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 

Abstract--This paper proposes an enhanced optimization 

formulation to help determine the type of power generation mix 

that can meet a given carbon emission target at the minimum cost. 

Compared to the previous studies, the model proposed in this 

paper takes account of the emission cost at operational level and 

explores its impacts on the long-term emission target oriented 

generation planning innovatively. Meanwhile, the model is able to 

take account of the integer variables and nonlinearity of the 

operational cost together with network constraints and renewable 

generation expansion in one long-term generation planning 

model. The problem is solved by an innovative discrete gradient 

search method, and a new concept, Emission Reduction Cost 

(ERC) is developed, which helps determine which generation 

technology is the most cost efficient in emission reduction during 

different stages of generation expansion. A case study on a 

modified IEEE 30 bus system is presented to demonstrate the 

application of this model and the value of considering short-term 

emission costs and the network constraints on the long-term 

generation expansion. The results and sensitivity analysis are 

provided to show that a higher short-term financial pressure can 

help realize the emission target at a lower total cost (investment 

and operational costs). Optimization without considering it may 

overestimate the total cost required for the generation mix 

restructuring. Additionally, a comparative study shows that 

optimization without considering network constraints may 

underestimate the total cost required for realizing the specified 

emission reduction target. 

 

Index Terms--Emission target, Generation mix, Emission 

cost, Network constraints, Renewable generation. 

I.  INTRODUCTION 

any countries have announced ambitious carbon 

emission control targets. For example, the UK has 

committed to reduce its carbon emission by 80% by 2050, 

relative to 1990 levels. The power industry, the biggest carbon 

emitter among all industrial sectors, has to take the largest 

decarbonization responsibility. Hence, the ambitious long-term 

emission reduction target tends to drive the power system to 

restructure itself radically; for example, a large share of clean 

and renewable generation technologies will penetrate into the 

generation mix and investment will be required for this 

evolution.  
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 Having a comprehensive optimized generation mix as a 

reference would assist the policy makers in setting the 

emission reduction target and estimating its total cost.  

A number of previous works have been carried out on the 

optimal generation mix problem to meet forecasted load 

growth. Morris innovatively employed a dynamic 

programming model for solving the generation mix problem 

[1]. Masse and Gibrat applied the linear programming (LP) to 

the generation investment optimization problem [2]. In [3], 

three different decomposition approaches were compared to 

tackle the generation planning problem considering the 

demand uncertainty. More uncertain factors, such as renewable 

generation intermittency, regulatory policy uncertainties and 

fuel price volatility were considered in [4].  In [5], the authors 

proposed a generation expansion planning model in 

deregulated environment, which was to maximize the payoff of 

the privatized generation companies. A generation mix 

optimization model considering the short-term demand side 

response was proposed in [6]. Bloom applied Benders’ 

decomposition approach to dividing the generation expansion 

problem into  master capacity optimization problem and sub 

operation and reliability optimization problem [7, 8]. However, 

these researches oversimplified the operational modeling: 

integer variable related costs and constraints were neglected, 

such as unit start-up cost, and minimum up time. Kamalinia 

proposed a security-constrained stochastic generation 

expansion model, considering the uncertainties of system 

component outage and forecast errors of wind and load [9]. 

The integer variables are both considered in expansion 

problem and operational problem by Benders decomposition 

approach in this paper. However, this paper assumed wind 

generation integration was given; only fast-response unit’s 

expansion was planned. Besides, the operational cost was 

simplified to a linear one in the paper. These simplifications 

cannot better differentiate the performance (cost and flexibility) 

of different generation technologies. Additionally, these 

researches consider neither the system network constraints nor 

an interface for renewable generation planning. Therefore, 

these simplifications may bias the generation planning results. 

Besides, all the aforementioned studies did not consider the 

emission problem. 

 Since Gent and Lamont [10] did the early research on 

minimum emission dispatch, the optimization of the emission 

reduction has been considered more and more by successive 

researchers, but they mainly concentrated on the area of short-

term power generation operation [11-14]. Some recent works 
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have been carried out in the area of emission constrained 

generation expansion planning. A new efficient GA-Bender’s 

approach, solving the power generation expansion planning 

problems with emission constraints, was given in [15]. 

