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ABSTRACT: In this work, the efficiency of extracting algae from culture medium using magnetic nanoparticles (MNPs), converting the
algal/particle slurry to bio-crude using hydrothermal liquefaction (HTL) and successfully recycling the MNPs from the char phase was fully
demonstrated for the first time. MNPs were synthesized by co-precipitation and used to extract algae from aqueous phase at a separation
efficiency (SE) of 99%. The SE was optimized at pH 4. Liquefaction of algal/ MNPs slurry gave a bio-crude yield of 37.1% while algae only
yielded 23.2%. The percentage area in the GC-MS chromatogram corresponding to hydrocarbons (HC) in Zn-ferrite catalyzed and un-
catalyzed bio-crude was 46.5% and 19.9% respectively while the percentage area of heptadecane from Zn-ferrite catalyzed and un-catalyzed
bio-crude was 37.8% and 10% respectively. Furthermore, the percentage area of hetero atom compounds in bio-crude reduced substantially
when liquefaction was done in presence of Zn and Mg ferrites. The nanoparticles were recovered from biochar by sonication and recycled
at a SE 0f 96.1%. Recycling of MNPs for magnetic separation of algae and catalytic HTL could lower the cost of microalgae harvesting and
improve the yield and quality of bio-crude. This could potentially reduce the cost of advanced biofuel processing from microalgae making

them more affordable in comparison to petroleum derived fuels.
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INTRODUCTION

The irreversible depletion of fossil fuels and resulting environmen-
tal impact from their use has encouraged research into alternative
sources of renewable liquid fuels.! Currently, most biofuels are pro-
duced from first generation feedstocks such as sugarcane, soybean
and corn. This is disadvantageous mainly due to competition be-
tween fuel and food for the limited food sources. While some non-
food sources such as Jatropha are an improvement, these too have
disadvantages e.g. competition for good quality agricultural land
with food crops.> One promising alternative is microalgae because
of their high productivity, they can be cultivated on large water
bodies, with low quality water 3 therefore potentially do not com-
pete for fertile agricultural land hence minimal environmental im-
pact on good agricultural land.* 3

However, one of the major limitations of processing biofuels from
microalgae is the high cost of microalgae harvesting (separation)
which contributes up to 25% of the overall cost of biomass pro-
cessing.® This is in part due to difficult cell separation because of a
slow settling velocity of microalgae due to their small size, low
concentration and the resulting repulsion between the negatively
charged cells.” Generally methods currently used to harvest micro-
algae are extremely slow or expensive and energy intensive.® A
promising alternative is magnetic separation of microalgae because
it is easy to manipulate and regenerate, it uses simple devices, it is
cost effective and the magnetic field is nondestructive and econom-
ical.” 1% 11 Tt was also reported on Los Alamos web site,'? that mag-
netic separation can reduce the cost of algae harvesting by 90%.

Magnetic separations rely on adsorption of charged magnetic na-
noparticles onto microalgae cells which then respond to an external
magnetic field concentrating the algal cells.

In this work, microalgae were separated magnetically and subjected
to hydrothermal liquefaction (HTL) to produce bio-crude oils. The
HTL process entails using water as a reactive medium to convert
biomass into liquid crude oil under controlled conditions. In this
conversion, the main cellular constituents such as lipids, proteins
and carbohydrates are broken down at the high temperatures and
pressures. This coupled with hydrolytic attack leads to breakage of
biomolecules in hot compressed water resulting into the production
of a bio-crude oil,'?> with a reasonably high calorific value.!> This
process uses the whole algae cell and does not require the algae to
over produce lipid, allowing the use of faster, denser growing
strains. Due to the difficulties of cultivating lipid rich algae and ex-
tracting these lipids from microalgae cells, the HTL process is con-
sidered as a more viable alternative to produce a biofuel product
from microalgae.>'3 Life cycle and techno economic analysis sug-
gests that the overall HTL process uses less energy than the extrac-
tion and transesterification of lipids,'# though further work is re-
quired to increase bio-crude yields and quality. To this end, effort
has been invested in investigating the effect of catalysts on the HTL
process and its ability to produce higher quality products.'®

Among heterogeneous catalysts, solid nano-catalysts have attracted
a lot of attention due to their large chemically active surface area
and high chemical and physical stability which are important fac-
tors in industrial applications.' One of the key challenges with
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solid catalysts is in their recovery from the catalyst bio-crude mix-
ture by means of filtration methods which are generally not eco-
nomically viable. Therefore it is paramount to develop heterogene-
ous catalysts that can easily be recovered and recycled for continu-
ous HTL reactions.!” Magnetite based nano-catalysts are interest-
ing potential candidates because they can easily be separated by
magnetic force hence improving their lifetime and cost effective-
ness. Also, they have large specific surface areas, less resistance to
mass transfer and high catalytic activity for bio catalysis, photo ca-
talysis, and phase transfer catalysis.!”” No study has yet demon-
strated the multifunctional role of magnetite based nano-catalysts
in HTL and microalgae separation however.

