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New Problem Formulation of Emission
Constrained Generation Mix

Chenchen Yuan, Student Member, IEEE, Chenghong Gu, Member, IEEE, Furong Li, Senior Member,
IEEE and Bless Kuri, Member, IEEE, Rod Dunn

Abstract--This paper proposes an enhanced optimization
formulation to help determine the type of power generation mix
that can meet a given carbon emission target at the minimum cost.
Compared to the previous studies, the model proposed in this
paper takes account of the emission cost at operational level and
explores its impacts on the long-term emission target oriented
generation planning innovatively. Meanwhile, the model is able to
take account of the integer variables and nonlinearity of the
operational cost together with network constraints and renewable
generation expansion in one long-term generation planning
model. The problem is solved by an innovative discrete gradient
search method, and a new concept, Emission Reduction Cost
(ERC) is developed, which helps determine which generation
technology is the most cost efficient in emission reduction during
different stages of generation expansion. A case study on a
modified IEEE 30 bus system is presented to demonstrate the
application of this model and the value of considering short-term
emission costs and the network constraints on the long-term
generation expansion. The results and sensitivity analysis are
provided to show that a higher short-term financial pressure can
help realize the emission target at a lower total cost (investment
and operational costs). Optimization without considering it may
overestimate the total cost required for the generation mix
restructuring. Additionally, a comparative study shows that
optimization without considering network constraints may
underestimate the total cost required for realizing the specified
emission reduction target.

Index Terms--Emission target, Generation mix, Emission
cost, Network constraints, Renewable generation.

I. INTRODUCTION

Many countries have announced ambitious carbon
emission control targets. For example, the UK has
committed to reduce its carbon emission by 80% by 2050,
relative to 1990 levels. The power industry, the biggest carbon
emitter among all industrial sectors, has to take the largest
decarbonization responsibility. Hence, the ambitious long-term
emission reduction target tends to drive the power system to
restructure itself radically; for example, a large share of clean
and renewable generation technologies will penetrate into the
generation mix and investment will be required for this
evolution.
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Having a comprehensive optimized generation mix as a
reference would assist the policy makers in setting the
emission reduction target and estimating its total cost.

A number of previous works have been carried out on the
optimal generation mix problem to meet forecasted load
growth. Morris innovatively employed a dynamic
programming model for solving the generation mix problem
[1]. Masse and Gibrat applied the linear programming (LP) to
the generation investment optimization problem [2]. In [3],
three different decomposition approaches were compared to
tackle the generation planning problem considering the
demand uncertainty. More uncertain factors, such as renewable
generation intermittency, regulatory policy uncertainties and
fuel price volatility were considered in [4]. In [5], the authors
proposed a generation expansion planning model in
deregulated environment, which was to maximize the payoff of
the privatized generation companies. A generation mix
optimization model considering the short-term demand side
response was proposed in [6]. Bloom applied Benders’
decomposition approach to dividing the generation expansion
problem into master capacity optimization problem and sub
operation and reliability optimization problem [7, 8]. However,
these researches oversimplified the operational modeling:
integer variable related costs and constraints were neglected,
such as unit start-up cost, and minimum up time. Kamalinia
proposed a security-constrained stochastic  generation
expansion model, considering the uncertainties of system
component outage and forecast errors of wind and load [9].
The integer variables are both considered in expansion
problem and operational problem by Benders decomposition
approach in this paper. However, this paper assumed wind
generation integration was given; only fast-response unit’s
expansion was planned. Besides, the operational cost was
simplified to a linear one in the paper. These simplifications
cannot better differentiate the performance (cost and flexibility)
of different generation technologies. Additionally, these
researches consider neither the system network constraints nor
an interface for renewable generation planning. Therefore,
these simplifications may bias the generation planning results.
Besides, all the aforementioned studies did not consider the
emission problem.