However, the operational problem was still modeled in the 

aforementioned simplified manner and did not consider 

renewable generation and network constraints in the 

optimization. In [16], the author proposed a low carbon power 

generation expansion model, which integrates a comprehensive 

set of low carbon factors. However, the whole problem was 

only formulated as a linear programming model. The integer 

characteristic of generation capacity was even ignored. The 

simplified linear programming model is also applied to [17, 

18]. Both [15] and [16] did not explore the impacts of the  

short-term emission cost on the long-term optimal generation 

mix. Doherty made a trend analysis of the generation portfolio 

in Ireland, considering the impact of emission costs to the 

optimal generation investment portfolios [17, 18]. 

Unfortunately, the study only formulated the emission cost in 

the objective function without setting an emission target as a 

constraint.  

In summary, most of the previous researches on optimal 

generation mix planning have one or more of the following 

limitations: 

i) Integer variable cost and the nonlinearity of the 

operational level are neglected [3-6, 14-19]. Discrete 

characteristic of generation unit size in the investment 

level is ignored as well [16-18].  

ii) There is only limited discussion of the impact of short-

term emission cost on the long-term investment cost [17, 

18].  

iii) Network constraints and renewable generation expansion 

are seldom considered in the emission target oriented 

generation planning [15-18].  

This model attempts to determine the required generation mix 

which can meet a predefined emission target for a given power 

network at a minimum societal cost, overcoming the 

aforementioned limitations. The contribution of this paper is 

that the proposed model can take account of the emission cost 

in operational level and reveal its impact on the long-term 

emission target oriented generation planning. Meanwhile, the 

model proposed in this paper takes into account the integer 

variables and the nonlinearity of operational cost with network 

constraints and renewable generation expansion together into 

one long-term generation planning model. 

The model proposed in this paper is a centralized 

generation planning model. It aims to provide a low carbon 

generation mix assessment tool for policy makers when 

devising emission reduction targets and estimating the related 

cost. The government or other related authorities can use this 

assessment model to ensure long-term emission target could be 

achieved at a minimum societal cost. Since this formulation 

has a large problem size, due to taking into account detailed 

operational modeling, such as unit commitment and network 

constraints, an innovative index, emission reduction cost 

(ERC) has been developed to speed up the process of 

searching for the optimal generation technology. A case study 

based on modified IEEE 30 bus test system is provided to 

verify the effectiveness of this formulation. Optimization 

results show the total cost variation with different emission 

prices and targets. A comparative study has been made 

between optimizations with and without network constraints to 

indicate the importance of network constraints in a generation 

expansion study.  

The rest of the paper is organized as follows: Section II 

gives the problem formulation; the solution method is 

presented in Section III; Section IV provides a case study to 

verify the effectiveness of the solution method; conclusions are 

drawn in Section V. 

II.  PROBLEM FORMULATION 

The developed model takes the emission target settings, 

current generation mix, network data and load profiles in the 

target year as inputs. It considers typical thermal generation 

units and renewable wind units, and provides the optimized 

generation mix and the total cost and emission under this mix 

as outputs. The formulation follows the way that, based on an 

initial generation mix, the candidate generators will be added 

into the mix stage by stage in a trial way. The selection of the 

candidate generator at a stage is based on the cost efficiency 

for emission reduction at that stage.   

A.  Operational sub problem 

In order to assess the performance of a potential generation 

mix after introducing a candidate generator in terms of cost 

and carbon emission, the operational sub problem is modeled 

first. The operational sub-problem includes two important 

parts, unit commitment (UC) and economic dispatch (ED). UC 

determines the optimal unit combination transition path from 

one scheduling block to the next, while ED determines the 

optimal power output for each committed unit in each 

scheduling block. 