The aim of this research is to potentially lower the processing cost
of biofuel from microalgae by optimising microalgae separation ef-
ficiency and improving yield and quality of bio-crude from algae
HTL. The objectives are: (i) to magnetically separate microalgae
from culture medium at a separation efficiency above 95%, (if) to
investigate the catalytic effect of doped MNPs on yield and chem-
ical composition of bio-crude and (iii) to recycle MNPs for mag-
netic separation and HTL catalysis. To our knowledge, this is the
first time MNPs have been used to play a dual role: harvesting
microalgae and catalysing the HTL process. It will also be the first
report on recycling MNPs from HTL to further harvest microalgae
and catalyse HTL process. Achieving the above objectives could
lead to a cost-effective processing of biofuels from microalgae re-
sulting into biofuels being more economically competitive with pe-
troleum derived fuels. As well as a more sustainable approach to
bio-crude processing since MNPs are easily recycled minimising
waste.

MATERIALS AND METHODS
Synthesis of MNPs and Magnetic Separation of S. Obliquus

Ferrite magnetic nanoparticles (MNPs) were synthesized by co-
precipitation method.'®!° They were then used to separate microal-
gae from culture medium and separation efficiency (SE) was opti-
mised at different pH and mass ratios of MNPs: microalgae. SE
was calculated according to equation 1.%°

0B-0A
SE = “on x 100 (%) @)

Where: SE is the separation efficiency, OB is optical density before
separation, OA is optical density after separation. Scenedesmus
obliquus was grown in illuminated photo-bioreactors supplied with
CO: at pH 8 and temperature 25°C. Spirulina was purchased from
Bulk Powders® and was composed of 63% protein, 20% carbohy-
drates 6% fat and 11% miscellaneous biochemical content. Details
of materials and methods of synthesizing MNPs, magnetic separa-
tion and algae culture composition are in the supporting infor-
mation (SI).

Hydrothermal Liquefaction of microalgae

After magnetic separation, microalgae/MNPs slurry was subjected
to HTL at 320°C for 1 hour according to the method reported by
Coma et al.?! MNPs were recovered from the solid residue by son-
ication in de-oxygenated and de-ionized water to remove any at-
tached bio-mass and then magnetically extracted from the water.
Details of HTL procedure and MNP recovery can be found in the
SI. All experiments were repeated twice. The corresponding values
of standard deviation can be found in Figures and Tables.

Bio-crude Oil Analysis

The percentage yield of HTL products (bio-crude and solid residue)
was calculated using equation 2:22 The mass of MNPs was sub-
tracted from the solid residue and the yield of bio-crude and solid
residue was calculated on an ash and moisture free weight basis
using equation 2 below.

wp

YP=——r
WF-WA-WM

x 100 (%) @)
Where, YP is the percentage yield of the product, WP is the mass
of product (g), WF is mass of microalgae fed into the reactor, WA
and WM are ash and moisture content of microalgae. The ash con-
tent for the dried Spirulina and S.obliquus varied between 16% to
18% and 22% to 25% and the moisture content was between 8% to
10% and 10% to 12% respectively. The high heating value (HHV)
of bio-crude was determined using Dulong’s formula.'3 The energy
recovery (ER) for the bio-crude was calculated according to equa-
tion 3:22

__ (HHVp x0il Yield) o
ER = R x 100 (%) 3)
Where: ER is the energy recovery, HHV) is high heating value of
product, and HHVyis high heating value of feed.

