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Abstract

The local crystal structures of many perovskite-structured materials deviate from
the average space group symmetry. We demonstrate, from lattice-dynamics calcu-
lations based on quantum chemical force constants, that all the caesium-lead and
caesium-tin halide perovskites exhibit vibrational instabilities associated with octahe-
dral titling in their high-temperature cubic phase. Anharmonic double-well potentials
are found for zone-boundary phonon modes in all compounds with barriers ranging
from 108 to 512 meV. The well depth is correlated with the tolerance factor and
the chemistry of the composition, but is not proportional to the imaginary harmonic
phonon frequency. We provide quantitative insights into the thermodynamic driving
forces and distinguish between dynamic and static disorder based on the potential-
energy landscape. A positive band gap deformation (spectral blueshift) accompanies
the structural distortion, with implications for understanding the performance of these

materials in applications areas including solar cells and light-emitting diodes.
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Since the discovery of photoconductivity in the caesium-lead halides (CsPbX,; X =
Cl, Br, I),¥ the semiconducting properties of halide perovskites have attracted significant
research attention, including analogous compounds based on tin.?* Interest has since ex-
panded to the hybrid organic-inorganic perovskites, with applications ranging from field-
effect transistors,* photovoltaics,™ and light-emitting diodes.” This family of materials dis-
play a unique combination of physical and chemical properties, including fast ion and electron
transport, long minority-carrier diffusion lengths, and high quantum efficiencies.

The crystallography of halide perovskites dates back to the 1950s, where the high-
temperature crystal structures of the CsPbXj; series were determined to be the prototypical
cubic-perovskite structure (space group Pm3m).Y The crystal structure consists of Cs in a
cuboctahedral cavity at the centre of a corner-sharing lead halide octahedral network. The
same high-temperature structure was also reported for the organic-inorganic CH;NH;PbX,
series.® In all cases, phase transitions to lower-symmetry perovskite phases are observed at
lower temperatures, e.g. in CsPbCl, there is a transition to a tetragonal phase at 320 K, an
othorhombic phase at 316 K, and a monoclinic phase at 310 K.?

In the 1970s, Poulsen et al. determined the room-temperature structure of CsSnCl; to be
monoclinic (P2;/n type), and identified a phase transition to a higher-symmetry structure
at 393 KM An X-ray diffraction (XRD) study of CsSnBr,; determined the structure to be
cubic at room temperature, but symmetry lowering was observed as the temperature was
reduced.™ More recently, temperature-dependent synchrotron XRD experiments determined
CsSnl; to be cubic at 500 K, with tetragonal and orthorhombic phases observed at lower
temperatures.”® It was suggested that the phase transitions are associated with the 5s lone
electron pair of Sn, and the consequential distortion of the corner-sharing octahedral BX,
framework.

Despite numerous crystallographic studies on lead- and tin-based perovskites, the nature
of the high-temperature cubic phases of the these compounds has received less attention.

Analysis of the X-ray pair distribution functions of CH;NH;SnBr; suggested that the local



cubic symmetry was broken, with significant distortions of the octahedral network.™ It was
recently confirmed from both inelastic X-ray scattering and neutron total scattering that the
cubic phase of CH;NH,PbI, is also symmetry broken.’#% These observations have been as-
sociated with the rotational disorder of the molecular CH;NH,™ cation. For inorganic halide
perovskites, this molecular disorder is absent, and instead the disorder in the cubic inor-
ganic halide perovskites should be due solely to the flexibility associated with the inorganic
octahedral network.

It is also interesting to note that many quantum dots and nanoparticles of halide per-
ovskites have been reported to adopt a cubic structure at room temperature.*?% It was
unclear initially whether the stability of the cubic phase was due to surface effects, lattice
strain, or phonon confinement. However, a recent X-ray total scattering study of colloidal
CsPbX, (X = Cl, Br, I) nanocrystals provided the first evidence that the local structure is
not cubic, but consists of domains with orthorhombic tilting.t”

In this Letter, we demonstrate that spontaneous octahedral tilting is common to caesium-
lead and caesium-tin halide perovskites. Through first-principles lattice-dynamics calcula-
tions, we assess the chemical and thermodynamic driving forces for these instabilities. Double
well potentials are found for “soft” phonon modes in all cases, with barrier heights ranging
from 108 to 512 meV. We also show that octahedral tilting results in a positive band gap
deformation, indicating that local symmetry breaking would lead to a larger band gap than
anticipated from the regular cubic perovskite structure.

