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Abstract 

This paper describes the manufacture, characterisation and actuation of functional composites using asymmetric bistable 
composites. Such laminate structures are finding interest in applications such shape changing applications, energy 
harvesting and de-icing. In this paper results are presented for bistable structures that are actuated by a variety of 
mechanisms to induce ‘snap-through’ between states or a change of shape in a single state. This use of piezoelectric ceramic 
based actuators (Macro Fibre Composites), shape memory alloys and thermal actuation are examined. The actuators 
characteristics of each system, such as bandwidth, power and energy requirements, are described and compared. 
 
© 2013 The Authors. Published by Elsevier Ltd.  
Selection and/or peer-review under responsibility of the scientific committee of Symposium [W] – ICMAT. 
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1. Introduction 

Asymmetric bistable laminates have been considered for a number of potential applications ranging from shape change [1] 
to energy harvesting [2] and de-icing [3].  Bistable composites are asymmetric laminates, can maintain two different shapes 
and are often coupled to some form of actuation, either to induce a transition between each stable state (‘snap-through’) or 
to provide a change of shape within a single state.   Figure 1 shows the two stable states, ‘State-I’ and ‘State-II’, of a 
bistable carbon fibre reinforced plastic (CFRP) of dimensions 150mmx150mm; in this case the laminate has been combined 
with a piezoelectric macro fibre composite (MFC) which is the actuator component.  The CFRP is an asymmetric [0/90]T 
laminate where an anisotropy of the coefficient of thermal expansion between the individual plies leads to a residual stress 
on cooling from the high cure temperature (~180°C) and produces laminate curvature.  
 
Under particular conditions (e.g. a sufficiently length/thickness ratio) the thermal stress produces two stable equilibrium 
states.  For shape changing applications such structures are of interest since a large structural deformation can be achieved 
by actuating the laminate between its two stable configurations; although there are concerns regarding their low stiffness 
[4].  Actuation of a bistable skin could also be of interest for de-icing system where a change in shape debonds an ice layer 
on the laminate surface [3]. The cured shape and snap-through behaviour of bistable laminates has been investigated [5] and 
actuation of these laminates using piezoelectrics [6], shape memory alloys [1,7] and thermal patches [8] examined. The aim 
of this paper is to provide examples of actuation of these structures with a description and comparison of the actuation 
characteristics of each approach to aid in actuation selection. 
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2. Actuation of bistable laminates 

 
 

 
 
 

 

Fig. 1. Example of unsymmetric bistable laminate ([0/90]T) with piezoelectric actuator in (a) State I and (b) State II. 

2.1. Piezoelectric actuation 

Piezoelectric actuator materials include ceramics, such as lead zirconate titante (PZT), and polymers, such as polyvinylidene 
difluoride (PVDF). Both materials are capable of high frequency actuation and rapid response since the ferroelectric dipoles 
react quickly to an applied electric field. PVDF type actuators have not been used to induce snap-through of bistable 
laminate since their low stiffness (~8GPa) compared to the host structure, such as CFRP (~200GPa). The higher stiffness of 
PZT type materials (~30-50GPa) makes them more appropriate but they require high electric fields (~2kV/mm) to achieve 
the maximum deflection. This can often lead to high drive voltages, especially if the electrode separation is of the order and 
1mm, as is the case of MFC devices [9]. In addition the maximum strain is relatively low (~0.1-0.2%) and since the purpose 
of the piezoelectric is to induce a transition from each stable state, it is of interest to compare the maximum piezoelectric 
strain with the thermal strains (εt) of the bistable laminate during curing since εt is ultimately responsible for the curvatures 
in Figure 1.  The thermal expansion coefficient (α) of the carbon fibre/epoxy is ~0 in the fibre direction and ~30 x 10-6 °C-1 

in the transverse direction [10].  Since the cure temperature used was 180°C the thermal strain in the fibre direction (αΔT) is 
~0.45%, greater than the piezoelectric free strains, but of the same order.  The use of piezoelectric ceramics to induce the 
shape change therefore seems attractive, especially when flexible and damage tolerant piezoelectric fibre based actuators 
(e.g. MFCs) are now commercially available in sizes of ~ 100x100mm or smaller. High strain piezoelectric single crystals 
are also available with strains of up to 1.5%; although they are costly, low stiffness and available in limited shapes. 