Analytical Techniques

Optical density measurements were done using a UV-Vis Cary se-
ries instrument JEM-1200 EX11. Surface morphology and size of
MNPs was analysed using a JEM-1200 EX11 TEM instrument at
an acceleration voltage of 300kV. The size distribution of MNPs
was determined using image J software. The surface morphology
of microalgae cells and the attached MNPs was done on a JEOL
JSM 6330F FE-SEM equipment at an acceleration voltage of
2.5kV. The crystal structure and phase composition of MNPs was
characterized on a Bruker D8 Advanced XRD machine operating
at 40 kV and 80 mA and a scanning rate of 0.02°/s in 26 range from
20° to 70°. Compounds in the bio-crude were analysed by GC-MS
on an Agilent technologies GC system 7890A with triple axis de-
tector, 5975 network mass selective detector and Agilent JW scien-
tific GC column. Moisture and ash content of microalgae biomass
was determined through TGA analysis. TGA runs were done on a
TGA 92 Setram equipment. 'HNMR analysis of bio-crude was
done on a 400 MHz Bruker NMR machine. Elemental composition
of bio-crude was done in duplicate using a Carlo Earba Flash 2000
elemental analyser.

RESULTS AND DISCUSSION
Synthesis and Characterization of MNPs

TEM images (Figure S2A) show that magnetite nanoparticles were
crystalline, mono dispersed and mostly in the size range of 10-12
nm. The particle size was measured using image J software. Doped
MNPs (ferrites) were poly-dispersed with increased particle size
mostly ranging between 16 to 18 nm (Figures S2 B, C and D). The
increase in particle size with doping is confirmed by XRD results
(Figures S4 A, B and C) which show increased intensity and sharp-
ening of peaks with doping. The sharpening of peaks is an indica-
tion of increased particle size as a result of doping with Zn and
Mg.?3 Reflections which correspond to magnetite nanoparticles
were found at 20 =30.437°, 35.715°, 43.393°, 53.950° and 57.309°
corresponding to the (220), (311), (400), (422), and (511) crystal
planes of pure magnetite. These peaks match well with the reported



peaks in literature for magnetite.>* The sharpest peaks were from
Zn and Mg doped magnetite nanoparticles with the highest (311) at
Lin count of 4700, the less intense peaks were for un-doped Fe3;O4
(311) at 1150 Lin count. Formation of magnetite nanoparticles was
also monitored by UV-Vis (Figure S5). From the UV-Vis spectrum
hydrolysis of iron ions in presence of ammonium hydroxide re-
sulted into removal of metal-ion complex from solution leading to
the disappearance of the peak at 300 nm and to formation of a sec-
ond broad featureless absorption tail which according to Melo et
al.® is due to formation of magnetite and is as a result of transition
in band gap of semiconductor materials.

Magnetic separation of microalgae

The separation efficiency (SE) of Scenedesmus obliguus was opti-
mised at different separation times, pH and mass ratios of MNPs to
S. obliquus. Microalgae SE increased with an increase in separation
time (Figure 1). SE also increased with increase in mass ratio of
MNPs to microalgae (Figure 2). This trend is in agreement with the
findings of Prochazkova et al.®?° in separation of C.vulgaris where
90% separation was achieved. Cerff ef al.%° also observed a similar
trend while separating fresh water microalgae C. reinharditii and
C.vulgaris. The increase in SE with mass ratio is attributed to pres-
ence of more nanoparticles to adsorb onto the microalgae surface
resulting in increased magnetic force and a higher SE. The higher
the concentration of MNPs, the greater the adsorption hence the
stronger the magnetic force resulting in faster separation. Further
increase in the concentration of MNPs had no effect on SE. This is
presumably because magnetic force is proportional to the volume
of the magnetic body, if the volume of the MNPs increases, the
magnetic force increases resulting in a better separation. Cells with
much less or no MNPs adsorbed will not respond to magnetic force.
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Figure 1. Separation efficiency of Scenedesmus obliquus (0.5g/L, 20 ml,
pH4) at varying time intervals and mass ratios of magnetite.

The high SE in acidic pH is attributed to a highly-pronounced def-
erence in {-potential (ZP) measurements of the interacting parti-
cles.®? The difference in ZP was highest at pH4 (49 mV) and low-
est at pH 11(27.9 mV). Micro-algal cells maintain a negative sur-
face charge over a wide pH range and in acidic pH below the isoe-
lectric point, the surface charge of MNPs is positive because they
gain protons.® 28 Therefore, there is a higher electrostatic attraction
between positively charged MNPs and negatively charged micro-
algal cells. The difference in ZP of MNPs and micro-algal cells was
more pronounced in acidic pH (Figure S6). This led to greater in-
teraction between MNPs and microalgae cells hence a higher SE.
The low SE at basic pH is as a result of MNPs gaining electrons
above its isoelectric point and hence become negatively charged.®

28 This results in repulsion between algae and MNPs hence a lower
SE. The limited separation that takes place is due to the attachment
between MNPs and microalgae cells at molecular level brought
about by restricted electron interactions and positively charged sec-
tions within the suspension.®

100 _ —
I

98 M
=
e 96 1
>
Q
5]
5 94
5
2 92
o
©
5 90 H
o
()
» 88 4

86 1

0.5 1.0 1.5 2.0 25

Ratio of MNPs: Microalgae [g/g]

Figure 2. Separation efficiency of Scenedesmus obliguus (0.5 g/L, 20 ml,
separation time 4 minutes) at different mass ratios and pH.

