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Abstract In this paper we propose and analyse adaptive finite element methods for computing the band 
structure of 2D periodic photonic crystals. The problem can be reduced to the computation of the discrete 
spectra of each member of a family of periodic Hermitian eigenvalue problems on a unit cell, parametrised by 
a two-dimensional parameter - the quasimomentum. These eigenvalue problems involve non-coercive elliptic 
operators with generally discontinuous coefficients and are solved by adaptive finite elements. We propose 
an error estimator of residual type and show it is reliable and efficient for each eigenvalue problem in the 
family. In particular we prove that if the error estimator converges to zero then the distance of the computed 
eigenfunction from the true eigenspace also converges to zero and the computed eigenvalue converges to a true 
eigenvalue with double the rate. We also prove that if the distance of a computed sequence of approximate 
eigenfunctions from the true eigenspace approaches zero, then so must the error estimator. The results hold 
for eigenvalues of any multiplicity. We illustrate the benefits of the resulting adaptive method in practice, both 
for fully periodic structures and also for the computation of eigenvalues in the band gap of structures with 
defect, using the supercell method. 

MSC2010 Subject Classification: 65M50, 65M60, 65F15 

1 Introduction 

Photonic crystals (PCs) are constructed by assembling portions of periodic media composed of dielectric 
materials and they are designed to exhibit interesting properties in the propagation of electromagnetic waves, 
such as spectral band gaps. Media with band gaps have many potential applications, for example, in optical 
communications, filters, lasers, switches and optical transistors; see [26,38,30,2] for an introduction. In this 
paper we consider only 2D PCs, whose behaviour is periodic in the plane determined by two orthogonal 
directions, and is constant in the direction normal to this plane. 

The propagation of light in any kind of PC is governed by Maxwell’s equations. In 2D PCs, the 3D 
Maxwell’s equations reduce to a two-dimensional one-component wave equation, which determines either the 
electric field or the magnetic field. Because the problem is periodic, the Floquet transform [30,29] can be 
applied to split each mode into a family of eigenvalue problems on a unit cell Ω of the periodic medium with 
periodic boundary conditions. This family is parameterised by the quasimomentum κ, which varies in the 
first Brillouin zone - for a definition see § 2. All eigenvalue problems in the family have the weak form: seek 
eigenpairs of the form (λ, u) ∈ C × Hπ

1(Ω), with u appropraitely normalised, such that 

((∇+ iκ)v) ∗ A(∇+ iκ)u = λ Buv̄ in Ω, for all v ∈ Hπ
1(Ω), (1.1) 

Ω Ω 
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where Ω is the primitive cell of the photonic crystal and Hπ
1(Ω) is the space all functions of H1(Ω) satisfying 

periodic boundary conditions on ∂Ω. Here, the (generally) matrix-valued function A is real symmetric and 
uniformly positive definite, i.e., 

0 < a ≤ ξ ∗ A(x)ξ ≤ a for all ξ ∈ C2 with |ξ| = 1 and all x ∈ Ω , (1.2) 

where ∗ denotes Hermitian transpose. The scalar function B is real and bounded above and below by positive 
constants for all x ∈ Ω, i.e., 

0 < b ≤ B(x) ≤ b for all x ∈ Ω. (1.3) 

We note that the eigenvalue problem, subject to the normalisation constraint on u, is a nonlinear problem for 
the unknown pair (λ, u). 

In the theory in this paper we will assume (as is generally the case in applications), that A and B are both 
piecewise constant on Ω and we will also assume that any jumps in A and B are aligned with the meshes used 
in this work. However the algorithm will still run even if these constraints are not satisfied Due to the jumps 
of the coefficients, the eigenfunctions of (1.1) could have localized singularities in the gradient, which could 
diminish the rate of convergence of finite element methods on uniformly refined meshes. 

A very popular practical numerical method for PCs is the Fourier spectral method (also called the “plane­
wave expansion method”), for example [37,26,11,34,36]. This method exploits the periodicity in the PC and 
uses modern highly tuned FFT algorithms to obtain fast implementations. However the overall rate of conver­
gence of approximate spectra to true spectra is slow because the jumps in the dielectric destroy the exponential 
accuracy which is achieved by Fourier spectral methods for smooth problems. Methods for accelerating the 
convergence by artificially smoothing the jumps in the dielectric have also been proposed. These converge 
quickly to a solution which contains a smoothing error and it turns out to be impossible to recover overall 
exponential accuracy by this method - see [34–36] for a complete analysis. Other spectral methods include 
[17] which uses an expansion in terms of eigenfunctions for the crystal without any defects. Semi-analytical 
methods which impose considerable limitations on the geometry of the crystal are also considered, for example, 
in [18]. 

We use adaptive finite element methods because they provide flexible solvers for PDE eigenvalue problems 
and are able to deal optimally with the heterogeneous media problems encountered in PC models. There 
are already a number of papers about low order finite element methods for PCs [4,10,14,15,24,28] and most 
recently there has been considerable interest in p and hp methods, with the latter having the potential to 
obtain exponential accuracy [16,32,39,40] . Accurate computations based on a priori hp refinement strategies 
are shown in [39,40]. However, as far as we are aware, until now no one has used adaptivity based on a 
posteriori error estimates on these problems. 

Mesh adaptivity based on a posteriori error estimates has been widely used to improve the accuracy of 
numerical solutions of PDEs (e.g. [1]). Recently the question of convergence of h-adaptive methods for elliptic 
eigenvalue problems has received intensive interest. One of the first proofs was in [22], but this is only for 
eigenproblems based on coercive bilinear forms. As we shall see the Hermitian form on the left-hand side of 
the PC eigenvalue problem (1.1) is not coercive for all values of the quasimomentum κ, so new methods of 
analysis are required. Some of the methods presented in this paper were first developed in the PhD thesis [21], 
where the convergence of adaptive methods for PCs was also discussed. Some previous numerical experiments 
were reported in [23]. Recently there is much interest in adaptive methods for PDE eigenvalue problems in 
general - see for example [12,33] for other applications. 

The outline of the paper is as follows. The next section - §2 - briefly describes how problem (1.1) is derived 
from Maxwell’s equations. Here we also prove some basic properties of the Hermitian form in (1.1) and we 
introduce the finite element discretization. Then §3 proves some basic a priori estimates for finite element 
approximation of PC eigenvalue problems. These are derived from the classical literature and are essential 
for the main results of this paper which are contained in §§4 and 5. To give a flavour of the main results, let 
(λj,n, uj,n) denote a computed finite element eigenpair of (1.1) (where uj,n is a finite element function and λj,n 
approximates a true eigenvalue λj of arbitrary multiplicity), then in Definition 4.3 we define an a posteriori 
error estimator ηj,n (being a sum of computable contributions from each mesh element), and in Theorems 4.7 
and 4.9 we prove that 

dist(uj,n, E1(λj)) ≤ Cηj,n and |λj,n − λj | ≤ Cη2 (1.4) j,n , 

with C independent of the mesh, where E1(λj) denotes the unit ball in the exact eigenspace corresponding 
to λj and the distance is measured in an energy inner product related to the Hermitian form in (1.1) (see 
Lemma 2.1). Recalling that nonlinearity of the eigenvalue problem (1.1), it is not surprising that elementary 
a posteriori error estimates usually involve additional terms on the right hand side. However, due to the a 
priori results in §3 these are rigorously shown to be of higher order and so do not appear in our estimates. 
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By (1.4), the eigenfunction and eigenvalue error both approach zero if the estimator ηj,n → 0. The converse 
is established in §5, i.e., if the eigenfunction and eigenvalue errors both converge to zero, then so does the 
error estimate ηj,n. (This is known as “efficiency”.) Finally, numerical experiments illustrating the results with 
our method, compared to more standard FEM methods, are collected in §6. These include both results on 
infinite periodic structures and on periodic structures with defect. We believe that the present paper is the 
first contribution to the topic of the analysis of adaptive finite element methods for PC applications. 

2 Photonic crystal eigenvalue problem and numerical method 

In general, PCs are of practical interest because of their band gap properties - i.e., monochromatic electro­
magnetic waves of certain frequencies may not propagate inside them. Since fabrication is simpler in 2D than 
in 3D and since the 2D case still includes many important applications, (e.g., [27]), considerable numerical 
interest has focussed on the 2D case - e.g. [4,11,14,17,32,34,39,40] - and the present paper obtains the first 
rigorous theory for adaptive finite element methods in this case. 

The mathematical development (see e.g. [30]) begins with the eigenvalue problem for Maxwell’s equations 

∇×Eω = − iω µHω, ∇ · µHω = 0 ,

∇×Hω = iω

c 
εEω , ∇ · εEω = 0 . 

