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Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations.
It is common to calculate an energy—volume curve, fitting an equation of state around the equilibrium cell
volume. This is a computationally intensive process, in particular for low-symmetry crystal structures where
each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures
can be prohibitive for non-local exchange-correlation functionals or other ‘beyond’ density functional theory
electronic structure techniques, particularly where analytical gradients are not available. We present a simple
approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium
volume can be predicted from one single-point calculation, and refined with successive calculations if required.
The approach is validated for PbS, PbTe, ZnS and ZnTe using nine density functionals, and applied to the
quaternary semiconductor Cu,ZnSnS, and the magnetic metal-organic framework HKUST-1.

I. INTRODUCTION

The standard operating procedure for computational
investigations in solid-state chemistry is to begin with a
crystal structure — obtained either from diffraction stud-
ies or through chemical analogy — and to optimise the
lattice shape, volume and internal positions to minimise
all forces. It is from this equilibrium crystal structure
(athermal for the majority of electronic-structure ap-
proaches) that the full range of material response func-
tions (e.g. elastic, dielectric, magnetic) are calculated.!

The optimisation of a crystal structure may require
hundreds of self-consistent field iterations across a series
of ionic configurations.? The most robust approach to
optimisation is the calculation of an equation of state
(EoS) for the material, relating the unit cell dimensions
to energy and pressure.? This is based on a series of cal-
culations at differing volumes, where ideally the shape
and internal positions are optimised at each point. The
simplest case is a cubic lattice with high internal sym-
metry, e.g. rocksalt, where the only degree of freedom is
the volume, and computing the EoS reduces to a series of
single-point calculations. For a triclinic cell, the lengths,
angles and internal positions in principle all require op-
timisation. While it is sometimes possible to directly
optimise the cell volume by simultaneously minimising
the stress tensor of the unit cell, this approach can run
into artifacts when using plane-wave basis sets (i.e. Pulay
forces) unless an iterative procedure is employed.*

It has become commonplace to use an ‘equilib-
rium’ crystal geometry, determined using one exchange-
correlation functional within density functional theory,
for a ‘single-shot’ higher-level calculation performed to
give a more accurate electronic structure. This method-
ology has been applied to the calculation of properties
as diverse as workfunctions, electronic bandgaps, optical
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properties and defect formation energies.’ 12 The implicit
assumption is that the qualitative behaviour is insensitive
to small differences in the local structure. The approxi-
mation will fail where the electronic structure (chemical
bonding) of a system is poorly described at the initial
level of theory, e.g. the treatment of Mott insulators such
as NiO within the local-density approximation (LDA).13

In this contribution we outline a simple procedure
for the rapid volume optimisation (RVO) of crystal
structures. It takes advantage of the similarity in the
pressure-volume relationship for a given material between
different theoretical approaches, here being exchange-
correlation (XC) functionals within density functional
theory. Where an EoS is known for one functional, the
equilibrium volume for another functional can be pre-
dicted with reasonable accuracy using a single calcula-
tion, and further refined following an iterative proce-
dure. The approach has particular utility for studies
assessing material properties using a range of electronic-
structure methods, and for studies employing methods
with high computational cost (e.g. hybrid, meta-hybrid
and double-hybrid treatments of electron exchange and
correlation). We validate the approach for four Zn and
Pb chalcogenides, and demonstrate its utility in describ-
ing the electronic and magnetic structure of one com-
plex semiconductor (CuyZnSnS,) and one metal-organic
framework (HKUST-1), respectively.

Il. OUTLINE OF PROCEDURE

The goal of local crystal-structure optimisation is to
minimise all degrees of freedom (cell size, shape and posi-
tions) with respect to the total energy of the system. It is
convenient to employ an EoS based on an energy-volume
(E-V) curve, where the remaining degrees of freedom
(i.e. shape and positions) are minimised for each vol-
ume using standard numerical minimisation approaches
(e.g. the conjugate-gradient method). Kohn-Sham den-
sity functional theory (DFT)'* is one of the most widely
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used electronic structure techniques for modelling solid-
state materials. Most DFT codes provide optimisation
algorithms for this purpose, e.g. the ISIF=4 setting in
the Vienna Ab initio Simulations Package (VASP)!®, the
cell dofree=‘volume’ setting in Quaumtum—Espresso16
or the CVOLOPT setting in CRYSTAL."