1. Load dispatch optimization 

In this research, a quadratic fuel cost function is used to 

better reflect the real characteristic of a generator unit. For a 

system with N generation units at a time horizon of T, the fuel 

cost (FCi(Pit)) of unit i at interval t is:  

iitiitiiti cPbPaPFC  2)(      (1) 

where, i is the generation unit index, t is the scheduling time 

interval index and Pit is power output of unit i at interval t. ai, 

bi and ci are the fuel cost function coefficients of unit i. 

The carbon emission (Ei) of unit i at interval t is modeled 

linearly by: 

iitiiti PPE  )(         (2) 

where, βi and γi are the emission function coefficients of unit i. 

In order to take the financial pressure of emission into 

account in the power dispatch [20], the emission is monetized 

and incorporated with the fuel cost by a weighting factor λ. 

The objective of the ED is to minimize the summation of fuel 

cost and weighted emission cost (SCt):   
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TtBbLimLLim bbtb  ,        (8) 

where, the weighting factor λ is the emission penalty factor, 

reflecting the extent of impact on the power production cost 

from units’ carbon emissions. In practice, its forms can be 

emission trading price or emission tax depending on which 

economic scheme is implemented for emission control. In this 

study, emission price (EP) is uniformly used to call the factor λ 

in the rest of this paper. A higher emission price will exert 

larger pressure to emission reduction during the dispatch, and 

therefore power is more likely to be dispatched from clean but 

expensive units, vice versa. Pimin and Pimax are the minimum 

and maximum power output of unit i. Dt is the system total 

demand at the interval t. srit is the spinning reserve provided by 

unit i at interval t, while SRt is the system spinning reserve 

requirement at interval t. SRt at each interval is determined by 

two parts. DSR is a coefficient determining system spinning 

reserve requirement due to demand forecasting errors. WSR is 

a coefficient determining the spinning reserve requirement due 

to the wind power intermittency. NW is the number of the wind 

farms, and Pwn is the notional installed capacity of wind farm n 

[19]. Lbt is the power flow of line b at time t and Limb is the 

line flow limit of the line b. 

The ED problem is solved by Lambda-Iteration method 

which is also known as Lagrange multiplier method [21, 22]. 

For dispatch result in each interval, there is an interface to 

conduct line flow overloading check by load flow calculation 

to determine if the dispatch results are static operational. 

2. Unit commitment optimization 

ED handles the nonlinear fuel cost, while the integer 

variable cost and constraints such as the unit’s start-up cost, 

shut-down cost, unit’s, minimum up time (MUT), minimum 

down time (MDT) and ramping rate will be dealt in UC. 

Dynamic programming algorithm is adopted to solve the UC 

optimization in this research. The UC optimization aims to 

minimize the aggregated operational cost (Ca) through the 

whole UC horizon T. 


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where, STit is start-up cost of unit i, SDit is shut-down cost of 

unit i, MCit is maintenance cost of unit i. 

B.  Generation mix optimization 

The operational sub-problem in Section A essentially acts 

as an performance evaluator for a given generation mix, 

network data and load profile, evaluating the total generation 

costs and emissions for a desired time period. 

In order to restructure the generation mix, the capacities of 

some generation technologies will be expanded or contracted. 

So, the investment cost Cc for power plant is included in the 

total cost Ctotal. Since the wind generation expansion is 

considered in this research, a high level of wind power 

penetration will decrease the reliability of power supply, and 

loss of load probability will increase, which leads to societal 

cost. This form of cost is taken into account through 

augmentation of spinning reserve requirements. The parameter, 

reserve price (RP) represents the price per MW spinning 

reserve capacity from the conventional generation plants. For a 

simplification, the reserve price is assumed to be equal for 

different conventional generation technologies.  Therefore, the 

optimization objective is extended as well:  

(10)min
1 1


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itcatotal srRPCCC  

etT

N

i
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        (11) 

where, Etarget is emission limit in the target year.  