(2.1)

c 

where Eω is the electric field, Hω is the magnetic field, ε and µ are, respectively, the dielectric permittivity 
and magnetic permeability tensors, and c is the speed of light in a vacuum. We assume the medium is periodic 
in the (x, y) plane and is constant in the third (z) direction and that the material is non-magnetic (so µ = 1). 
The problem (2.1) splits naturally into two independent problems, called transverse magnetic (TM) and 
transverse electric (TE) modes, as explained in [30]. On the assumption that the medium is isotropic (so ε is 
scalar-valued), the problems are 

ω2 

Δuω + εuω = 0 (TM case) , (2.2) 
c2 

and 
1 ω2 

∇ · (∇uω) + uω = 0, (TE case) . (2.3) 
ε c2 

Both problems (2.2) and (2.3) may be written in the abstract form as that of seeking (λ, u) with u �= 0 such 
that 

∇ · (A∇u) + λBu = 0 . (2.4) 

The anisotropic case (where ε is a tensor) may also be included in this formulation - see e.g. [32]. Since A or 
B may be discontinuous, (2.4) has to be understood in an appropriate weak form. So far (2.4) is posed over 
all of R2, with periodic data. 

A 2D periodic medium can be described using a lattice L := {R = n1r1 + n2r2 , n1, n2 ∈ Z} , where 
{r1, r2} is a basis for R2. The (Wigner-Seitz) primitive cell for L is the set Ω of all points in R2 which are 
closer to 0 than to any other point in L - see [3]. When Ω is translated through all R ∈ L, we obtain a covering 

of R2 with overlap of measure 0. The reciprocal lattice for L is the lattice L̂ generated by a basis {k1, k2}, 
chosen so that ri · kj = 2πδi,j , i, j = 1, 2 , where δi,j is the Kronecker delta and the primitive cell for the 
reciprocal lattice is called the first Brillouin zone, which we denote here by K [3]. 

For example, if L is the square lattice generated by {e1, e2} (where ei are the standard basis functions in 

R2), then Ω = [−0.5, 0.5]2 , L̂ is generated by {2πe1, 2πe2} and the first Brillouin zone is K = [−π, +π]2. Such 
square lattices are used in all numerical experiments in Section 6. 

The Floquet transform - see, e.g. [30] - may them be used to show the equivalence of the problem (2.4) to 
a family of problems on the primitive cell Ω parametrized by quasimomentum κ ∈ K. This is the family 

(∇+ iκ) · A(∇+ iκ)ũ + λB ũ = 0 on Ω, κ ∈ K , (2.5) 

where ũ is the Floquet transform of u and λ is the corresponding eigenvalue which now depends on κ. This 
equation should again be understood in the weak form - a rigorous derivation can be found for example in [9]. 
In order to recover the spectrum of the problem (2.4), it is sufficient to compute the union of all the spectra 
of the problems in the family (2.5) for all κ ∈ K, and these problems have discrete spectrum since the domain 
Ω is compact. For more details see [30, page 19]. Writing (2.5) in weak form gives precisely (1.1). 

Throughout L2(Ω) denotes the usual space of square integrable complex valued functions equipped with 
the weighted norm 

�f�0,B = b(f, f)1/2 , b(f, g) := Bf ̄ (2.6) g . 
Ω 
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H1(Ω) denotes the usual space of functions in L2(Ω) with square integrable gradient, with H1-norm denoted 
�f�1, and Hπ

1(Ω) denotes the subspace of functions in f ∈ H1(Ω) which satisfy periodic boundary conditions 
on ∂Ω. We will also need the fractional order spaces H1+s(Ω), s ∈ [0, 1]. When we want to restrict these 
norms to a measurable subset S ⊆ Ω, we write �f�0,B,S , �f�1,S , etc. 

Problem (1.1) can be rewritten as: seek eigenpairs of the form (λj , uj) ∈ R × Hπ
1(Ω) such that 

aκ(uj , v) = λj b(uj , v) , for all v ∈ Hπ
1(Ω) 

(2.7) 
�uj�0,B = 1 

where 
� 

aκ(u, v) := ((∇+ iκ)v(x)) ∗ A(x)((∇+ iκ)u(x)) . (2.8) 
Ω 

It is easy to see that aκ is a Hermitian form on Hπ
1(Ω). which is bounded on H1(Ω) independently of κ ∈ K. 

Moreover by the positive definiteness of A assumed in (1.2), we have 

aκ(u, u) ≥ a |(∇+ iκ)u|2 ≥ 0 , for all u ∈ Hπ
1(Ω) . (2.9) 

Ω 

Thus the spectrum of (2.7) is real and non-negative 
However aκ(u, u) is not always strictly positive (for u � 0), since if κ = (0, 0) then aκ(1, 1) == 0. Thus we 

introduce the shifted Hermitian form: 

(u, v)κ,A,B := aκ(u, v) + σ b(u, v) , for all u, v ∈ Hπ
1(Ω) , (2.10) 

with a fixed shift 
σ := max |κ|2 a/b + 1 . (2.11) 

κ∈K 

As the following result shows, this shifted form is coercive on Hπ
1(Ω) (i.e., (u, u)κ,A,B/�u�

2
1 is bounded below 

by a positive constant for all u ∈ Hπ
1(Ω)). This shifted form is used in the theory below, but is never used in 

computations. 

Lemma 2.1 (·, ·)κ,A,B is an inner product on Hπ
1(Ω) and we denote the induced norm by � · �κ,A,B, 

Proof. We shall show that 

�u�2 �u�2 u ∈ H1 
κ,A,B = (u, u)κ,A,B ≥ ca 1, for all κ ∈ K, π(Ω) , (2.12) 

when ca = min{a/2, b}. Since (·, ·)κ is a Hermitian form on Hπ
1(Ω), this proves the result. 

By definition of aκ(·, ·), we have: 

aκ(u, u) = ((∇u) ∗ A∇u) + (κTAκ)|u|2 + i{((∇u) ∗ Aκ)u − (κTA∇u)u} 
Ω 

= (∇u) ∗ A∇u + (κTAκ)|u|2 − 2 Im{((∇u) ∗ Aκ)u} . 
Ω 

It is straightforward to show that 

Im {((∇u) ∗ Aκ)u} ≤ |(∇u) ∗ Aκ| |u| ≤ {(∇u) ∗ A∇u}
1/2 � 

κTAκ 
�1/2 

|u| , 

and by an application of Cauchy-Schwarz in L2(Ω) we obtain 

� �
�

�1/2 �� �1/2 

Im {((∇u) ∗ Aκ)u} ≤ (∇u) ∗ A∇u (κTAκ) |u|2 . 
Ω Ω Ω 

Thus calling α = 
Ω 
∇u ∗A∇u 

�1/2 
, and β = 

Ω
(κTAκ)|u|2 

�1/2 
we have from the arithmetic-geometric mean 

inequality, i.e 2αβ ≤ δα2 + δ−1β2, that for any δ ∈ (0, 1) 

aκ(u, u) ≥ α2 + β2 − 2αβ ≥ (1− δ)α2 + (1 − δ−1)β2 

Hence, for any σ ∈ R we have 

aκ(u, u) + σ b(u, u) ≥ (1− δ)a |u|1
2 + 

� 
(1− δ−1)a|κ|2 + σb 

� 
�u�20 

≥ min{(1− δ)a, (1− δ−1)a|κ|2 + σb}�u�21 . 
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Now choosing δ = 1/2 and since σ = a maxκ∈K |κ|
2/b + 1 we see that 

min{(1− δ)a, (1− δ−1)a|κ|2 + σb} = min{a/2, −a|κ|2 + σb} ≥ min{a/2, b} = ca . 

Now, to discretize (2.7), let Tn , n = 1, 2, . . . denote a family of conforming, shape-regular (see, e.g., [1]) and 
periodic triangular meshes on Ω. These meshes may be computed adaptively. With Hτ denoting the diameter 
of element τ , we define Hn 

max := maxτ∈Tn 
{Hτ}. On any mesh Tn we denote by Vn ⊂ Hπ

1(Ω) the finite 
dimensional space of continuous functions which are affine on each element τ ∈ Tn. The discrete formulation 
of problem (2.7) is: seek eigenpairs of the form (λj,n, uj,n) ∈ R × Vn such that 

� 
aκ(uj,n, vn) = λj,n b(uj,n, vn) , 
�uj,n�0,B = 1 

for all vn ∈ Vn (2.13) 

3 A priori convergence results 

In this section we gather together some a priori estimates for PC eigenvalue problems. These results are mostly 
classical so we only give a few details for results which are not easily found in the literature. Suitable references 
are [5–7,44]. With the shift σ from (2.11), the shifted versions of problems (2.7) and (2.13) are: 
Seek eigenpairs of the form (ζj , uj) ∈ R × Hπ

1(Ω) such that 

aκ(uj , v) + σ b(uj , v) = ζj b(uj , v) , for all v ∈ Hπ
1(Ω) 

(3.1) 
�uj�0,B = 1 ; 

Seek eigenpairs of the form (ζj,n, uj,n) ∈ R × Vn such that 

aκ(uj,n, vn) + σ b(uj,n, vn) = ζj,n b(uj,n, vn) , for all vn ∈ Vn

�uj,n�0,B = 1 . (3.2)


The following proposition is self-evident: 

Proposition 3.1 The eigenpairs of (2.7) and (3.1) are in one-one correspondence. In fact, (uj , λj) is an 
eigenpair of (2.7) if and only if (uj , ζj), with ζj = λj + σ, is an eigenpair of (3.1). Similarly (uj,n, λj,n) is an 
eigenpair of (2.13) if and only if (uj,n, ζj,n), with ζj,n = λj,n + σ, is an eigenpair of (3.2). 