A superficial resemblance is clear between E-V curves
obtained with different exchange-correlation functionals,
with similar shapes but different minima (Figure la).
The extent of the similarity becomes apparent when
using pressure-volume (P-V) curves (Figure 1b), where
“pressure” refers to the scalar hydrostatic pressure on

the periodic system. As this pressure P = —g—g, the op-

timal geometries 3—5 = 0 are now those intersecting the

P = 0line. We note that while these still differ depending
on the chosen XC functional, the P-V curves have sim-
ilar curvature, with the same approximate slopes about
their zero-crossing points. From these we make our key
assumption: the slope of one P-V curve may be used to
estimate the crossing point of another.

For certain beyond-DFT calculation methods, the
stress tensor is not computed directly. However, where
the energy is available the hydrostatic pressure may al-
ways be estimated with a finite difference:

E(V +48) - E(V)

P(V) =~ — eV (1)

The procedure, outlined in Figure 2, is:

1. Form a P-V curve using one description of the in-
teratomic interactions (method A). This can be
achieved by fitting an EoS to an energy-volume
curve. If a system-specific set of classical poten-
tials is available, this would be expected to per-
form very well as they are often fitted to the exper-
imental lattice parameters and elastic properties.
Within DFT, descriptions of electron exchange and
correlation within the generalised-gradient approx-
imation (GGA) are suitable,'® given their low cost
and the availability of analytical gradients for the
rapid calculation of forces. Comparative studies
suggest that PBEsol'® gives especially good esti-
mates for the lattice parameters and elastic prop-
erties of crystals.20:2!

2. Calculate the slope about P = 0 for method A.
This will form our linear approximation.

dpP

=3 |p,- Q

4=0

3. Perform a calculation using a second approach
(method B), e.g. hybrid DFT with the screened
HSEO06 functional®?, using an estimated initial vol-
ume; this may be the equilibrium volume (V;) for
method A. Convert the resulting stress tensor to a
hydrostatic pressure Py. (If no analytical stress ten-
sor is available, use a finite difference as in Eqn. 1.)

TABLE I: Equilibrium properties of PbS from the
Murnaghan EoS, fitting over a range of functionals:
lattice parameter a; unit cell volume Vj; volume
difference ey from experimental value; Murnaghan EoS
parameters ko and kj. ko is equivalent to Bulk modulus
at zero pressure. The experimental lattice constant was
obtained from low-temperature neutron powder
diffraction data fitted and extrapolated to zero
temperature by K. S. Knight (2014).23

XC functional a /A Vo /A® e /% ko k{
LDA 5.84 199.01 —3.47 65.71 4.42
PWO1 5.99 215.21 4.38 55.26 3.98
PBE 5.98 214.18 3.88 54.64 4.00
PBEsol 5.88  203.43 —1.33 61.13 4.25
TPSS 5.96 211.76 2.71 57.33 4.01
revIPSS 5.94  209.05 1.39 57.85 4.00
PBE+D2 5.84 199.19 -3.39 59.93 5.02
B3LYP 6.06 223.02 8.17 53.20 4.07
HSEO06 5.96  210.09 1.90 59.29 4.32
Experiment® 5.91 206.17

4. Estimate the corrected volume for method B:

P
Vi=Vo+ — (3)
m

5. Generate a unit cell with volume V; (e.g. by in-
terpolating between the previous calculations with
method A), and recalculate the desired properties
with method B.

6. Iterate steps 4-5 until P is acceptably low:

P,
Vn = Vn N
41 + m

Py =f(Vy) (4)
11l.  ERROR ESTIMATION
A. Accuracy of linear approximation

In this approach, a linear fit is used for the pressure-
volume relationship:

Pest =aV + b (5)
dPest _
A (6)

This is by no means a conventional equation of state,
but may provide a useful approximation when close to
the minimum volume. The standard definition of the
bulk modulus,

dP
B=-V—
Vi (7)
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FIG. 1: Energy-volume and pressure-volume curves
computed for PbS using a variety of DF'T
exchange-correlation functionals. Markers indicate
calculated values, while smooth lines are fits to the
Murnaghan equation of state.

yields the static bulk modulus By when evaluated at the
equilibrium volume Vj.
dP
By=—-Vy-— 8
0 0 dVlv=v, (8)
As we have assumed this derivative to be constant, we
combine with Eqn. (6) to give a physically meaningful
expression of our assumption:
dP, est BO
=a=—-—. 9
It is now straightforward to compare this approximate
EoS with a more conventional form for solid materials,

estimating an associated error (€). The simplest case is
a system with constant bulk modulus.