In order to reduce the calculation burden and focus on the 

main problem, the following assumptions are made:  

i) The load in the target year is assumed to be well 

forecasted. Since the electricity load growth in a long 

term is hard to be accurately forecasted, it deserves 

another big research based on stochastic analysis.  

ii) The network topology in the target year is the same as 

those given in the initial state. 

iii) The newly added plants are assumed to be connected to 

the node where the units of the same technology are 

located initially. 

iv) No unit is retired from the initial generation mix in the 

target year. Because: 1) the proposed model is static, 

and therefore the dynamic process is neglected; 

2)conventional generation capacity has to be expanded 

accordingly to provide backup for increased wind 

capacity. It offsets some units’ retirement. 

C.  Wind power modeling 

In this paper, the wind generation technology is used to 

stand for the renewable generation. The power output of a 

wind turbine can be described by (12) [19, 23]: 
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where, Pw is the instantaneous output of a wind turbine; Pwr is 

the rated power output of a wind turbine. vw, vci, vr and vco are 

instantaneous wind speed, cut-in speed, rated speed and cut-

out speed.  

Wind speed probability distribution in this research is 

modeled by Weibull probability function. 
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where. k is the shaping factor and η is the scaling factor. A set 

of random numbers are generated following the Weibull 

distribution for the operation scheduling horizon by MATLAB, 

representing the power outputs of a wind farm in every 

scheduling interval. Wind farm output power is taken as 

negative load and used to mitigate the total power demand in 

each scheduling interval. In reality, even in short-term 

operation, wind speed still can’t be forecast very accurately, let 

alone long-term wind speed forecast. Short-term operation 

scheduling and the long-term generation planning will be 

severely affected by the way in which the wind profile and the 

load profile couples each other. For example, if the wind can 

contribute more in peak load time, then system total fuel cost 

and emission could be saved and in long-term view, additional 

generation capacity expansion may be avoided. However, the 

uncertainty analysis requires a big stochastic modeling effort. 

This paper places its key focus on the mixed-integer nonlinear 

modeling of generation mix optimization problem considering 

short-run operational cost and emission. The uncertainty of 

long-term wind and demand forecast is neglected in this paper 

and will be considered in our later study. 

III.  METHODOLOGY 

Notably, the model proposed is a mix-integer nonlinear 

programming (MINLP) problem. It is hard to be solved 

directly by a single optimization algorithm. This paper 

proposes an innovative method to tackle the problem in two 

stages. Dynamic programming solves the sub operational 

model, while a heuristic gradient search for the capacity 

expansion problem. The flow chart of the proposed 

optimization process is shown in Fig.1. It first examines the 

initial generation mix by conducting a UC for a horizon of T, 

and checks whether the resultant emission meets the target or 

not. If yes, that means the current generation mix can already 

meet the emission target, otherwise, the optimization begins. 

The relation of the cost and emission performance with a 

generation mix can be represented as follows: 

),......,,( 21 ntotal PPPfC           (14) 

),......,,( 21 ntotal PPPgE           (15) 

In order to speed up the search for optimal generation mix, 

a new term named Emission Reduction Cost (ERC) is defined 

to represent the ratio between the cost increase due to a 

candidate generator introduction and the resultant emission 

reduction, given by the following numerical differentiation: 
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 (16) 

The search is essentially based on gradient search using ERC 

as the goodness index. Based on an initial generation mix, 

assuming M units are added to form the final optimal mix, 

which meets the emission target, the optimization will be 

divided into M cycles. In each cycle, denoted by m, the 

program will add one unit ∆P from each candidate generation 

technology respectively to evaluate the ERCs under different 

expanding strategies. The unit whose technology has the 

lowest ERC will be chosen to add into the generation mix for 

the mth cycle. The decision making for the next cycle, the 

(m+1) th cycle, will be repeated based on the optimal mix 

determined by the mth cycle. The process will iterate M times 

until no further optimal mix can be found.   

 
Fig. 1. Flow chart of the generation mix optimization algorithm 
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The terminating criteria for the iteration are:In the mth cycle, 

after evaluating the ERCs of N technologies, record the 

candidate technologies which meet the emission target 

into a set S. From the set, only the technology with the 

least ERC is added into the generation mix, and move 

on to the next cycle; 

ii) In the final cycle, after evaluating the ERCs of N 

technologies, if Etotal from all N technologies are below 

the emission target, terminate the iteration and trace 

back to find the solution with the least Ctotal from the set 

S. 