It follows from Lemma 2.1 that all eigenvalues of (3.1) and all N = dimVn eigenvalues of (3.2) are 
positive. We can order them as 0 < ζ1 ≤ ζ2 . . . and 0 < ζ1,n ≤ ζ2,n . . . ≤ λN,n. Moreover, we know (e.g. [6]) 
that ζj,n → ζj , for any j, as Hn 

max → 0 and (by the minimax principle) that ζj,n is monotone non-increasing, 
i.e. 

ζj,n ≥ ζj,m ≥ ζj , for all j = 1, . . . , N, and all m ≥ n . (3.3) 

Hence λj,n → λj , for any j, as Hn 
max → 0 and 

λj,n ≥ λj,m ≥ λj , for all j = 1, . . . , N, and all m ≥ n . (3.4) 

Let uj and uj,n be any normalised eigenvectors of (2.7) and (2.13). Then 

aκ(uj − uj,n, uj − uj,n) = aκ(uj , uj) + aκ(uj,n, uj,n)− 2Re{aκ(uj , uj,n)} 

= λj + λj,n − 2λj Re{b(uj , uj,n)} 

= (λj,n − λj) + 2λj (1− Re{b(uj , uj,n)}) 

= (λj,n − λj) + λj b(uj − uj,n, uj − uj,n) . (3.5) 

Combining this with (3.4), we obtain 

aκ(uj − uj,n, uj − uj,n) = |aκ(uj − uj,n, uj − uj,n)| = |λj − λj,n| + λj �uj − uj,n�
2
0,B . (3.6) 

The distance of an approximate eigenfunction from the true eigenspace is a crucial quantity in the conver­
gence analysis for eigenvalue problems especially in the case of non-simple eigenvalues. 
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Definition 3.2 Given a function v ∈ L2(Ω) and a finite dimensional subspace P ⊂ L2(Ω), we define: 

dist(v, P)0,B := min �v − w�0,B . 
w∈P 

Similarly, given a function v ∈ Hπ
1(Ω) and a finite dimensional subspace P ⊂ Hπ

1(Ω), we define:


dist(v, P)κ,A,B := min �v − w�κ,A,B ,

w∈P 

where � · �κ,A,B is defined in Lemma 2.1. 

Now let λj be any eigenvalue of (2.7), let E(λj) denote the (finite dimensional) space spanned by the 
eigenfunctions of λj and set E1(λj) = {u ∈ E(λj) : �u�0,B = 1}. Let Tλj 

denote the orthogonal projection of 

Hπ 
1 onto E(λj) with respect to the inner product (·, ·)κ,A,B defined in (2.10). 

Lemma 3.3 Let (λj,n, uj,n) be an eigenpair of (2.13). Then 

�uj,n − uj�0,B = dist(uj,n, E1(λj))0,B , (3.7) 

if and only if 
�uj,n − uj�κ,A,B = dist(uj,n, E1(λj))κ,A,B . (3.8) 

Proof. Since E(λj) is finite dimensional, the minimizers in (3.7) and (3.8) exist. Moreover 

0 = (Tλj
w, (I − Tλj

)v)κ,A,B = (λj + σ) b(Tλj
w, (I − Tλj

)v) for all v, w ∈ L2 
π(Ω) .B(Ω) ∩H1 (3.9) 

Hence for any vj ∈ E(λj) we have the decomposition 

uj,n − vj = (I − Tλj
)uj,n + Tλj

(uj,n − vj) = (I − Tλj
)uj,n + (Tλj

uj,n − vj) , 

which is orthogonal both with respect to (·, ·)κ,A,B and (·, ·)0,B . Thus 

�uj,n − vj�0
2 
,B = �(I − Tλj

)uj,n�0
2 
,B + �Tλj

uj,n − vj�0
2 
,B , 

�uj,n − vj�κ,A,B 
2 = )uj,n�

2 uj,n − vj�κ,A,B 
2 .�(I − Tλj κ,A,B + �Tλj


Hence uj satisfies (3.8) if and only if it minimizes �Tλj
vj�

2 . The latter quantity is equal to
uj,n − κ,A,B

(λj − σ)�Tλj
uj,n − vj�

2
0,B and hence uj satisfies (3.8) if and only if it satisfies (3.7). 

In order to make further progress we need some assumption on regularity of solutions of elliptic problems 
associated with (·, ·)κ,A,B . 

Assumption 3.4 We assume that there exists a constant Cell > 0 and s ∈ (0, 1] with the following property. 
For f ∈ L2(Ω), if v := Sf ∈ Hπ

1(Ω) solves the problem (v, w)κ,A,B = b(f, w) for all w ∈ Hπ
1(Ω), then 

�Sf�1+s ≤ Cell�f�0,B , (3.10) 

where � · �1+s is the norm in the Sobolev space H1+s(Ω). 

This is a standard assumption which is satisfied in a wide number of applications such as problems with 
discontinuous coefficients (see eg. [22] for more references). 

From now on we shall let C denote a generic constant which may depend on the true eigenvalues and 
vectors of (2.7) and other constants introduced above, but is always independent of n. 

Theorem 3.5 Suppose 1 ≤ j ≤ dimVn. Let λj be an eigenvalue of (2.7) with corresponding eigenspace E(λj) 
of any (finite) dimension and let (λj,n, uj,n) be an eigenpair of (2.13). Then, for Hn 

max sufficiently small, 

(i) 
|λj − λj,n| ≤ (dist(uj,n, E1(λj))κ,A,B)

2; and |λj − λj,n| ≤ C(Hn 
max )2s; (3.11) 

(ii) 

dist(uj,n, E1(λj))0,B ≤ C(Hn 
max )sdist(uj,n, E1(λj))κ,A,B ; (3.12) 

(iii) 
dist(uj,n, E1(λj))κ,A,B ≤ C(Hn 

max )s . (3.13) 
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Proof. First consider part (i). Since λj ≥ 0 and σ > 0, the first estimate in (3.11) follows directly from (3.6). 
To obtain the second estimate in (3.11), we recall a standard error estimate for elliptic eigenvalues (see e.g. 
[6, (1.1)]) which, appled to problems (3.1) and (3.2), gives 

λj,n − λj = (λj,n + σ)− (λj + σ) ≤ C sup inf �u − vn�κ,A,B 
2 . 

u∈E1(λj) vn∈Vn 

Combining this with standard finite element error estimates and recalling (3.4), we get 

|λj,n − λj | ≤ C(Hn 
max )2s sup �u�1+

2 
s, (3.14) 

u∈E1(λj) 

For u ∈ E1(λj), Assumption 3.4 implies �u�1+s ≤ Cell(λj + σ)�u�0,B ≤ Cell(λj + σ), which yields the 
result. 

To obtain (ii), we use the following estimate [6, (3.31a)]: 

�Tλj
uj,n − uj,n�0,B 

≤ Cηn , where ηn = sup inf �Sg − χ�κ,A,B , (3.15) 
�Tλj

uj,n − uj,n�κ,A,B g∈L2(Ω) 
χ∈Vn 

‖g‖0,B=1 

and S is the solution operator defined in Assumption 3.4. Analogously to (3.14) we have ηn ≤ C(Hn 
max )s and 

hence (3.15) implies 

�Tλj
uj,n − uj,n�0,B ≤ C(Hn 

max )s�Tλj
uj,n − uj,n�κ,A,B 

= C(Hn 
max )sdist(uj,n, E(λj))κ,A,B 

≤ C(Hmax )sdist(uj,n, E1(λj))κ,A,B , (3.16) n 

where we used the inclusion E1(λj) ⊂ E(λj). Since �uj,n�0,B = 1, (3.16) also implies that 

��Tλj
uj,n�0,B − 1� ≤ �Tλj

uj,n − uj,n�0,B 

≤ C(Hmax )sdist(uj,n, E1(λj))κ,A,B . (3.17) n 

Combining (3.16) and (3.17), we obtain 

� Tλj
uj,n � 

dist(uj,n, E1(λj))0,B ≤ − uj,n 
�Tλj

uj,n�0,B 0,B 

≤ 
� � + 

� 1− �Tλj 0,B 
� �Tλj

�Tλj
uj,n − uj,n � � uj,n�

−1 
� uj,n�0,B 

0,B 

= 
� Tλj

uj,n − uj,n 
� + 

� �Tλj
uj,n�0,B − 1 

� 
0,B 

≤ C(Hmax )sdist(uj,n , E1(λj))κ,A,B .n 

which is (3.12). 
Finally, for part (iii), we note that (3.6), Lemma 3.3 and (3.11) imply , 

dist(uj,n, E1(λj))
2 ≤ C(Hmax )2s + λj dist(uj,n, E1(λj))

2 (3.18) κ,A,B n 0,B 

which, via (3.12), implies (3.13). 

4 A posteriori error estimator and reliability 

Our a posteriori error estimator is presented in (4.1) below. Its most important characteristics are reliability 
and efficiency. In broad terms reliability means that the ratio of the actual error to the error estimator is 
bounded above by a positive constant independent of the mesh, while efficiency means that this ratio is 
bounded below by a positive constant independent of the mesh. We prove reliability and efficiency for (4.1) in 
this and the following sections. 