Octahedral tilting in perovskites: The aristotype cubic ABX; perovskite structure is
usually only observed at high temperature, while at lower temperatures a group of lower-
symmetry phases, including tetragonal, orthorhombic, monoclinic, and rhombohedral, are
found. With reference to the cubic phase, the associated phase transitions are driven by
a range of symmetry-breaking lattice distortions. The phase diversity of perovskites can

be qualitatively explained using the concept of the tolerance factor introduced by Gold-
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with 74, rg and rx being the ionic radii for the A, B and X atom, respectively. Values
of a < 1 are usually associated with octahedral titling, due to the A cation being smaller
than is optimal for bonding with the BX; framework. This is the case for the majority of
compounds considered here, which explains the experimentally observed Pnma ground-state
structures of CsPbCl; and CsSnl,.*

Glazer developed a simple classification system to describe the octahedral tilting in per-
ovskites and to relate it to phase transitions.”” In the Glazer notation, octahedral tilting
is described as a linear combination of in-phase and out-of-phase rotations along the crys-
tallographic axes: for example, the notation a®h~c¢~ indicate two out-of-phase tilts along
the [010] and [001] directions (b and ¢ axes) with distinct tilt angles. More recently, Stokes
et al. provided a group-theoretical description of the relationships between different tilt
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systems, and also considered B cation displacements within the octahedra,
distortion is expressed with irreducible representations such as M, or Rj. For example,
the cubic (Pm3m) to tetragonal (P4/mbm) phase transition of CsPbCl; can be described
as a%a’a® — a’a’c™ tilting or, equivalently, as the condensation of an M;" phonon mode.”
Woodward provided insights into the stabilizing chemical forces based on the bonding en-
vironment and crystal structure (tolerance factor) of specific oxide compounds,**** which
have recently been applied to understanding the octahedral titling preferences of iodide and
bromide perovskites.?>

A search of the Inorganic Crystal Structure Database (ICSD),*® summarised in Table ,
reveals that CsPbCl,, CsPbBr;, CsPbl,, CsSnl; adopt cubic phases (space group Pm3m)
above room temperature, *#4%28 while CsSnBr; and CsSnCl, has been reported to be cubic
at room temperature (from XRD) and CsPbF; at 187 K (from neutron diffraction). %50
Recently, low-frequency Raman spectroscopy has shown that the cubic phase of CsPbBr,

determined by XRD fluctuates at short timescale between different lower symmetry phases



but appear to be cubic on average, due to the structural flexibility, a phenomenon that could

be present in other halide perovskites.”!

Table 1: Comparison of known inorganic halide perovskite phases and the tem-
perature above which the phase are observed for each composition.

Cubic (Pm3m) Tetragonal (P4/mbm) Orthorhombic (Pnma) Monoclinic(P2;/n)

CsSnF,

CsSnCl, 203 K1 < 293 KT
CsSnBry 292 K,293OO K2 270 K2 100 Kb < 292 K4
CsSnl; 500 K% 446 K93 380 K9 373 KB3 300 K333

CsPbF, 186 K50

CsPbCl, 320 K 315 K¥ 310 K < 310 K¥
CsPbBr, 403 KB4 361 KB4 < 361 KB4

CsPbl, 634 K28 208 K28

Harmonic lattice dynamics: We start by computing the harmonic phonon frequencies
and dispersions for eight inorganic halide compounds ABX,; (A = Cs; B = Sn, Pb; X = F,
Cl, Br, I) in the cubic perovskite structure. Lattice dynamic calculations were performed
using the open-source PHONOPY®” package with forces calculated within the Kohn-Sham
density-functional theory (DFT) formalism, as implemented in the VASP code.®"" Par-
ticular attention was given to the convergence of the energy and forces, 1 x 1078 eV and
1x 1073 eV/A, respectively; production calculations were performed with the exchange-
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correlation functional PBEso using an 8 x 8 x 8 sampling of the electronic Brillouin

