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Abstract

The local crystal structures of many perovskite-structured materials deviate from

the average space group symmetry. We demonstrate, from lattice-dynamics calcu-

lations based on quantum chemical force constants, that all the caesium-lead and

caesium-tin halide perovskites exhibit vibrational instabilities associated with octahe-

dral titling in their high-temperature cubic phase. Anharmonic double-well potentials

are found for zone-boundary phonon modes in all compounds with barriers ranging

from 108 to 512 meV. The well depth is correlated with the tolerance factor and

the chemistry of the composition, but is not proportional to the imaginary harmonic

phonon frequency. We provide quantitative insights into the thermodynamic driving

forces and distinguish between dynamic and static disorder based on the potential-

energy landscape. A positive band gap deformation (spectral blueshift) accompanies

the structural distortion, with implications for understanding the performance of these

materials in applications areas including solar cells and light-emitting diodes.
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Since the discovery of photoconductivity in the caesium-lead halides (CsPbX3; X =

Cl, Br, I),1 the semiconducting properties of halide perovskites have attracted significant

research attention, including analogous compounds based on tin.2,3 Interest has since ex-

panded to the hybrid organic-inorganic perovskites, with applications ranging from field-

effect transistors,4 photovoltaics,5,6 and light-emitting diodes.7 This family of materials dis-

play a unique combination of physical and chemical properties, including fast ion and electron

transport, long minority-carrier diffusion lengths, and high quantum efficiencies.

The crystallography of halide perovskites dates back to the 1950s, where the high-

temperature crystal structures of the CsPbX3 series were determined to be the prototypical

cubic-perovskite structure (space group Pm3̄m).1 The crystal structure consists of Cs in a

cuboctahedral cavity at the centre of a corner-sharing lead halide octahedral network. The

same high-temperature structure was also reported for the organic-inorganic CH3NH3PbX3

series.8 In all cases, phase transitions to lower-symmetry perovskite phases are observed at

lower temperatures, e.g. in CsPbCl3 there is a transition to a tetragonal phase at 320 K, an

othorhombic phase at 316 K, and a monoclinic phase at 310 K.9

In the 1970s, Poulsen et al. determined the room-temperature structure of CsSnCl3 to be

monoclinic (P21/n type), and identified a phase transition to a higher-symmetry structure

at 393 K.10 An X-ray diffraction (XRD) study of CsSnBr3 determined the structure to be

cubic at room temperature, but symmetry lowering was observed as the temperature was

reduced.11 More recently, temperature-dependent synchrotron XRD experiments determined

CsSnI3 to be cubic at 500 K, with tetragonal and orthorhombic phases observed at lower

temperatures.3 It was suggested that the phase transitions are associated with the 5s2 lone

electron pair of Sn, and the consequential distortion of the corner-sharing octahedral BX3

framework.

Despite numerous crystallographic studies on lead- and tin-based perovskites, the nature

of the high-temperature cubic phases of the these compounds has received less attention.

Analysis of the X-ray pair distribution functions of CH3NH3SnBr3 suggested that the local
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cubic symmetry was broken, with significant distortions of the octahedral network.12 It was

recently confirmed from both inelastic X-ray scattering and neutron total scattering that the

cubic phase of CH3NH3PbI3 is also symmetry broken.13,14 These observations have been as-

sociated with the rotational disorder of the molecular CH3NH +
3 cation. For inorganic halide

perovskites, this molecular disorder is absent, and instead the disorder in the cubic inor-

ganic halide perovskites should be due solely to the flexibility associated with the inorganic

octahedral network.

It is also interesting to note that many quantum dots and nanoparticles of halide per-

ovskites have been reported to adopt a cubic structure at room temperature.15,16 It was

unclear initially whether the stability of the cubic phase was due to surface effects, lattice

strain, or phonon confinement. However, a recent X-ray total scattering study of colloidal

CsPbX3 (X = Cl, Br, I) nanocrystals provided the first evidence that the local structure is

not cubic, but consists of domains with orthorhombic tilting.17

In this Letter, we demonstrate that spontaneous octahedral tilting is common to caesium-

lead and caesium-tin halide perovskites. Through first-principles lattice-dynamics calcula-

tions, we assess the chemical and thermodynamic driving forces for these instabilities. Double

well potentials are found for “soft” phonon modes in all cases, with barrier heights ranging

from 108 to 512 meV. We also show that octahedral tilting results in a positive band gap

deformation, indicating that local symmetry breaking would lead to a larger band gap than

anticipated from the regular cubic perovskite structure.