Notation 4.1 From now on, we write A � B when A/B is bounded above by a constant independent of n. 
The notation A ∼ B means A � B and A � B.= 
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The residual estimator ηj,n is defined as a sum of norms of element residuals and edge residuals, which 
are all computable quantities. We denote by Fn the set of all the edges (including boundary edges) of the 
elements of the mesh Tn. For f ∈ Fn, we denote by τ1(f) and τ2(f), the two elements sharing f ∈ Fn and we 
let Hf denote the length of f . We let nf denote the unit normal on the edge f , which is assumed to point 
from τ1(f) into τ2(f). To simplify the notation, we define the functional [·]f as follows 

Definition 4.2 We can define for any function g : Ω → C which is continuous on each element of the mesh 
Tn and for any f ∈ Fn 

[g]f (x) := lim g(x̃) − lim g(x̃) , with x ∈ f . 
x̃∈τ1 (f) x̃∈τ2(f) 
x̃→x x̃→x 

Definition 4.3 (Residual Estimator) The definition of the residual estimator ηj,n involves two functionals: 
the functional RI(·, ·), which expresses the contributions from the elements in the mesh: 

RI(u, λ)(x) := (∇+ iκ) · A(∇+ iκ)u + λBu (x), with x ∈ int(τ), τ ∈ Tn, 

and the functional RF (·), which expresses the contributions from the edges (faces) of the elements: 

RF (u)(x) := nf · A(∇+ iκ)u (x), with x ∈ int(f), f ∈ Fnf

(Recall that the jumps of the coefficients are assumed to be aligned with the meshes.) Then the residual estimator 
ηj,n for the computed eigenpair (λj,n, uj,n) is defined as: 

� �1/2 

ηj,n := Hτ
2�RI(uj,n, λj,n)�0

2 
,τ + Hf�RF (uj,n)�0

2 
,f . (4.1) 

τ∈Tn f∈Fn 

In Theorem 4.8 we prove reliability of the estimator ηj,n for eigenfunctions, and in Theorem 4.9 we prove 
reliability of the estimator η2 

j,n for eigenvalues. (The appearance of the square in the latter estimator reflects 

the known higher rate of convergence for eigenvalues in the a priori estimates in §3.) The proofs of these 
theorems require first proving Theorems 4.6 and 4.7, in which additional terms Gj,n and G ′ appear on the j,n 
right-hand side. These terms, which we subsequently show are genuinely higher order, reflect the non-linearity 
of the eigenvalue problem, as mentioned above. 

In order to prove reliability in Theorem 4.6 and Theorem 4.7, we need two preliminary lemmas: 

Lemma 4.4 Let (λj,n, uj,n) be an eigenpair of the discrete problem (2.13) and (λj , uj) be an eigenpair of the 
continuous problem (2.7). Then denoting by ej,n := uj − uj,n, we have 

1 
b(λjuj − λj,nuj,n, ej,n) = (λj + λj,n) b(ej,n, ej,n) + i(λj,n − λj)Im b(uj , uj,n). (4.2) 

2

Proof. Using the sesquilinearity of b(·, ·) and exploiting the fact that (λj,n, uj,n) and (λj , uj) are respectively 
two normalized eigenpairs of (2.13) and of (2.7), we have 

b(λjuj − λj,nuj,n, ej,n) = b(λjuj − λj,nuj,n, uj) − b(λjuj − λj,nuj,n, uj,n) 

= λj + λj,n − λj,n b(uj , uj,n) − λj b(uj , uj,n) 

= (λj + λj,n)(1− Re b(uj , uj,n)) + i(λj,n − λj)Im b(uj , uj,n) . (4.3) 

Another use of sesquilinearity gives us: 

b(ej,n, ej,n) = b(uj , uj) + b(uj,n, uj,n) − b(uj , uj,n) − b(uj , uj,n) 
(4.4) 

= 2− 2Re b(uj , uj,n) . 

The insertion of (4.4) into (4.3) concludes the proof. 
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Lemma 4.5 Let (λj,n, uj,n) be an eigenpair of problem (2.13) and let (λj , uj) be an eigenpair of problem 
(2.7). Then, for any v ∈ H1 

π(Ω), 
� � 

� � 
aκ(uj − uj,n, v) − b(λjuj − λj,nuj,n, v) = RI(uj,n, λj,n)v − RF (uj,n)v . (4.5) 

τ∈Tn 
τ f∈Fn 

f 

Proof. The result is obtained by integration by parts. We start from the left-most term in (4.5). Using the fact 
that (λj , uj) is an eigenpair of (2.7) yields 

aκ(uj − uj,n, v) = aκ(uj , v) − aκ(uj,n, v) = λj b(uj , v) − aκ(uj,n, v) 

= λj,n b(uj,n, v) − aκ(uj,n, v) + b(λjuj − λj,nuj,n, v) . (4.6) 

Now apply element-wise integration by parts to aκ(uj,n, v) in (4.6), yielding: 

aκ(uj − uj,n, v) = (∇+ iκ) · A(∇+ iκ)uj,n + λj,nB uj,n v 
τ∈Tn 

τ 

− [nf · A(∇+ iκ)uj,n]f v + b(λjuj − λj,nuj,n, v) . 
f∈Fn 

f 

We now use these lemmas to prove reliability for eigenfunctions. Recall the Scott-Zhang quasi-interpolation 
operator In : H

1(Ω) → Vn (defined in [42]), which satisfies, for any v ∈ H1(Ω): 

�v − Inv�0,τ � Hτ�v�1,ω(τ), and �v − Inv�0,f � H 
1
2 
f �v�1,ω(f) , (4.7) 

where ω(τ) (respectively ω(f)) denotes the union of all elements sharing at least a vertex with τ (resp. f) . 

Theorem 4.6 (Reliability for eigenfunctions) Let (λj,n, uj,n) be a computed eigenpair with λj,n converg­
ing to an eigenvalue λj of (2.7). Then 

dist(uj,n, E1(λj))κ,A,B � ηj,n + Gj,n, (4.8) 

where 

Gj,n = 
1 

2
(λj + λj,n + 2σ) 

dist(uj,n, E1(λj))
2 
0,B 

dist(uj,n, E1(λj))κ,A,B 
. (4.9) 

Proof. Given uj,n, define uj ∈ E1(λj) to simultaneously minimize (3.7) and (3.8) in Lemma 3.3. Again, we 
define ej,n := uj − uj,n. 

Note first that, since (λj , uj) and (λj,n, uj,n) respectively solve the eigenvalue problems (2.7) and (2.13), 
we have, for all wn ∈ Vn, 

�ej,n�
2 aκ(ej,n, ej,n − wn) + aκ(uj , wn) − aκ(uj,n, wn) + σ b(ej,n, ej,n)κ,A,B = 

= aκ(ej,n, ej,n − wn) + b(λjuj − λj,nuj,n, wn) + σ b(ej,n, ej,n) 

= aκ(ej,n, ej,n − wn) − b(λjuj − λj,nuj,n, ej,n − wn) 

+ b(λjuj − λj,nuj,n, ej,n) + σ b(ej,n, ej,n) . (4.10) 

Looking first at the final two terms in (4.10) we see from Lemma 4.4 

1 
b(λjuj − λj,nuj,n, ej,n) + σ b(ej,n, ej,n) = (λj + λj,n + 2σ) b(ej,n, ej,n)

2 (4.11) 

+ i(λj,n − λj) Im b(uj , uj,n) . 

Combining this with Lemma 4.5 in (4.10) we get: 

�ej,n�
2 
κ,A,B = RI(uj,n, λj,n)(ej,n − wn) 

τ∈Tn 
τ 

− RF (uj,n)(ej,n − wn) 
f∈Fn 

f 

1 
+ (λj + λj,n + 2σ) b(ej,n, ej,n) + i(λj,n − λj) Im b(uj , uj,n) . (4.12) 

2
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Taking the real part of (4.12) and applying the triangle inequality, yields 

�ej,n�
2 RI(uj,n, λj,n)(ej,n − wn)κ,A,B ≤ 

� �

τ∈Tn 

τ


�

� 
� 1 

+ 
�

� RF (uj,n)(ej,n − wn) 
�

� +
2
(λj + λj,n + 2σ)b(ej,n, ej,n). (4.13) 

f∈Fn 
f 

In particular we are allowed to choose wn = Inej,n where In is the interpolation operator defined above, with 
properties (4.7). Substituting this in (4.13) and using Cauchy-Schwarz, together with (4.7), we obtain: 

�ej,n�
2 �RI(uj,n, λj,n)�0,τ �ej,n − Inej,n�0,τ κ,A,B ≤


τ∈Tn


� 1 
(λj + λj,n + 2σ) b(ej,n, ej,n)+ �RF (uj,n)�0,f �ej,n − Inej,n�0,f + 

2
f∈Fn 

� Hτ�RI(uj,n, λj,n)�0,τ �ej,n�1,ω(τ) 

τ∈Tn 

+ Hf �RF (uj,n)�0,f�ej,n�1,ω(f) + 
1/2 1

(λj + λj,n + 2σ) b(ej,n, ej,n). (4.14) 
2

f∈Fn 

Since (by an argument analogous to the proof of Lemma 2.1), �ej,n�1,ω(τ) � �ej,n�κ,A,B,ω(τ) and 
�ej,n�1,ω(f) � �ej,n�κ,A,B,ω(f), another application of the Cauchy-Schwarz inequality yields 

� �1/2 

�ej,n�
2 � �ej,n�

2 + �ej,n�
2 

κ,A,B ηj,n κ,A,B,ω(τ) κ,A,B,ω(f) 

1 
τ∈Tn f∈Fn (4.15) 

+ (λj + λj,n + 2σ) b(ej,n, ej,n)2 
1 

� ηj,n�ej,n�κ,A,B + (λj + λj,n + 2σ) �ej,n�0
2 
,B . 2

Finally, in order to conclude the proof we just have to divide both sides of (4.15) by �ej,n�κ,A,B , and recall 
Lemma 3.3. 