dP By
W=7 (10)
e=P— P (11)
E o g, chst o _BO N _BO
v —av AV v Vo
1 1
=By | —— — 12
o(vo V) (12)
Vv 1%
de 1%
e(V)z/ —dV =B, |:—111V:| (13)
v AV 1V, v
B 1% Vo
W= (L ran(2))
B V-V, 1%
BO( Vo 1“(%)) 19

At a typical volume deviation of 5% (Table I):
1.06Vp — Wy 1.06V
1.06Vp) =By | ————— —1 15
e(rosve) = g (S0 o (BP0 )
= By(0.05 — In(1.05)) (16)

where the pressure

Lo5% B 1.05Vp
P= 2%V = —Byln [ = 17
/VO G " “( 7 ) a7

and hence the fractional error 5 is -2.5%.

Moving to an improved, while still relatively simple,
EoS, the Murnaghan EoS adds a parameter, effectively
giving a linear volume dependence to By.2* Taking its
derivative form (Eqn. 18), we improve our error estimate:

AP ko (Vo\'

VoV (v) (18)
de P dP ko (W0\®_ By 0
dv v dv. vV \V Vo

We can relate By to the Murnaghan parameters ko, k{, by
finding the slope at Vj:

dp Vo (Voro
By=-Vy-— =2k (22) =k (2
0 Vo Vv, V00<V0) o (20)
k/
de R A
ko[ =— - =20 21
av 0<V0 V%H) 1)
\% kg
SR A
V) = ko | — — —=2— | dV 22
(V) /V 0<VO VW) (22)
qV
|V (W)Y (23)
W TR\
Vo
(24)
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FIG. 2: Flow chart for the rapid volume optimisation procedure.

Plotting these error estimates in Figure 3, we find that
the error in pressure is less than 10% of the static bulk
modulus for volumes 10% from the optimum, given a
material that obeys the Murnaghan EoS with a typical

value kj = 5. For smaller values of k{ (i.e. closer to
the fixed-bulk-modulus model), the errors are greatly re-
duced. In any case, the linear approximation appears to
be sufficiently accurate for a stable optimisation process.
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FIG. 3: Divergence of the linear approximation from
more complex equations of state. The error
€ = Pt — Pros is given in units of the static bulk
modulus.

B. Dependence on accuracy of EoS

Returning to the simplistic EoS of Eqn. 10

we examine the residual pressure P; following a single
step of RVO from an initial volume V;,

Vo, 4

Pg(V;)
=Vi+ ——= =V, - Pp(V; 2
Vi=V,+ = Vi B(V)Bo,A (29)
Vo, Vo,a
—V,— Bypln [ 22). %
V; 0,B 1N ( Vl > BoyA (30)
P, =Byplhn (VOB> (31)
Vi
Py Vi Bo,sVo,A <V0 B )]
=—In — : “— In - . 32
Bo,B |:VO,B By, aVo.B Vi (32)

5

We note that In(z) = 2 —1 for = close to 1, and hence the

residual pressure is approximately linear with respect to
Bo,5Vo,a
Bo,aVo,B
indicates a smaller linear dependence on the similarity
of the EoS for method A and method B. Moving to the

Murnaghan EoS,

ko,B Vo,B ko5
P =0 ’ —1 33
' kg <<: Vi ) (33)

the error in initial volume estimate. The term

ko, s
ko,B Vo.B
-2 ‘ — _1 (34)
0.8 | \ Vit Pe(Vi)=32
ko, 5
P Vo,B _q
Z?'B B AV Vo,a ko, Vo,B ko, b 1
0,B T kO,A ° k(/),B ( V; ) -
(35)
, k!
(Vi Voakos 1 Vo,B Fo.5 _q o _q
Z?*B Vo Vo,Bko,a kg, Vi
0,B :
(36)

Again, the pressure is dominated by the initial position,
with a smaller contribution from the difference between
EoS “stiffness” and volume minima. The non-linearity
of this relationship follows the non-linearity of the true
EoS through the exponent k{ ;. We conclude therefore
that the performance of the first step is equally sensi-
tive to percentage differences in equilibrium volume and
bulk modulus between method A and method B. Con-
vergence is impacted by the non-linearity of the EoS, but
not by how accurately this non-linearity is reproduced by
method A.