 

 

 

 

 

 

Fig. 2. (a) actuation of bistable laminate using piezoelectric actuation [6]. Note high voltages associated with need for high electrics fields and electrode 
separation of approximately 1mm. (b) load-deflection characteristic of laminate in a single state with applied voltage 

Figure 2a shows the shape of the laminate in Figure 1 under a range of applied voltages.  Before applying a voltage the 
laminate can be in State I or State II, whose shape profiles are indicated as ‘0V (State I)’ and ‘0V (State II)’ in Figure 2a 
respectively. When the laminate is initially in ‘0V (State I)’ it exhibits snap-through from State I into State II at a voltage of 
100-150V.  As the applied voltage is increased to 1500V the curvature of the laminate in State II increases and on removal 
of the voltage the curvature of the laminate subsequently reduces but the structure remains in State II.  Although the change 
in shape and displacement is relatively large (centre deflections of up to 15mm), the change is irreversible.  Due to the small 
piezoelectric strains reversible actuation can only be achieved by maintaining the laminate in ‘0V (State II)’, with no snap-
through, which reduces the shape change (up to 8mm at its centre). Figure 2b shows that control of the snap-through load of 
the laminate can be tailored by the applied voltage; this is achieved as a result of an increase in curvature with voltage since 
the stiffness of the laminate remains unchanged with voltage (see early force-displacement data in Fig 2b). Figure 3 shows 
the displacement of the laminate with voltage and time is a single state and highlights the instantaneous response of the 
piezoelectric with applied voltage. It is of interest to note that after an initial displacement at each voltage, due to the rapid 
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response of electrical dipoles, there is a gradual ‘creep’ of the laminate (see inset of Figure 3). This creep is a result of 
slower domain motion within the ferroelectric ceramic and can lead to an increase in displacement of the order of a 1-2% of 
the total displacement per time decade. Domain motion can also lead to a hysteretic response of the piezoelectric, 
necessitating closed-loop control if precise control over laminate position/displacement is required. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 3. (a) displacement of laminate with voltage in a specific state, note rapid response and subsequent creep behavior. 

2.2. Shape memory alloy (SMA) actuation 

An alternative actuation mechanism is SMA which can provide a high force and high strain (~8%).   SMA actuation has 
received less interest for bistable structures than piezoelectric actuation due to its slow response time and low bandwidth; 
e.g. typical frequency of <102 Hz compared to greater than 104 Hz for a piezoelectric ceramic.  We have combined the 
advantages of the piezoelectric and SMA materials to achieve self-resetting bistable composites [7].  The approach uses 
piezoelectric actuation to provide a rapid snap-through of a bistable cantilever (State I→II) with a fine degree of control and 
a relatively slow but high strain SMA actuation to reverse the state change (State II→I).   The bistable cantilever beam 
structure with piezoelectric patch (MFC) and SMA wire actuators is shown in Figure 4a.  Starting from its raised state (State 
I) the cantilever profile with 0 to 1200V applied to the piezoelectric is shown in Figure 4(b). Applying voltages between 0 
and 1200V increases the deflection but the cantilever remains in State I. At 1300V there was a large deflection and snap-
through from State I to II, but the cantilever cannot be returned to State I using the MFC patch alone due to its low strain 
capability. After snap-through from State I to State II, the voltage applied to the SMA wire was increased from 0V to 11 V 
at 1V interval and cantilever beam profiles are shown in Figure 4(c). In this case the applied voltage provides Joule 
(resistive) heating to achieve a martensite to austenite phase change in the SMA and induce a shape memory effect. Small 
deflection changes are seen between 0 and 5V as the temperature in the SMA wire had not reached the transition 
temperature. There was a more marked change between 5V and 8V although the cantilever beam remained in State II. This 
non-linear strain behavior is in contrast to piezoelectric actuation, indicating that while SMA actuation may be appropriate 
to induce snap-through between states it is less able to actuate and control shape within a single stable state.  Snap-through 
from State II to I was observed at 9V. On removal of the voltage to the SMA, the cantilever beam returned to its original 
(0V) State I profile and this reversible actuation was repeatable indicating that the piezoelectric snap-through from State I to 
State II was sufficient to deform (twin) the SMA wire and enable fully reversible snap-through. It is of interest to compare 
the power and energy requirements for actuation methods. A comparison of Figs. 4(b) and (c) reveal the different power 
requirements of the two actuator materials. The piezoelectric requires a high voltage (>1000V) and electric field (~1-
2kV/mm) with low current (since the piezoelectric is a dielectric) while the SMA requires a lower voltage (<15V) with high 
current (up to 1A).  The piezoelectric is primarily a reactive (capacitive) load while the SMA is a resistive load.   Based on 
the MFC (25x14mm) capacitance (C) of 0.61nF and a maximum current of 50mA (for the power supply), the time (t) to 
attain a voltage (V) of 1300V is CV/Imax, i.e. 15 μs.  This equates to a peak power (0.5CV2/t) of 32J/s for piezoelectric 
actuation and a total energy of 1mJ (0.5CV2). For the larger 85mm x 57mm MFC actuator in Fig. 1 its higher capacitance  
(9.3nF) leads to a higher power for 1300V on 0.015J; the actuator capacitance scales with its area. A voltage (V) of 15V and 
current (I) of 1A for the SMA equates to a lower power (VI) of 15J/s, which is applied for longer periods (3s) to achieve 
sufficient Joule heating, which a larger total energy (power x time) of 45J. 

