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Abstract

Solid electrolytes for solid-state Li-ion batteries are stimulating considerable interest
for next-generation energy storage applications. The LirLasZroO12 garnet-type solid
electrolyte has received appreciable attention as a result of its high ionic conductivity.
However, several challenges for the successful application of solid-state devices based on
LiyLagZroO12 remain, such as dendrite formation and maintaining physical contact at
interfaces over many Li intercalation/extraction cycles. Here, we apply first-principles
density functional theory to provide insights into the LiyLasZroO15 particle morphology
under various physical and chemical conditions. Our findings indicate Li segregation
at the surfaces, suggesting Li-rich grain boundaries at typical synthesis and sintering
conditions. On the basis of our results, we propose practical strategies to curb Li
segregation at the LiyLagZroOqo interfaces. This approach can be extended to other

Li-ion conductors for the design of practical energy storage devices.


p.canepa@bath.ac.uk
m.s.islam@bath.ac.uk

Introduction

The commercial Li-ion battery, which relies on liquid electrolytes, is now the workhorse
behind the mobile electronics industry.'™ Unfortunately, a practical limit of what can be
achieved with the current Li-ion technology is encountered when the focus shifts to electric
vehicles.2*% One promising avenue to improve the energy and power densities of Li-ion
batteries, while enhancing their safety, consists of replacing the lammable liquid electrolyte
with a solid electrolyte capable of efficiently shuttling Li ions between electrodes.” 2!

To facilitate this transition, the Li-ion conductivity of solid electrolytes must be com-
petitive to that of their liquid analogs.'?'® While significant attention is still devoted to
intrinsic Li* conductivity in solid electrolytes, many challenges remain for future solid-state
applications.>?273% The most pressing challenges are finding solid electrolytes that are elec-
trochemically stable against electrodes, maintaining physical contact between components
over many Li intercalation/extraction cycles and suppressing Li-dendrite formation.

The Li;LagZr,015 garnet-type electrolyte has received significant attention due to its high

ionic conductivity (107%-1072 S cm™!) achieved by a variety of doping strategies, "»®10:11,31-36

but most importantly because of its perceived stability against the Li-metal anode. 25-27:29:37-41
However, the failure of polycrystalline Li;LaszZr,Oq5 in solid-state battery prototypes
comprised of Li-metal anodes has been the subject of several studies. 2283840743 Tt has been

observed?® that once Li fills a crack in LigLasZrTaO;s, fresh electro-deposited Li is extruded

to the available surface. Tests with Li-metal/Li;LasZryOq5/Li-metal cells showed that only

2 27,44

small current densities of ~ 0.5 mA cm™° could be tolerated before dendrite failure.
Rationalising the mechanisms behind the propagation of dendrites in Li;LagZr,Oq5 is a
major challenge.

In parallel, sintering strategies to maximise the bulk transport in ceramic materials are
routinely applied. While high temperature densification enhances ion transport, the extent

of morphological transformations of the electrolyte particles is still unclear. Kerman et al.?"

highlighted the connection between the processing conditions of Li;LazZr,015 and its particle



morphology and size. Kingon et al.*® demonstrated that ceramics containing volatile cations,
such as LiyLa3Zry0159, become Li deficient upon sintering.

These experimental observations indicate that it is crucial to understand the variation of
the LizLagZr,O12 morphology as a function of chemical and physical properties (composition
and temperature).

In this study, we develop a phenomenological model based on first-principles calculations
to determine the composition of Li;LasgZr,O45 particles, while the chemical environment of
Li, La, Zr and O, voltage and/or the temperature are varied. Rationalising the particle
morphology of solid electrolytes contributes towards a deeper understanding of several crit-
ical phenomena, including the Lit conductivity at grain boundaries and the propagation
of dendrites during battery operation. Indeed, our results predict significant Li accumula-
tion at the exterior of the Li;LagZryOq5 particles when we mimic reducing high-temperature
synthesis conditions.