IV. METHODS
A. Electronic Structure Calculations

Studies have been carried out on the binary chalco-
genides PbS, PbTe, ZnS, and ZnTe as well as the quater-
nary semiconductor CuzZnSnS, and an organic-inorganic
hybrid material HKUST-1.

All DFT calculations on the binary chalcogenides were
carried out with VASP?® using the two-atom primitive
face-centred cubic unit cells. We employed projector-
augmented wave (PAW) frozen-core potentials?527 treat-
ing the outermost s and p electrons of S, Te, and Pb and
the outermost s, p, and d electrons of Zn explicitly as
valence. For consistency, we used the LDA PAW poten-
tial set. The PAW potentials are highly transferable and
tests showed a very weak dependence of the resulting op-
timised electronic and crystal structures. A plane-wave
kinetic-energy cutoff of 550 eV was employed in all these
calculations, and the Brillouin zone was sampled with an



8 x 8 x 8 I'-centered Monkhorst-Pack mesh.?® During elec-
tronic minimisation, the wavefunctions were optimised to
an energy tolerance of 1078 eV. These parameters were
found to be sufficient to converge the absolute total en-
ergies to within 1 meV atom™!, and the stress tensors to
well within 1 kbar (0.1 GPa).

The simplicity of the binary systems allowed us to test
a wide range of functionals, spanning different “levels” of
approximations to the exchange-correlation potential.??
As a baseline, we took the local-density approximation
(LDA) with the Perdew-Zunger parameterisation of the
correlation energy.?’ Calculations using the generalised-
gradient (GGA) approximation were performed with
the Perdew-Wang 91 (PW91)3133 and Perdew-Burke-
Enzerhof (PBE)3* functionals, plus the variant of PBE
revised for solids (PBEsol).!? To complement this set of
functionals, we also tested the Grimme D2 dispersion cor-
rection to PBE.3® “Meta-GGA” calculations were carried
out using the Tao-Perdew-Staroverov-Scuseria (TPSS)
functional®® and the subsequent revision of Perdew et
al. (revTPSS).3" Finally, we tested two hybrids, viz. the
popular HSE062?2 and B3LYP3?® functionals. For each
material and functional, we calculated an E-V curve by
adjusting the lattice parameter to yield 21 volumes about
the experimental 300 K lattice parameters reported in
Refs. 39 and 40 covering a range of approx. +5%. We
note that, as a result of the high symmetry of these sys-
tems, the lattice parameter is the only degree of freedom,
and thus relaxation of the cell shape and internal posi-
tions was not required.

For CuzZnSnSy (Section V B), energy-volume curves
were formed from all-electron DFT calculations using
the FHI-aims code.*¥? These calculations employed
numerically-tabulated atom-centered basis functions (the
‘tight’ defaults were used, which correspond to expected
convergence of < 10 meV per atom) and evenly-spaced
k-point grids. Additional hybrid (HSE06) DFT calcu-
lations and primitive-cell optimisations used VASP with
the PAW-PBE potential set and a 500 eV cutoff for the
plane wave basis set. All calculations on CusZnSnS, sam-
pled the Brillouin zone with 6 x 6 x 6 I'-centered k-point
grids.

For the Cu-based metal-organic framework HKUST-
1, calculations were again performed with the VASP
code, considering only the point I' in reciprocal space
due to the large size of unit cell. Owing to the presence
of the open-shell Cu(II) ion (d° configuration) all cal-
culations were spin-polarised, and a range of magnetic
structures were tested as discussed in Section V C. The
PBEsol and HSEsol functionals were used along with the
PAW-PBE potential set. Here ‘HSEsol’ refers to a mod-
ification of HSE06, with PBEsol replacing PBE as the
local exchange-correlation functional.*3 Due to the com-
plexity of the crystal structure, only three energy-volume
points were included in the EoS and a single iteration of
RVO was performed to recover the ground-state HSEsol
structure. A slightly different procedure was followed in
this case: a quadratic E-V curve was fitted to the three

PBEsol points. The initial HSEsol calculation was car-
ried out at the fully-optimised PBEsol point, and the E-
V curve was followed assuming a constant pressure offset
to estimate the equilibrium volume for HSEsol. (This
application was the first chronologically, and led to the
development of the Murnaghan fitting procedure.)