Catalytic effect of MNPs on bio-crude yield in HTL

The extraction of the microalgae using MNPs leaves an al-
gal/MNPs slurry with a water content of 78%. This is directly in
the range for HTL processing. The effect of the MNPs on the bio-
crude yield was therefore examined at different mass ratios of
MNPs to microalgae (Figure 3A) using both Spirulina and S.
obliquus strains. Excitingly, bio-crude yields were increased sub-
stantially on addition of MNPs, with the highest yield (34%)
achieved at a ratio of 0.12, this is in comparison to only 25% when
using Spirulina alone. A number of other studies have demon-
strated an increase in yield on using metal catalysts.!* The further
increase in mass of MNPs did not have any substantial effect on
yield. This nonlinear correlation between catalyst loading and bio-
crude yield has also been reported by Rojas et al'> while investigat-
ing the catalytic effect of magnetite nanoparticles on macro-algae
bio-crude production. Also, studies on coal liquefaction by Dady-
burjor et al.3° found that optimum yields were obtained at low iron
oxide catalyst ratios. The high bio-crude yield at an optimum load-
ing of MNPs can be attributed to an effective distribution of MNPs
(catalyst) on the surface of the algae cells (see Figure S11D) result-
ing into maximum exposure of active sites which facilitate in-
creased conversion of algal biomass to bio-crude. Additionally, the
low yield at higher particle loading can be attributed to increased
particle aggregation seen at the algal cell surface (Figure S11F).
This results in loss of catalyst due to a reduction in accessible active
sites hence reduced conversion of algal biomass to bio-crude.
These results show that the yield of bio-crude in HTL can be en-
hanced by an optimum quantity of MNPs.

The yield of the solid residue was lower when Spirulina liquefac-
tion was done in presence of MNPs (Figure 3A).The reduction in
solid residue yield has been confirmed by elemental analysis (Table
S3) showing reduction in carbon content of the residue for runs in-
volving MNPs. The reduction in solid residue in presence of MNPs
can be attributed to their catalytic effect in favouring the conversion
of algae biomass into bio-crude.
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Figure 4. Yield of bio-crude and solid residue from HTL of Spirulina bio-
mass in presence of different doped MNPs at 320°C, for 60 minutes at a
mass ratio of MNPs: Spirulina of 0.12 g/g.

Liquefaction in absence of MNPs resulted in a higher yield of solid
residue (34.5%) which was translated into a lower yield of bio-
crude. It seems clear therefore that MNPs are having a catalytic ef-
fect on the conversion of the microalgae, favouring bio-crude pro-
duction and reduced solid residue. The detailed catalytic mecha-
nism needs further investigation since the HTL process involves
many different reactions. Furthermore, in liquefaction of S.
obliquus (Figure 3B) the presence of MNPs had a similar effect on
bio-crude yield. The highest bio-crude yield of 30.5% was observed
at 320°C in presence of magnetite while in absence a bio-crude
yield of 22% was achieved. All bio-crude yields reported greatly
exceed the lipid content of the original feed stock. This confirms
that other cellular components like proteins and carbohydrates were
also converted during the HTL process.?

Zn and Mg doped ferrite MNPs had an even larger impact on the
liquefaction of Spirulina biomass. Doped ferrite MNPs greatly en-
hanced the yield of bio-crude compared to pure magnetite (Figure
4). The highest yield (37.1%) was observed when Zn/Mg/Fe304

was used giving a 14% increment in yield in comparison to lique-
faction without nanoparticles and an 8% increment in yield com-
pared to pure magnetite. Also, Zn doped ferrite registered a bio-
crude increment of 11.5% compared to liquefaction without MNPs.
Doped MNPs also had a substantial effect on reducing the percent-
age of ash free solid residue, the largest reduction (15.7%) was ob-
served when Zn/Mg/ferrite was used (Figure 4). Liquefaction with-
out MNPs resulted into a higher percentage of solid residue (35.7),
this is reflected in the reduced yield of the bio-crude (23.2%). Sim-
ilar increases in yield were observed when Mg, Zn, and Fe sul-
phates were present in the liquefaction of spirulina.?!