Since Gent and Lamont [10] did the early research on
minimum emission dispatch, the optimization of the emission
reduction has been considered more and more by successive
researchers, but they mainly concentrated on the area of short-
term power generation operation [11-14]. Some recent works



have been carried out in the area of emission constrained
generation expansion planning. A new efficient GA-Bender’s
approach, solving the power generation expansion planning
problems with emission constraints, was given in [15].
However, the operational problem was still modeled in the
aforementioned simplified manner and did not consider
renewable generation and network constraints in the
optimization. In [16], the author proposed a low carbon power
generation expansion model, which integrates a comprehensive
set of low carbon factors. However, the whole problem was
only formulated as a linear programming model. The integer
characteristic of generation capacity was even ignored. The
simplified linear programming model is also applied to [17,
18]. Both [15] and [16] did not explore the impacts of the
short-term emission cost on the long-term optimal generation
mix. Doherty made a trend analysis of the generation portfolio
in Ireland, considering the impact of emission costs to the
optimal  generation investment portfolios [17, 18].
Unfortunately, the study only formulated the emission cost in
the objective function without setting an emission target as a
constraint.

In summary, most of the previous researches on optimal
generation mix planning have one or more of the following
limitations:

i) Integer wvariable cost and the nonlinearity of the
operational level are neglected [3-6, 14-19]. Discrete
characteristic of generation unit size in the investment
level is ignored as well [16-18].

ii) There is only limited discussion of the impact of short-
term emission cost on the long-term investment cost [17,
18].

iii) Network constraints and renewable generation expansion
are seldom considered in the emission target oriented
generation planning [15-18].

This model attempts to determine the required generation mix
which can meet a predefined emission target for a given power
network at a minimum societal cost, overcoming the
aforementioned limitations. The contribution of this paper is
that the proposed model can take account of the emission cost
in operational level and reveal its impact on the long-term
emission target oriented generation planning. Meanwhile, the
model proposed in this paper takes into account the integer
variables and the nonlinearity of operational cost with network
constraints and renewable generation expansion together into
one long-term generation planning model.

The model proposed in this paper is a centralized
generation planning model. It aims to provide a low carbon
generation mix assessment tool for policy makers when
devising emission reduction targets and estimating the related
cost. The government or other related authorities can use this
assessment model to ensure long-term emission target could be
achieved at a minimum societal cost. Since this formulation
has a large problem size, due to taking into account detailed
operational modeling, such as unit commitment and network
constraints, an innovative index, emission reduction cost
(ERC) has been developed to speed up the process of

searching for the optimal generation technology. A case study
based on modified IEEE 30 bus test system is provided to
verify the effectiveness of this formulation. Optimization
results show the total cost variation with different emission
prices and targets. A comparative study has been made
between optimizations with and without network constraints to
indicate the importance of network constraints in a generation
expansion study.

The rest of the paper is organized as follows: Section II
gives the problem formulation; the solution method is
presented in Section III; Section IV provides a case study to
verify the effectiveness of the solution method; conclusions are
drawn in Section V.

II. PROBLEM FORMULATION

The developed model takes the emission target settings,
current generation mix, network data and load profiles in the
target year as inputs. It considers typical thermal generation
units and renewable wind units, and provides the optimized
generation mix and the total cost and emission under this mix
as outputs. The formulation follows the way that, based on an
initial generation mix, the candidate generators will be added
into the mix stage by stage in a trial way. The selection of the
candidate generator at a stage is based on the cost efficiency
for emission reduction at that stage.

A. Operational sub problem

In order to assess the performance of a potential generation
mix after introducing a candidate generator in terms of cost
and carbon emission, the operational sub problem is modeled
first. The operational sub-problem includes two important
parts, unit commitment (UC) and economic dispatch (ED). UC
determines the optimal unit combination transition path from
one scheduling block to the next, while ED determines the
optimal power output for each committed unit in each
scheduling block.

1. Load dispatch optimization

In this research, a quadratic fuel cost function is used to
better reflect the real characteristic of a generator unit. For a
system with N generation units at a time horizon of 7, the fuel
cost (FCi(Piy)) of unit i at interval ¢ is:

FC,(P,)=a,P} +b,P,

it it +Ci (1)
where, 7 is the generation unit index, ¢ is the scheduling time
interval index and P; is power output of unit i at interval ¢. a;,
b; and c;are the fuel cost function coefficients of unit i.