B. Implementation

The RVO method was implemented and tested with
code written in Python 2.7.3, using the standard li-
brary and Numpy/Scipy/Matplotlib.4446 (The code is
freely available; details in Supporting Information.)
Non-linear fitting to the Murnaghan EoS wuses the
curve_fit routine in the Scipy Python library, which
accesses Minpack, an open-source Fortran library.*®> This
implements least-squares fitting with the Levenberg-
Marquardt algorithm.*” Initial guesses of 50.0 eV A?
and 5.0 were used for the k' and k{, parameters, respec-
tively.

V. RESULTS
A. 1I-VI Binary Chalcogenide Semiconductors
1. Simulated application across a range of methods

For PbS there is a significant range in equilibrium lat-
tice parameters for different exchange-correlation func-
tionals, corresponding to a maximum volume difference
of over 10%, between the LDA and B3LYP calcula-
tions (Figure 1). Values are tabulated in Table I, and
compared to a recent low-temperature study by K. S.
Knight.?? The computed values are similar, but slightly
different, to the computational results reported by Hum-
mer et al.*® Direct bandgaps were also calculated at each
volume expansion, at the special k-point X for the lead
compounds and at T' for the zinc compounds. (Note that
PbS and PbTe have another, smaller direct bandgap at
the L point.) It can be seen in Figure 4 that over the
lattice-parameter expansion and contraction of up to 5%,
the bandgaps vary by around 1 eV, with the direction
of change depending on the structure type and chem-
istry. In this case, using an LDA-predicted geometry for
a ‘single-shot” B3LYP calculation would lead to a differ-
ence in bandgap of ~ 0.4 eV compared to that at the
equilibrium geometry for BSLYP.

An iterative application of the RVO procedure was
then simulated from the data. The Murnaghan EoS
(Eqn. 37) in its integrated form (Eqn. 38) was fitted to
each E-V curve from DFT calculations. This allowed en-
ergy and pressure to be calculated for arbitrary volumes
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FIG. 4: Volume-dependence of calculated direct
bandgaps at I' (ZnS, ZnTe) and X (PbS, PbTe) with
the HSEO06 and B3LYP hybrid DFT functionals.
Results as a function of volume (temperature) for PbTe
have previously been reported in Ref. 49. The
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bandgap deformation potential for the Pb and Zn
semiconductors, respectively. The volume expansion
range of 0.86-1.16 corresponds to lattice parameter
expansions and contractions of 5% in each dimension.
Markers indicate the calculated values.

without carrying out additional DF'T calculations.

p— Zz <(‘V/0>k - 1) (37)

V lfko 1
E=Ey+kVol [ — S
o+ o ((v) Kk, —1)
Vv 1
T %_1> (38)

The quality of these fits was sufficient for this exer-
cise, with RMS fitting errors of < 1 meV. Fitting pa-
rameters and full data are included in ESI. For each
“test functional”-“reference functional” pair, the mini-
mum volume (corresponding to the fitting parameter Vj)
of the reference functional was taken as the initial volume
guess, and an external pressure calculation modelled by
evaluating the pressure at this volume using the EoS for
the test functional. This refined pressure and volume was
then used as the basis for further iterations. The exter-
nal pressure over successive iterations is shown for PbS in
Figure 5 for each combination of functionals; convergence
is rapid with the residual pressure dropping almost log-
arithmically with subsequent steps, typically by a factor
of ~ 10% in three steps.

2. Comparison with a standard optimisation procedure

In general terms, a direct optimisation with method
B will take Nopt,p steps, each requiring an average com-
puting time tp, to converge to the equilibrium volume.
Constructing an EoS for RVO using method A requires
Ngos,a optimisations, which, as for method B, take
Nopt,a steps of time t4. We note that in most cases
Nopt,p Will be larger than Ny 4, since the direct opti-
misation with method B must adjust the internal coor-
dinates, cell shape and volume, while the optimisation
with method A needs only to optimise the internal coor-
dinates and the shape. Subsequent application of Nryvo
iterations of the algorithm then requires 1+ Ngryo single-
point calculations using method B, each again requiring
tp time. RVO is expected to be more efficient than a
direct optimisation with method B if the following in-
equality holds:

Nios, aNopt,ata + (1 4+ Nrvo) ts < Nopt,ste.  (39)