Octahedral tilting in perovskites: The aristotype cubic ABX3 perovskite structure is

usually only observed at high temperature, while at lower temperatures a group of lower-

symmetry phases, including tetragonal, orthorhombic, monoclinic, and rhombohedral, are

found. With reference to the cubic phase, the associated phase transitions are driven by

a range of symmetry-breaking lattice distortions. The phase diversity of perovskites can

be qualitatively explained using the concept of the tolerance factor introduced by Gold-
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schmidt,18 where

α =
rA + rX√
2(rB + rX)

(1)

with rA, rB and rX being the ionic radii for the A, B and X atom, respectively. Values

of α < 1 are usually associated with octahedral titling, due to the A cation being smaller

than is optimal for bonding with the BX3 framework. This is the case for the majority of

compounds considered here, which explains the experimentally observed Pnma ground-state

structures of CsPbCl3 and CsSnI3.
3,19

Glazer developed a simple classification system to describe the octahedral tilting in per-

ovskites and to relate it to phase transitions.20 In the Glazer notation, octahedral tilting

is described as a linear combination of in-phase and out-of-phase rotations along the crys-

tallographic axes: for example, the notation a0b−c− indicate two out-of-phase tilts along

the [010] and [001] directions (b and c axes) with distinct tilt angles. More recently, Stokes

et al. provided a group-theoretical description of the relationships between different tilt

systems, and also considered B cation displacements within the octahedra,21,22 where the

distortion is expressed with irreducible representations such as M+
3 or R+

4 . For example,

the cubic (Pm3̄m) to tetragonal (P4/mbm) phase transition of CsPbCl3 can be described

as a0a0a0 → a0a0c+ tilting or, equivalently, as the condensation of an M+
3 phonon mode.9

Woodward provided insights into the stabilizing chemical forces based on the bonding en-

vironment and crystal structure (tolerance factor) of specific oxide compounds,23,24 which

have recently been applied to understanding the octahedral titling preferences of iodide and

bromide perovskites.25

A search of the Inorganic Crystal Structure Database (ICSD),26 summarised in Table 1,

reveals that CsPbCl3, CsPbBr3, CsPbI3, CsSnI3 adopt cubic phases (space group Pm3̄m)

above room temperature,3,19,27,28 while CsSnBr3 and CsSnCl3 has been reported to be cubic

at room temperature (from XRD) and CsPbF3 at 187 K (from neutron diffraction).11,29,30

Recently, low-frequency Raman spectroscopy has shown that the cubic phase of CsPbBr3

determined by XRD fluctuates at short timescale between different lower symmetry phases
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but appear to be cubic on average, due to the structural flexibility, a phenomenon that could

be present in other halide perovskites.31

Table 1: Comparison of known inorganic halide perovskite phases and the tem-
perature above which the phase are observed for each composition.

Cubic (Pm3̄m) Tetragonal (P4/mbm) Orthorhombic (Pnma) Monoclinic(P21/n)
CsSnF3

CsSnCl3 293 K11 < 293 K11

CsSnBr3 292 K,29300 K32 270 K32 100 K32 < 292 K29

CsSnI3 500 K,3 446 K33 380 K,3 373 K33 300 K3,33

CsPbF3 186 K30

CsPbCl3 320 K9 315 K9 310 K9 < 310 K9

CsPbBr3 403 K34 361 K34 < 361 K34

CsPbI3 634 K28 298 K28

Harmonic lattice dynamics: We start by computing the harmonic phonon frequencies

and dispersions for eight inorganic halide compounds ABX3 (A = Cs; B = Sn, Pb; X = F,

Cl, Br, I) in the cubic perovskite structure. Lattice dynamic calculations were performed

using the open-source Phonopy35 package with forces calculated within the Kohn-Sham

density-functional theory (DFT) formalism, as implemented in the VASP code.36,37 Par-

ticular attention was given to the convergence of the energy and forces, 1 × 10−8 eV and