Based on our computational insights, we propose practical strategies to engineer the
chemical compositions of the particles, providing a greater control of the complex chemistry
of Li;LagZr,015. These general design strategies can be extended to other solid electrolytes

and electrode materials.

Results

Phase stability and chemical domains

We first consider the relative stability of the Li;LagZrsOq5 tetragonal (space group 14, /acd)
and high-temperature cubic (Ia3d) polymorphs. The computed lattice constants (a = 13.204
and ¢ = 12.704 A) of the tetragonal phase compare well with the experimental data (a =
13.134 and ¢ = 12.663 A).*0 Figure 1a shows the decomposition of Li;LagZr,O1 into LigZr,O7
+ LayO3 + LigZrOg, revealing the metastability of both the cubic (~ 22 meV/atom above

the stability line at 0 K) and tetragonal (~ 7 meV/atom) polymorphs, in agreement with



previous density functional theory (DFT) preditions.4"8
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Figure 1: (a) LayO3—LigZryO7-LigZrOg projection of the quaternary Li-La—O—Zr phase dia-
gram showing the decomposition products of the metastable LizLazZryO15 (blue diamond),
which are LigZr,O7, LagO3 and LigZrOg. (b) Compound LisO-LayO3—Zr—O, phase diagrams
where LiyLasZr,O15 is assumed to be stable. Green dots display the stable phases, while red,
blue and grey lines identify equilibrium tie lines. Dash blue lines mark tie lines shared by
Li;LasZr,015 and some of the binary precursors used in its synthesis. Both phase diagrams
are computed from DFT data at 0 K and combined with existing entries in the Materials
Project database.*’

The degree of metastability of the tetragonal phase is small enough that the compound
can be stabilised by thermal effects, which explains the success of high-temperature (> 600
°C) phase-pure synthesis.®!! It is assumed that the chemical decomposition of Li;LazZroO1o
into LigZroO7 4+ LasO3 4 LigZrOg requires a major coordination rearrangement of Zr and
La, thereby kinetically preventing Li;LazZroOq5 from decomposing. Therefore, we assume
that LizLagZryOqs is thermodynamically stable (see phase diagram in Figure 1b).

Identifying the phases in equilibrium with Li;LazZr,Oq5 (Figure 1b) allows us to set
the bounds of chemical potentials of each element, thus providing a thermodynamic frame-
work to calculate meaningful non-stoichiometric surface energies (see Method section). Fig-

ure 1b illustrates the phases in equilibrium with Li;LagZr,015, which show that only LasOg,



LigZr,07, Li;O, O, and Zr are in direct equilibrium with the solid electrolyte. Experi-
mentally, the binary compounds LayOs, Li;CO3 (LiOH or Li,0)? and ZrO, are used as
precursors for the synthesis of LizLagZr,O12.52 In addition, when Li;LasZr,Oq5 is assumed
to be stable, LigZrOg becomes metastable in the Li-La-Zr-O phase diagram (Figure 1b).

Our discussion moves to the definition of the relevant chemical potentials, which have to
be rigorously defined to accurately calculate the energies of non-stoichiometric surface struc-
tures (see Eq. 1). From thermodynamic arguments, any combination of three compounds
in equilibrium with Li;LagZroO;9 define distinct chemical potentials (u) for the elements
O, La, Li and Zr. In this study, we consider two different chemical regimes, i.e. oxidising
and reducing. The tetrahedron composed of Li;LagZr,Oq5, LagO3, LioO and Oy mimics the
oxidising and experimental synthesis conditions of Li;LazZro015. In contrast, we consider a
reducing environment as defined by Li;LagZr,O15 being in equilibrium with Zr metal, LasO3
and LisO, which corresponds to experimental sintering conditions. A detailed derivation and
the bounds of the chemical potential used for each species are summarised in Section 1 and
Table S1 of the Supplementary Information (SI).