The cubic systems considered in this section, for which
the cell volume is the only degree of freedom, represent
a special case where Nope 4 = 1. We assume that energy
gradients are available with method B, and that the op-
timisation algorithm would converge in three steps, i.e.
Nopt,p = 3. This is reasonable if a good estimate of the
starting volume is available, such as a room-temperature
lattice constant. The inequality simplifies to

NEos, ata + (1 + NRVO) tp < 3tp; (40)
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it can be seen that RVO will outperform a direct optimi-
sation if a suitable pressure is obtained after one iteration
while t 4 <

NE s,A°

As a concrete example, we compared a direct optimi-
sation of PbS with HSE06 to an optimisation with RVO
using PBEsol and HSE06 as method A and method B,
respectively. The initial structure for both optimisations
was the experimentally-measured room temperature vol-
ume, and an eleven-point EoS for RVO was computed
about this value using PBEsol. The direct optimisation
used a quasi-Newton algorithm as implemented by VASP
(with the input tag “IBRION=1"). Both sets of calcu-
lations were performed on a dual-CPU Intel Xeon work-
station with 12 physical cores and 64 Gb RAM, allowing
the timings to be compared directly. The comparison is
given in Table II.

In this test, a single-point calculation with HSE06 was
on average 150 times more expensive than a calculation
with PBEsol; this is both due to the higher complexity
of non-local hybrid functionals compared to semi-local
GGA methods, and to the different scaling properties

with the number of k-points used to sample the Brillouin
zone. With the force convergence criterion of 1072 eV
A~ for direct optimisation, the pressure was reduced to
-0.1 kbar from an initial pressure of 3.42 kbar in three
steps, taking 4.75 hrs on our test hardware. A single
iteration of RVO yielded a pressure of 0.15 kbar in 4.18
hrs, while a second iteration yielded 0.03 kbar in a total
time of 6 hrs.

It can be seen from the data in Table II that the direct
optimisation takes on average less time per force calcu-
lation than RVO; the procedure implemented in VASP
re-uses calculated wavefunctions to speed up the con-
vergence of the second and third steps. In this case,
we found that one of the conjugate-gradient electronic-
minimisation cycles during the first single-point calcula-
tion for the RVO algorithm took some 1500s longer than
both the other steps in this series and the first step of the
quasi-Newton volume optimisation, despite the latter be-
ing notionally an identical calculation. This artefact con-
tributes significantly to the cost of the single-iteration
RVO calculation.



TABLE II: Comparison of a direct HSE06 volume
optimisation and one and two iterations of the RVO
algorithm in determining the equilibrium volume of

PbS. For each step, the total time for each step is
recorded alongside the cell volume and pressure after

the cycle where appropriate. For the direct
optimisation, the timings of the three steps are printed
alongside the total for the complete calculation, so the
latter includes additional operations such as setup time
and is slightly longer than the sum of the three
electronic minimisations.

Algorithm Step t/s V / A% p / kbar
1 6669 52.21 3.42
. 2 5808 52.63 —1.45
Direct (HSE06) 4500 52.50  —0.10
Total 17038
PBEsol EoS 47
HSEO06 1 8234 52.21 3.39
HSEO06 2 6754 52.49 0.15
RVO Total (1 iter) 15035
HSE06 3 6701 52.50 0.03

Total (2 iters) 21736

Nonetheless, even for this relatively simple test case,
useful savings in computing time could potentially be
obtained in practice with RVO. Given the poor scaling
of computational cost with system size when using ad-
vanced electronic-structure methods, we would expect
more substantial savings for more complex unit cells.
This would also be true in systems where direct opti-
misation requires the minimisation of a larger number
of degrees of freedom, leading a larger number of steps
with method B, which is the subject of the following case
studies.

B. Quaternary Sulfide Cu,ZnSnS,

CugZnSnS, (CZTS) is an attractive light-absorbing
material for thin-film photovoltaics, with a direct
bandgap and consisting of earth-abundant components,
which has attracted significant experimental®®®* and
computational®®? research effort. In the search for new
materials for solar energy conversion, the prediction of
accurate bandgaps from first-principles is a serious chal-
lenge and CZTS represents a suitable case for probing
the effect of crystal structure.