1 × 10−3 eV/Å, respectively; production calculations were performed with the exchange-

correlation functional PBEsol,38,39 using an 8 × 8 × 8 sampling of the electronic Brillouin

zone and a plane wave cut-off of 800 eV. Projector augmented wave40 core potentials (recip-

rocal space projection) were used with valence 4d105s25p2 electrons on Sn, 6s26p2 electrons

on Pb, 5s25p66s1 electrons on Cs, and outmost ns2np5 electrons on halogen atoms (X). Input

structures were built in the cubic perovskite structure Pm3̄m, and fully relaxed with fixed

symmetry. The phonon frequencies and eigenvectors were determined by finite-displacement

calculations with a step size of 0.01 Å, performed in 2 × 2 × 2 supercell expansions of the

cubic unit cell. An imaginary phonon frequency, demonstrated as negative frequency in the

phonon band structure, indicates the presence of a structural instability, i.e. the phase is

not a true local minimum on the potential energy surface. The structure can distort along
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the pathway determined by the phonon eigenvector to lower the internal energy. The energy

landscape as a function of distortion amplitude is obtained by the code ModeMap.41,42

The phonon dispersion of all eight compositions display imaginary frequencies (lattice

instabilities) in the phonon Brillouin zones (Fig.1). Instabilities associated with tilting of

the octahedra can be found at the Brillouin zone boundary (X,R,M points). All compounds

exhibit M -point instabilities. Excluding CsSnF3, all compounds also exhibit R-point insta-

bilities, and five of the eight systems exhibit X-point instabilities, viz. CsSnF3, CsSnI3,

CsPbCl3, CsPbBr3, and CsPbI3. These zone boundary distortions are by definition anti-

ferroelectric in nature, i.e. opposing polarisation induced in neighbouring unit cells cancels

and no spontaneous polarisation is formed. In addition, all compounds excluding CsSnBr3

(Fig.1(c) exhibit Γ-point instabilities, which is a ferroelectric instability that will not be

considered further here.

The presence of vibrational instabilities across all compositions is consistent with the

scarcity of experimentally-observed cubic phases at low temperature (Table 1) as anhar-

monic processes at high temperature are required for dynamic stabilization of the phase.

In keeping with this, it is worth noting that from the present calculations cubic CsSnBr3,

which adopts a cubic structure close to room temperature, displays the smallest number

of phonon instabilities amongst all the considered compositions. However, the number of

imaginary modes is not necessarily related to the energetic barriers associated with the phase

transition, which is the subject of the following section.

Anharmonic potential energy surface: By distorting the crystal structure along a phonon

eigenmode, the change in potential energy as a function of distortion amplitude (Q) can

be obtained. For a harmonic phonon mode in an equilibrium structure, the change in en-

ergy with mode amplitude should be parabolic with the minimum at Q = 0. Double-well

potential-energy surfaces are observed in each of the cubic perovskites studied here, which

is consistent with anharmonic behaviour that can be described within Landau’s theory of

7



Figure 1: Harmonic phonon dispersion of ABX3 compound in the cubic perovskite structure.
The labels correspond to special points in the vibrational Brillouin zone: Γ(0, 0, 0), X(1

2
, 0, 0),

M(1
2
, 1
2
, 0) and R(1

2
, 1
2
, 1
2
). Imaginary frequencies are represented by negative numbers on the

y axis for convenience of plotting.

phase transitions.43 The potential energy surface is well fitted by a function of the form:

E(Q) = aQ2 + bQ4 +O(Q6) (2)

where a and b are fitted coefficients, and the former corresponds to the square of the harmonic

phonon frequency. For imaginary modes, representing structural instabilities, a will be

negative as the energy surface forms a double well with Q = 0 as a saddle point.

Mapping and fitting the anharmonic potential energy surfaces provides access to a num-

ber of quantities, including the depth of the well (∆E), the normal-mode coordinate of

the local minima (∆Q), and the curvature of the potential energy about Q = 0. The

well depth ∆E determines the energy difference between the cubic and lower-symmetry

structures represented by the distortion, and further dictates the transition rate between

equivalent symmetry-broken distorted structures. ∆Q determines the degree of distortion

that minimises the potential energy. There are some caveats to this approach, as follows.