40 core potentials (recip-

zone and a plane wave cut-off of 800 eV. Projector augmented wave
rocal space projection) were used with valence 4d'°5s?5p* electrons on Sn, 6s*6p? electrons
on Pb, 5s%5p%6s! electrons on Cs, and outmost ns’*np® electrons on halogen atoms (X). Input
structures were built in the cubic perovskite structure Pm3m, and fully relaxed with fixed
symmetry. The phonon frequencies and eigenvectors were determined by finite-displacement
calculations with a step size of 0.01 A, performed in 2 x 2 x 2 supercell expansions of the
cubic unit cell. An imaginary phonon frequency, demonstrated as negative frequency in the

phonon band structure, indicates the presence of a structural instability, i.e. the phase is

not a true local minimum on the potential energy surface. The structure can distort along



the pathway determined by the phonon eigenvector to lower the internal energy. The energy
landscape as a function of distortion amplitude is obtained by the code ModeMap.*1*2

The phonon dispersion of all eight compositions display imaginary frequencies (lattice
instabilities) in the phonon Brillouin zones (Figll). Instabilities associated with tilting of
the octahedra can be found at the Brillouin zone boundary (X, R, M points). All compounds
exhibit M-point instabilities. Excluding CsSnF;, all compounds also exhibit R-point insta-
bilities, and five of the eight systems exhibit X-point instabilities, viz. CsSnF;, CsSnls,
CsPbCl,, CsPbBry, and CsPbl;. These zone boundary distortions are by definition anti-
ferroelectric in nature, i.e. opposing polarisation induced in neighbouring unit cells cancels
and no spontaneous polarisation is formed. In addition, all compounds excluding CsSnBr,
(Fig[lfc) exhibit I-point instabilities, which is a ferroelectric instability that will not be
considered further here.

The presence of vibrational instabilities across all compositions is consistent with the
scarcity of experimentally-observed cubic phases at low temperature (Table as anhar-
monic processes at high temperature are required for dynamic stabilization of the phase.
In keeping with this, it is worth noting that from the present calculations cubic CsSnBry,
which adopts a cubic structure close to room temperature, displays the smallest number
of phonon instabilities amongst all the considered compositions. However, the number of
imaginary modes is not necessarily related to the energetic barriers associated with the phase
transition, which is the subject of the following section.

Anharmonic potential energy surface: By distorting the crystal structure along a phonon
eigenmode, the change in potential energy as a function of distortion amplitude (@) can
be obtained. For a harmonic phonon mode in an equilibrium structure, the change in en-
ergy with mode amplitude should be parabolic with the minimum at ) = 0. Double-well
potential-energy surfaces are observed in each of the cubic perovskites studied here, which

is consistent with anharmonic behaviour that can be described within Landau’s theory of
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Figure 1: Harmonic phonon dispersion of ABX; compound in the cubic perovskite structure.
The labels correspond to special points in the vibrational Brillouin zone: I'(0,0,0), X (%, 0,0),

M(3,3,0) and R(3, 3, 3). Imaginary frequencies are represented by negative numbers on the

y axis for convenience of plotting.

phase transitions.®® The potential energy surface is well fitted by a function of the form:

E(Q) = a@Q* + Q" + 0(Q°) (2)

where a and b are fitted coefficients, and the former corresponds to the square of the harmonic
phonon frequency. For imaginary modes, representing structural instabilities, a will be
negative as the energy surface forms a double well with ) = 0 as a saddle point.

