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CONS P EC TU S

T he ability to predict energy levels in metal oxides is paramount to developing
useful materials, such as in the development of water photolysis catalysts and

efficient photovoltaic cells. The binding energy of electrons in materials encompasses
a wealth of information concerning their physicochemistry. The energies control the
optical and electrical properties, dictating for which kinds of chemistry and physics a
particular material is useful. Scientists have developed theories and models for electron
energies in a variety of chemical systemsover thepast century. However, theprediction of quantitative energy levels in newmaterials remains
amajor challenge. This issue is of particular importance inmetal oxide research,wherenovel chemistries haveopened thepossibility of awide
range of tailored systems with applications in important fields including light-emitting diodes, energy efficient glasses, and solar cells.

In this Account, we discuss the application of atomistic modeling techniques, covering the spectrum from classical to quantum
descriptions, to explore the alignment of electron energies betweenmaterials.We present a number of paradigmatic examples, including
a series of oxides (ZnO, In2O3, and Cu2O). Such calculations allow the determination of a “band alignment diagram” between different
materials and can facilitate the prediction of the optimal chemical composition of an oxide for use in a given application.

Throughout this Account, we consider direct computational solutions in the context of heuristic models, which are used to relate
the fundamental theory to experimental observations. We review a number of techniques that have been commonly applied in the
study of electron energies in solids. These models have arisen from different answers to the same basic question, coming from
solid-state chemistry and physics perspectives. We highlight common factors, as well as providing a critical appraisal of the
strengths and weaknesses of each, emphasizing the difficulties in translating concepts from molecular to solid-state systems.

Finally, we stress the need for a universal description of the alignment of band energies for materials design from first-
principles. By demonstrating the applicability and challenges of using theory to calculate the relevant quantities, as well as
impressing the necessity of a clarification and unification of the descriptions, we hope to provide a stimulus for the continued
development of this field.

Introduction
The importance of electron energies in the solid-state has

been recognized for the past century.1 While the relative

position of electronic bands in materials determines what

optical transitions can occur, the absolute energies of these

bands control what chemistry and physics can take place.

For example, the energy of the valence band in a semicon-

ductor can determine whether it has sufficient oxidative

power to generate O2 for the photolysis of water,2 as can

the energy of the conduction band influence the kinetics of

electron transfer in a photovoltaic cell.3 Many theories and

models have been developed to describe the electronic

behavior of different classes of chemical system, but the

reliable calculation of electron energies, in particular for newly

discovered or predictedmaterials, remains amajor challenge.

The challenge for computational chemistry is twofold, first to

provide the correct electronic energy levels within a given

material and then tocompare the levels betweenmaterials for

purposes of designing systems and devices.

For molecules and other finite systems, the energies

associated with electron removal (ionization potential, IP)

and addition (electron affinity, EA) are well-defined quan-

tities, which can be given with respect to an absolute

vacuum level (the energy of an electron in perfect vacuum),

as illustrated in Figure 1. The chemical utility of these

quantities is wide-ranging, for example,

• the difference between electron addition and removal

energies defines the fundamental bandgap, Eg= IP� EA,

• the mean of electron removal and addition is the

Mulliken electronegativity (χ), χ = (IP þ EA)/2,4
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• the negative of themean defines the electron chemical

potential, that is, μ = �χ, from the central difference of

(∂E/∂N)Z, where N and Z represent the number of elec-

trons and the nuclear coordinates, respectively,5

• the chemical hardness is equivalent to half the value of

the band gap, that is, (IP � EA)/2, from the central

difference of 1/2(∂2E/∂N2)Z.
6

In the solid-state, electron binding energies are notor-

iously difficult to evaluate experimentally, theoretically, or

computationally. Furthermore, for semiconducting ormetal-

lic materials, we introduce an additional potential, the work-

function (Φ), which is the energy to remove an electron from

the Fermi level (EF, determined by the electron and hole

carrier concentrations in the solid) to the vacuum level.

These various quantities are illustrated in Figure 1.