The carbon emission (£;) of unit i at interval ¢ is modeled
linearly by:

E(P)=pBF,+7, 2)

where, B and y; are the emission function coefficients of unit 7.

In order to take the financial pressure of emission into
account in the power dispatch [20], the emission is monetized
and incorporated with the fuel cost by a weighting factor A.
The objective of the ED is to minimize the summation of fuel
cost and weighted emission cost (SC):



Minimize ~ SC, =Y (FC,(P,)+ AE,(P,)) 3)
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where, the weighting factor A is the emission penalty factor,
reflecting the extent of impact on the power production cost
from units’ carbon emissions. In practice, its forms can be
emission trading price or emission tax depending on which
economic scheme is implemented for emission control. In this
study, emission price (EP) is uniformly used to call the factor 4
in the rest of this paper. A higher emission price will exert
larger pressure to emission reduction during the dispatch, and
therefore power is more likely to be dispatched from clean but
expensive units, vice versa. Pjmin and Piu. are the minimum
and maximum power output of unit i. D, is the system total
demand at the interval . s7;is the spinning reserve provided by
unit i at interval ¢, while SR, is the system spinning reserve
requirement at interval ¢. SR, at each interval is determined by
two parts. DSR is a coefficient determining system spinning
reserve requirement due to demand forecasting errors. WSR is
a coefficient determining the spinning reserve requirement due
to the wind power intermittency. NW is the number of the wind
farms, and P,,, is the notional installed capacity of wind farm n
[19]. Ly is the power flow of line b at time ¢ and Lim, is the
line flow limit of the line 5.

The ED problem is solved by Lambda-Iteration method
which is also known as Lagrange multiplier method [21, 22].

For dispatch result in each interval, there is an interface to
conduct line flow overloading check by load flow calculation
to determine if the dispatch results are static operational.

2. Unit commitment optimization

ED handles the nonlinear fuel cost, while the integer
variable cost and constraints such as the unit’s start-up cost,
shut-down cost, unit’s, minimum up time (MUT), minimum
down time (MDT) and ramping rate will be dealt in UC.
Dynamic programming algorithm is adopted to solve the UC
optimization in this research. The UC optimization aims to
minimize the aggregated operational cost (C,) through the
whole UC horizon 7.

C,p = 3SC, + 33 (ST, + D, +MC,)
=1

i=1 t=1

)

where, ST} is start-up cost of unit i, SD; is shut-down cost of
unit i, MCj is maintenance cost of unit i.
B. Generation mix optimization

The operational sub-problem in Section A essentially acts
as an performance evaluator for a given generation mix,

network data and load profile, evaluating the total generation
costs and emissions for a desired time period.

In order to restructure the generation mix, the capacities of
some generation technologies will be expanded or contracted.
So, the investment cost C. for power plant is included in the
total cost Ciw. Since the wind generation expansion is
considered in this research, a high level of wind power
penetration will decrease the reliability of power supply, and
loss of load probability will increase, which leads to societal
cost. This form of cost is taken into account through
augmentation of spinning reserve requirements. The parameter,
reserve price (RP) represents the price per MW spinning
reserve capacity from the conventional generation plants. For a
simplification, the reserve price is assumed to be equal for
different conventional generation technologies. Therefore, the
optimization objective is extended as well:

=C,+C, +RPZT:isri,

t=1 i=l

Subject to ﬁ:ZT:E, (P)<=E

i=l t=1

min C (10)

total

(n
where, Ereer 18 €mission limit in the target year.

In order to reduce the calculation burden and focus on the

main problem, the following assumptions are made:

i) The load in the target year is assumed to be well
forecasted. Since the electricity load growth in a long
term is hard to be accurately forecasted, it deserves
another big research based on stochastic analysis.

ii) The network topology in the target year is the same as
those given in the initial state.

iii) The newly added plants are assumed to be connected to
the node where the units of the same technology are
located initially.

iv) No unit is retired from the initial generation mix in the
target year. Because: 1) the proposed model is static,
and therefore the dynamic process is neglected;
2)conventional generation capacity has to be expanded
accordingly to provide backup for increased wind
capacity. It offsets some units’ retirement.