Mapping and fitting the anharmonic potential energy surfaces provides access to a num-
ber of quantities, including the depth of the well (AFE), the normal-mode coordinate of
the local minima (AQ), and the curvature of the potential energy about = 0. The
well depth AFE determines the energy difference between the cubic and lower-symmetry
structures represented by the distortion, and further dictates the transition rate between
equivalent symmetry-broken distorted structures. A(Q) determines the degree of distortion
that minimises the potential energy. There are some caveats to this approach, as follows.
The phonon eigenvector represents atomic motion by a three-component vector of orthogo-
nal displacements, which cannot fully describe rotational motion. For soft modes involving

octahedral tilting, at large () the mode eigenvector may no longer accurately reflect the
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Figure 2: Double-well potential energy surface associated with the soft M-point modes in
CsSnX; (top), and CsPbX, (bottom) from frozen-phonon calculations. The energy surface
is calculated from DFT (2x2x2 supercell) and @ is the distortion amplitude. The energy
zero refers to the undistorted structure. The high-symmetry cubic phase lies at @) = 0, and
the distortion amplitude has been normalized so that the energetic minima lie at () = +£1.
The legend indicates the halide X in each composition.



atomic displacements. In practice, this means that a structure at the local minimum along
the mode potential may undergo further relaxation if allowed to optimise freely, which would
produce a larger energy barrier. Secondly, in the case of degeneracy, linear combinations of
the eigenvectors are valid solutions to the harmonic problem, and so the mode eigenvectors
are not uniquely defined, and the “true” energy minimum may lie at a combination of the
two. In high-symmetry structures, however, the displacement pathways may be fixed by
crystal symmetry.

Since all eight halide-perovskite compositions studied here exhibit singly-degenerate soft
modes at the M-point, we take this as a representative instability and investigate these
imaginary modes further. The soft-mode potential wells of the eight compounds are plotted
in Fig[2l To enable a direct comparison, the energy is calculated as a function of a normalised
mode amplitude @, such that the energy minima for each compound lie at () = +1. Across
the CsPbX, series, the well depth increases (i.e. the distorted structure lowers in energy
relative to the cubic phase) systematically from F to I, with the Cl and Br perovskites
having similar depths. The same trends are evident in the CsSnX family from Cl to I, while
CsSnF; marks a notable exception, with a well depth comparable to those of the Cl and Br
perovskites. In addition, CsPbX; appear to have deeper minima than CsSnX, in general
(excluding the anomaly CsSnFs).

Static or dynamic disorder: The rate of hopping between the symmetry equivalent local
minima in the potential energy surface can be estimated in several ways. Firstly, we consider

a classical kinetic model to compute a hopping rate (I') for the structural transition:

—AFE
) (3

[' = vexp(

where v is the attempt frequency that is equivalent around the curvature of the double well
minima, kg is the Boltzman constant and 7' is temperature. Alternatively, we can solve

a Schrodinger equation for the double well potential and define an effective harmonic fre-
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quency that reproduces the partition function of the anharmonic system. Here we follow the
procedure of Skelton et al. that has previously been applied to SnSe.**4 The temperature
dependence of the renormalised harmonic frequency is shown for CsPbl, in FigP(a). It is
found that the frequencies calculated using the (athermal) classical and (finite temperature)
quantum approaches are in good agreement subject to a scaling factor (shown in Fig(b)).
At T = 300 K, the renormalization factor is 0.34, and the quantum solution suggests a char-
acteristic vibration of 0.5 — 3 THz depending on the chemical composition. The associated
hopping rate for each compound is summarised in Table |2, We note that rates are based on
a single anharmonic mode and neglect phonon-phonon interactions that could be considered

using a higher level of theory, e.g. a self-consistent phonon procedure. 7

11 1 1 1 1 1
1.0 |

0.9 f ]
0.8 | .

w (THZz)

0.7 .
0.6 | .
0.5 l ]
04 | | | | |

0 200 400 600 800 1000

Temperature (K)

35 T T T T
3.0 o
25| -

(TH2)

15
10 F . i
05

0.0 ! ! ! !
0 2 4 6 8 10

Attempt frequency (THz)

W300K
|
|

T
*
]

Figure 3: (top) The renormalised phonon frequency (w) for the M mode instability in CsPbl,
from a solution of the 1D Schrodinger equation with the well depth of 512.3 meV. (bottom)
Comparison of the renormalized effective phonon frequency (wsgox) and the classical well
curvature (attempt frequency) for the M mode instability of all inorganic halide perovskites
considered at T = 300 K.
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For deeper wells, the transition between equivalent symmetry-broken local minima be-
comes less probable at a given temperature, giving rise to a slower hopping rate. Diffraction
samples long-range order, within the penetration depth of the coherent beam. We assume
that only if the transition rate between structures is < 1 Hz would the material phase segre-
gate into macroscopically ordered domains. Such slow transitions are predicted for CsPbCl,,
CsPbBr; and CsPbl, at 150 K. We thus conclude that this dynamic disorder would not be
observed with X-ray diffraction at room temperature. The random (non-correlated) orien-
tations give rise to the observed higher-symmetry spacegroup.?