Each measurement technique of interest, including ther-

mionic, electrochemical, optical, and photoemission spec-

troscopies, contains an implicit dependence on the crystal-

lographic orientation and surface morphology of the

sample.7 As stated by Henrich and Cox,7 “The workfunction

is an extremely sensitivemeasure of the state of a surface. In

fact it is so sensitive for metal oxides that its absolute value

has little significance”. Surface dipoles have a direct influ-

ence on the position of the local vacuum level; electrical

carrier concentrations determine EF, and the densities of point

defects and surface adsorbents can cause significant changes

to both. Band bending at semiconductor surfaces and inter-

faces is rarely negligible.8 Nonetheless, the surface workfunc-

tion is a quantity that is regularly measured and reported. For

example, the workfunction of ZnO has been measured be-

tween 3 and 6 eV depending on the experimental conditions.7

For ZnO thin films, it has been demonstrated that the work-

function is tunable over a large range, dependingon the partial

pressure of oxygen during synthesis.9

In the solid-state, concepts such as workfunction and

Fermi level are central to theories and descriptions of elec-

tronic device functionality. Although these concepts are not

widely used in the materials chemistry community, they are

routinely and successfully applied in device design involving

traditional semiconducting materials. As oxides become

increasingly employed in electronic devices, it is important

that such concepts be clarified in the context of oxide

systems, where the values involved are sensitive to several

physical parameters. In this Account, we discuss the chemi-

cal origin of these quantities and the range of methods

available to calculate them.

Theoretical Approaches
Atomistic materials modeling techniques have become in-

creasingly predictive,10 offering the possibility of calculating

electronic structures accurate enough to be used in large-

scale models and device design. Many theoretical ap-

proaches for describing the binding energy of electrons in

oxides have been developed to varying degrees of success

and generality. For example, by 1940, Mott and Gurney had

presented a semiempirical approach based upon the varia-

tions in the electrostatic potential in heteropolar solids,

which avoids the anisotropy of an electron leaving the

FIGURE1. Electronic descriptions ofmolecular and solid systems. Values in the solid state are poorly definedonan absolute scale, due to a number of
factors; some sources of discrepancy are listed to the right-hand side. Eg represents the band gap and EF the Fermi level.
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crystal: the measured ionization potentials of the isolated

atomsmodified by the calculatedMadelung potential of the

solid.1

Based on first-principles electronic structure techniques,

such as density functional theory (DFT), there are several

approaches to calculate the relevant quantities, which can

be broadly separated into three areas:

(1) Surface models: A material is represented as a semi-

infinite slab repeating in two dimensions, with a surface to

vacuum in the third. Formally, 2Dor 3Dboundary conditions

can be employed, or alternatively a multiregion embedding

procedure can be adopted.11 Irrespective of the physical

model, the value of the electrostatic potential in the vacuum

region is used to align the single- or quasi-particle electron

energies. The surface orientation dependence encountered

in experiments is also important in these models. None-

theless, single surface terminations have been used to

predict defect levels,12 band edge potentials,13 and band

alignments.14 An additional issue is exactly how to model

the surface, whether to chemically passivate dangling bonds

and whether to relax the surface coordinates. Different

models can lead to very different values, on the order of

electronvolts, being calculated.

(2) Interface models: Approaches for heterostructure

alignments, similar to the methods used for alignment of

X-ray photoemission spectra,15�17 have shown good agree-

ment with experiment for tetrahedral semiconductors.18,19

Such models rely on a reference potential (either the aver-

aged electrostatic potential or a localized core state); a

general scheme is presented in Figure 2. The main issues

are that the alignment is produced on a relative scale, with

an implicit assumption of transitivity, and the extension to

more complex systems (structures) remains ill-defined. How-

ever, the calculation of semiconductor/oxide interfaces, in

good agreement with experiment, has been demonstrated.20

For solid/liquid interfaces (e.g., in photocatalyticwater-splitting)

calculation of workfunctions requires the sampling of a large

number of configurations.13 Due to the associated computa-

tional expense, a number of approximations are common, for

example, thin slab models, reduced k-point sampling, and the

use of low-quality basis sets. We emphasize the difference

between the alignment calculated for a particular heterostruc-

ture, including all interfacial effects,21 and the “natural” align-

ment of the respective bulk energy levels,18,22,23which aims to

exclude these effects. Clearly, the band alignment between

two materials will depend strongly on the type of termination

at the interface, either by different crystallographic planes or a

different chemical structure.