C. Wind power modeling

In this paper, the wind generation technology is used to
stand for the renewable generation. The power output of a
wind turbine can be described by (12) [19, 23]:

v, —V._
wr - = > (vci < Vi < vr)
vr - vci (12)
Pw = 05 (vw < Vci or Vw > vco)
Pwr’ (vr < VW < Vco)

where, P, is the instantaneous output of a wind turbine; P, is
the rated power output of a wind turbine. vy, v¢;, v» and v, are
instantaneous wind speed, cut-in speed, rated speed and cut-
out speed.

Wind speed probability distribution in this research is
modeled by Weibull probability function.
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where. £ is the shaping factor and # is the scaling factor. A set
of random numbers are generated following the Weibull
distribution for the operation scheduling horizon by MATLAB,
representing the power outputs of a wind farm in every
scheduling interval. Wind farm output power is taken as
negative load and used to mitigate the total power demand in
each scheduling interval. In reality, even in short-term
operation, wind speed still can’t be forecast very accurately, let
alone long-term wind speed forecast. Short-term operation
scheduling and the long-term generation planning will be
severely affected by the way in which the wind profile and the
load profile couples each other. For example, if the wind can
contribute more in peak load time, then system total fuel cost
and emission could be saved and in long-term view, additional
generation capacity expansion may be avoided. However, the
uncertainty analysis requires a big stochastic modeling effort.
This paper places its key focus on the mixed-integer nonlinear
modeling of generation mix optimization problem considering
short-run operational cost and emission. The uncertainty of
long-term wind and demand forecast is neglected in this paper
and will be considered in our later study.

III. METHODOLOGY

Notably, the model proposed is a mix-integer nonlinear
programming (MINLP) problem. It is hard to be solved
directly by a single optimization algorithm. This paper
proposes an innovative method to tackle the problem in two
stages. Dynamic programming solves the sub operational
model, while a heuristic gradient search for the capacity
expansion problem. The flow chart of the proposed
optimization process is shown in Fig.1. It first examines the
initial generation mix by conducting a UC for a horizon of T,
and checks whether the resultant emission meets the target or
not. If yes, that means the current generation mix can already
meet the emission target, otherwise, the optimization begins.

The relation of the cost and emission performance with a
generation mix can be represented as follows:

Ctotal:f(R’PZ’ """ ’Rz) (14)
Etotal:g(PI’])Z’ """ ’Pn) (15)

In order to speed up the search for optimal generation mix,
a new term named Emission Reduction Cost (ERC) is defined
to represent the ratio between the cost increase due to a
candidate generator introduction and the resultant emission
reduction, given by the following numerical differentiation:
sn, _ SB B B+ AR) = f(BL P, B) - (16)
g(R.P,... P, +AP,) - g(R,P,..... F)

C!o tal

ERC|,, =

total | AP,

The search is essentially based on gradient search using ERC
as the goodness index. Based on an initial generation mix,
assuming M units are added to form the final optimal mix,
which meets the emission target, the optimization will be
divided into M cycles. In each cycle, denoted by m, the
program will add one unit AP from each candidate generation

technology respectively to evaluate the ERCs under different
expanding strategies. The unit whose technology has the
lowest ERC will be chosen to add into the generation mix for
the m” cycle. The decision making for the next cycle, the
(m+1) ™ cycle, will be repeated based on the optimal mix
determined by the m™ cycle. The process will iterate M times
until no further optimal mix can be found.