An initial structure for CZTS in the kesterite phase,
optimised with PBEsol, was obtained during previous
work.%0 This was reduced from a conventional 16-atom
body-centered-tetragonal cell with I4 symmetry to the
corresponding 8-atom primitive cell using Spglib.%! A set
of seven structures was obtained for both cells by mul-
tiplying each lattice vector by a scale factor from 0.97-
1.03 and performing a local optimisation of the atomic
positions, this forming the “method A” energy-volume

curves. In addition to this isotropic scaling, an additional
set of structures were calculated including optimisation
of the cell shape (i.e. the tetragonal c¢/a ratio) for each
volume point. The iterative RVO procedure was followed
in order to minimise the pressure and obtain a more ac-
curate electronic structure using the HSE06 functional.
The results are given in Table III; pressure minimisation
was rapid in all cases, decreasing logarithmically with
each step.

We note that the resulting lattice parameters from
these calculations, especially those using the primitive
cell, are very close to both the experimental lattice pa-
rameter a=5.427 A and theoretical a=>5.448 A reported
by Paier et al. following a conventional optimisation pro-
cedure with a variant of the HSE functional.®? We also
note a bandgap shift of almost 0.1 eV when the E-V curve
was provided by a non-isotropic set of primitive lattices.

This case also highlights the importance of internal
structure optimisation. After two steps of optimisation
using the E-V curve further calculations were carried
out, employing the HSE06 exchange-correlation func-
tional, where the internal atomic positions were relaxed
while fixing the unit cell. As shown in the table, these
lead to an increase in the absolute pressure, but also
a considerable improvement in the bandgap estimation
compared to experimental measurements. Previous elec-
tronic structure studies have show that the bandgap of
CZTS is highly sensitive to the S positions, which cor-
respond to deviations away from the ideal tetrahedral
coordination environment.?® In the ideal kesterite crys-
tal structure, the metal nuclei all occupy high symmetry
Wyckoff positions (2a and 2¢ by Cu, 2d by Zn, and 2b by
Sn). However, the sulfur anions occupy the lower sym-
metry 8¢ positions, with z, y and z displacement param-
eters. The change of ~ 0.3 eV in the bandgap following
further optimisation (Table III) emphasises the impor-
tance of internal relaxations for quantitative studies of
electronic structure.

C. Metal-organic Framework HKUST-1

In 1999, Williams and co-workers isolated Cug(btc)s
(HKUST-1).%3 Since then this material has been widely
studied in the field metal-organic frameworks (MOFs),
with possible applications in catalysis, ionic and electrical
conductivity, photovoltaics, batteries and gas capture.f*
First-principles calculations of MOF properties have tra-
ditionally posed challenges for computational chemists
because they combine large unit cells with complex or-
ganic and inorganic components.

HKUST-1 features an additional layer of complexity:
it is composed of Cu-Cu “paddlewheel” inorganic regions,
where each Cu(Il) atom is associated with an unpaired
electron and each paddlewheel is antiferromagnetically
(AFM) coupled in the ground state configuration.5%:66
The magnetic interactions are highly sensitive to the
Cu-Cu separation. Moreover, previous studies®”:%8 have
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TABLE III: Results from application of RVO to CuyZnSnS,, using the HSE06 functional and a PBEsol-derived E-V
curve. The unit of pressure P is kbar (10® Pa) and volumes V are given in A3. a is the lattice parameter in A; these
are calculated as a mean over the a and b vectors (crystal symmetry is not enforced in FHI-AIMS). E, is the
electronic bandgap in eV taken from the Kohn-Sham eigenvalues at the I'-point. The methods in parentheses refer
to the process by which the E-V curve was generated; isotropic expansion energies with FHI-aims and
volume-conserving relaxations with VASP. Iteration “2*” is the data from a final set of calculations, where the
internal atomic positions are relaxed while maintaining the unit cell from iteration 2.

Conventional cell

Primitive cell

Primitive cell

Iteration (Isotropic expansion) (Isotropic expansion) (Constrained relaxation)
P 1% a E, P % a E, P 1% a E,
0 22.82  309.12 5.38 1.26 17.49  155.43 5.38 1.23 17.49  155.43 5.38 1.23
1 —1.23  318.03 5.40 1.18 —-0.64  158.87 5.42 1.15  —1.35 159.00 5.44 1.13
2 0.00  317.56 5.40 1.19 —-0.01 158.74 5.42 1.15 0.02  158.73 5.43 1.14
2% 7.46  317.56 5.40 1.49 10.17  158.74 5.42 1.48 10.31 158.73 5.43 1.47

TABLE IV: Results from volume optimisation of
HKUST-1. Residual pressure P at each step, energies of
valence band maximum (VBM) and conduction band
minimum (CBM) with respect to the vacuum level, and
the bandgap (£;). All energies are given in eV and the
pressures is in kbar (108 Pa).