The phonon eigenvector represents atomic motion by a three-component vector of orthogo-

nal displacements, which cannot fully describe rotational motion. For soft modes involving

octahedral tilting, at large Q the mode eigenvector may no longer accurately reflect the
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Figure 2: Double-well potential energy surface associated with the soft M -point modes in
CsSnX3 (top), and CsPbX3 (bottom) from frozen-phonon calculations. The energy surface
is calculated from DFT (2×2×2 supercell) and Q is the distortion amplitude. The energy
zero refers to the undistorted structure. The high-symmetry cubic phase lies at Q = 0, and
the distortion amplitude has been normalized so that the energetic minima lie at Q = ±1.
The legend indicates the halide X in each composition.
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atomic displacements. In practice, this means that a structure at the local minimum along

the mode potential may undergo further relaxation if allowed to optimise freely, which would

produce a larger energy barrier. Secondly, in the case of degeneracy, linear combinations of

the eigenvectors are valid solutions to the harmonic problem, and so the mode eigenvectors

are not uniquely defined, and the “true” energy minimum may lie at a combination of the

two. In high-symmetry structures, however, the displacement pathways may be fixed by

crystal symmetry.

Since all eight halide-perovskite compositions studied here exhibit singly-degenerate soft

modes at the M -point, we take this as a representative instability and investigate these

imaginary modes further. The soft-mode potential wells of the eight compounds are plotted

in Fig.2. To enable a direct comparison, the energy is calculated as a function of a normalised

mode amplitude Q, such that the energy minima for each compound lie at Q = ±1. Across

the CsPbX3 series, the well depth increases (i.e. the distorted structure lowers in energy

relative to the cubic phase) systematically from F to I, with the Cl and Br perovskites

having similar depths. The same trends are evident in the CsSnX3 family from Cl to I, while

CsSnF3 marks a notable exception, with a well depth comparable to those of the Cl and Br

perovskites. In addition, CsPbX3 appear to have deeper minima than CsSnX3 in general

(excluding the anomaly CsSnF3).

Static or dynamic disorder : The rate of hopping between the symmetry equivalent local

minima in the potential energy surface can be estimated in several ways. Firstly, we consider

a classical kinetic model to compute a hopping rate (Γ) for the structural transition:

Γ = ν exp(
−∆E

kBT
) (3)

where ν is the attempt frequency that is equivalent around the curvature of the double well

minima, kB is the Boltzman constant and T is temperature. Alternatively, we can solve

a Schrödinger equation for the double well potential and define an effective harmonic fre-
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quency that reproduces the partition function of the anharmonic system. Here we follow the

procedure of Skelton et al. that has previously been applied to SnSe.41,44 The temperature

dependence of the renormalised harmonic frequency is shown for CsPbI3 in Fig.3(a). It is

found that the frequencies calculated using the (athermal) classical and (finite temperature)

quantum approaches are in good agreement subject to a scaling factor (shown in Fig.3(b)).

At T = 300 K, the renormalization factor is 0.34, and the quantum solution suggests a char-

acteristic vibration of 0.5 – 3 THz depending on the chemical composition. The associated

hopping rate for each compound is summarised in Table 2. We note that rates are based on

a single anharmonic mode and neglect phonon-phonon interactions that could be considered

using a higher level of theory, e.g. a self-consistent phonon procedure.45–47

Figure 3: (top) The renormalised phonon frequency (ω) for the M mode instability in CsPbI3
from a solution of the 1D Schrödinger equation with the well depth of 512.3 meV. (bottom)
Comparison of the renormalized effective phonon frequency (ω300K) and the classical well
curvature (attempt frequency) for the M mode instability of all inorganic halide perovskites
considered at T = 300 K.
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For deeper wells, the transition between equivalent symmetry-broken local minima be-

comes less probable at a given temperature, giving rise to a slower hopping rate. Diffraction

samples long-range order, within the penetration depth of the coherent beam. We assume

that only if the transition rate between structures is < 1 Hz would the material phase segre-

gate into macroscopically ordered domains. Such slow transitions are predicted for CsPbCl3,