It should be noted that ERCs for the same technology may 

vary in different cycles. This is because generation mixes at 

different cycles are different, resulting in different impacts on 

the costs and emissions from the same technology intervention. 

In operational sub-problem, (6) indicates the system 

minimum spinning reserve requirement. Thus, before each 

iteration, there is a conventional capacity margin check to see 

is a new wind unit can be added into the mix. If, after the new 

wind unit is added, the total conventional capacity can not 

afford the peak demand plus the peak reserve requirement as 

(18) indicates, the wind capacity expansion will be forgone for 

this cycle. 

)(
1





NW

n

wnpeakpeak PWSRDDSRDCapacityalConvention   (18) 

IV.  CASE STUDY 

A case study is presented in this section to demonstrate the 

application of the proposed model. Sensitivity analysis is 

conducted to show the importance of considering short-term 

emission cost in generation mix optimization. Comparative 
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study between optimizations with and without network 

constraints is made to show the importance of considering 

network constraints in a generation expansion study. 
TABLE I 

GENERATOR DATA PART 1 

Technologies 

a 

(£/(M

W)2) 

b 

(£/ 

MW) 

c 

(£) 

β 

(ton/

MW

) 

γ 

(ton) 

Cc 

(£/MW) 

CCGT11 0.024 6 300 0.38 0.03 483760 

CCGT2 0.022 6.4 296 0.39 0.02 481880 

COAl PF21 0.032 4.06 630 0.84 0.03 1109175 

COAl PF2 0.035 3.64 595 0.82 0.04 1101075 

IGCC31 0.014 4.06 756 0.6 0.02 1585200 

IGCC2 0.017 3.78 777 0.62 0.01 1573200 

OGCT41 0.03 5 706 0.47 0.02 466580 

OGCT2 0.034 4.6 720 0.45 0.04 465380 

WIND1 0 0 0 0 0 885041 

WIND2 0 0 0 0 0 886340 

 

TABLE II  

GENERATOR DATA PART 2 

Technologies 

Notional 

capacity 

(MW) 

Pmin 

(MW) 

Pmax 

(MW) 

Bus 

No. 

Initial 

Units 

installed 

CCGT1 300 100 300 11 1 

CCGT2 350 100 350 5 1 

COAl PF1 300 100 600 2 2 

COAl PF2 300 50 300 1 1 

IGCC1 200 80 400 19 2 

IGCC2 250 10 250 14 1 

OGCT1 100 20 200 8 2 

OGCT2 150 50 300 13 2 

WIND1 50 0 150 27 3 

WIND2 40 0 200 24 5 

A.  Test input 

An IEEE 30 bus test system was adopted in this research, 

which is shown in Fig.2. There are comparative studies 

subsequently between the cases of whether or not considering 

network constraints. For the case of considering the network 

constraints, the thermal ratings of all 41 transmission lines are 

set to 100MW evenly. For the other case, the thermal ratings 

are set to infinite. Of the 20 units connected to the grid, there 

are 10 different generation technologies, of which 8 

technologies are conventional fossil fuel fired power plants 

with different performance on fuel cost, emission, and capital 

cost, and the others are 2 different wind farms which have zero 

fuel cost and emission output. The details of the 10 generation 

technologies are given in Table I and Table II. The wind 

turbines’ speed parameters are assumed to be the same, as vci = 

5m/s, vco=45m/s, and vr=15m/s.. Since the turbines have been 

connected to two different locations, the wind speed Weibull 

distribution parameters for the two locations are differentiated.  

They are η =10.2, k=1.5 for WIND1, and η=8.6, k=1.5 for 

WIND2. These parameters are set to give a capacity factor of 

                                                           
1 CCGT: combined cycle gas turbine generation technology   

2 COAL PF: pulverized fuel coal fired generation technology 

3 IGCC: integrated gasification combined cycle generation technology 
4 OGCC: open cycle gas turbine generation technology 

around 40% for WIND1 and 30% for WIND2. The load 

profile in this research is derived according to the IEEE 

Reliability Test System 1996 with a total demand of annual 

aggregated peak demand of 2830 MW scaled base on the 

demand data provided in the IEEE 30 bus test system [24]. 