Although Zr forms oxides with multiple oxidation states, such as ZrO and Zr,O as re-
ported by Chen et al.,® Zr is not redox active in Li;LasZryOqs. Therefore, Zr-metal and
ZrOy represent valid reference states for the pz, in reducing (Z1r°) and oxidising (Zr*") envi-

ronments, respectively.

Surface structures and energies

Surfaces of solid electrolytes are important to their electrochemical properties, particularly
due to the presence of active interfaces within intercalation batteries. The Li;LasZroOqo
cubic polymorph provides the highest ionic conductivity. *14"5t However, accounting for the
Li disorder presents a major computational complexity when creating representative surface
structures. Thus, we consider the tetragonal polymorph, which constitutes a distinct ordering

of Li sites, as the reference structure for creating our surface models.



Figure 2 depicts the atomic arrangement of the Li-terminated (010) surface of LizLazZryO1s,

highlighting the significant reconstruction of the Li and O layers, respectively. The dotted

. [010]
BP0

o @ Y

Surface region
Bulk-like region

Figure 2: Sideview of the non-stoichiometric (010) Li-terminated surface of Li;LazZroO1s. Li
atoms are in red, O in green, La in blue and Zr in gold. Solid lines identify the arrangement of
each atom plane along the non-periodic z axis. The black line marks the separation between
the bulk-like region from the surface region. The black dotted lines are guides for the eye to
highlight the change in the local Li symmetry upon surface reconstruction.

lines in Figure 2 are a guide for the eye to illustrate the loss of symmetry of the Li environ-
ment at the surface compared to the bulk region. Figure 2 shows that La layers overlap with
“rumpled” oxygen layers, which contribute to stabilise La-terminated surfaces, as discussed
in the following paragraphs. In the case of Zr ions, the oxygen coordination environment in
the surface slab show insignificant deviation from the octahedral coordination within bulk

LizLagZr,04, in qualitative agreement with the lack of surface reconstruction observed in

6



Zr0,.52

It is known that for a given Miller index several surface terminations may be possible
since the bulk can be cleaved at different planes, as shown in Figure 2. The relative stability
of each surface model is defined by their surface energy (v, Eq. 1). Figure 3 depicts the
computed v values of a number of stoichiometric and non-stoichiometric La, Li, O and Zr-
terminated surfaces of LiyLagZr,O15. Non-stoichiometric surfaces refer to surfaces where the
stoichiometry deviates in composition from the bulk. The surface energies of symmetry-
related Miller index surfaces (e.g., (100) ~ (010) ~ (001)) are detailed in Table S2. As
introduced in Section , the chemical potentials, pu;, for calculating v of non-stoichiometric
surfaces are set to reducing conditions (i.e., pr, & pr. in LagOg, pr; &~ ppr;i in LisO, and

Uzr & iz in Zr metal), see Figure 1b and Section 1 of the SI.

Y (J m™)
Li—terminated 1 O-terminated
(021) 1.8

La—terminated

Figure 3: Surface energies v (J m™2) of La (blue), Li (red), O (green) and Zr (yellow)
-terminated surfaces of LiyLasZr,0O.,. Hatched bars indicate non-stoichiometric surfaces,
whose surface energies are derived using the chemical potentials from Figure 1b. The chem-
ical potentials of Li, La and Zr are fixed by Li,O, LayO3 and Zr metal, respectively, corre-
sponding to reducing conditions (details in Section ).



Figure 3 shows three main features: i) Zr-terminated surfaces show the highest surface
energy v (> 1.5 J m™2), ii) certain Li-terminated surfaces possess significantly lower -
(~ 0.8740.02 J m~2 for the (010) surface), in good agreement with previous work.® iii)
La- and O-terminated surfaces show similar surface energies, as indicated by v 0.98 J m~2
and 0.99 J m~2 for the La- and O-terminated (110) surfaces, respectively.