Assess the intial
generation mix

Evaluate the ERC |
for each candidate
technology

Add on unit of the
technology with least
ERC to the mix

Iterate for
next cycle

Termination
condition check

Terminate

Trace back and
find the solution

Fig. 1. Flow chart of the generation mix optimization algorithm

[ fu(P + AP, P,.sP)~ f, (P Py P) ]
ERC,| . | | 2,(R+AR, P B) =2, (PuPos ) | (17)
ERCm AP, Afm(I)I’PZ +AP2""’ Rx)_.fmfl(})l’PZ""’ })n)
ERC, =" " 1= g, (P, P+ AP, P) =, (B Py P,)
ERC,| s | | fo(PiPyses P, + AP) = f, (P, Pyyve P,)
| 8, (P, Pyos P, +AP,) g, (P, P, ) |

The terminating criteria for the iteration are:In the m” cycle,
after evaluating the ERCs of N technologies, record the
candidate technologies which meet the emission target
into a set S. From the set, only the technology with the
least ERC is added into the generation mix, and move
on to the next cycle;

ii)In the final cycle, after evaluating the ERCs of N
technologies, if E/ from all N technologies are below
the emission target, terminate the iteration and trace
back to find the solution with the least Cyo; from the set
S.

It should be noted that ERCs for the same technology may
vary in different cycles. This is because generation mixes at
different cycles are different, resulting in different impacts on
the costs and emissions from the same technology intervention.

In operational sub-problem, (6) indicates the system
minimum spinning reserve requirement. Thus, before each
iteration, there is a conventional capacity margin check to see
is a new wind unit can be added into the mix. If, after the new
wind unit is added, the total conventional capacity can not
afford the peak demand plus the peak reserve requirement as
(18) indicates, the wind capacity expansion will be forgone for
this cycle.

Conventional Capacity <D ,,, + DSRx D

+ WSR(%RM) (18)

n=l

peak peak

IV. CASE STUDY

A case study is presented in this section to demonstrate the
application of the proposed model. Sensitivity analysis is
conducted to show the importance of considering short-term
emission cost in generation mix optimization. Comparative



study between optimizations with and without network
constraints is made to show the importance of considering
network constraints in a generation expansion study.

TABLE I
GENERATOR DATA PART 1
a b c (tgn/ % Cc
Technologies (£/(M (£/
£ MW | (ton £/MW
CCGT'1 0.024 6 300 | 0.38 | 0.03 483760
CCGT2 0.022 6.4 296 | 0.39 | 0.02 481880
COALl PF?1 0.032 4.06 630 | 0.84 | 0.03 1109175
COAI PF2 0.035 3.64 595 ] 0.82 | 0.04 1101075
IGCC31 0.014 4.06 756 0.6 | 0.02 1585200
IGCC2 0.017 3.78 777 | 0.62 | 0.01 1573200
OGCT*1 0.03 5 706 | 0.47 | 0.02 466580
OGCT2 0.034 4.6 720 | 0.45 | 0.04 465380
WIND1 0 0 0 0 0 885041
WIND2 0 0 0 0 0 886340
TABLE I
GENERATOR DATA PART 2
Technologies I;I;[:;Zrilf; Pmin Pmax | Bus I[r}iltlltasl
vwy | MW (MW) L No b alled
CCGT1 300 100 300 11 1
CCGT2 350 100 350 5 1
COAI PF1 300 100 600 2
COAI PF2 300 50 300 1
IGCCl1 200 80 400 19 2
IGCC2 250 10 250 14 1
OGCT1 100 20 200 8 2
OGCT2 150 50 300 13 2
WIND1 50 0 150 27 3
WIND2 40 0 200 24 5

A. Test input

An IEEE 30 bus test system was adopted in this research,
which is shown in Fig.2. There are comparative studies
subsequently between the cases of whether or not considering
network constraints. For the case of considering the network
constraints, the thermal ratings of all 41 transmission lines are
set to 100MW evenly. For the other case, the thermal ratings
are set to infinite. Of the 20 units connected to the grid, there
are 10 different generation technologies, of which 8
technologies are conventional fossil fuel fired power plants
with different performance on fuel cost, emission, and capital
cost, and the others are 2 different wind farms which have zero
fuel cost and emission output. The details of the 10 generation
technologies are given in Table I and Table II. The wind
turbines’ speed parameters are assumed to be the same, as v.; =
Sm/s, veoe=45m/s, and v,/=15m/s.. Since the turbines have been
connected to two different locations, the wind speed Weibull
distribution parameters for the two locations are differentiated.
They are # =10.2, k=1.5 for WINDI1, and #=8.6, k=1.5 for
WIND2. These parameters are set to give a capacity factor of