Optoelectronic processes such as light absorption (fs), carrier thermalisation (fs), carrier
scattering (sub ps) and recombination (ns), are all relatively fast. An adiabatic approxima-
tion can therefore be made. From the perspective of electrons, the potential energy surface
is stationary with fixed distortions randomly orientated throughout the bulk. Electronic and
optical processes sample the local symmetry broken structure, and thus its influence should
be included in quantitative models of transport and device operation. The classification
between static and dynamic disorder depends on the timescale of the interactions. In the
limit of very high temperatures (i.e. kgT >> AFE), all the halide perovskites would revert to
dynamic disorder, although for the systems with large AFE this limit would be much higher
than the typical operating temperatures of semiconductor devices.

Interestingly, we found that the local minima for CsSnF; occurred at a relatively small
absolute values of (), suggesting that this perovskite might undergo a different type of M-
point distortion to the other compounds. On examining the eigenvectors, we verified that
this is indeed the case: the M-point soft mode in CsSnF; is an M, distortion, while those
in other compositions correspond to M;" tilts. The M, mode is a second-order Jahn-Teller
distortion where B—X bonds shorten and lengthen, whereas the M; mode represents rigid
in-phase octahedral tilting. This can be explained by orbital mixing between the Sn s
and F 2p orbitals, which produces the asymmetric electron density required to support a

Jahn-Teller distortion.4®
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Table 2: Calculated transition rate (I') across the double well potential (values in
Hz). As the temperature increases, the hopping rate increases, but the absolute
value also depends on the attempt frequency (). Contributions from quantum
mechanical tunnelling are not considered. Note that the timescale of typical
diffraction experiments is seconds, whilst electronics processes (carrier transport
and recombination) can occur on timescales of 107'* — 107 seconds.

AE (meV) v (THz) T at 150 K (Hz) T at 298 K (Hz) T at 500 K (Hz)
CsSnF, 144.7 8.87 1.19 x 10% 3.18 x 101 3.09 x 10M
CsSnCl, 108.1 2.04 4.69 x 108 3.05 x 1010 1.66 x 10!
CsSnBry 127.7 1.28 6.45 x 107 8.93 x 10° 6.64 x 10
CsSul, 203.7 1.12 1.55 x 10° 1.04 x 10° 9.90 x 107
CsPbF,  151.8 3.71 2.88 x 107 1.01 x 10 1.10 x 10"
CsPbCl, 353.4 2.58 3.27 2.76 x 10° 7.10 x 108
CsPbBr, 396.5 1.74 7.81 x 1072 3.48 x 10° 1.76 x 108
CsPbl, 512.3 1.40 7.91 x 107 3.08 x 103 9.62 x 10°

Correlation between the harmonic frequency and AE: The imaginary harmonic phonon
frequency (at the saddle point) has been assumed to be indicative of the energetic driving
force for distortions in perovskites.**% To assess the correlation between the frequency and
the depth of the minima, we plotted the well depths of the M-point soft modes obtained by
the potential-energy mapping against the squared harmonic frequency w? (Fig. . From
this analysis, we see that there is little correlation between the two. Excluding the outlier
CsSnF,, the well depths span a 400 meV range, with a spread in w? of 1.5 THz?. The
data are scattered across the energy range, with no clearly-evident patterns of frequency
distribution, indicating that the imaginary harmonic frequencies may be a poor proxy for
the well depths. This can be understood from the fact that the harmonic frequency reflects
the curvature of the potential-energy surface at the average structure (¢ = 0), which does
not contain sufficient information to extrapolate to the anharmonic region of the soft-mode
potential.