Although the surface structures are obtained from the tetragonal phase, we find identical
surface energies for symmetry inequivalent surfaces (see Table S1 and Figure S1). For exam-
ple, the surface energy (~ 1.77 J m~2) of the Zr-terminated (010) surface is identical to the
(001) and (100) surfaces, which is typically not found for tetragonal structures. This suggests
the similarity between the tetragonal and cubic phases of Li;La3Zr,015 and indicates that
the Li ordering, which affects the relative stability of the bulk tetragonal and cubic phases,
has only a negligible impact on the relative symmetry and energetics of Li;LagZroOq9 sur-
faces. Notably, the ¢/a ratio exhibited by the tetragonal phase (~ 0.96 from experimental

lattice constants, see Section ) signifies the “small” tetragonal distortion in LizLagZrsOjs.

Effects of oxygen environment and temperature on surfaces

With the aim of understanding the interplay between compositional and temperature effects
on the morphology of Li;LagZryO12, we now move our attention to trends of surface energy
as a function of temperature and oxygen composition. To include temperature dependence
in our model, we apply a thermodynamic framework (detailed in the Method section) that
connects changes in the O, chemical potential, y0,, directly to temperature.5® This approx-
imation is valid as the Li;LaszZr,Oqs electrolyte is in contact with an oxygen environment
during its synthesis and sintering.

With po = % [L0,, tto sets the surface energy of non-stoichiometric surfaces, as indicated
in Eq. 2. Note that under both oxidising and reducing conditions (Section ), the chemical
potentials of La and Li are set by LasO3 and Li5O, respectively. All the non-stoichiometric

surfaces studied here are either oxygen rich or poor (see Method section). High po (or po,)



represents low-temperature situations and a highly oxidative environment, where oxygen
molecules “condense” on the surfaces of LirLagZrsOq5. In contrast, higher temperatures
(i.e., more negative ) signify reducing conditions, where oxygen atoms become volatile
and leave the surface as O, gas, which is equivalent to Li;La3Zr,Oq2 being in equilibrium
with Zr metal.

Figure 4 shows the variation of the surface energy for a number of non-stoichiometric
surfaces as a function of temperature, or its equivalent ugo, corresponding to an oxygen
partial pressure of 1 atm.

A number of important observations can be drawn from Figure 4. i) The Li-terminated
(010) surface has the lowest 7 (as in Figure 3) and the La-terminated (010) stoichiometric
surface has the highest v for temperatures higher than 25 °C. The negative slope of each
line signifies that all the surfaces are oxygen deficient. While studying non-stoichiometric
surfaces, we have focused on La, Li and O deficient scenarios, as they are most likely to
develop at high temperatures.®% In order to maintain the electroneutrality of oxygen-
terminated surfaces, oxygen vacancies were introduced to compensate the removal of cations
(details are provided in the Method section). ii) The stability of the Li-terminated (010)
surfaces in comparison to other terminations is significant. iii) At temperatures higher
than 300 °C, the O-terminated (010) and (110) surfaces become more stable than the (110)
Li-terminated surface. This result is also found for the (100), (001), (011) and (101) Li-
terminated facets. iv) Above 750 °C, the negative v of (010) Li-terminated surface (as seen
in Figure 4) is indicative of the instability of bulk Li;La3ZryO12, and may be linked to the

melting of LiyLagZrsOq5 particles.

Environment dependent particle morphologies

By combining our surface energies of various surface facets at distinct chemical compositions
(Figures 3 and 4), we can implement the Wulff construction to derive the Li;LagZryOqs

equilibrium particle morphology at synthesis conditions.
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Figure 4: Surface energy « of La (blue), Li (red) and O (green) -terminated LizLaszZroOqy
surfaces vs temperature and oxygen chemical potential yo. The blue horizontal line indicates
the stoichiometric La-terminated surface energy. The zero (eV) in the po scale is normalised
against the reference state pg, and is detailed in the SI. puo near 0 eV relates to oxygen-rich
(or oxidising) regimes, whereas more negative oxygen chemical potentials are oxygen-poor
(or reducing) conditions. The grey shading marks the experimental temperature window for
synthesis and sintering of Li;LasZryO15. The chemical potentials of Li and La are fixed by
Li,O and LayO3, respectively, while g is allowed to vary.