This suggests that the use of MNPs can be applied to a range of
algal species and a similar increase in HTL yields can be expected.
By doping with either Mg or Zn further gains can be made in the
bio-crude yield. The MNPs play two important roles: separation of
microalgae from the culture medium and a catalytic role of increas-
ing the yield of bio-crude during the HTL.

Effect of MNPs on Chemical Composition of the bio-crude

To determine the catalytic effect of MNPs on the chemical compo-
sition of the bio-crude elemental analysis, GCMS and NMR anal-
yses were performed.

Elemental composition

The elemental composition of bio-crude from Spirulina liquefac-
tion were compared at different mass ratios of MNPs: microalgae
and when using different doped ferrite MNPs (Tablel). The
amount of carbon and hydrogen in the bio-crude was much higher
than that in the biomass feedstock. The carbon content of the bio-
crude increased from 46.3% in Spirulina feedstock to 71.9% in un-
catalysed bio-crude and to 73% in catalysed bio-crude while the
hydrogen content increased from 6.6% in Spirulina feed stock to
9.2% in un-catalysed liquefaction. Increasing concentration of
MNPs did not have a significant impact on the carbon and hydrogen
content of the bio-crude. The highest carbon content (73%) was
achieved at a mass ratio of 0.12. This was the most optimum load-
ing of MNPs for the highest possible yield of carbon. This trend is
in agreement with the findings of Raikova et al.’! on the effect of
metal sulphates on Spirulina liquefaction. A similar range in carbon



Table 1. Elemental compositions, HHV, atomic ratios and ER of Spirulina and bio-crudes from spirulina liquefaction at different masse ratios of
magnetite: microalgae and using different ferrite MNPs. HTL was done at 320°C for 60 minutes, at P, of 50 bar (N2), and Py of 120 bar.

?Zfii; Cwt%)  HWt%) Nwt%)  Owt%)  swtw) H/C* ofer HRY ER (%)
algae - - - (MJ/kg)

Spirulina 4631006  6.65:000 103%0.06 2776003 054001  0.19 172 045 203104 0.00

0 71.940.06 9.24+0.04 7.50+0.11 10.0+ 0.04 0.41+0.03 0.09 1.54 0.10 35.7+0.2 44.0+2.24
0.06 71.940.11 8.8%0.120 6.60+0.09 9.4 +0.04 0.60+0.03 0.08 1.47 0.10 35.3+0.1 54.9+0.86
0.12 73.0:0.04 9.09t0.09 7.40:0.06 9.41001  077:0.03  0.09 1.49 010  362:02  60.8+124
0.2 69.310.1 8.56+0.06 6.05+0.11 9.8+0.01 0.50+0.02 0.07 1.48 0.14 34.0+0.1 51.5%1.07
0.6 70.7t0.08 8.69t0.05 654:0.07 107+0.1  0.69:0.00  0.08 147 011  345:02 5104072
Type of MNPs

Spirulina 46.3+0.06 6.65+0.00 10.3+0.06 27.7+0.03 0.54+0.01 0.23 0.14+0.00 0.60 20.3+0.03 0.00
No MNPs 71.9t0.06 9.24:0.04 7.5:011  10.0:0.04 041:0.03  0.10 0.13 014 357003  40.9:0.1
Magnetite ~ 72.6t0.04 9.20:0.09 7.20:0.06 9.40t0.01 0.77¢0.03  0.10 0.13 013 361%015 517402
Mg ferrite 73.0:0.06 8.64:0.04 7413001 9.56:0.05 053:0.02  0.10 0.12 013 3544003  53.8:0.1
Zn ferrite 721015 8.75:0.00 7.58:0.02 10.2:0.00 0.60:0.00  0.11 0.12 014  351%005  60.0:0.1
Mg/Zn ferrite 72.9+0.09 8.74+0.01 7.07+0.04 9.71+0.02 0.60+0.01 0.10 0.12 0.13 35.4+0.05 64.810.1