The hourly load is determined by the multiplication of annual 

peak demand and the coefficients of weekly peak demand in 

percentage of the annual peak, daily peak demand in 

percentage of the week peak and hourly peak demand in 

percentage of the daily peak. Although this model allows any 

long planning horizon, in order to reduce the calculation 

burden, this research only takes four days as the samples to 

estimate the yearly total operation cost. The four days are the 

first day of each season. The DSR and WSR are set to 5% and 

80%, and the reserve price (RP) is assumed to be 5 £/MW/h. A 

sensitive analysis is provided to investigate the impacts of 

different emission prices (λ) on the generation planning. 

 

  
Fig.2.  IEEE 30 bus test system [25] 

TABLE III 

EMISSION  REDUCTION TARGET SCENARIOS 

Reduction 

percentage 

Reduction Target (ton) 

EP=5 EP=10 EP=20 EP=30 

current 8.95E+06 8.85E+06 8.67E+06 8.51E+06 

9.9% 8.06E+06 7.98E+06 7.81E+06 7.67E+06 

14.2% 7.68E+06 7.68E+06 7.44E+06 7.30E+06 

18.5% 7.29E+06 7.29E+06 7.07E+06 6.93E+06 

22.8% 6.91E+06 6.91E+06 6.69E+06 6.57E+06 

B.  Methodology implementation 

The relationship between emission target and the 

corresponding optimized generation mix and its year-round 

performance in terms of total cost and emission is investigated. 

Based on the emission of the current generation mix, 4 

emission reduction targets are assumed for 4 different emission 

prices in the current and target year. The 16 scenarios are 

listed in Table III. Because the emission price can influence 

the emission results, in order to illustrate the emission 

reduction achieved entirely by restructuring the generation 

mix,   it is assumed that the target year and current year have 

the same emission price for all scenarios. For the 16 scenarios, 

16 optimal generation mixes have been found that meet the 

different levels of emission target. The generation mixes under 

various targets are shown in Fig.3 and the corresponding total 
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cost and emission for each optimized generation mix are listed in Table IV and depicted in Fig.4. 

 
Fig.3. Optimized generation mixes under different emission target settings with and without network constraints 

 

TABLE IV 

COST AND EMISSION RESULTS OF OPTIMIZATION WITH NETWORK CONSTRAINTS 

Reduction 

percentage 

Total cost (£) Total emission (ton) 

EP=5 EP=10 EP=20 EP=30 EP=5 EP=10 EP=20 EP=30 

current 3.14E+09 3.19E+09 3.27E+09 3.36E+09 8.95E+06 8.85E+06 8.67E+06 8.51E+06 

9.9% 3.76E+09 3.79E+09 3.69E+09 3.58E+09 8.04E+06 7.95E+06 7.77E+06 7.65E+06 

14.2% 3.93E+09 3.95E+09 3.90E+09 3.81E+09 7.66E+06 7.59E+06 7.39E+06 7.28E+06 

18.5% 4.31E+09 4.27E+09 4.27E+09 4.03E+09 7.25E+06 7.16E+06 6.96E+06 6.92E+06 

22.8% N/A N/A N/A 4.23E+09 N/A N/A N/A 6.52E+06 

 

TABLE V 

COST AND EMISSION RESULTS OF OPTIMIZATION WITHOUT NETWORK CONSTRAINTS 

Reduction 

percentage 

Total cost (£) Total emission (ton) 

