Nl | 5 [ G ]
0.0505 0.1629 | 0.3098 0.0505 1.2271 | 0.0411
0.0473 0.1337 | 0.3538 0.0363 0.9866 | 0.0368
0.0391 0.1020 | 0.3832 0.0276 0.7095 | 0.0389
0.0319 0.0750 | 0.4257 0.0176 0.4690 | 0.0375
0.0244 0.0548 | 0.4462 0.0122 0.3453 | 0.0355
0.0158 0.0395 | 0.3988 0.0091 0.2696 | 0.0336
0.0090 0.0285 | 0.3172 0.0071 0.1997 | 0.0355
0.0082 0.0225 | 0.3641 0.0054 0.1466 | 0.0365
0.0071 0.0175 | 0.4079 0.0036 0.1060 | 0.0340
10 0.0057 0.0135 | 0.4248 0.0026 0.0809 | 0.0322
11 0.0040 0.0103 | 0.3901 0.0020 0.0627 | 0.0318
12 0.0025 0.0079 | 0.3175 0.0016 0.0480 | 0.0336
13 0.0022 0.0063 | 0.3406 0.0012 0.0366 | 0.0338
14 0.0019 0.0051 | 0.3818 0.0009 0.0279 | 0.0310

o 00| ~1| o i wof b0 || 3

Table 6 Comparison for k = (7, 7) and with j = 2 between the “standard” error estimator and the “modified” error
estimator with 6 = 0.5.

6.2 TE mode problem on supercell

The spectra of photonic crystals typically contain band gaps, but, for many applications, the identification
of band gaps is not enough. Commonly it is necessary to create eigenvalues inside the gaps in the spectra
of the media. The importance of these eigenvalues is due to the fact that electromagnetic waves, which have
frequencies corresponding to these eigenvalues, may remain trapped inside the defects [18,20] and they decay
exponentially away from the defects. The common way to create such eigenvalues is by introducing a localized
defect in the periodic structures — see [20] and [19, Theorem 2]. Such localized defects do not change the
bands of the essential spectrum [19, Theorem 1].

In the next set of experiments we continue to work with the TE case problem and we shall use the “supercell
method” [43] to compute the modes arising from the defect. The supercell method takes the defect problem
(which is no longer periodic) and approximates it by a “nearby problem” in which the defect is surrounded by
a finite number of layers of the original periodic medium, which is then truncated and repeated periodically,
so that we get a new artificial periodic problem where each cell has a defect surrounded by some periodic
layers.

We shall compute defect modes for the problem introduced in §6.1 using a supercell with two or more
layers of periodic structure surrounding the defect. (In Figure 3 we depict the unit cell with two layers added).
This new medium (since it is again infinitely periodic) has a new band in its spectrum caused by the defect.
However it is also known ([43]) that as the number of periodic layers increases, and under some conditions,
the band shrinks exponentially quickly to the eigenvalue of the original defective material.

In order to compute good approximations of these trapped modes, it is not only necessary to compute
accurately the TE case problem on supercells, but also it is necessary to use enough layers of periodic structure
around the defect to ensure that the band in the supercell problem is sufficiently narrow. Ideally, the error in
the approximation of the eigenvalue problem and the diameter of the defect band should have the same order.



18 S. Giani, I.G. Graham

0.8

0.6

Y-Axis

0.4

0.2
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Fig. 1 A refined mesh coming from the adaptive FEM for the TE mode problem with £ = (0,0) and using 7,5, with
j=2.
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Fig. 2 The eigenfunction with index j = 2 of the TE mode problem with quasimomentum x = (0, 0).

Just to give an idea of the size of the defect band as a function of the number of layers of periodic structure
around the defect, Table 7, gives the diameters of the defect bands for different sizes of the supercell computed
using the “exact” values of the trapped eigenvalues computed on a very fine mesh at 55 different points of the
first Brillouin zone.

In Tables 8-11 and Figures 4-5 the performance of the two error estimators are compared with uniform
refinement for computing a trapped mode for different values of the quasimomentum on a supercell with 2
layers of periodic medium, whose first Brillouin zone is [—7 /5, 7/5]%. As can be seen in the case of supercells
and trapped modes we have that both the “standard” and the “modified” error estimators give greater orders
of convergence compared to uniform refinement.

For this problem the difference in the accuracy between our method and the uniform refinement method
is much more striking compared to the previous example. The reason is not only that the adaptive method
refines around the corners, where the singularities are, but also, because the most part of the “energy” of
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[ Number of Layers [ Diameter defect band ||

2 0.3008
3 0.0295
4 0.0154

Table 7 Size of the defect band as function of the number of layers of periodic structure around the defect.

Fig. 3 The structure of the supercell used for the computations.

——uniform

——modified 0.5
——modified 0.8
——standard 0.5
——standard 0.8

-4
10 ‘
10 10° 10°

Fig. 4 Loglog plot of convergence of adaptive and uniform refinements for the TE problem on a supercell with
quasimomentum x = (0,0) and with j = 28.

the solution is inside the defect, which is a very small region. Moreover, the “modified” error estimator still
performs a bit better than the standard one with no extra computational costs involved. Also in this case we
computed the “exact” values of the eigenvalues A; using more than one million of DOFs.