Figure 5 depicts the change of the particle equilibrium morphology as a function of
temperature.
At room temperature (~ 24 °C), the equilibrium Li;LazZr,O15 particle morphology is

dominated by the (001), (101) and (110) surfaces. For temperatures greater than 600 °C
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24 °C 180 °C = 600°C

Figure 5: Variation in the Li;LazZr,O15 equilibrium morphology with increasing temper-
ature. The particles are expected to be Li-terminated, as suggested in Figure 4. Labels
identify the surface planes of interest.

(and < 750 °C), Li;LagZryO42 particles should assume a cubic shape dominated by the (100)
and (010) surfaces, as seen in Figure 5.

At 24 °C and intermediate temperatures (~ 180 °C), the (110) Li-terminated surface
contributes to the overall particle shape. However, an increase in oxygen composition on the
surface of the Li;LagZr,O15 particles will be also observed, as shown by the increased stability
of the (110) oxygen-terminated surfaces over (110) Li-terminations, as seen in Figure 4 at

temperatures above 300 °C.

Tuning the synthesis conditions of Li;LasZr,05

We now discuss the surface phase diagram obtained by varying the chemical composition
of Li;LagZroOq5. This analysis contributes to understanding the experimental synthesis
conditions to achieve the desired chemical composition of the particle surfaces.

Computing a complete surface phase diagram represents a formidable exercise given the
large compositional space for the non-stoichiometric terminations accompanied by the large
number of atomic arrangements of partially occupied terminating layers. Thus, we limit the
discussion of the surface phase diagram to the Li;LasZroOq5 surfaces in Figure 3. Li-rich
and Li-poor conditions correspond to Li;O (reducing conditions) and LigZr,O7 (oxidising

conditions), respectively, while Zr-rich is equivalent to Zr metal (reducing) and Zr-poor to
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O, gas (oxidising).
Figure 6 shows the surface phase diagram at 0 K by varying the Li (pur;) and Zr (pz,)
composition. We find that regions of low ur; and puyz, are consistently dominated by the

Voltage vs Li/Li+ (V)
00505 10 15 20 25 3.0

O/La

shell
_2
S -4
*1ﬁ_6
N _g
LizLasZroO12 LizLazZroO12

~10
—12

~0.05-0.5 -1.0 —1.5 —2.0 -2.5 —3.0

Li-rich bLi - Ky (eV) Li-poor
(reducing) (oxidising)

Figure 6: Surface phase diagram at 0 K of Li;LagZr,O;5 and schematic representations of
particle morphologies at different chemical conditions. Stable surfaces and chemical termi-
nations as a function of ur; and pz,. The white square identifies the compositional Li—Zr
conditions where Li;LagZro0O15 is commonly synthesised. Zr-rich is equivalent to Zr metal
(Zr-poor is Oy gas), whereas Li-rich is Li metal (and Li-poor is LigZroO7). The voltage
evolution vs Li/Li* (with V = —pug,; - e7) is also shown. The chemical potential scales are
referenced against the reference states uj; (LioO) and ui,. (Zr metal).

(010) O- and La-terminated surfaces. At more positive pp; and pz, (near Li-rich and Zr-
rich conditions), the (010) Li-terminated surfaces are stable. In fact, the (010) O- and
La-terminated surfaces have similar surface energies ~ 0.94 and ~ 0.98 J m~2, respectively
(see Figure 3), as the La ions exposed are surrounded by a O sub-layer. The La/O or Li

segregations at the surface of the particles of LizLagZroOqo (at specific pp; and pg,) are

12



schematically shown by the green and violet spheres of Figure 6.
Figure 6 also includes a voltage scale, which relates directly to the Li chemical potential

(V = —pup; - 7). Negative up; signify high voltages (vs Li/LiT) and vice versa.