* Molar ratios

and hydrogen contents was observed when liquefaction of micro-
algae was done in presence of Zn and Mg doped ferrite MNPs.
Therefore, HTL of micro-algae in the presence of MNPs leads to
increment in the carbon content of bio-crude. The amount of oxy-
gen and nitrogen in the biomass feedstock was also much higher
than that in the bio-crude. The oxygen content in the bio-crude was
reduced from 27.7% in the biomass feedstock to 10% in bio-crude
from un-catalysed liquefaction and to 9.4% in bio oils from cata-
lysed liquefaction (Table 1). Oxygen reduction coupled with an in-
crease in amount of carbon and hydrogen resulted in bio-crude hav-
ing a higher energy density than the microalgae feed stock. The ni-
trogen content in the bio-crude was reduced from 10.3% in the bi-
omass feedstock to 7.5% in bio-crude from un-catalysed liquefac-
tion and to 6% in bio-crude from catalysed liquefaction. The further
reduction in oxygen and nitrogen content of bio-crudes in the cata-
lysed liquefaction shows that the presence of MNPs played a major
role in de-oxygenation and de-nitrogenation of the bio-crude and
can potentially be used as HTL catalysts to improve the quality of
the bio-crudes.

Liquefaction in the presence of MNPs led to the highest energy re-
covery (ER) value of 60.8% at a mass ratio of 0.12 giving an incre-
ment of 10.9% in comparison with bio-crude from the un-catalysed
liquefaction. The high ER at this concentration corresponds well
with the high heating value (HHV) at the same concentration. The
highest ER was achieved when liquefaction was done in presence
of Mg and Zn doped ferrite MNPs. This gave a percentage incre-
ment of 23.9% in comparison with the bio-crude from the un-cata-
lysed liquefaction. Zn ferrites also gave a high ER of 60%. This
shows that Zn and Mg doped ferrite MNPs have a large influence
on increasing the ER of the bio-crudes.

GC-MS Analysis of Bio-crude

The identities of the main individual compounds (extracted by hex-
adecane) in the bio-crude from Spirulina and Scenedesmus
obliquus liquefaction (Figure 5) and their relative percentage areas
in the chromatogram after integration were determined. Peaks in
the chromatogram with less than 1% relative area were not consid-
ered. The major compounds detected in the bio-crude were grouped
under hydrocarbons, aromatic hydrocarbons, nitrogen compounds,
phenolic compounds, oxygenated compounds, and organic acids.
The hydrocarbons (HC) grouping consisted of compounds such as
octane, cyclohexane, cyclopropane, hexadecane, heptadecane, and
nonyne. In Figure 5, bio-crude from un-catalysed liquefaction reg-
istered the lowest percentage area of hydrocarbons (19.9%) while
bio-crude produced in presence of Zn ferrite MNPs registered the
highest percentage area (46.5%). Liquefaction in the presence of
Mg and Zn ferrite MNPs also gave a high percentage area of HC
(36%).

The increase in hydrocarbon composition in the presence of Zn and
Mg ferrite MNPs is an indication of their catalytic role in promoting
decomposition of cellular components like lipids, proteins and car-
bohydrates and the ability to produce hydrocarbons.> The hydro-
carbons from both bio-crudes were largely composed of alkanes
with heptadecane as the most predominant. A high percentage of
heptadecane (37.8%) was observed when liquefaction of Spirulina
was done in presence of Zn ferrite MNPs. Liquefaction of Spirulina
in absence of MNPs registered a low percentage (10%) of heptade-
cane in the bio-crude. For Scenedesmus obliquus bio-crude (Figure
5B), the percentage of heptadecane in the bio-crude was 20% when
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Figure 5. Distribution of major compounds in bio-crude after microalgae
HTL at 320°C at P, of 50 bar (N2), P¢ 120 bar for 60 minutes at ratio of
MNPs: algae 0.12 g/g: A) Spirulina in presence of different MNPs and B),
S. obliquus in presence of magnetite. HC — hydrocarbons, AHC — aromatic
hydrocarbons, N — nitrogen compounds, Ph — phenolics, O — oxygenates,
OA — organic acids.

liquefaction was done in presence of magnetite and 3.1% when lig-
uefaction was done in absence of magnetite. These results suggest
that the catalysts are aiding the deoxygenation of lipids and fatty
acids into the hydrocarbon species more effectively than the non-
catalysed process. Interestingly, there were more aromatic hydro-
carbons (AH) in bio-crude from un-catalysed liquefaction. Lique-
faction of Scenedesmus obliquus in the presence of magnetite led
to reduction in AH by 5.03% while liquefaction of Spirulina in the
presence of MNPs led to a 26.8% reduction in AH. This shows that
HTL in presence of MNPs facilitated the catalytic conversion of
AH to other compounds within the bio-crude.

