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Abstract

This paper develops a novel solution to integrate electric vehicles and optimally
determine the siting and sizing of charging stations (CSs), considering the interactions
between power and transportation industries. Firstly, the origin-destination (OD) traffic
flow data is optimally assigned to the transportation network, which is then utilized to
determine the capacity of charging stations. Secondly, the charging demand of charging
infrastructures is integrated into a cost-based model to evaluate the economics of
candidate plans. Furthermore, load capability constraints are proposed to evaluate
whether the candidate CSs deployment and tie line plans could be adopted. Different
scenarios generated by load profile templates are innovatively integrated into the
planning model to deal with uncertain operational states. The models and framework are
demonstrated and verified by a test case, which offers a perspective for effectively
realizing optimal planning of the CSs considering the constraints from both
transportation and distribution networks.

Key words: electric vehicle charging stations, planning, traffic flow, load capability,
load profile templates.

Nomenclature
Scalars and Parameters: Variables:
b is a parameter for the BPR function. frr, is the traffic flow on road a.

Np is the set of buses in the distribution network.

. . . R is the road impedance function, mainl
Lp is the set of lines in the distribution network. L (O ”) p u i y

Nr is the set of nodes in the transportation indicating the travel time for road a.
network. Jp." is the traffic flow on path k& connecting the
Lr is the set of links in the transportation network. original-destination (OD)  pair r-u.

d, . is the distance between CSs at node m and q,, is the total traffic flow between the OD pair

n.
r-u.

min Ta o
d™ represents the allowed minimum distance g7, is the 0-1 variable reflecting whether road a is
between any CS pair. “

£ is the free-flow travel time for road a. included in path k£ connecting the OD pair r-u.

A ;. 18 the equivalent average arrival rate at node j

¢, is the traffic capacity of road a. L .
in time period ¢.

b, V are the retardation factor, respectively. fn,, is the traffic flow captured by the CS at node
Q is the set of candidate CS nodes in the o _ . , .
Tonetwork. j in the time period ¢, which can be obtained

through the sum of the corresponding f#;, with

At is the predicted time interval.
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H is the typical daily charging times of vehicles in
the planning area.
o s the average ratio of daily charging in CS.

&

, is the normalized traffic flow coefficient, in

time period ¢, to reflect the daily charging ratio.
4 is the average service rate of charging device.

P, s the free probability of the CS that EV can
get charged by a charging service.

W™ is the maximum average waiting time.

™, g™ are the lower and upper limits for the

number of the charging devices in each CS,
respectively.

7, 1is the interest rate.

mc is the capital recovery coefficient for the
CS:s.
M is the total number of the scenarios.

CS™and C5* are the fixed and variable
investment of the CS at bus i, respectively.
0% is the unit operation cost for substations.

&' is the unit cost for the power loss.
D s the days of the target year.

g, is the conductance of line ;.

v, , v, are the bus sets for the lines, and the
candidate CSs in the distribution network.

B, represents the base value for the load profile.

N, ;is the number of the ki, type of the classes at
bus i.
Oy, 18 the profile coefficient of the kn type

classes in the time period ¢ for scenario m.
P

Li,t,m
demand at bus 7 in time period ¢.

represents the conventional active load

P;P represents the charging demand from the

charging points (CPs) at bus 7 in time period
t.

o, and O, are reactive power of the
substation and the conventional reactive load
demand at bus i in time period ¢,
respectively.

pmin, pm=are the lower and upper limits for the

voltage magnitude, respectively.

P™is the upper limit of the power flow at line
pso . . ..
; is the capacity of the substation at bus i, if
S_0
x> =0, P>~ =0.
N, is the total number of buses.
B
N, is the number of the substations.
N

N, is the number of lines in operation.

the same injection direction.
p  isthe average service rate of the CS.

S is the number of available charging devices.

W, is the average waiting time.

[ is the average service rate of a charging
device. It is noted that £ should be less than

1.0, to guarantee the statistic equilibrium for

the operation of the system.
xl_cs is the binary variable for indicating the state

of CSs in the D-network. If a candidate CS
exists at bus i and is included in the final

solution, xics =1, otherwise 0.
Fc

Ccs is the annual investment for CSs.

is the total cost.

C,,, is the annual operation cost of the substations.

C'loss
PS

it,m

is the annual cost for the power loss.

is the power output of the substation at bus i

in time period ¢ in the my, scenario.

7

i.m s the voltage magnitude at bus i in time

period ¢ in the my, scenario.

6,

ij.t.m

time period ¢ in the my, scenario.

is the phase angle deviation of line ij in

xis is the binary variable for indicating the state of
substations. If a substation exists at bus i,

xiS =1, otherwise 0.

x; is the binary variable for indicating the state of

lines. If line jj is in the final solution, XUL. =1,
otherwise 0.
G;(x;)and B (xl];) are the real and imaginary

item of the nodal admittance matrix,
respectively. The matrix is closely affected

and determined by the state of x; .