2.3. Thermal actuation 
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Since the laminate curvature originates from thermal strains as a result of cooling from an elevated cure temperature, the 
laminate would flatten as heated. Here we employ aligned-carbon nanotube (A-CNT) heaters on the laminate since their low 
weight, flexibility and efficiency could make an ideal combination for this application [3]. The nanocomposite layer consists 
of an aerospace grade surfacing film and electrically-conductive aligned carbon nanotubes (A-CNTs) ~10 nm in diameter 
and more than 100 μm long formed by chemical vapour deposition process [11]. This fibrous shape allows them to make 
reliable electrical contacts with each other even though they have less than 5 vol% loading in the resistive heater. An image 
of the bistable CNT-composite laminate in two stable states is shown in Figure 5, with the CNT nanocomposite patch and 
copper contacts visible on the top surface. The profile shape of the laminate center at each input voltage is shown in Figure 
6a. When the laminate is heated by the A-CNT the height of the laminate curve reduces and the laminate flattens and 
eventually undergoes snap-through from State I to State to at 5V with a current of 0.6A, equating to a power (VI) of 3J/s 
which is lower than the piezoelectric and SMA. Figure 6b shows the response of the mean laminate temperature to a 
constant input voltage of 5V from ambient temperature to snap-through. For the first 2.5s the temperature of the laminate 
remains close to ambient, this time is required for the CNT patch to begin to heat up. Once heat transfer to the laminate 
begins its mean temperature increases to 33.8°C at which it exhibits ‘snaps through’, after 28s. While the power is lower 
than the SMA and piezoelectric is must be applied for longer, leading to a higher energy requirement (84J) that both the 
SMA and piezoelectric. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. (a) actuation of bistable laminate using both piezoelectric and shape memory actuation. After (a) initial snap-through by piezoelectric 
(25mmx14mm), (b) high strain of shape memory enables ‘resetting’ of laminate. Note differences in voltage for piezoelectric and shape memory [7].  

3. Conclusions 

This paper provides a comparison of the actuation mechanism for bistable laminates. Piezoelectric actuation offers high 
frequency and rapid response time and an approximately linear relationship between strain and voltage providing control of 
shape within a specific state, although there are issues such as creep and hysteresis due to domain motion. The electrical 
load is capacitive in nature, compared to the resistive load of SMA and thermal heaters, and while the peak power levels can 
be high (32J/s) is does not need to be applied for long periods so that total energy is low (0.015J for a 85x57mm MFC, 
equating to 3μJ/mm2). Their relatively low strain levels (0.1%) are lower than the thermal strain (0.45%) which makes 
reversible snap-through difficult and the high electric fields can require high drive voltages (up to 1500V for 1mm electrode 
spacing). MFC patches are commercially available in specific dimensions which make scaling more complex for larger 
structures. SMAs provide high actuation strains (8%) which exceed the thermal strains, providing a route for reversible 
snap-through between state states. Since the actuation is dependent on a phase change within the material due to resistive 
heating (Joule heating) there is less control over the displacement within stable state. Joule heating is typically low voltage 
and high current, with intermediate power levels (15J/s) for periods of seconds and total energy was 45J for the device here. 
The need for thermal cycling of the SMA wire limits to shape change to low frequency or slow response times (several 
seconds). Since the material is in the form of wires integration with the host structure can be more complex. Thermal 
actuation using CNT heaters enables control by reducing the thermal strains to provide control over shape and provide snap-
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through. The peak power levels (3J/s) are low compared to piezoelectric and SMA materials but the response is the slowest 
(28s) since whole structure must be heated in addition to the heater itself. For thermal heating of the device considered here 
snap-through required 85J for a 30x40mm heating, equating to 70mJ/mm2. CNT may be of particular interest where heating 
and shape change are desirable, e.g. thermal actuation of a bistable laminate could be used for a highly efficient combined 
thermo-mechanical de-icing system; using heat to both melt the base of the ice formation, weakening its bond to skin, and 
deform the skin to apply shear to debond the ice-skin interface simultaneously. In addition the vapour deposition route 
means that larger areas could be more readily produced compared to piezoceramic patch actuators. 

 

 

 

 

 

Fig. 5. Unsymmetric bistable laminate ([0/90]T) with carbon nanotube heaters in (a) State I and (b) State I. Laminate is 80x80mm. CNT is 30x40mm. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6. (a) Actuation of bistable laminate using thermal actuation [3]. Note low voltages. (b) Displacement of laminate with voltage in a specific state, note 
slow response of displacement [3]. 
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