Iteration P VBM CBM E,
0 —13.98 —-7.5 —-3.7 3.8
1 —1.09 -7.0 —-3.5 3.5

shown that the ionisation potentials and bandgaps of
porous materials are sensitive to cell pressure and vol-
ume, similar to some of their inorganic counterparts.
HKUST-1 represents an extreme case, where deviations
from the equilibrium Cu-Cu distance result in spin flip-
ping and formation of a ferromagnetic (FM) state, which
impacts the electronic structure.

Typically, PBEsol-optimised structures agree with low-
temperature experimental measurements of MOFs to
within 1 %. This is the case here, and PBEsol also re-
produces the correct AFM state. However, a single-point
HSEO06 calculation on the PBEsol structure yields an in-
correct FM ground-state, as shown in Fig. 6, with an as-
sociated HSEQG6 cell pressure of -13.98 kbar (Table IV).
In order to recover an accurate HSEO6 crystal structure
(and the associated correct magnetic structure), a single
iteration of RVO was required. Notably, there is not only
a magnetic difference, but also a significant difference in
predicted electronic bandgap and workfunction.

VI. CONCLUSIONS

The rapid volume optimisation (RVO) approach pre-
sented here uses information from an inexpensive energy-
volume curve to obtain a useful estimate of the optimal
unit cell volume for a different level of theory. Our focus

was in bridging between different exchange-correlation
functionals within density functional theory, but a mea-
sured bulk modulus or classical interatomic potential
could also be used to construct the reference energy-
volume data. In sensitive systems the volume change can
lead to qualitative differences in the electronic and mag-
netic properties. The results depend on the initial volume
estimate and are relatively insensitive to the accuracy of
the E-V curve. The RVO method is expected to be com-
petitive with conventional optimisation approaches for
simple symmetric unit cells, as demonstrated for rocksalt
structured PbS. For materials such as Cu,ZnSnS, that
are sensitive to the atomic positions within the unit cell,
RVO may form part of the optimisation approach but
direct optimisation of internal positions is still needed.
More significantly, it allows for the improved estima-
tion of properties for large unit cells as demonstrated
for HKUST-1, where conventional optimisation methods
may be infeasible. As the only property used is the hy-
drostatic pressure, it is possible to employ calculation
methods which return a total energy without analytical
gradients by evaluating the energy of a single finite differ-
ence. In this case, an improvement over the “single-shot”
may be obtained with two additional high-level calcula-
tions and an inexpensive E-V curve; a fourth high-level
calculation would give an estimate of the convergence.
We expect that in many cases this will prove an eco-
nomical approach for the application of state-of-the-art
electronic structure calculations in the solid state.

VIl. SUPPLEMENTARY DATA

Python code providing a reference implementation
of this method is available at http://github.com/
wmd-bath/rvo; a snapshot as of this publication is
available at DOI:10.5281/zenodo.31940. This includes
a program to generate the plots in this publication
from the binary chalcogenide data. Calculation data
has been deposited online with Figshare at the DOI:


http://github.com/wmd-bath/rvo
http://github.com/wmd-bath/rvo
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FIG. 6: (a) HKUST-1 features a periodic array of 32 Cu(II)-Cu(II) paddlewheels per crystallographic unit cell. (b)
The favoured magnetic structure depends on the Cu-Cu separation: antiferromagnetic (AFM) and ferromagnetic
(FM) states are accessible. (¢) The valence band energy (ionisation potential) is sensitive to the magnetic structure
(calculated using the procedure outlined in Ref. 67). A ‘single-shot’ HSE06 calculation on the PBEsol structure
favours the FM state (blue), whilst the corrected structure favours the experimentally observed AFM state (red).

10.6084/m9.figshare.1468388. Raw output files from the
hybrid DFT calculations are made available for CZTS
and HKUST-1, and energy-volume curves are available
for all the systems. The full set of graphs and fitting pa-
rameters for PbS, PbTe, ZnS, and ZnTe are also included
as supplementary data with this paper.
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