1 CCGT: combined cycle gas turbine generation technology
2 COAL PF: pulverized fuel coal fired generation technology
3 IGCC: integrated gasification combined cycle generation technology

4 OGCC: open cycle gas turbine generation technology

around 40% for WINDI and 30% for WIND2. The load
profile in this research is derived according to the IEEE
Reliability Test System 1996 with a total demand of annual
aggregated peak demand of 2830 MW scaled base on the
demand data provided in the IEEE 30 bus test system [24].
The hourly load is determined by the multiplication of annual
peak demand and the coefficients of weekly peak demand in
percentage of the annual peak, daily peak demand in
percentage of the week peak and hourly peak demand in
percentage of the daily peak. Although this model allows any
long planning horizon, in order to reduce the calculation
burden, this research only takes four days as the samples to
estimate the yearly total operation cost. The four days are the
first day of each season. The DSR and WSR are set to 5% and
80%, and the reserve price (RP) is assumed to be 5 £/MW/h. A
sensitive analysis is provided to investigate the impacts of
different emission prices (A) on the generation planning.

P clovenpaie
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A \\ Bdl
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=
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Fig.2. IEEE 30 bus test system [25]
TABLE III
EMISSION REDUCTION TARGET SCENARIOS

Reduction Reduction Target (ton)

percentage EP=5 EP=10 EP=20 EP=30
current 8.95E+06 8.85E+06 8.67E+06 8.51E+06
9.9% 8.06E+06 7.98E+06 7.81E+06 7.67TE+06
14.2% 7.68E+06 7.68E+06 7.44E+06 7.30E+06
18.5% 7.29E+06 7.29E+06 7.07E+06 6.93E+06
22.8% 6.91E+06 6.91E+06 6.69E+06 6.57E+06

B. Methodology implementation

The relationship between emission target and the

corresponding optimized generation mix and its year-round
performance in terms of total cost and emission is investigated.
Based on the emission of the current generation mix, 4
emission reduction targets are assumed for 4 different emission
prices in the current and target year. The 16 scenarios are
listed in Table III. Because the emission price can influence
the emission results, in order to illustrate the emission
reduction achieved entirely by restructuring the generation
mix, it is assumed that the target year and current year have
the same emission price for all scenarios. For the 16 scenarios,
16 optimal generation mixes have been found that meet the
different levels of emission target. The generation mixes under
various targets are shown in Fig.3 and the corresponding total



cost and emission for each optimized generation mix are listed

Optimized generation mixes with network constraints

EP=5 EP=10
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in Table IV and depicted in Fig.4.

Optimized generation mixes without network constraints
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6000 6000
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Fig.3. Optimized generation mixes under different emission target settings with and without network constraints

COST AND EMISSION RESULTS OF OPTIMIZATION WITH NETWORK CONSTRAINTS

7000

Generation Mix(MW)

TABLE IV

Cument 99% 14.2% 18.5% 228%Max326%
Emission Targets

7000

B000

5000

4000

3000

Generation Mix(MW)