Pl.CtS represent the charging demand from the CSs
at bus i in time period ¢.

Pl.j,[m is the power flow at line i in time period ¢
in the my, scenario.

x?sj is the binary variable for indicating the

of CSs in the T-network. If

x}q*s =1(j *is the corresponding bus to node j

state

in the coupled network), fo*T =1, otherwise

0.
F, ;(x) is the value of the i objective function in

the j candidate plan.
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@ is the working efficiency of the charging | £ (x") is the best value based on the i objective
device (0<@ <1).

function.
is the chargi ity of a charging device. . L
Fep 15 The CHATEINg capactly 0T a charging device F" is the worst value based on the i objective
F.p is the charging rate of a CP. function.
x is the service ability of a CP (vehicles/day). N, isthe number of the available plans.
7 is the vacantrate (0 <y < ). F; /(x) is the i objective value in the /" plan.

7;, is the normalized parking demand coefficient

. - h
to reflect the charging demand of the CPs at BI, (x) is the bargaining value for the /% plan.

bus i in time period ¢.

is the weight factor for the i
objective, if all objectives share the
same weight, thenz, =1

1. Introduction

Driven by the low carbon target, many countries have considered the electrification of
transportation as one of national strategic plans and key investment areas [1-6]. As a
novel distributed mobile resource, electric vehicles (EVs) are becoming a vital part for
smart grid development. Charging infrastructures are the essential connection between
EVs and the corresponding power system. Thus, appropriate planning of charging
infrastructures is fundamental for promoting fast development of EVs while
guaranteeing the normal operation of the power system. So, in this paper, how to
economically plan the charging infrastructures, particularly charging stations (CSs), is
studied and discussed.

Charging load estimation or forecasting is the basis for the planning of the charging
infrastructures. The charging load profile was estimated in [7] by a Markov decision
process, while Monte Carlo simulation based on probability distribution functions was
investigated in [8]. The models were mainly from the temporal view. Moreover, a
spatial-temporal model (STM) was proposed in [9] to evaluate the impact of large-scale
deployment of EVs on the distribution network. The model ran based on the systematic
integrations of power and transportation system analysis. An origin-destination (OD)
analysis was also utilized in the model to reflect the spatial and temporal characteristics
of EV charging stations. Considering multiple factors, such as oil price, social demand,
battery development, etc., system dynamic and multi-agent methods were proposed in
[10] to obtain more comprehensive results. The above literature provided methods for
charging load estimation or forecasting from different aspects. However, not all the
method could be fit for CS planning. The charging load used for planning would be
aggregated by the profiles directly from EVs or reflected by other quantities, like the
traffic flow, in a typical operational mode.

Moreover, the charging load should be effectively integrated with planning methods.
A large volume of studies have been undertaken in planning CSs. Several Indices were
proposed for selecting the site and capacity of the CSs. For example, in [11], from the
view of the load density distribution, the Voronoi diagram was used for partitioning
geographic areas to locate CSs and optimization models were proposed for resolving the
planning problem. In [12], the criteria performance of different alternatives and criteria
weights were judged by five groups of expert panels in the environmental, economic
and social criteria associated with a total of sub-criteria. Indices could help make an
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assessment of the performance of the system with the charging load from the CSs in the
corresponding deployment. Another common way is to build the optimal models to take
various constraints into consideration to determine the best site and size for CSs.
Reference [13] summarized a basic CS placement model and four potential solutions
were reviewed. A mixed-integer non-linear (MINLP) optimization approach for optimal
placing and sizing CSs was designed in [14]. Different station development policies
were also discussed. Furthermore, customers’ benefits were integrated into the models
proposed in [15] and different types of charging infrastructures were considered in a
social cost-based planning model [16].

As a matter of fact, since the charging behavior of EVs could be reflected by the
traffic flow conditions in the transportation network, the distributions of traffic flow
could be used for locating and sizing CSs. A traffic-flow capture model integrated with
traffic flow data was proposed in [17] to help locate CSs. Reference [18] introduced a
charging traffic flow, which contains both spatial and temporal properties of a charging
load, as a discrete sequence to describe charging start events. In [19], a battery
capacity-constrained EV flow capturing location model was proposed to maximize EV
traffic flow.

The above literature proposed different planning models for CSs. However, most of
them are investigated on the transportation network or the CS itself without considering
the power supply ability of the corresponding power networks. The fact is that the
increasing charging load demand would threaten the reliable operation of the coupled
distribution network [20], and the network constraints from the distribution network
would greatly impact the deployment of the charging infrastructures. So, the network
from the corresponding power network should be also considered in the CS planning.
siting and sizing of CSs should be also integrated into the distribution network planning
model. A traffic flow based siting and sizing model for CSs in the transportation
network was presented in [21], and the network constraint of the distribution network
was also included. An integrated planning model of CS placement was proposed in [22],
and the load shift performance was considered in the model. Additionally, an economic
model aiming at minimizing the total cost was proposed in [23] to achieve the
coordinated planning both the reinforcement of distribution network and deployment of
CS:s.