CsPbBr3 and CsPbI3 at 150 K. We thus conclude that this dynamic disorder would not be

observed with X-ray diffraction at room temperature. The random (non-correlated) orien-

tations give rise to the observed higher-symmetry spacegroup.43

Optoelectronic processes such as light absorption (fs), carrier thermalisation (fs), carrier

scattering (sub ps) and recombination (ns), are all relatively fast. An adiabatic approxima-

tion can therefore be made. From the perspective of electrons, the potential energy surface

is stationary with fixed distortions randomly orientated throughout the bulk. Electronic and

optical processes sample the local symmetry broken structure, and thus its influence should

be included in quantitative models of transport and device operation. The classification

between static and dynamic disorder depends on the timescale of the interactions. In the

limit of very high temperatures (i.e. kBT >> ∆E), all the halide perovskites would revert to

dynamic disorder, although for the systems with large ∆E this limit would be much higher

than the typical operating temperatures of semiconductor devices.

Interestingly, we found that the local minima for CsSnF3 occurred at a relatively small

absolute values of Q, suggesting that this perovskite might undergo a different type of M -

point distortion to the other compounds. On examining the eigenvectors, we verified that

this is indeed the case: the M -point soft mode in CsSnF3 is an M−
2 distortion, while those

in other compositions correspond to M+
3 tilts. The M−

2 mode is a second-order Jahn-Teller

distortion where B−X bonds shorten and lengthen, whereas the M+
3 mode represents rigid

in-phase octahedral tilting. This can be explained by orbital mixing between the Sn 5s

and F 2p orbitals, which produces the asymmetric electron density required to support a

Jahn-Teller distortion.48

12



Table 2: Calculated transition rate (Γ) across the double well potential (values in
Hz). As the temperature increases, the hopping rate increases, but the absolute
value also depends on the attempt frequency (ν). Contributions from quantum
mechanical tunnelling are not considered. Note that the timescale of typical
diffraction experiments is seconds, whilst electronics processes (carrier transport
and recombination) can occur on timescales of 10−15 − 10−9 seconds.

∆E (meV) ν (THz) Γ at 150 K (Hz) Γ at 298 K (Hz) Γ at 500 K (Hz)
CsSnF3 144.7 8.87 1.19× 108 3.18× 1010 3.09× 1011

CsSnCl3 108.1 2.04 4.69× 108 3.05× 1010 1.66× 1011

CsSnBr3 127.7 1.28 6.45× 107 8.93× 109 6.64× 1010

CsSnI3 203.7 1.12 1.55× 105 4.04× 108 9.90× 109

CsPbF3 151.8 3.71 2.88× 107 1.01× 1010 1.10× 1011

CsPbCl3 353.4 2.58 3.27 2.76× 106 7.10× 108

CsPbBr3 396.5 1.74 7.81× 10−2 3.48× 105 1.76× 108

CsPbI3 512.3 1.40 7.91× 10−6 3.08× 103 9.62× 106

Correlation between the harmonic frequency and ∆E: The imaginary harmonic phonon

frequency (at the saddle point) has been assumed to be indicative of the energetic driving

force for distortions in perovskites.49,50 To assess the correlation between the frequency and

the depth of the minima, we plotted the well depths of the M -point soft modes obtained by

the potential-energy mapping against the squared harmonic frequency ω2 (Fig. 4). From

this analysis, we see that there is little correlation between the two. Excluding the outlier

CsSnF3, the well depths span a 400 meV range, with a spread in ω2 of 1.5 THz2. The

data are scattered across the energy range, with no clearly-evident patterns of frequency

distribution, indicating that the imaginary harmonic frequencies may be a poor proxy for

the well depths. This can be understood from the fact that the harmonic frequency reflects

the curvature of the potential-energy surface at the average structure (Q = 0), which does

not contain sufficient information to extrapolate to the anharmonic region of the soft-mode

potential.