2000

1000

Current 99% 14.2% 18.5% 228%Max355%
Emission Targets

Reduction Total cost (£) Total emission (ton)
percentage EP=5 EP=10 EP=20 EP=30 EP=5 EP=10 EP=20 EP=30
current 3.14E+09 3.19E+09 3.27E+09 3.36E+09 8.95E+06 8.85E+06 8.67E+06 8.51E+06
9.9% 3.76E+09 3.79E+09 3.69E+09 3.58E+09 8.04E+06 7.95E+06 7.77TE+06 7.65E+06
14.2% 3.93E+09 3.95E+09 3.90E+09 3.81E+09 7.66E+06 7.59E+06 7.39E+06 7.28E+06
18.5% 4.31E+09 4.27E+09 4.27E+09 4.03E+09 7.25E+06 7.16E+06 6.96E+06 6.92E+06
22.8% N/A N/A N/A 4.23E+09 N/A N/A N/A 6.52E+06
TABLE V
COST AND EMISSION RESULTS OF OPTIMIZATION WITHOUT NETWORK CONSTRAINTS
Reduction Total cost (£) Total emission (ton)
percentage EP=5 EP=10 EP=20 EP=30 EP=5 EP=10 EP=20 EP=30
current 3.14E+09 3.19E+09 3.27E+09 3.36E+09 8.95E+06 8.85E+06 8.67E+06 8.51E+06
9.9% 3.66E+09 3.67E+09 3.66E+09 3.51E+09 8.01E+06 7.89E+06 7.77E+06 7.64E+06
14.2% 3.88E+09 3.83E+09 3.84E+09 3.75E+09 7.63E+06 7.58E+06 7.32E+06 7.28E+06
18.5% 4.22E+09 4.17E+09 4.01E+09 4.00E+09 7.25E+06 7.16E+06 6.92E+06 6.92E+06
22.8% 4.42E+09 4.38E+09 4.28E+09 4.16E+09 6.87E+06 6.79E+06 6.64E+06 6.57E+06

In order to reflect the difference between optimizations with
and without considering network constraints, the same
evaluation has been made without considering the network
constraints and the resultant generation mixes are shown in
Fig.3 and the corresponding total cost and emission for each
optimized generation mix are listed in Table V and depicted in
Fig.5.

C. Results and discussion

The left-hand half of Fig.3 shows optimal generation mix
results under 16 scenarios considering the network constraints.
There are 4 stack bar charts categorized by the four different
emission prices, 5, 10, 20 and 30. Each bar chart has 5 to 6
stack bars. The first and last bars are the initial generation mix
and the optimal generation mix which can realize the
maximum emission reduction target respectively. Each stack
bar has 10 components, representing the capacities of the 10
generation technologies in the generation mix. It can be seen
that for the same reduction target, the resulting optimal

generation mixes are different with different emission prices.
Moreover, if emission prices in target year are £5/ton, £10/ton
and £20/ton, there will be no generation mixes which can meet
the 22.8% reduction target. Additionally, the maximum
reduction that could be achieved by restructuring the
generation mix increases with the rise of emission price. For
example, when the emission price is set at £5/ton, the
maximum emission reduction is around 20.0%, but when the
emission price rises to £30/ton, the maximum emission
reduction can reach 27.1%. Therefore, there is a reduction
limitation. Finally, it is important to note that the least cost to
meet the more stringent emission target can only be achieved
by a combination of long-term generation expansion and short-
term emission control, as shown by the italic cost figures in
Table IV.

The same calculation has been made without considering
network constraints. The generation mix optimization results
are shown in the right-hand half of Fig.3 and the
corresponding cost and emission results are listed in Table V.



It can be seen that after removing these constraints, the 22.8%
reduction target can be realized even for those modest
emission prices, £5/ton, £10/ton and £20/ton, which previously
are not able to achieve the targets. Besides, the maximum
reduction could be achieved rises to 27%, 28.3%, 32.6% and
35.5% for the emission price equal to £5/ton, £10/ton, £20/ton
and £30/ton respectively. Compared to the situation with those
constraints, the optimization without them can reduce more
emission.

It can be seen from Fig.3 that in both cases with and
without network constraints, total installed capacity always
increases with rising emission reduction target, although the
system total demand stays the same. This is because in order to
realize more stringent emission targets, more wind capacity
will be expanded. An increase in the clean wind capacity will
require an increase of conventional generation capacity to
provide the security backups. The ratio of the two is
constrained by Equation (18).

Effect of network constraints

From Table IV-V, and Fig 4-5, it can be found that in order
to reach the same emission reduction target, the optimization
with network constraints always realizes the target at higher or
equal total cost compared to the one without network
constraints. Besides, the optimization with network constraints
can not reach 22.8% emission reduction target when emission
price is set to £5/ton, £10/ton, and £20/ton, while it can be
reached in the same cases of the optimization without network
constraints. The cost differences in percentage between the
optimization with and without network constraints are listed in
Table VI. The differences vary from 0.74% to 6.09%, while
the biggest difference is the optimization with constraints
which could not achieve the 22.8% reduction target when
emission price is equal to £5/ton, £10/ton, and £20/ton. This
shows the importance of taking network constraints into
account to avoid underestimating the cost for generation
investment.