Discussion

To gain realistic insights into the design of solid electrolytes for solid-state batteries, we have
performed a thorough first-principles calculation analysis of the Li;LagZr,O,5 surfaces and
its morphologies under various physical and chemical conditions.
Morphology and composition of Li;LasZr,0,, particles — Figure 1b shows that lower
surface energies are found for surfaces terminated by cations with lower oxidation states,
following the trend LiT < La3* < Zr**. This finding relates to electrostatic and geometric
factors. By cleaving a cation-terminated surface, the large disruption of the ideal cation
coordination environment results in a high-energy penalty, thus impacting significantly the
relative stability of the surface.

Experimentally,®® it is found that La3* and Zr** ions prefer high oxygen coordination
(> 6 in the cubic and tetragonal Li;LaszZryOqy phases), whereas Li™ can adjust to both
octahedral and tetrahedral environments.'*” Li ions can tolerate reduced coordination en-
vironments leading to lower surface energies compared to Zr-terminated surfaces, which
undergo a reduction in coordination from 6-8 to 4. La-terminated surfaces show low surface
energies (~ 0.94 J m™2) compared to the Zr-terminated surface, which are explained by the
oxygen sub-layer stabilising the partially uncoordinated La atoms and lowering the surface
energy (see Figure S3).

We have identified that surfaces with low Miller indices, e.g. (010) and (110) with Li-
rich textures, dominate across a wide range of temperatures and oxygen environments. Li
segregation at the surfaces of Li;LazZroO15 particles has been demonstrated by neutron depth

profiling experiments.®® O-terminated surfaces are also possible, as shown in Figure 6. This

13



may be significant in relation to the recent report of oxygen migration in Li;LagZryOqs.%8

The predicted room temperature morphology of Li;LasZr,Oq5 is in excellent agreement
with a scanning electron microscopy study of a single crystal,® providing credibility to the
computed morphologies of Figure 5. However, no specific surface facets were characterised,
which we identified here.%® We can complement the experimental observations by extending
our model beyond the shape of the particles. This is completed by ascertaining the dominant
surface facets and the most likely chemical compositions under both reducing and oxidising
conditions.

On the basis of these findings we speculate that small cations, such as AI** and Ga?",
doped at LiT sites may segregate at the surfaces of the particles. In agreement with our
hypothesis, a number of experimental reports demonstrate that AI>T segregates to the grain
boundaries of doped Li;LagZryO1s.%%%%%0 We speculate that high-valent cations, such as
Ta’* and Bi®" (introduced on the Zr lattice to increase the number of Li vacancies), ! will

constitute the core of the Li;LagZrsOq5 particles.

Densification and implications on ionic conductivity — Densification of ceramic ox-

ides via high-temperature (and spark-plasma) sintering is routinely employed to improve

11,45,55

the electrolyte ionic conductivity. Typically, the interpretation of impedance mea-

surements requires the deconvolution of the total ionic conductivity into three main con-

61-63

tributions, namely, intrinsic bulk, grain boundary and interfacial electrolyte/blocking

electrode. While bulk Li-ion transport has been emphasised by both experiment and com-

T91L3L324T51 orain boundary Li-ion conductivity is much less examined, despite

putation,
being crucial. ™1

The seminal paper on Li;LagZr,O.5 by Murugan et al.® showed significant Li-ion re-
sistance at the grain boundaries (~ 50% of the total), thus suggesting the relevance of

t.64

intergranular Li-ion transpor Ceramic oxides processed at high temperatures containing

“volatile” cations, such as Li, including Li;LasgZrsOq5, will produce Li deficient bulk materi-
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als,?” and thus possible Li loss upon sintering treatments. For example, Antolini®* showed
that sintering of Li,Ni;_,O ceramic electrodes can promote Li segregation at the particle
exterior, thus altering the overall stoichiometry. Loss of Li;O was observed in the synthesis
of LizLagZryO1q,3%3555:65 and additional LisO is routinely added during its preparation.