The next theorem, which is similar to Theorem 4.6, shows the reliability for eigenvalues. 

Theorem 4.7 (Reliability for eigenvalues) Under the same assumptions as in Theorem 4.6, we have: 

|λj,n − λj | � j,n + G ′ η2 
j,n , 

where 

1 dist(uj,n, E1(λj))
2
0,B 1 

G ′ = 
2 
ηj,n(λj + λj,n + 2σ)

dist(uj,n, E1(λj))κ,A,B 
+ 

2
(λj,n − λj + 2σ)dist(uj,n, E1(λj))0

2 
,B .j,n 

Proof. With uj , uj,n and ej,n as in the proof of Theorem 4.6, we use (3.6) to obtain 

|λj,n − λj | = aκ(ej,n, ej,n) − λj b(ej,n, ej,n) . (4.16) 

Hence noticing that aκ(ej,n, ej,n) ≤ aκ(ej,n, ej,n) + σb(ej,n, ej,n) = �ej,n�
2 = dist(uj,n, E1(λj))κ,A,B ,κ,A,B 

and substituting (4.8) into (4.16) we obtain 

|λj,n − λj | ≤ (ηj,n + Gj,n)dist(uj,n, E1(λj))κ,A,B − λjdist(uj,n, E1(λj))0
2 
,B 

1 
= ηj,n dist(uj,n, E1(λj))κ,A,B + (λj,n + λj + 2σ) dist(uj,n, E1(λj))0

2 
,B 2

− λj dist(uj,n, E1(λj))
2
0,B 

= ηj,n dist(uj,n, E1(λj))κ,A,B + 
2

1
(λj,n − λj + 2σ) dist(uj,n, E1(λj))0

2 
,B 



11 Adaptive finite element methods for computing band gaps in photonic crystals 

Then using (4.8) again we have 

1 dist(uj,n, E1(λj))
2
0,B 

η2 ηj,n(λj,n + λj + 2σ)|λj,n − λj | � j,n + 
2 dist(uj,n, E1(λj))κ,A,B 

1 
+
2
(λj,n − λj + 2σ) dist(uj,n, E1(λj))0

2 
,B . 

Now the two final results of this section show that Gj,n in Theorem 4.6 and G ′ in Theorem 4.7 are indeed j,n 
“higher order terms”. 

Theorem 4.8 Under the same assumptions of Theorem 4.6 we have that if Hn 
max is small enough, then 

dist(uj,n, E1(λj))κ,A,B � ηj,n . (4.17) 

Proof. Again write ej,n := uj − uj,n, where uj ∈ E1(λj) is the simultaneous minimizer of (3.7), (3.8). From 
Theorem 4.6 we have 

dist(uj,n, E1(λj))κ,A,B � ηj,n + Gj,n . (4.18) 

Now, applying Theorem 3.5(ii) we have 

Gj,n = 
1 

2
(λj + λj,n + 2σ) 

dist(uj,n, E1(λj))
2 
0,B 

dist(uj,n, E1(λj))κ,A,B 

� 
1 

2
(λj + λj,n + 2σ)(Hmax 

n )2s dist(uj,n, E1(λj))κ,A,B . (4.19) 

Supposing that Hmax 
n is small enough, we obtain λj,n � λj and 

Gj,n � (λj + σ) (Hmax 
n )2sdist(uj,n, E1(λj))κ,A,B < 

1 

2
dist(uj,n, E1(λj))κ,A,B . 

Then from (4.18), we have dist(uj,n, E1(λj))κ,A,B � ηj,n , as required. 

Theorem 4.9 Under the same assumptions as Theorem 4.8 we have: 

|λj,n − λj | � η2 .j,n 

Proof. Again write ej,n := uj −uj,n, where uj ∈ E1(λj) is the simultaneous minimizer of (3.7), (3.8). Then we 
have, from (4.16), 

|λj,n − λj | = aκ(ej,n, ej,n) − λj b(ej,n, ej,n) ≤ aκ(ej,n, ej,n) . (4.20) 

Noticing that aκ(ej,n, ej,n) ≤ dist(uj,n, E1(λj))
2 and substituting (4.17) in (4.20) we obtain the result. κ,A,B 

5 Efficiency 

While the reliability estimates in the previous section show the error is bounded above by a positive constant 
times an error estimator as the mesh is refined, the “global efficiency” estimate, which we obtain in this section 
(Corollary 5.6), obtains a corresponding lower bound. In order to prove Corollary 5.6, we need first a weaker 
result called “local efficiency”, which is obtained in Lemma 5.4. 

We shall use bubble functions, which are smooth and positive real valued functions with support on an 
element and are bounded by 1 in the L∞ norm. They are constructed using polynomials and so satisfy inverse 
estimates which are collected in the next proposition. We define for any edge f , the set Δf , which is the 
union of the two elements sharing f . In particular we need for any element τ a real-valued bubble function 
ψτ with support in τ which vanishes on the boundary of τ and for any edge f , and we need a real-valued 
bubble function ψf with support in Δf and which vanishes on the boundary of Δf . In [8, p.587] - see also [45, 
Lemma 3.3] - such bubble functions ψτ , ψf are constructed which satisfy the following properties: 
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Proposition 5.1 There are constants, which only depend on the regularity of the mesh Tn, such that 

�v�0,τ � �ψτ 
1/2 v�0,τ , (5.1) 

|ψτv|1,τ � Hτ 
−1�v�0,τ , (5.2) 

�w�0,f � �ψf 
1/2 

w�0,f , (5.3) 

|ψf w|1,Δf 
� Hf 

−1/2
�w�0,f , (5.4) 

�ψf w�0,Δf 
� Hf 

1/2
�w�0,f , (5.5) 

hold for all τ ∈ Tn, all f ∈ Fn, and for all polynomials v and w. 

In the next two lemmas we bound the L2 norms of the residuals RI and RF on τ (defined in Definition 4.3 
above) in terms of the energy norm of the error on τ . 

Lemma 5.2 Let (λj,n, uj,n) be an eigenpair of (2.13) and (λj , uj) be an eigenpair of (2.7). Then for any 
element τ ∈ Tn we have 

Hτ�RI(uj,n, λj,n)�0,τ � �A1/2(∇+ iκ)(uj − uj,n)�0,τ + Hτ�λj,nuj,n − λjuj�0,B,τ . (5.6) 

Proof. Let ψτ be the bubble function introduced above and set wτ = ψτ RI(uj,n, λj,n). Because we are using 
linear elements, and since A, B are assumed to be constant in the interior of each element, the residual RI is 
a linear function on τ . This fact together with (5.1) and the positivity of ψτ leads to 

=�RI(uj,n, λj,n)�
2
0,τ � �ψτ 

1/2RI(uj,n, λj,n)�0
2 
,τ ψτ |RI(uj,n, λj,n)|

2 

τ 

= RI(uj,n, λj,n)wτ 
τ 

= (∇+ iκ) · A(∇+ iκ)uj,n + λj,n B uj,n wτ . (5.7) 
τ 

Hence integrating by parts and using the fact that wτ vanishes on ∂τ , we get 

�RI(uj,n, λj,n)�
2
0,τ −aκ(uj,n, wτ ) + λj,nb(uj,n, wτ ). 

Since uj satisfies (2.7) and since ωτ ∈ H0
1(τ ) ⊂ Hπ

1(Ω), we have 

�RI(uj,n, λj,n)�0
2 
,τ � −aκ(uj,n − uj , wτ ) + b(λj,nuj,n − λjuj , wτ ) . 

Hence by the Cauchy-Schwarz inequality we obtain 

�RI(uj,n, λj,n)�
2
0,τ � �A1/2(∇+ iκ)(uj − uj,n) �A1/2(∇− iκ)wτ0,τ 0,τ 

+ �λj,nuj,n − λjuj�0,B,τ �wτ�0,B,τ 

� �A1/2(∇+ iκ)(uj − uj,n) �wτ�1,τ 0,τ 

(5.8) 

+ �λj,nuj,n − λjuj�0,B,τ �wτ�0,B,τ . 