Effect of emission price

From Fig.4-5, it can be observed clearly that with emission
target becoming stricter, the total emission drops almost at the
same rate for different emission price cases, while the total
cost is rising at different rates of change. Generally for the
same emission reduction target, a higher emission price can
help find the optimal mix to meet the target at a lower total
cost. This is because a higher emission price can make the
clean technologies more cost efficient during the expansion
process. It can avoid the capacity expansion from the
technologies that are less clean but expensive. Thus, the large
capital cost could be saved. This shows the importance of
considering the short-term financial pressure at the generation
expansion planning.

Emission reduction limit

For a fixed amount of demand, the system’s total emission
can not be reduced as much as desired merely by increasing
the clean units’ penetration. It has a reduction limit. If the

network constraints are considered, the limit will be much
tighter. That is because although the wind energy is modeled
as a zero emission generation source, the rise of wind energy
penetration has to rely on an increase of conventional
generation capacity to provide sufficient spinning reserve to
compensate the intermittency. Meanwhile, the conventional
power plants are constrained to run at a minimum power
output once they are started up for providing the spinning
reserve. Their minimum power output causes a certain amount
of emission which is the aforementioned emission reduction
limit. Only when the technologies are improved to diminish the
constraints of the current generation and operation
technologies, could the emission be further reduced.
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TABLE VI
COST DIFFERENCE BETWEEN OPTIMIZATIONS WITH AND WITHOUT NETWORK
COSNTRAINTS

Reduction Total cost difference (£)

percentage EP=5 EP=10 EP=20 EP=30
9.90% 2.66% 3.17% 0.81% 1.96%
14.20% 1.27% 3.04% 1.54% 1.57%
18.50% 2.09% 2.34% 6.09% 0.74%
22.80% N/A N/A N/A 1.65%

The case study has presented the application of this model
under 16 different scenarios with different emission reduction
targets ranging from 9.9% to 22.8% combined with different
emission charge prices ranging from 5 £/ton to 30£/ton. It can
be found that a more stringent emission target can be achieved
more economically by a combination of long-run generation
expansion and short-run emission control. The results also
indicate a higher emission price can help find the optimal mix
to meet the target at a lower total cost. They show the
importance of including the emission financial pressure when
optimizing the generation investment. Optimizations are



conducted both with and without network constraints under the
16 scenarios. The comparison between the two optimizations
indicates in order to reach the same emission reduction target,
the optimization with network constraints always realizes the
target at higher or equal total cost compared to the
optimization without network constraints. The final cost
differences between the two cases vary from 0.74% to 6.09%.
It shows the importance of taking network constraints into
account in generation planning to avoid underestimating the
cost. Besides, ignoring network constraints will make the
realization of emission targets more possible than it should be.
It is also found that the system total emission can not be
reduced as much as expected by merely increasing the clean
units’ penetration. It is due to the necessity of increasing
conventional generation capacity to compensate the rise of the
wind generation penetration and the minimum output
constraints of the conventional power plants.

V. CONCLUSIONS

This paper proposes a new generation expansion planning
model, which takes account of the emission cost in operational
level and explores its impacts on the long-term emission target
oriented generation planning. Meanwhile, the model proposed
in this paper takes into account the integer variables and
nonlinearity of the operational cost with network constraints
and renewable generation expansion together in a single
generation planning model. The new concept Emission
Reduction Cost is introduced in the generation expansion
phase, which acts as a goodness index to select the most cost
effective generation technologies to be expanded. The case
study explores the impacts of the short-term emission cost on
long-term generation planning. It also demonstrates the
importance of including network constraints in the generation
planning. Overall, this paper presents a centralized assessment
model to find the most economical generation mix pattern in
order to meet a predefined emission target, which can assist
policy makers in devising the emission reduction target and
estimating the related cost.
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