The grouping of nitrogen compounds included: cyclo-heptylamine,
indole, acetamide, 3-pyridinecarbonitrile, butanamide, NN-
dimethyl decanamide, isobutyl isothiocyanate, azetidine, benzo-
nitrile and pyrimidine. The un-catalysed bio-crude from Spirulina
contained more nitrogen compounds (22.1%) compared to
Scenedesmus obliquus bio-crude (9.5%). The high percentage of
nitrogen compounds in Spirulina bio-crude is attributed to its high
protein content (63%). The proteins undergo degradation through
different reaction pathways such as deamination, decarboxylation,
dehydration, and depolymerisation to form nitrogen compounds.3

30 The amino acids from proteins undergo decarboxylation and de-
amination reactions to form amines, ammonia, carbonic acids, and
other organic compounds.?> 34 In Spirulina bio-crude, the amount
of nitrogen compounds reduced to below 1% after liquefaction with
Zn ferrite MNPs while liquefaction with Zn/Mg ferrite led to a de-
crease of 13.4%. This trend has also been reported by Biller et al.
when liquefying different microalgae species in presence of sodium
carbonate catalyst. Elemental analysis results also show a general
reduction in the percentage of elemental N in catalysed bio-crude.
This confirms that Zn and Mg doped ferrite MNPs play a catalytic
role in removing nitrogen compounds from bio-crude presumably
producing more water-soluble species hence improving the bio-
crude quality.

The grouping of phenolic compounds had only phenol and it was
observed in significant quantities in the bio-crude from Scenedes-
mus obliquus. The amount of phenol in un-catalysed bio-crude was
slightly higher than that in catalysed. The percentage of phenol in
un-catalysed and catalysed bio-crude from Spirulina liquefaction
was below detachable levels only bio-crude from Mg ferrite lique-
faction (Figure 5A) had a percentage of phenolic compounds of up
to 3.2%. A similar trend was observed by Rajdeep ef al. in micro-
algal liquefaction at 250°C. Since microalgae bio-crudes do not
possess lignin it is possible that phenolic compounds were pro-
duced from carbohydrates within the algal biomass? ?° having been
hydrolysed to glucose which is broken down to furfural and finally
condensed to phenols.?> 33 The other grouping included compounds
such as propanal and cyclopentan-1-one belonging to aldehydes,
ketones and esters. These were grouped under oxygenated com-
pounds. The un-catalysed bio-crude from S. obliquus had signifi-
cant quantities of oxygenates (5.6%). However, the bio-crude from
catalysed S. obliquus did not show oxygenates. For Spirulina, the
un-catalysed bio-crude had more oxygenates (8.9%) than the un-
catalyzed S. obliquus. Spirulina biomass liquefied in presence of
Zn and Mg ferrite did not show any oxygenates. This is in agree-
ment with elemental analysis results which revealed a reduction in
oxygen when microalgae liquefaction was done in presence of
MNPs. Hence confirming that Zn and Mg ferrite MNPs played a
catalytic role in deoxygenation of bio-crude.

The grouping of organic acids included compounds such as n-
hexa-decanoic acid, formic acid, 4-butyl benzoic acid, and propyl
phosphonic acid. Liquefaction of S. obliquus in presence of ferrite
MNPs resulted into increase in organic acids from below 1% in un-
catalysed liquefaction to 3.1% in catalysed liquefaction. The or-
ganic acids were predominantly n-hexadecanoic acid (3.1%). For
bio-crude from Spirulina liquefaction the amount of organic acids
increased by 3.3% in Mg ferrite catalysed bio-crude. Hydrolysis of
fats in microalgae biomass led to formation of fatty acids and fatty
acid esters in bio-crude.? 3 Due to the low concentration of tri-gly-
cerides in microalgae biomass, fatty acids in the bio-crude may
have also arisen from other pathways such as from breakdown of
glucose under HTL conditions leading to formation of organic ac-
ids such as formic acid, acetic acid, lactic acid etc.3% 3¢ The reduc-
tion in the amount of organic acids in Zn ferrite catalysed bio-crude
was possible due to their catalytic effect in breaking down fatty ac-
ids to hydrocarbons as confirmed by the highest yield of hydrocar-
bons in bio-crude from Zn ferrite catalysed liquefaction (Figure
5A).

NMR Analysis of Bio-Crude
To further confirm the identity and quantity of functional groups in

the bio-crudes, the samples were analysed by '"H NMR. All signals
relating to the protons in the bio-crudes were grouped (Figure 6).
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Figure 7: A) Separation efficiency of S. obliquus using fresh and recycled
MNPs at a mass ratio of MNPs to S. obliguus of 0.4 g/g, pH 9.0 and sepa-
ration time of 4 minutes, B) bio-crude yield from S. obliquus liquefaction
in presence of fresh and recycled magnetite nanoparticles at 320°C for 60
minutes.