EP=5 EP=10 EP=20 EP=30 EP=5 EP=10 EP=20 EP=30 

current 3.14E+09 3.19E+09 3.27E+09 3.36E+09 8.95E+06 8.85E+06 8.67E+06 8.51E+06 

9.9% 3.66E+09 3.67E+09 3.66E+09 3.51E+09 8.01E+06 7.89E+06 7.77E+06 7.64E+06 

14.2% 3.88E+09 3.83E+09 3.84E+09 3.75E+09 7.63E+06 7.58E+06 7.32E+06 7.28E+06 

18.5% 4.22E+09 4.17E+09 4.01E+09 4.00E+09 7.25E+06 7.16E+06 6.92E+06 6.92E+06 

22.8% 4.42E+09 4.38E+09 4.28E+09 4.16E+09 6.87E+06 6.79E+06 6.64E+06 6.57E+06 

In order to reflect the difference between optimizations with 

and without considering network constraints, the same 

evaluation has been made without considering the network 

constraints and the resultant generation mixes are shown in 

Fig.3 and the corresponding total cost and emission for each 

optimized generation mix are listed in Table V and depicted in 

Fig.5. 

C.  Results and discussion 

The left-hand half of Fig.3 shows optimal generation mix 

results under 16 scenarios considering the network constraints. 

There are 4 stack bar charts categorized by the four different 

emission prices, 5, 10, 20 and 30. Each bar chart has 5 to 6 

stack bars. The first and last bars are the initial generation mix 

and the optimal generation mix which can realize the 

maximum emission reduction target respectively. Each stack 

bar has 10 components, representing the capacities of the 10 

generation technologies in the generation mix. It can be seen 

that for the same reduction target, the resulting optimal 

generation mixes are different with different emission prices. 

Moreover, if emission prices in target year are £5/ton, £10/ton 

and £20/ton, there will be no generation mixes which can meet 

the 22.8% reduction target. Additionally, the maximum 

reduction that could be achieved by restructuring the 

generation mix increases with the rise of emission price. For 

example, when the emission price is set at £5/ton, the 

maximum emission reduction is around 20.0%, but when the 

emission price rises to £30/ton, the maximum emission 

reduction can reach 27.1%. Therefore, there is a reduction 

limitation. Finally, it is important to note that the least cost to 

meet the more stringent emission target can only be achieved 

by a combination of long-term generation expansion and short-

term emission control, as shown by the italic cost figures in 

Table IV. 

The same calculation has been made without considering 

network constraints. The generation mix optimization results 

are shown in the right-hand half of Fig.3 and the 

corresponding cost and emission results are listed in Table V. 
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It can be seen that after removing these constraints, the 22.8% 

reduction target can be realized even for those modest 

emission prices, £5/ton, £10/ton and £20/ton, which previously 

are not able to achieve the targets. Besides, the maximum 

reduction could be achieved rises to 27%, 28.3%, 32.6% and 

35.5% for the emission price equal to £5/ton, £10/ton, £20/ton 

and £30/ton respectively. Compared to the situation with those 

constraints, the optimization without them can reduce more 

emission.  

It can be seen from Fig.3 that in both cases with and 

without network constraints, total installed capacity always 

increases with rising emission reduction target, although the 

system total demand stays the same. This is because in order to 

realize more stringent emission targets, more wind capacity 

will be expanded. An increase in the clean wind capacity will 

require an increase of conventional generation capacity to 

provide the security backups. The ratio of the two is 

constrained by Equation (18). 

Effect of network constraints 

From Table IV-V, and Fig 4-5, it can be found that in order 

to reach the same emission reduction target, the optimization 

with network constraints always realizes the target at higher or 

equal total cost compared to the one without network 

constraints. Besides, the optimization with network constraints 

can not reach 22.8% emission reduction target when emission 

price is set to £5/ton, £10/ton, and £20/ton, while it can be 

reached in the same cases of the optimization without network 

constraints. The cost differences in percentage between the 

optimization with and without network constraints are listed in 

Table VI. The differences vary from 0.74% to 6.09%, while 

the biggest difference is the optimization with constraints 

which could not achieve the 22.8% reduction target when 

emission price is equal to £5/ton, £10/ton, and £20/ton. This 

shows the importance of taking network constraints into 

account to avoid underestimating the cost for generation 

investment. 