In agreement, our prediction in Figure 4 suggests that at high temperatures (> 600 °C
in the sintering regime) and reducing conditions, the particle surfaces will show pronounced
segregation of Li. Assuming that the stable surfaces computed in this study are representa-
tive of the grain boundaries in Li;LasgZr,O49, we speculate that the accumulation of Li ions

can impact the Li transport involving grain boundaries. %

Engineering the particle morphology — On the basis of our predictions, we can propose
practical strategies to engineer particle morphologies of Li;LagZryOqs.

For example, Figure 6 demonstrates that adding extra Zr and/or Li metals during syn-
thesis may promote Li segregation at the grain boundaries.? In addition, as indicated in
Figure 4, routine high-temperature synthesis of Li;LasZr,015 promotes reducing conditions
(i.e., oxygen-poor conditions) and Li terminated surfaces/particles. Hence low-temperature
synthesis (and sintering) protocols should be sought. %

From analysis of Figure 6, we speculate that O/La accumulation at the grains is also ob-
served near the operating voltages of typical Li-ion cathode materials (e.g., LiCoOs ~ 3.8 V
vs. Li/Li* and LiFePOy ~ 3.4 V). In this context, Miara et al.5” have shown that Li;LagZr;015
remains stable against LiCoO,, whereas the analogous interface with LiFePO,4 decomposes
forming a protecting LisPO, interface. Nevertheless, a more recent experimental investiga-
tion by Goodenough et al.,% showed significant AI** and La3"t migration from Al-doped
LizLagZr,015 to LiCoO,, and negligible Zr diffusion into LiCoO,. In Figure 6, near 3 V
we predict La segregation towards the particle surfaces corroborating these experimental
findings.

The failure upon short-circuiting of polycrystalline Li;LazZr,0O15 in solid-state devices,

15



utilising a Li-metal anode, has been linked to dendrite propagation.?” Near 0 V or at the
potential of Li metal, we expect the Li;LazZr,Oq5 particles to be lithium terminated. In
agreement with our results, Li segregation close to a Li-metal anode interface in Al-doped
Li;LasZr,015 has been recently observed by in situ transmission electron microscopy.® We
speculate that the occurrence of Li at the particle surface and at grain boundaries, could
indeed set the ideal chemical environment required for Li-dendrite growth and propagation
between Li;LasZr,O9 particles. In line with our results, Kerman et al.?” proposed that once
Li fills a crack in doped Li;LagZr,014, fresh electrodeposited Li extrudes to the existing grain
boundaries.

Unsurprisingly, the process of dendrite propagation can originate from Li “stuffing”
into grain boundaries.?” Thus, the significant accumulation of Li at the surfaces of the
Li;LagZroO45 particles may favour the initial stages of dendrite nucleation and growth along
the existing grain boundaries. Further experimental studies are required to verify these

hypotheses.

Conclusions

LizLagZr,015 is an important solid electrolyte material, but its surfaces and particle mor-
phologies under synthesis and sintering conditions are not fully characterised.

First, by studying the morphology and composition of Li;LasZrsO15 particles from DFT-
based calculations, we have demonstrated the spontaneous segregation of Li towards the
particle exterior. Second, we map the compositional changes of the surfaces of Li;LagZr,019
as a function of temperature and of oxygen chemical pressure. Li segregation to surfaces
is the dominant process over a range of temperatures, particularly during high-temperature
synthesis and sintering. These findings are significant in relation to the initial stages of Li
dendrite growth. Third, by studying the surface phase diagram of Li;La3Zr,015, we find

that Li segregation can be curbed by tuning the ceramic synthesis conditions. We show that
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synthesis in reducing environments (O-poor, Li-rich and/or Zr-rich) may promote Li segre-
gation to the particle surfaces. Finally, we find that particle compositions of Li;LaszZroO19
are altered upon voltage sweeps, with Li segregation at the exterior occurring at the Li-metal
anode voltage.

These findings will contribute towards developing strategies for the optimisation of the

synthesis and operation of promising solid electrolytes for solid-state batteries.