In Figure 6 we depict the mesh coming from the fourth iteration of Algorithm 1 with 8 = 0.5. As can
be seen there is a lot of refinement around the defect, especially around the corners of the inclusions. Away
from the defect there is just a bit of refinement which is again around the corners of the inclusions. The
reason why the refinement is so concentrated in the defect and the reason why the corners of the inclusions
away from the defect seem not to show important singularities, is because the trapped mode has a fast decay
outside the defect and so the singularities at the corners of the inclusions are less important away from the
defect. In Figure 7, we depict the eigenfunction corresponding to the mode “trapped” inside the defect. This
eigenfunction is the one used to refine the mesh in Figure 6.

As explained above, it is important to use enough layers of periodic medium around the defect to have a
narrow defect band. In Tables 12-14 we denote with A\* the eigenvalue trapped in the defect and with A} the
approximation of the trapped eigenvalue. We decided to change the notation because increasing the number
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——uniform

——modified 0.5
——modified 0.8
——standard 0.5
—v—standard 0.8

10 ‘ ]
10 10 10

Fig. 5 Loglog plot of convergence of adaptive and uniform refinements for the TE problem on a supercell with
quasimomentum s = (7 /5,7/5) and with j = 28.
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Fig. 6 An adapted mesh for a trapped eigenvalue for the TE case on a supercell with quasimomentum x = (0,0) and
with j = 28. The structure of the supercell is superimposed on the mesh

of periodic layers in the cell the index j of the trapped mode changes. In Tables 12 and 13 it is possible to
see how the uniform and the adaptive methods behave when increasing the size of the supercell. In particular
the superiority of the adaptive method is clearly visible. Finally in Table 14 we show the DOFs needed by the
uniform and the adaptive methods to reach an accuracy higher than the order of the diameter of the defect
band for different sizes of the supercell.
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e
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.~0.001595
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Max: 0.3059
Min: -0.3028
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Fig. 7 A picture of the eigenfunction trapped in the defect for the TE case on a supercell with quasimomentum
x = (0,0) and with j = 28. The structure of the supercell is superimposed on the picture of the eigenfunction

Uniform Njn
0=0.5 0=038
n [ |)\J — >\j,n| [ #DOFS n [ |)\] — >\j,n| [ #DOFS [ ﬂ n [ D\] — )\j,n‘ [ #DOFS [ 5
1 0.0228 10000 1 0.0228 10000 - 1 0.0228 10000 -
2 0.0074 40000 6 0.0061 17128 2.4583 || 3 0.0069 16958 2.2677
3 0.0025 160000 9 0.0026 40791 0.9589 || 5 0.0018 58290 1.1002
4 0.0008 640000 13 0.0008 130455 | 1.0775 || 6 0.0009 118082 [ 0.9687

Table 8 Comparison for k = (0,0) and with j = 28 between the uniform refinement and the adaptive method with
the “standard” error estimator on a supercell.

Uniform

Tin
=05 =038
7 [ N — Nl | #DOFs | n [ [N — Nl | #DOFs | B n [N —Nwm| | #DOFs [ B
T 00228 10000 || I | 0.0228 10000 - T 00228 10000 -
2 [ 0.0074 40000 || 5 | 0.0065 14808 | 3.2038 || 3 | 0.0057 19598 | 2.0628
3] 0.0025 | 160000 || 8 | 0.0027 33366 | 1.0704 || 4 | 0.0028 36356 | 1.1363
4| 0.0008 | 640000 || 12 | 0.0008 | 105876 | 1.0794 | 6 | 0.0006 | 138720 | 1.1169

Table 9 Comparison for x = (0,0) and with 7 = 28 between the uniform refinement and the adaptive method with
the “modified” error estimator on a supercell.
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Uniform

Nin
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Table
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Table 12 Comparison for x = (0,0) between the uniform refinement and the adaptive method with the “modified”

3 Layers 4 Layers
Uniform [ M, 0 = 0.5 Uniform Mjn, 0 = 0.5
N =ML [ #DOFs | [N = X[ [ #DOFs [ [N = A.[ [ #DOFs | [A" = AL [ #DOFs
0.0324 12544 0.0324 12544 0.0356 20736 0.0356 20736
0.0092 50176 0.0080 19874 0.0100 82944 0.0101 47824
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error estimator on a supercells of different sizes.

3 Layers 4 Layers
Uniform [ Njm, 0 =0.5 Uniform Njn, 0 =0.5
N =X [ #DOFs | [N" = A, [ #DOFs || [N" = A;] [ #DOFs | [A* = A}[ [ #DOFs
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Table 13 Comparison for k = (w/7,7/7) for the 3 layers case and for k = (7/9,7/9) for the 4 layers case between the
uniform refinement and the adaptive method with the “modified” error estimator on a supercells of different sizes.
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