Large peaks were seen at 0.5 - 1.5 ppm which are characteristic of
terminal methyl groups in alkyl chain corresponding to alkanes.’
The 'H NMR spectra (Figure S10) provided compatible functional
group information to GC-MS chromatograph and a comparison of
integrated areas in both spectra revealed a similar trend in the quan-
tities and functional groups of corresponding compounds. Like GC-
MS, 'H NMR spectra revealed a high percentage of aliphatic func-
tional groups corresponding to alkanes for all the bio-crudes. The
high percentage of hetero/unsaturated functional groups (1.5 - 3.0
ppm) and aromatics and hetero aromatics (6.0 - 8.5 ppm) in all the
bio-crudes is due to the large percentage of nitrogenous and oxy-
genated compounds from the feedstock’s high protein (63%) con-
tent.'® Zn and Mg ferrite derived bio-crudes registered the lowest
percentage of these functionalities compared to the other bio-
crudes revealing a positive impact in reducing hetero/unsaturated
and aromatic and hetero aromatic atom functionalities from the bio-
crudes. The '"H NMR data supports both the GC-MS and elemental
analysis, demonstrating increased removal of hetero atom function-
alities from bio-crudes using MNPs in HTL. Furthermore, all bio-
crudes exhibited a low percentage of methoxy and carbohydrate
functional groups (4.4 - 6.0 ppm), this is compatible with carbohy-
drates changing into bio-crude in the HTL process.?

Recycling of MNPs from HTL

After magnetic separation and HTL, MNPs largely deposited in the
solid residue.
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These were then recovered by sonication as described earlier. The
MNPs were then tested for their suitability in harvesting further mi-
cro-algal cultures. The separation efficiency of fresh and recycled
MNPs was compared at pH 9 and mass ratio of MNPs: microalgae
of 0.4 g/g. After 18 minutes of separation (Figure 7A), recycled
MNPs registered a SE of 96.1% compared to 98.4% for fresh ones.
The microalgae/recycled MNP slurry was subjected to HTL and the
yield of bio-crude from re-cycled MNPs was 29% compared to
30.5% from fresh MNPs and 22% from un-catalysed micro-algal
liquefaction (Figure 7B). These results show that after the HTL pro-
cess, MNPs can be recycled to efficiently harvest more microalgae
and to further catalyse the HTL process. This therefore confirms
that MNPs can be applied to both separate microalgae and to cata-
lyse the HTL process hence playing two roles as microalgae har-
vesting agents and as HTL catalysts.

CONCLUSIONS

In this work MNPs were synthesised by co-precipitation and used
to harvest microalgae at an optimised separation efficiency of 99%.
The microalgae/MNPs slurry was then subjected directly to HTL
process to investigate the catalytic effect of MNPs on yield and
chemical composition of bio-crude. It was demonstrated that the
yield of bio-crude was increased by 13.9% when HTL of microal-
gae was done in presence of Zn and Mg doped ferrite MNPs. When
Zn doped ferrite MNPs were used in Spirulina liquefaction, GC-
MS results revealed that the percentage area of hydrocarbons in the
bio-crude increased by 26.6% and the percentage area of heptade-
cane increased by 27.8%. The percentage of hetero atom com-
pounds, nitrogen and oxygen in the bio-crude were reduced when
HTL was done in the presence of MNPs. This revealed that MNPs
did not only play an efficient microalgae separation role but also a
catalytic role. Furthermore, MNPs were easily recovered and re-
cycled to harvest more microalgae and to further catalyse the HTL
process. It was observed that recycled MNPs were still effective in
magnetic separation and HTL catalysis. Using recycled MNPs, a
separation efficiency of 96.1% was achieved and the bio-crude
yield was increased by 7% compared to an increment of 8.7% when
fresh MNPs were used in HTL.

Therefore, we have demonstrated for the first time the application
of MNPs to harvest microalgae efficiently, to use these then as cat-
alyst in the HTL process which increases yield and quality of bio-



crude while depositing the MNPs in the solid residue. The MNPs
can then easily be recovered and reused in the process. Thus, pro-
ducing a truly sustainable process culminating in the cost-effective
processing of microalgae for biofuel production via the HTL route,
potentially enabling a far more efficient route to algal biofuels.

More work is still underway in our group to develop new ferrite
catalysts for more efficient de-oxygenation and de-nitrogenation of
bio-crude oils.
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