Analysis of Figure [4] does, however, reveal a correlation between the well depth and
the tolerance factor, namely that compounds with larger tolerance factors tend to produce
shallower minima (i.e. the distorted structures are closer in energy to the cubic average

structure). This supports the established simple relationship between chemical composition
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Figure 4: Squared imaginary harmonic phonon frequencies, w? (THz?), for the M-point
soft modes against the well depth (meV). The size of the markers is proportional to the
structural tolerance factors a, which range from 0.93 (CsSnF;) to 0.85 (CsPbly). The colours
corresponds to the overall mass of the unit cell, with the heaviest being the “warmest”
(CsPbl,: red) and the lightest the “coolest” (CsSnF,: blue).

and structural instability: the closer the tolerance factor to unity, the more “cubic” a struc-
ture is expected to be. Our data shows that lower-symmetry configurations are indeed more
energetically favorable for compositions with smaller tolerance factors.

For the CsPbXj series, when X increases from F to I the tolerance factor decreases from
0.90 to 0.85, and the temperature of the cubic phase transition increases from 187 K to 328
K, 413 K and 634 K.1288050 Thjg indicates that for compounds with smaller tolerance factors
more thermal energy is required to lift the symmetry to cubic phase, which is in agreement
with our calculations. Structurally, when o < 1, the A—X bonding is undercoordinated, and
octahedral tilting is required to optimize the chemical bonding environments If we explicitly
plot the well depth as a function of tolerance factor (shown in Fig. ), this trend becomes
apparent. There is also a correlation between tolerance factor and the distortion amplitude
that minimises the energy (AQ), shown in Fig. [fp. Compositions with small a require a
larger distortion to the local minimum in order to optimize the cation-bonding environment
due to the under coordination.

Electronic structure effects: We further assess the effect of the M-point tilting distortions
on the electronic structure by calculating the change in the band gap along the normal-mode

coordinate (). The band gap for all eight compounds increase to different extents when
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Figure 5: Well depths and distortion amplitudes along the M-point soft modes as a function
of tolerance factor. The ionic radii used for each of the elements are: Cs: 1.88 A; F: 1.33 A;
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distorting along the soft modes (Fig. @ This indicates that distortions from average cubic
symmetry will lead to a band gap increase in these perovskites. Although the semi-local
exchange-correlation functional used to estimate the band gap underestimates the absolute
value of the band gap , the relative shifts should be reliable. Due to the fact that the upper
valence band consists of strong Sn/Pb s and X p anti-bonding character, upon tilting the
overlap of the orbitals decreases and results in a lower-energy valence-band maximum, and
thus an increase in the gap.?2#% The ultimate effect of such distortions on the band gap
will also depend on the type of disorder. Static disorder would lead to a more pronounced
widening the band gap, whereas dynamic disorder would produce a less-pronounced time-
averaged effect. A more quantitative description will require the development and application

of more sophisticated theories for anharmonic electron-phonon coupling.
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Figure 6: Change in band gap AE, (eV) relative to the cubic structure for each compound as
a function of normalised soft mode amplitude (). The average cubic structure lies at ) = 0,
while the lowest-energy distorted structure lies at () = 1. The pink line, showing least
change in E,, corresponds to CsPbF, and green line, showing most change, corresponds to

CsPbCl;.

In summary, we have performed a comprehensive investigation of the phonon stabilities
in the cubic CsSnX, and CsPbX, halide perovskites (X = F, Cl, Br, I). Our results show that
all eight compounds exhibit phonon soft-mode instabilities in the cubic phase. Examining
the potential energy surface along a representative soft-mode structural distortion reveals
a correlation between the chemical composition and structural tolerance factor and the en-

ergetic barrier to accessing the high-symmetry structure. We also found that the nature
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of the distortions differ depending on the chemistry, with CsSnF; showing a fundamentally
different M-point distortion to the other seven halide perovskites. The hopping rate of the
structural transition between two local minima is calculated which relates to the timescale
of diffraction measurement. Finally, we have also studied the effect of the distortion from
cubic symmetry on the electronic structure, and find that, in all cases, distortion along the
M-point soft modes leads to a widening of the band gap. There are implications on fu-
ture electronic-structure studies and assessment of the role of local symmetry breaking and

electrostatic (band gap) fluctuations on the performance of perovskite optoelectronic devices.
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