(3) Reaction energies: Electronic structure approaches

such as DFT are well suited to calculating total energies in

addition to one-electron energies of materials.24�26 This

strength has been exploited to calculate alignments at

solid/water interfaces.27,28 Thesemethods involve inserting

an electron into the electrodematerial and a proton into the

liquid phase; the free energy change provides a direct

estimate of the line-up with respect to the standard hydro-

gen electrode. Similarly Chen and Wang29 predicted the

redox energies for a range of semiconductors by calculating

each term of the associated thermodynamic cycle, an ap-

proach developed by Gerischer for assessing the corrosion

of metal oxides and sulfides.30,31

A final technique worth briefly mentioning is model-solid

theory, which has been used to align the band structure of a

periodic solid to the vacuum level using the neutral atoms as a

reference.32 While the approach proved useful when applied

to some semiconductors, for oxides, the variation in charge

states and environments makes it difficult to generalize.

The above methods have been applied using the stan-

dard local density approximation (LDA) and generalized

gradient approximation (GGA) levels of DFT for a number

of years. However, when quantitative results are required,

based on electronic structure calculations, it is often necessary

to go beyond these approximations, which grossly under-

estimate the band gaps of semiconductors and insulators.33,34

Methods for achieving quantitatively accurate band structures,

such as nonlocal hybrid functionals35�39 or many-body

FIGURE 2. A valence band alignment technique using core levels (e.g.,
O 1s states). The materials AX and BY are combined to form an AX|BY
heterostructure, with the difference in core levels (ΔEc,c0) used to align
the valence bands of the isolated materials. A second-order correction
accounts for the core-level shift due to the volume change from the
isolated crystals (VAX, VBY) to the heterostructure (Vav) based on the
core-level deformation potential (ac). See ref 18 for further details.
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perturbation theory (e.g., the GW approximation40) are more

demanding in terms of computational expense, again often

necessitating approximations in the models that may intro-

duce spurious errors of unknown magnitude.

We now consider theoretical frameworks for predicting

band energies and alignments, which are less rigorous than

a full quantummechanical treatment but also less demand-

ing on computational resources. The first originates from

solid-state chemistry and the others from physics; although,

they all address the same issue:

(1) Mulliken electronegativity has been applied to assess

the band alignment problem following “Anderson's rule”,

that is, the alignment of vacuum levels for two or more

materials in contact. The effective electronegativity of the

materials can be used to construct a heterostructure band

diagram.41 In 1974, Nethercot42 proposed the “geometric

mean of electronegativities” to predict the work functions of

II�VI, III�V, and metal halide materials in agreement with

experiments. This approach was then applied by Bulter and

Ginley to a range of oxide materials43 and extended by Xu

and Schoonen to assess the band energies of over 50

semiconductors.44 Despite its conceptual simplicity, the

method produces electron energies in reasonably quantita-

tive agreement with experiment. Recently it has been suc-

cessful in the high-throughput screening of perovskites for

light capture45 and the electronic structure analysis of new

FIGURE 3. (a) Average electrostatic environment of the oxygen lattice site across the binary oxides from Li2O (1) to PoO2 (63) within the point charge
approximation. (b) The distribution of environments as a function of the oxidation state of the metal is shown, with the lowest value calculated
for Cs2O (14.08 V) and the highest for V2O5 (29.67 V).
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ns2 lone pair materials.46 However, the method is based

solely on chemical composition and cannot account for the

effects of bonding or crystal structure. Within this approx-

imation, all polymorphs and polytypes of a material have

equivalent electron energies.

(2) The commonanion rule is again related to “Anderson's

rule”, with theenergies computedusinga tight-bindingmodel. It

can be employed to predict the valence band positions of

tetrahedral semiconductors using anion p orbital energies and

bond lengths. It has given good agreementwith experiment for

energy alignments of some II�VI and oxide semiconductors;47

however, in general the approximation fails due to a combina-

tion interface dipoles and the participation ofmetal d orbitals in

bonding. As discussed below, the large variety of coordination

environments makes it difficult to apply to metal oxides.