Effect of emission price 

From Fig.4-5, it can be observed clearly that with emission 

target becoming stricter, the total emission drops almost at the 

same rate for different emission price cases, while the total 

cost is rising at different rates of change. Generally for the 

same emission reduction target, a higher emission price can 

help find the optimal mix to meet the target at a lower total 

cost. This is because a higher emission price can make the 

clean technologies more cost efficient during the expansion 

process. It can avoid the capacity expansion from the 

technologies that are less clean but expensive. Thus, the large 

capital cost could be saved. This shows the importance of 

considering the short-term financial pressure at the generation 

expansion planning. 

Emission reduction limit 

For a fixed amount of demand, the system’s total emission 

can not be reduced as much as desired merely by increasing 

the clean units’ penetration. It has a reduction limit. If the 

network constraints are considered, the limit will be much 

tighter. That is because although the wind energy is modeled 

as a zero emission generation source, the rise of wind energy 

penetration has to rely on an increase of conventional 

generation capacity to provide sufficient spinning reserve to 

compensate the intermittency. Meanwhile, the conventional 

power plants are constrained to run at a minimum power 

output once they are started up for providing the spinning 

reserve.  Their minimum power output causes a certain amount 

of emission which is the aforementioned emission reduction 

limit. Only when the technologies are improved to diminish the 

constraints of the current generation and operation 

technologies, could the emission be further reduced. 
  

 
Fig.4. Cost and emission results with network constraints 

 

 
Fig.5. Cost and emission results without network constraints 

 

TABLE VI 

COST DIFFERENCE BETWEEN OPTIMIZATIONS WITH AND WITHOUT NETWORK 

COSNTRAINTS 

Reduction 

percentage 

Total cost difference (£) 

EP=5 EP=10 EP=20 EP=30 

9.90% 2.66% 3.17% 0.81% 1.96% 

14.20% 1.27% 3.04% 1.54% 1.57% 

18.50% 2.09% 2.34% 6.09% 0.74% 

22.80% N/A N/A N/A 1.65% 

 

The case study has presented the application of this model 

under 16 different scenarios with different emission reduction 

targets ranging from 9.9% to 22.8% combined with different 

emission charge prices ranging from 5 £/ton to 30£/ton. It can 

be found that a more stringent emission target can be achieved 

more economically by a combination of long-run generation 

expansion and short-run emission control. The results also 

indicate a higher emission price can help find the optimal mix 

to meet the target at a lower total cost. They show the 

importance of including the emission financial pressure when 

optimizing the generation investment. Optimizations are 
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conducted both with and without network constraints under the 

16 scenarios. The comparison between the two optimizations 

indicates in order to reach the same emission reduction target, 

the optimization with network constraints always realizes the 

target at higher or equal total cost compared to the 

optimization without network constraints. The final cost 

differences between the two cases vary from 0.74% to 6.09%. 

It shows the importance of taking network constraints into 

account in generation planning to avoid underestimating the 

cost. Besides, ignoring network constraints will make the 

realization of emission targets more possible than it should be. 

It is also found that the system total emission can not be 

reduced as much as expected by merely increasing the clean 

units’ penetration. It is due to the necessity of increasing 

conventional generation capacity to compensate the rise of the 

wind generation penetration and the minimum output 

constraints of the conventional power plants.  

V.  CONCLUSIONS 

This paper proposes a new generation expansion planning 

model, which takes account of the emission cost in operational 

level and explores its impacts on the long-term emission target 

oriented generation planning. Meanwhile, the model proposed 

in this paper takes into account the integer variables and 

nonlinearity of the operational cost with network constraints 

and renewable generation expansion together in a single 

generation planning model. The new concept Emission 

Reduction Cost is introduced in the generation expansion 

phase, which acts as a goodness index to select the most cost 

effective generation technologies to be expanded. The case 

study explores the impacts of the short-term emission cost on 

long-term generation planning. It also demonstrates the 

importance of including network constraints in the generation 

planning. Overall, this paper presents a centralized assessment 

model to find the most economical generation mix pattern in 

order to meet a predefined emission target, which can assist 

policy makers in devising the emission reduction target and 

estimating the related cost.  
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