For the final step we use the definition of wτ and (5.2) to obtain from (5.8): 

�RI(uj,n, λj,n)�
2
0,τ � Hτ 

−1 
�A1/2(∇+ iκ)(uj − uj,n)� 

0,τ 

+�λj,nuj,n − λjuj�0,B,τ �RI(uj,n, λj,n)�0,τ , 

then multiplying each side by Hτ�RI(uj,n, λj,n)�
−
0,τ 
1 yields the result. 
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Lemma 5.3 Under the same conditions as Lemma 5.2, for any f in Fn 

Hf 
1/2

�RF (uj,n)�0,f � �A1/2(∇+ iκ)(uj − uj,n)�0,τ + Hf �λj,nuj,n − λjuj�0,B,τ . (5.9) 
τ∈Δf 

Proof. Let ψf be as in Proposition 5.1, and set wf := ψf RF (uj,n). Applying (5.3), recalling that wf vanishes 
on all edges except f and then using Lemma 4.5, we obtain 

�RF (uj,n)�
2
0,f � �ψf 

1/2
RF (uj,n)�

2
0,f = RF (uj,n)wf = RF (uj,n)wf


f f
f∈Fn 

= RI(uj,n, λj,n)wf − aκ(uj − uj,n, wf ) + b(λjuj − λj,nuj,n, wf ) . (5.10) 
τ∈Δf 

τ 

Then, using the Cauchy-Schwarz inequality on (5.10), we get: 

�RF (uj,n)�
2
0,f � �RI(uj,n, λj,n)�0,τ �wf�0,τ


τ∈Δf


+ �A1/2(∇+ iκ)(uj − uj,n)�0,Δf 
�A1/2(∇− iκ)wf�0,Δf 

+ �λj,nuj,n − λjuj�0,B,Δf 
�wf�0,B,Δf 

. (5.11) 

Now, we have to estimate each of the three terms on the right-hand side of (5.11). The first term can be 
treated using (5.5) and (5.6): 

�RI(uj,n, λj,n)�0,τ �wf�0,τ � Hf 
1/2 

�RI(uj,n, λj,n)�0,τ �RF (uj,n)�0,f 
τ∈Δf τ∈Δf 

� Hf 
1/2 

�RF (uj,n)�0,f Hτ 
−1�A1/2(∇+ iκ)(uj − uj,n)�0,τ + �λj,nuj,n − λjuj�0,B,τ . (5.12) 

τ∈Δf 

To treat the second term on the right hand side of (5.11), note that we can use (5.4) and (5.5) to obtain: 

�A1/2(∇− iκ)wf�0,Δf 
� �wf�0,Δf 

+ |wf |1,Δf 

(5.13) 

� 
� 
Hf 

1/2 
+ Hf 

−1/2� 
�RF (uj,n)�0,f 

To treat the last term on the right hand side of (5.11), note that by (5.5), 

�wf�0,B,Δf 
� �wf�0,Δf 

� Hf 
1/2 

�RF (uj,n)�0,f . (5.14) 

Now substituting (5.12), (5.13) and (5.14) in (5.11) we get: 

�RF (uj,n)�
2
0,f � �RF (uj,n)�0,f (Hf 

1/2 
+ Hf 

−1/2
) τ∈Δf 

�A1/2(∇+ iκ)(uj − uj,n)�0,τ 

+ Hf 
1/2 

�λj,nuj,n − λjuj�0,B,τ . 

To conclude the proof we have to multiply both sides by Hf 
1/2

0,f and note that HfH
−1 � 1. �RF (uj,n)�

−1 
τ 

In Lemma 5.4 we prove a local version of the efficiency, this result is extended to the whole domain Ω in 
Theorem 5.5. 

Lemma 5.4 (Local efficiency) Under the same conditions as Lemma 5.2, define 

η2 H2 
j,n,f := τ �RI(uj,n, λj,n)�0

2 
,τ + Hf �RF (uj,n)�0

2 
,f . 

τ∈Δf 

Then 
� � 

η2 �A1/2(∇+ iκ)(uj − + H2 . (5.15) j,n,f � uj,n)�0
2 
,τ τ �λj,nuj,n − λjuj�0

2 
,B,τ 

τ∈Δf 
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Proof. Combine the results from Lemma 5.2 and Lemma 5.3. 

Theorem 5.5 (Global efficiency) Under the same assumptions as Lemma 5.2, suppose also that 
uj ∈ E1(λj) minimizes the distance in Lemma 3.3. Then 

η2 dist(uj,n, E1(λj))
2 . (5.16) j,n � κ,A,B + �Hτ (λj,nuj,n − λjuj)�0

2 
,B 

Proof. Summing (5.15) over all edges f and recalling (4.1) yields 

η2 η2 �A1/2(∇+ iκ)(uj − uj,n)�
2 + Hτ

2�λj,nuj,n − λjuj�
2 . (5.17) j,n � j,n,f � 0,τ 0,B,τ


f∈Fn f∈Fn τ∈Δf


The subsets Δf , for each value of f , are not all disjoint, but the maximum number of overlapping subdomains 
Δf at any point in the interior of an element is 3. So (5.17) yields the result. 

The following corollary explains why Theorem 5.5 really is a statement about global efficiency. 

Corollary 5.6 Under the same assumptions as Theorem 5.5 and with the extra assumption that Hn 
max is 

small enough, we have 
ηj,n � dist(uj,n, E1(λj))κ,A,B . 

Proof. By Theorem 5.5 (recalling that �uj,n�0,B = 1), and then Theorem 3.5, we obtain 

Hmax ηj,n 
2 � �uj − uj,n�κ,A,B 

2 + 
� 

n 

�2� 
|λj,n − λj |

2 + λ2 
j �uj,n − uj�

2
0,B 

� 

� �uj − uj,n�
2 

� �2� 
�uj − uj,n�

4 
� �2s 

�uj − uj,n�
2 

� 
κ,A,B + Hn 

max 
κ,A,B + λj 

2 Hn 
max 

κ,A,B 

Hmax � 
� 
1 + 

� �2+2s� 
� dist(uj,n, E1(λj))

2 
n �uj − uj,n�κ,A,B 

2 
κ,A,B , 

and the result follows. 
The next corollary is very important for computations, since it proves that ηj,n → 0 is equivalent to 

convergence of the computed eigenpair in an appropriate sense. 

Corollary 5.7 Let (λj,n, uj,n) be a computed eigenpair and assume also that Hn 
max is small enough. 

(i) If ηj,n → 0 as n → ∞, then both dist(uj,n, E1(λj))κ,A,B and |λj,n − λj | tend to zero; 
(ii) If dist(uj,n, E1(λj))κ,A,B → 0 as n → ∞, then both λj,n → λj and ηj,n → 0 as n → ∞. 

Proof. Part (i) follows directly from Theorems 4.8 and 4.9. To obtain (ii), notice that if dist(uj,n, E1(λj))κ,A,B → 
0, then by Theorem 3.5 we have λj,n → λj and by Corollary 5.6, we also have ηj,n → 0 as n → ∞. 

6 Adaptive FEM and numerical experiments 

In this section we present an adaptive algorithm and study numerically its performance for various problems 
related to the TE case mode of problem (1.1). In this case A is piecewise constant, B = 1 and there are 
typically localized singularities in the gradient of the eigenfunctions at corner points of the interface in the 
dielectric ε, leading to a strong need for adaptivity. We shall use the a posteriori error estimator ηj,n introduced 
in §4 (which we shall refer to as the “standard” estimator), and we shall compare the results to those using a 
slightly different estimator, below referred to as the “modified” estimator, and defined by 

� �1/2 

˜ Hτ
2α−1 + Hfα

−1 , (6.1) ηj,n := τ �RI(uj,n, λj,n)�
2
0,τ f �RF (uj,n)�

2
0,f 

τ∈Tn f∈Fn 

where ατ := Amax|τ , αf := max{Amax|τ1 (f), Amax|τ2(f)} , and Amax denotes the maximum eigenvalue of 
A. Since ηj,n and η̃j,n are equal up to multiplication by a constant (independent of the mesh), all the results 
in §§4 and 5 also hold for η̃j,n. We shall see below that in some cases η̃j,n performs much better than ηj,n. An 
error estimator similar to η̃j,n for elliptic PDEs with discontinuous coefficients is presented in [8], where also 
its robustness with respect to the jumps in A is proved. In this work we observe that with fixed A, and for some 
values of quasimomentum κ, the modified estimator performs better than the standard estimator. However 
for other values of κ the two estimators perform similarly. This observation merits further investigation, but 
to avoid making the paper longer we do not discuss it further here. 

Our adaptivity algorithm uses the following standard marking strategy. 
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Definition 6.1 (Marking Strategy) Given a parameter 0 < θ < 1, the procedure is: mark the elements in 

a minimal subset M̂n of Tn such that 

� �1/2 

η2 ≥ θ ηj,n , (6.2) j,n,τ 

τ∈ M̂n 

where ηj,n,τ is: 
� 1 

η2 
τ �RI(uj,n, λj,n)�

2 +
2 
Hf� RF (uj,n)�0

2 
,f . (6.3) j,n,τ := H2

0,τ 

f∈∂τ 

It is straightforward to see that 
�
� 

η2 
�1/2 

= ηj,n. Also when the “modified” error estimator ˜τ∈Tn j,n,τ ηj,n is 
used an analogous marking strategy is employed. 