(3) Charge neutrality level (CNL) arises from the metal-

induced gap-state description of metal�semiconductor

interfaces.48,49 It is sometimes termed a “branch-point en-

ergy” or “point of zero charge” and is related to the midgap

energy integrated across the first Brillouin zone.50 The CNLs

for a wide range of semiconductors have been calculated

using a tight-binding model,51 and values have also been

reported for more complex oxides.52,53 The approach can be

extended to specific heterojunctions by including the electro-

negativity of the materials in order to account for charge

transfer induced dipoles at the interface.54 It should be noted

that while the Mulliken approximation provides an absolute

midgap energy relative to the vacuum, for periodicDFT calcula-

tions the CNL is only defined relative to an arbitrary reference

potential.55 In addition it has been suggested by Klein that

oxide interfaces arenot controlledbygap states,56which is also

consistent with the behavior of amorphous oxides.57

In the following, a number of general concepts associated

with the bonding in metal oxides are revisited, with a

particular emphasis on their relation to the energies of

electrons in materials. We consider first the representation

of metal oxide systems as an ionic solid, highlighting the

trends in midgap energies based on coordination and re-

vealing the deficiencies of such a method for calculations of

ionization potentials, necessitating the use of explicit elec-

tronic structure methods.

The Ionic Solid
The chemical bonding inmetal oxides is predominately ionic

in nature. While the distribution of charge depends on both

the crystal structure and the chemical nature of the metals,

the bonds are unambiguously heteropolar.58,59 To calculate

the lattice energy of an ionic solid, it is standard to consider a

thermochemical cycle (e.g., the Born�Haber cycle); however,

for oxides, the secondelectronaffinity of oxygen is ill-defined.

In the gas phase, the oxide (O2�) ion is not stable, that is,

(1st EA) Oþ e� f O� (ΔE ¼ �1:46 eV)

(2nd EA) O� þ e� f O2� (ΔE > 0 eV)

Inotherwords, thesecondelectron isnotbound in vacuo; the

second electron affinity of oxygen is positive. The philoso-

phical implications of this behavior have been discussed

by Harding.60 The practical implication is that the solid-state

environment of oxygen is crucial for stabilizing the second

electron to produce the diamagnetic 2p6 configuration. It is

well-known that the valence band of metal oxides is com-

posed predominately of O 2p orbitals; hence, the electron

energies must be sensitive to the local environment. There-

fore it may be possible to estimate the band structure of a

metal oxide on the basis of the electrostatic environment.

Oxide Electrostatic Environment
The structural diversity of metal oxides results in a large

variation in local bonding environments, which can be

quantified through electrostatic (Madelung) potential. Here

the potential is calculated using a simple point chargemodel

and an Ewald summation technique, depending only on the

ion charges (qi) and the ion separations (r0�i):
61

V0 ¼ ∑
N

i¼1

qi
r0-i

FIGURE 4. Crystal structures of Cs2O (anti-CdCl2 lattice), ZnO (wurtzite),
and V2O5 (shcherbinaite) illustrating the diversity in the oxygen
coordination environments (red spheres).
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The utility of this quantity is well documented, for example,

explaining hole conductivity in high TC superconductors62

and the surface defect behavior of metal oxides.63,64 We

have calculated the Madelung potential of oxygen in the

most stable phase of every known binary oxide from Li2O

to PoO2, averaging inequivalent oxide sites, with the results

graphed in Figure 3 (the raw data available in an online

repository65).
There is a striking spread of 16 V in site potentials, with a

correlation between metal�oxygen separation and formal

oxidation state of the metal. The weakest potential is found

for a monovalent Cs2O, while the strongest potential is

pentavalent V2O5. Divalent metals such as ZnO are of

intermediate behavior. These three materials again empha-

size how the diversity of the structures, as illustrated in

Figure 4, influences the electrostatic environment of the

oxide ion. Cs2O adopts the layered anti-CdCl2 structure,

where oxygen has an octahedral environment. The wurtzite

phase of ZnO consists of oxide ions at the center of metal

tetrahedra, while in V2O5 there are three distinct oxygen

sites with coordination numbers from 1 to 3.