Analysis of Figure 4 does, however, reveal a correlation between the well depth and

the tolerance factor, namely that compounds with larger tolerance factors tend to produce

shallower minima (i.e. the distorted structures are closer in energy to the cubic average

structure). This supports the established simple relationship between chemical composition
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Figure 4: Squared imaginary harmonic phonon frequencies, ω2 (THz2), for the M -point
soft modes against the well depth (meV). The size of the markers is proportional to the
structural tolerance factors α, which range from 0.93 (CsSnF3) to 0.85 (CsPbI3). The colours
corresponds to the overall mass of the unit cell, with the heaviest being the “warmest”
(CsPbI3: red) and the lightest the “coolest” (CsSnF3: blue).

and structural instability: the closer the tolerance factor to unity, the more “cubic” a struc-

ture is expected to be. Our data shows that lower-symmetry configurations are indeed more

energetically favorable for compositions with smaller tolerance factors.

For the CsPbX3 series, when X increases from F to I the tolerance factor decreases from

0.90 to 0.85, and the temperature of the cubic phase transition increases from 187 K to 328

K, 413 K and 634 K.1,28,30,51 This indicates that for compounds with smaller tolerance factors

more thermal energy is required to lift the symmetry to cubic phase, which is in agreement

with our calculations. Structurally, when α < 1, the A−X bonding is undercoordinated, and

octahedral tilting is required to optimize the chemical bonding environments If we explicitly

plot the well depth as a function of tolerance factor (shown in Fig. 5a), this trend becomes

apparent. There is also a correlation between tolerance factor and the distortion amplitude

that minimises the energy (∆Q), shown in Fig. 5b. Compositions with small α require a

larger distortion to the local minimum in order to optimize the cation-bonding environment

due to the under coordination.

Electronic structure effects: We further assess the effect of the M -point tilting distortions

on the electronic structure by calculating the change in the band gap along the normal-mode

coordinate Q. The band gap for all eight compounds increase to different extents when
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Figure 5: Well depths and distortion amplitudes along the M -point soft modes as a function
of tolerance factor. The ionic radii used for each of the elements are: Cs: 1.88 Å; F: 1.33 Å;
Cl: 1.81 Å; Br: 1.96 Å; I: 2.20 Å; Pb: 1.19 Å;52 Sn: 1.10 Å.53 The size and the color of the
circles represent the tolerance factor and relative formula mass, as in Fig.4.
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distorting along the soft modes (Fig. 6). This indicates that distortions from average cubic

symmetry will lead to a band gap increase in these perovskites. Although the semi-local

exchange-correlation functional used to estimate the band gap underestimates the absolute

value of the band gap , the relative shifts should be reliable. Due to the fact that the upper

valence band consists of strong Sn/Pb s and X p anti-bonding character, upon tilting the

overlap of the orbitals decreases and results in a lower-energy valence-band maximum, and

thus an increase in the gap.2,24,54 The ultimate effect of such distortions on the band gap

will also depend on the type of disorder. Static disorder would lead to a more pronounced

widening the band gap, whereas dynamic disorder would produce a less-pronounced time-

averaged effect. A more quantitative description will require the development and application

of more sophisticated theories for anharmonic electron-phonon coupling.

Figure 6: Change in band gap ∆Eg (eV) relative to the cubic structure for each compound as
a function of normalised soft mode amplitude Q. The average cubic structure lies at Q = 0,
while the lowest-energy distorted structure lies at Q = 1. The pink line, showing least
change in Eg, corresponds to CsPbF3, and green line, showing most change, corresponds to
CsPbCl3.

In summary, we have performed a comprehensive investigation of the phonon stabilities

in the cubic CsSnX3 and CsPbX3 halide perovskites (X = F, Cl, Br, I). Our results show that

all eight compounds exhibit phonon soft-mode instabilities in the cubic phase. Examining

the potential energy surface along a representative soft-mode structural distortion reveals

a correlation between the chemical composition and structural tolerance factor and the en-

ergetic barrier to accessing the high-symmetry structure. We also found that the nature
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of the distortions differ depending on the chemistry, with CsSnF3 showing a fundamentally

different M -point distortion to the other seven halide perovskites. The hopping rate of the

structural transition between two local minima is calculated which relates to the timescale

of diffraction measurement. Finally, we have also studied the effect of the distortion from

cubic symmetry on the electronic structure, and find that, in all cases, distortion along the

M -point soft modes leads to a widening of the band gap. There are implications on fu-

ture electronic-structure studies and assessment of the role of local symmetry breaking and

electrostatic (band gap) fluctuations on the performance of perovskite optoelectronic devices.
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