Our adaptive algorithm is given in Algorithm 1 and requires specification of the two parameters; tol (the 
accuracy tolerance) and maxn (the maximum number of allowed mesh refinements). For the refinement step 
in the algorithm we have used standard “red refinement” (see, e.g., [13]). Eigenpairs are computed via Arnoldi’s 
method using ARPACK [31] with the associated linear systems implemented by the sparse direct solver ME27 
from the HSL archive [41,25]. 

Algorithm 1 Adaptivity algorithm 

Require: T0, j, κ 
n = 0 
repeat 

Compute (λj,n, uj,n) on Tn 

Compute ηj,n,τ for all τ ∈ Tn 

Mark the elements using the marking strategy (Definition 6.1) 
Refine the mesh Tn and construct Tn+1 
n = n + 1 

until ηj,n ≤ tol OR n ≥ maxn 

6.1 TE case problem on periodic medium 

We first consider the TE problem for a periodic medium with square inclusions. The unit cell is the unit square 
with a square inclusion of side 0.5 centered inside it. We choose A to take the value 1 inside the inclusion 
and the value 0.05 outside it. This is a realistic example, since expected jumps in dielectric properties of real 
photonic crystals are of this order. The jump in the value of A could produce a jump in the gradient of the 
eigenfunctions across the boundaries of the subdomains. As above, the eigenfunctions lie in Hs+1(Ω), with 
s > 1/2−ε, for all ε > 0 in general. However, since we resolve exactly the interface, we see a convergence speed 
coming from the regularity of the eigenfunctions in each subdomain, which is u ∈ Hs+1(Ωi) where s > 2/3. 
From Theorem 3.5(i,iii) we have that using uniform refinement, the rate of convergence for eigenvalues should 
be at least O(Hn 

max )2s . 
Tables 1 and 2 illustrate the performance of the standard and modified error estimators for computing 

the smallest non-zero eigenvalue of (1.1) in the case of quasimomentum κ = (0, 0). Here n is the refinement 
number as in Algorithm 1 and β = − log(|λj − λj,n|/|λj − λj,n−1|)/ log(#DOFsn/#DOFsn−1) is a computed 
estimate of the convergence rate. Tables 3 and 4 give the analogous results for quasimomentum κ = (π, π). 
We can see that in both cases the adaptive methods perform better than the uniform refinements, however 
the “modified” error estimator performs even better than the “standard” one, in fact for both values of κ 
less DOFs are necessary for the “modified” error estimator compared to the “standard” one to reach the 
same accuracy. In fact this observation holds for any κ which is far enough from the origin. and this is the 
main reason behind the introduction of the error estimator η̃j,n. For this problem the exact eigenvalues λ are 
unknown, so in all four tables the errors which are displayed are computed using very accurate approximations 
of the exact eigenvalues, computed on a very fine mesh involving about a million of DOFs. 

Theorem 4.9 shows that for sufficiently fine meshes (apart form a hidden constant), η2 provides an upper j,n 
bound for the eigenvalue error. This is also true for η̃j,n by the remarks above. To numerically investigate 
the implications of this result, we approximate numerically the hidden constant Cr = |λj − λj,n|/η

2 in j,n 

Theorem 4.9. Similarly, we compute C̃r = |λj − λj,n|/ j̃,n. As can be seen in Tables 5 and 6, the computed η2 
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Uniform ηj,n 

θ = 0.5 θ = 0.8 
n |λj − λj,n| #DOFs n |λj − λj,n| #DOFs β n |λj − λj,n| #DOFs β 

1 0.0584 400 1 0.0584 400 - 1 0.0584 400 -
2 0.0188 1600 6 0.0155 1584 0.9623 3 0.0187 1460 0.8798 
3 0.0063 6400 9 0.0064 3764 1.0277 5 0.0048 5670 1.0025 
4 0.0021 25600 13 0.0018 12626 1.0541 6 0.0021 10711 1.3050 
5 0.0007 102400 16 0.0006 29583 1.1846 8 0.0005 40698 1.0864 

Table 1 Comparison for κ = (0, 0) and with j = 2 between the uniform refinement and the adaptive method with the 
“standard” error estimator. 

n |λj − λj,n| 

Uniform 

#DOFs n |λj − λj,n| 
θ = 

#DOFs 
0.5 

β 

η̃j,n 

n |λj − λj,n| 
θ = 

#DOFs 
0.8 

β 

1 
2 
3 
4 
5 

0.0584 
0.0188 
0.0063 
0.0021 
0.0007 

400 
1600 
6400 
25600 
102400 

1 
5 
8 
12 
15 

0.0584 
0.0139 
0.0058 
0.0017 
0.0006 

400 
1356 
3437 
11101 
26334 

-
1.1746 
0.9360 
1.0522 
1.1829 

1 
3 
5 
6 
7 

0.0584 
0.0138 
0.0032 
0.0018 
0.0007 

400 
1452 
5824 
11342 
23044 

-
1.1165 
1.0478 
0.8904 
1.2318 

Table 2 Comparison for κ = (0, 0) and with j = 2 between the uniform refinement and the adaptive method with the 
“modified” error estimator. 

n |λj − λj,n| 

Uniform 

#DOFs n |λj − λj,n| 
θ = 

#DOFs 
0.5 

β n 

ηj,n 

|λj − λj,n| 
θ = 

#DOFs 
0.8 

β 

1 
2 
3 
4 
5 

0.0505 
0.0155 
0.0050 
0.0016 
0.0005 

400 
1600 
6400 
25600 
102400 

1 
6 
11 
15 
19 

0.0505 
0.0158 
0.0040 
0.0016 
0.0005 

400 
1686 
7622 
22344 
55426 

-
0.8086 
0.9073 
0.8396 
1.3181 

1 
4 
5 
7 
9 

0.0505 
0.0089 
0.0053 
0.0015 
0.0004 

400 
2922 
6264 
24110 
86668 

-
0.8718 
0.6742 
0.9299 
1.0845 

Table 3 Comparison for κ = (π, π) and with j = 2 between the uniform refinement and the adaptive method with 
the “standard” error estimator. 

n |λj − λj,n| 

Uniform 

#DOFs n |λj − λj,n| 
θ = 

#DOFs 
0.5 

β 

η̃j,n 

n |λj − λj,n| 
θ = 

#DOFs 
0.8 

β 

1 
2 
3 
4 
5 

0.0505 
0.0155 
0.0050 
0.0016 
0.0005 

400 
1600 
6400 
25600 
102400 

1 
5 
9 
12 
17 

0.0505 
0.0122 
0.0036 
0.0016 
0.0005 

400 
1398 
4984 
12505 
32822 

-
1.1314 
0.9626 
0.8736 
1.2407 

1 
3 
5 
6 
8 

0.0505 
0.0118 
0.0028 
0.0015 
0.0003 

400 
1546 
6348 
14749 
57480 

-
1.0727 
1.0228 
0.7578 
1.1161 

Table 4 Comparison for κ = (π, π) and with j = 2 between the uniform refinement and the adaptive method with 
the “modified” error estimator. 

values of Cr and C̃r remain almost constant as the mesh is refined and also they do not seem to be affected by 
variations in the value of κ. This implies that both the error estimators ηj,n and η̃j,n decay in the same way as 
the true error, which is important in practice since it means that ηj,n and η̃j,n can be used as an indicator of 
the size of the true error, even when the true error is not available. However, it is easy to see that the value of 
C̃r doesn’t change as much as the value of Cr, this suggests that the “modified” error estimator follows better 
the behavior of the true error. Also the “modified” error estimator performs better than the “standard” one 
because for the same n, the true error |λj − λj,n| is smaller using the “modified” error estimator. In Figure 1 
we depict the mesh coming from the fourth iteration of Algorithm 1 with θ = 0.5. As can be seen the corners 
of the inclusion are much more refined than the rest of the domain. In Figure 2 we depict the eigenfunction 
corresponding to the smallest positive eigenvalue of the problem with quasimomentum (0, 0). 
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n |λj − λj,n| η2 
j,n Cr |λj − λj,n| η̃2 

j,n C̃r 

1 0.0584 0.1126 0.5182 0.0584 1.2280 0.0475 
2 0.0543 0.0974 0.5571 0.0425 0.9520 0.0447 
3 0.0414 0.0751 0.5513 0.0330 0.6746 0.0489 
4 0.0314 0.0538 0.5830 0.0231 0.4848 0.0477 
5 0.0232 0.0371 0.6242 0.0139 0.3172 0.0439 
6 0.0155 0.0253 0.6135 0.0105 0.2378 0.0440 
7 0.0103 0.0191 0.5398 0.0080 0.1752 0.0457 
8 0.0083 0.0142 0.5807 0.0058 0.1266 0.0460 
9 0.0064 0.0103 0.6168 0.0039 0.0900 0.0437 
10 0.0049 0.0074 0.6618 0.0027 0.0671 0.0402 
11 0.0028 0.0053 0.5342 0.0022 0.0511 0.0425 
12 0.0022 0.0040 0.5504 0.0017 0.0386 0.0439 
13 0.0018 0.0030 0.5877 0.0013 0.0290 0.0434 
14 0.0014 0.0023 0.6122 0.0009 0.0215 0.0396 