Based on this simple analysis, it would be expected that

the ionization energies follow the same trend as the Made-

lung potentials, that is, Cs2O < ZnO < V2O5. The midgap

energies predicted from the Mulliken electronegativity of

the compounds do follow this trend (4.05 eV > 5.95 eV >

6.12 eV); however, due to the larger band gap of ZnO, the

associated ionization potentials slightly deviate (5.15 eV >

7.67 eV < 7.52 eV).

This type of classical electrostatic description does not

account for the detailed electronic structure of the materials

considered; thus alone it cannot predict changes in ioniza-

tion energies due to differing band gaps and widths.

While an extension to this approach has been developed

to approximate electron and hole energies66 and has

been successful in the description of TiO2 polymorphs,67

the associated thermochemical cycles for metal oxides are

impeded by the electron affinity of oxygen, as previously

highlighted. In order to accurately account for these

effects, it is necessary to augment the model to include

long-range polarization or to employ explicit electronic

structure techniques.

Oxide Band Energies
DFT is currently themost popular method for calculating the

electronic structure of solid-state oxides. We will consider

just a few paradigmatic examples of the state-of-the-art in

this field, noting that such calculations of metal oxides are

numerous.

Zinc Oxide. The ionization potential for a nonpolar

(1120) ZnO single-crystal surface was measured by Swank

as 7.82 eVbelow the vacuum level.68 There is an abundance

of computations on ZnO bulk and defective crystals, nano-

structures, and surfaces; however, reports of bulk electron

energies are rare. One difficulty is the polar nature of the

common (0001) surface of wurtzite, which undergoes com-

plex reconstructions to quench the electric dipole. In order

to provide an absolute energy reference, while properly

accounting for the long-range electrostatic and dielectric

response to the ionization process, a mixed quantum me-

chanical/molecular mechanical (QM/MM)method has been

developed. The result is a multiscale representation of an

infinite solid-state crystal, for example, as implemented in

the ChemShell package.69,70 A central core of the material is

explicitly described usingDFT and an outer region is simulated

using analytical polarizable potentials, which in turn is em-

bedded in a dielectric continuum. This type of embedded

cluster approach follows the earlywork ofMott and Littleton71

and avoids the orientation dependence of surface models. To

calculate the electronic structure of ZnO, a hybrid functional

(B97-1) has been used. Calculations by Sokol et al. place the

ionization potential at 7.71 eV below the vacuum, in good

agreement with experimental values. We emphasize here the

explicit calculation of the electron removal energy (IP) and not

the one-electron Kohn�Sham eigenvalue that is sometimes

used as an approximation. Remarkably, the Mulliken model

predicts an IP of 7.67 eV in very good agreement with both

experiment and the QM/MMmodel. In contrast to the binding

energyof ca. 7.7 eV, due to its n-typenaturewith EF close to the

conduction band, values for the workfunction of ZnO are

significantly smaller: from 3 to 6 eV depending on the surface

preparation procedure.7

Indium Sesquioxide. The band energies of In2O3 have

gathered significant interest.56 The nonpolar (111) surface

has been found to dominate in crystalline samples.72 Calcu-

lations of the ionization potential of this termination have

been performed73 using a hybrid DFT approach. The HSE06

functional (like B97-1) incorporates apercentage (25%)ofHF

electron exchange and reproduces the band gap of the bulk

material.74 However, unlike the ZnO study, a system based

on periodic boundary conditions was used to represent a 2D

infinite slab of a surface with no net dipole. The calculated

ionization potential is 7.22 eV for the (111) surface,73 which

compares very well to the value of 7.1 eV measured for

polycrystalline samples.9 Here, theMullikenmodel predicts an
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IP of6.65eV,with anapparent error of ca. 0.5eV.Notably from