Method

Surface energies and thermodynamic framework

The physical quantity defining stable surface compositions and geometries is the surface free
energy v (in J m2):

species

Y= ﬂ Gsurface - Gbulk - ; Anz,uz (1)

where A is the surface area (in m™2) and Ggugace and Ghuy are the surface free energies
of periodic surfaces and the reference bulk material, respectively. Ggurface and G are
approximated by the respective computed internal energies Fgurface and Epu, accessed by
density functional theory (DFT) as described in the SI. In the case of non-stoichiometric
surfaces, the final surface energy depends on the environment set by the chemical potential
1; for species ¢ and amounting to an off-stoichiometry of An;. Note that An; is negative
(positive) if species ¢ is removed (added) to the surface. The chemical potential references
w; were derived from the computed phase diagram (Figure 1b) at 0 K.

Eq. 1 provides v values at 0 K that are not representative for the operating conditions of
solid electrolytes and the synthesis and sintering conditions. For non-stoichiometric surfaces,
the approximation chosen to introduce the temperature dependence in the v values is based
on the fact that the surrounding O, atmosphere forms an ideal-gas-like reservoir, which is in

equilibrium with Li;LagZr,015. The effect of temperature is introduced into the definition
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of v as follows:

species—{O}

V(T) = ﬂ Egsurtace — Foulk — Z Anz,uz - Ano,uo (T) (2)

where po is now a temperature dependent quantity and evaluated directly by combining

DFT data with experimental values tabulated by NIST/JANAF as:%
1 1 1
po(T) = §u02(0 K,DFT) + §u02(0 K, Exp.) + §AG02 (AT, Exp.) (3)

where the po,(0K,DFT) is the 0 K free energy of an isolated oxygen molecule evaluated
with DFT, whereas 10,(0K, Exp.) is the 0 K experimental (tabulated) Gibbs energy for
oxygen gas. AGo,(AT,Exp.) is the difference in the Gibbs energy defined at tempera-
ture, T, as 1/2[H(T,09) — H(0 K,O9)] — 1/2T[S(T, Oy)], respectively, as available in the
NIST/JANATF tables.% We omitted the partial pressure dependence of the po, term (i.e., we

used po, = 1 atm) as we expect this contribution to be small, as demonstrated previously.®

Bulk surface models

Because of the large number of possible chemical terminations, as a result of the quaternary
nature of Li;LagZro015, the selection of surfaces investigated was only limited to low-index
surfaces, such as (100), (001), (101), (111) and (201). We note that some of these surfaces
are related by the intrinsic tetragonal symmetry. For example, (100) = (010), as verified by
the surface energies in the Supplementary Information (see Table S2).

In line with Tasker’s classification of oxide surfaces,”™ only realistic type I surfaces were
considered, which are characterised by zero charge and no electrical dipole moment. Nev-
ertheless, these requirements are only satisfied by a limited number of stoichiometric Zr- or
La-terminated surfaces with high surface energies.

Because our goal is to rationalise the chemical composition and morphology of the
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Li;LasZr,Oqo particles, it is crucial to study the Li- and O-terminated surfaces. As a re-
sult, type I non-stoichiometric surfaces were generated by selectively removing layers of Zr
and/or La and charge-compensated by O removal, as shown schematically in Figure 2. Upon
cation removal, charge neutrally is maintained by introducing oxygen vacancies, resulting in
the need to investigate a significant number of atomic orderings. We simplify this difficult
task by computing with DF'T only the 20 orderings with the lowest electrostatic energy, as
obtained by minimising the Ewald energy of each surface using formal charges.” This re-
sults in the assessment of 420 non-stoichiometric surfaces using DFT. While performing this
operation, we enforce symmetry between the two faces of the surfaces. Using this strategy,
we identified 21 non-stoichiometric orderings and 11 stoichiometric surfaces that are O-, Li-,

La- and Zr-terminated, respectively, whose surface energies are discussed in Figure 3 and

Table S2.
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