Table 5 Comparison for κ = (0, 0) and with j = 2 between the “standard” error estimator and the “modified” error 
estimator with θ = 0.5. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

|λj − λj,n| 

0.0505 
0.0473 
0.0391 
0.0319 
0.0244 
0.0158 
0.0090 
0.0082 
0.0071 
0.0057 
0.0040 
0.0025 
0.0022 
0.0019 

η2 
j,n 

0.1629 
0.1337 
0.1020 
0.0750 
0.0548 
0.0395 
0.0285 
0.0225 
0.0175 
0.0135 
0.0103 
0.0079 
0.0063 
0.0051 

Cr |λj − λj,n| 

0.3098 0.0505 
0.3538 0.0363 
0.3832 0.0276 
0.4257 0.0176 
0.4462 0.0122 
0.3988 0.0091 
0.3172 0.0071 
0.3641 0.0054 
0.4079 0.0036 
0.4248 0.0026 
0.3901 0.0020 
0.3175 0.0016 
0.3406 0.0012 
0.3818 0.0009 

η̃2 
j,n 

1.2271 
0.9866 
0.7095 
0.4690 
0.3453 
0.2696 
0.1997 
0.1466 
0.1060 
0.0809 
0.0627 
0.0480 
0.0366 
0.0279 

C̃r 

0.0411 
0.0368 
0.0389 
0.0375 
0.0355 
0.0336 
0.0355 
0.0365 
0.0340 
0.0322 
0.0318 
0.0336 
0.0338 
0.0310 

Table 6 Comparison for κ = (π, π) and with j = 2 between the “standard” error estimator and the “modified” error 
estimator with θ = 0.5. 

6.2 TE mode problem on supercell 

The spectra of photonic crystals typically contain band gaps, but, for many applications, the identification 
of band gaps is not enough. Commonly it is necessary to create eigenvalues inside the gaps in the spectra 
of the media. The importance of these eigenvalues is due to the fact that electromagnetic waves, which have 
frequencies corresponding to these eigenvalues, may remain trapped inside the defects [18,20] and they decay 
exponentially away from the defects. The common way to create such eigenvalues is by introducing a localized 
defect in the periodic structures — see [20] and [19, Theorem 2]. Such localized defects do not change the 
bands of the essential spectrum [19, Theorem 1]. 

In the next set of experiments we continue to work with the TE case problem and we shall use the “supercell 
method” [43] to compute the modes arising from the defect. The supercell method takes the defect problem 
(which is no longer periodic) and approximates it by a “nearby problem” in which the defect is surrounded by 
a finite number of layers of the original periodic medium, which is then truncated and repeated periodically, 
so that we get a new artificial periodic problem where each cell has a defect surrounded by some periodic 
layers. 

We shall compute defect modes for the problem introduced in §6.1 using a supercell with two or more 
layers of periodic structure surrounding the defect. (In Figure 3 we depict the unit cell with two layers added). 
This new medium (since it is again infinitely periodic) has a new band in its spectrum caused by the defect. 
However it is also known ([43]) that as the number of periodic layers increases, and under some conditions, 
the band shrinks exponentially quickly to the eigenvalue of the original defective material. 

In order to compute good approximations of these trapped modes, it is not only necessary to compute 
accurately the TE case problem on supercells, but also it is necessary to use enough layers of periodic structure 
around the defect to ensure that the band in the supercell problem is sufficiently narrow. Ideally, the error in 
the approximation of the eigenvalue problem and the diameter of the defect band should have the same order. 
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Fig. 1 A refined mesh coming from the adaptive FEM for the TE mode problem with κ = (0, 0) and using ηj,n, with 
j = 2. 

Fig. 2 The eigenfunction with index j = 2 of the TE mode problem with quasimomentum κ = (0, 0). 

Just to give an idea of the size of the defect band as a function of the number of layers of periodic structure 
around the defect, Table 7, gives the diameters of the defect bands for different sizes of the supercell computed 
using the “exact” values of the trapped eigenvalues computed on a very fine mesh at 55 different points of the 
first Brillouin zone. 

In Tables 8-11 and Figures 4-5 the performance of the two error estimators are compared with uniform 
refinement for computing a trapped mode for different values of the quasimomentum on a supercell with 2 
layers of periodic medium, whose first Brillouin zone is [−π/5, π/5]2. As can be seen in the case of supercells 
and trapped modes we have that both the “standard” and the “modified” error estimators give greater orders 
of convergence compared to uniform refinement. 

For this problem the difference in the accuracy between our method and the uniform refinement method 
is much more striking compared to the previous example. The reason is not only that the adaptive method 
refines around the corners, where the singularities are, but also, because the most part of the “energy” of 
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Number of Layers Diameter defect band 

2 0.3008 
3 0.0295 
4 0.0154 

Table 7 Size of the defect band as function of the number of layers of periodic structure around the defect. 
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0 
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Fig. 3 The structure of the supercell used for the computations. 
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Fig. 4 Loglog plot of convergence of adaptive and uniform refinements for the TE problem on a supercell with 
quasimomentum κ = (0, 0) and with j = 28. 

the solution is inside the defect, which is a very small region. Moreover, the “modified” error estimator still 
performs a bit better than the standard one with no extra computational costs involved. Also in this case we 
computed the “exact” values of the eigenvalues λj using more than one million of DOFs. 

In Figure 6 we depict the mesh coming from the fourth iteration of Algorithm 1 with θ = 0.5. As can 
be seen there is a lot of refinement around the defect, especially around the corners of the inclusions. Away 
from the defect there is just a bit of refinement which is again around the corners of the inclusions. The 
reason why the refinement is so concentrated in the defect and the reason why the corners of the inclusions 
away from the defect seem not to show important singularities, is because the trapped mode has a fast decay 
outside the defect and so the singularities at the corners of the inclusions are less important away from the 
defect. In Figure 7, we depict the eigenfunction corresponding to the mode “trapped” inside the defect. This 
eigenfunction is the one used to refine the mesh in Figure 6. 

As explained above, it is important to use enough layers of periodic medium around the defect to have a 
narrow defect band. In Tables 12-14 we denote with λ∗ the eigenvalue trapped in the defect and with λ∗ n the 
approximation of the trapped eigenvalue. We decided to change the notation because increasing the number 

10
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standard 0.8 
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Fig. 5 Loglog plot of convergence of adaptive and uniform refinements for the TE problem on a supercell with 
quasimomentum κ = (π/5, π/5) and with j = 28. 
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Fig. 6 An adapted mesh for a trapped eigenvalue for the TE case on a supercell with quasimomentum κ = (0, 0) and 
with j = 28. The structure of the supercell is superimposed on the mesh 

of periodic layers in the cell the index j of the trapped mode changes. In Tables 12 and 13 it is possible to 
see how the uniform and the adaptive methods behave when increasing the size of the supercell. In particular 
the superiority of the adaptive method is clearly visible. Finally in Table 14 we show the DOFs needed by the 
uniform and the adaptive methods to reach an accuracy higher than the order of the diameter of the defect 
band for different sizes of the supercell. 
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Fig. 7 A picture of the eigenfunction trapped in the defect for the TE case on a supercell with quasimomentum 
κ = (0, 0) and with j = 28. The structure of the supercell is superimposed on the picture of the eigenfunction 

n |λj − λj,n| 

Uniform 

#DOFs n |λj − λj,n| 
θ = 

#DOFs 
0.5 

β n 

ηj,n 

|λj − λj,n| 
θ = 

#DOFs 
0.8 

β 

1 
2 
3 
4 

0.0228 
0.0074 
0.0025 
0.0008 

10000 
40000 
160000 
640000 

1 
6 
9 
13 

0.0228 
0.0061 
0.0026 
0.0008 

10000 
17128 
40791 
130455 

-
2.4583 
0.9589 
1.0775 

1 
3 
5 
6 

0.0228 
0.0069 
0.0018 
0.0009 

10000 
16958 
58290 
118082 

-
2.2677 
1.1002 
0.9687 

Table 8 Comparison for κ = (0, 0) and with j = 28 between the uniform refinement and the adaptive method with 
the “standard” error estimator on a supercell. 

n |λj − λj,n| 

Uniform 

#DOFs n |λj − λj,n| 
θ = 

#DOFs 
0.5 

β 

η̃j,n 

n |λj − λj,n| 
θ = 

#DOFs 
0.8 

β 

1 
2 
3 
4 

0.0228 
0.0074 
0.0025 
0.0008 

10000 
40000 
160000 
640000 

1 
5 
8 
12 

0.0228 
0.0065 
0.0027 
0.0008 

10000 
14808 
33366 
105876 

-
3.2038 
1.0704 
1.0794 

1 
3 
4 
6 

0.0228 
0.0057 
0.0028 
0.0006 

10000 
19598 
36356 
138720 

-
2.0628 
1.1363 
1.1169 

Table 9 Comparison for κ = (0, 0) and with j = 28 between the uniform refinement and the adaptive method with 
the “modified” error estimator on a supercell. 
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