computations, other surface terminations produce variations

in thepotential of(0.7eV. Themeasured ionizationpotentials

and workfunctions of In2O3
75 have also been shown to

fluctuate by over 1 eV by heating in air, which was attributed

to surface dipole modifications with oxygen exchange. In

contrast, the band alignment of In2O3 to CdS proves relatively

robust with regards to preparatory conditions.76

Cuprous Oxide. Both ZnO and In2O3 are wide band gap

n-type semiconductors. A representative p-type material is

Cu2O. The cuprite structure contains a unique arrangement

of linearly coordinated Cu ions; the nonpolar (111) and polar

(100) are two dominant terminations. Photoemission mea-

surements of sputtered thin films place the ionization po-

tential at 5.0�5.7 eV below the vacuum level, with a notable

dependence on the substrate.77 Indeed, Soon et al. have

investigated the (111) surface structure of Cu2O, using a

periodic slab model as a function of the oxygen partial

pressure and identified a large variation in the calculated

ionization potential (4.08�5.36 eV).78 From the Mulliken

electronegativity of Cu2O, the IP is placed at 6.43 eV, which

contains the largest error of the three oxides studied owing

to the unusual geometric and electronic structure of the

cuprous ion. Deuermeier et al. have explicitly considered the

formation of the Cu2O/In2O3 interface, with a measured

valence band offset in the range of 2.6�2.9 eV,79 consistent

with the electron binding energies of the isolated materials.

The band alignment of Cu2O/ZnO was recently measured as

being 2.2 eV, again in good agreement with the relative IPs.80

Using computed or measured ionization potentials one

can construct an alignment diagram by taking the vacuum

level as a reference and placing the band structures accord-

ingly. Again, this concerns an intrinsic “natural” band offset

that will be dominant factor in determining the electronic

properties of a given interface but does not include any

specific interfacial effects. A representative diagram is

shown in Figure 5, which collects data for the three oxides

previously discussed and three other important semicon-

ductors: IPs for ZnO, In2O3, GaN, and TiO2 have been

calculated using the QM/MM approach discussed above,

while values for Cu2O and Si are based upon experimentally

measured IPs. The results are chemically intuitive in terms of

the relative binding energies of different elemental compo-

nents and canbeuseful for identifyingmaterials combinations,

for example, solid solutions for enhancing photoactivity. How-

ever, it is difficult to provide an extended alignment of oxide

materials based on literature values due to the variations in

both the physical models (e.g., bulk, surface or interface

alignments) and levels of theory (e.g., different treatments of

electron correlationwithinDFT). Presently, studies of individual

materials require substantial amounts of preparation and

calculation time, so there have been few systemic studies

performed. An accurate, robust, and transferable procedure

for calculating electron energies in solids is urgently required.

Outlook
Despite the simplicity of the underlying concepts, both the

calculation and measurement of the binding energy of

electrons in solids and, in particular, metal oxides continue

to pose scientific challenges. A number of approaches to

compute these energies have been discussed. The ultimate

aim is for the ionization potential and electron affinity of an

arbitrarymaterial (chemical structure and composition) to be

predicted with good certainty. While each of the techniques

mentioned have merit when applied to specific systems,

there is a lack of generality with respect to absolute values.

Problems relating to surface termination and structure are

ubiquitous. The need for a universal and tractable approach

to predict band energies in the design and optimization of

novel material systems is clear, with immediate applications

in solar energy conversion in photovoltaic and photoelec-

trochemical devices and energy storage in electrochemical

batteries; it just remains to be developed and adopted by the

community.

We thank J. Alderson for generating the Madelung potential data
and acknowledge useful discussions with both A. A. Sokol and
C. R. A. Catlow. The work was supported by the Royal Society and
funded by EPSRC (Grant Nos. EP/F067496 and EP/J017361/1)
through the HPCMaterials Chemistry Consortium and the SUPER-
SOLAR Hub, respectively.

FIGURE 5. Representative valence band alignments of In2O3, ZnO, and
Cu2O with respect to rutile-structured TiO2 and two popular
semiconductors (GaN and Si). All values are based on ionization
potentials calculated using DFT with hybrid exchange�correlation
functionals, with the exception of Cu2O and Si, which have been taken
from experimental reports. Data collected from refs 67, 81, and 82.
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