It can be seen from above literature that incorporating EV infrastructures into an
existing transportation network and distribution network is challenging. Although there
are plenty of studies on planning CSs, few captured both the network constraints for
both the power and transportation networks. Another problem for planning lies in
dealing with the selection of the appropriate operational modes (scenarios). In fact, it
was often solved by deterministic approaches, e.g. the typical single load profile was
used to check network constraints, where the impact of operational uncertainty and
variability were ignored. Usually, they were treated in an overly simplified way by
planning networks for the worst case. However, it would not work appropriately in
long-run planning problems because of large variability in operation that can result in
added stress to the system. Thus, the uncertainty of operational states should be handled
in the load capability assessment of candidate plans.

In order to effectively deal with the uncertain operational states problem and address
the economic planning for CSs from both the power and transportation perspectives, the
paper proposes a novel integrated planning framework. Origin-destination (OD)
analysis is characterized to benchmark the behaviors of EVs, where a System
Optimization (SO) assignment model is used to obtain the equilibrium traffic flow and a
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queuing model is used to determine the sizing of CSs. The proposed planning, including
the coordinated placement of CSs and the tie lines of the distribution network, aims at
minimizing the investment and operational cost. The load capability of the whole
distribution network considering charging load is constrained and integrated into the
economic planning model to reflect EVs’ impacts on the distribution network, i.e. its
ability to accommodate additional charging load demand. Representative load profile
templates are introduced and used to generate different scenarios for presenting the
operational uncertainties of the distribution network. Therefore, the organization and
implementation of the integrated economic planning framework in the paper is
presented as shown in Fig. 1.

Section 3

Typical daily OD data 1| Different operational states Load
! 1 (Typical daily load demand) capability

Traffic constraints | 1 i :

Candidate CS plans | i | Candidate tie line plans
S g T - J
M R
Transportation network Distribution network

Network modelling is presented in Section 2 while the main steps and flowchart is detailed in Section 6

Fig. 1 Integrated economic planning framework

So, as depicted in Fig. 1, the rest of the paper are organized as follows. In Section 2,
the network modelling of the coupled distribution and transportation is presented. Then,
in Section 3, traffic flow is optimally assigned on each road and used in the capacity
determination of candidate CSs based on a queuing model. An economic planning
model is formulated in Section 4. And the load profile templates are also introduced and
integrated into the model. In Section 5, the whole planning flowchart is provided. The
test case is shown in Section 6 and Section 7 presents the conclusions and future work.

2. Hierarchical network modelling

In this paper, the transportation and distribution network are coupled and connected
together according to the geographic information, as shown in Fig. 2. Let Gp (Np, Lp)
denote the distribution network, where Np and Lp are the sets of buses and lines,
respectively. Gt (Nt, Lt) denotes the transportation network in the same urban area,
sharing the same geographic information with Gp, where Nt and Lt are the sets of
nodes and links, respectively. Assuming that travel demands originate from a set of
origin nodes, and destine for a set of destinations gsc,, which is defined as the OD

pairs.
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network I \
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Transportation
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Fig. 2 The coupled networks

CSs are assumed to be located at the nodes of the transportation network, and
connected to the corresponding buses in the distribution network through special electric
cables, shown as the mapping “node-bus” pair in Fig. 1. In the coupled networks, the
charging behavior is reflected by the traffic flow in the transportation network, and the
charging is accumulated as additional load demand at the corresponding bus in the
distribution network. Although there is no direct correlation between CSs, the
geography distance constraint exists between any two of them, i.e. two “neighboring”
CSs should not be built “too close”, in order to be cost-effective. The distance between
stations should meet:

d, , >d™ (1)

There are several ways to determine 4, , . If the detailed geographic road information

m-n *

about the area is obtained, J, , can be set as the real shortest road length (km) between
two locations. Otherwise, a simplified estimated method can be applied, which uses

d, ., =§\](Xm -X,)’+(,-Y) to roughly present the distance, where (X., Y.) represents
the geographical coordinate of node m in the transportation network, &is the distance
modification coefficient [24].

3. Capacity determination for charging stations

In this part, the equilibrium traffic flow is firstly proposed and calculated by the
system optimization (SO) model. Based on the assigned equilibrium traffic flow, a
queuing model is then applied to determine the capacity of the CSs in the corresponding
candidate plan.

3.1 Traffic flow assignment

Since the EV is used for its owner’s transportation demand, the behavior of the EV is
determined by the owner’s habit and trip demand, and thus, any studies related to EVs
would be unrealistic without transportation features. The mobile and transportation
features of EVs are reflected by CSs. As described in the paper, the “node” of the
transportation network can be regarded as the candidate location for CS construction.
The siting of CSs would reflect the charging demand, and the traffic flow can indicate
the aggregated degree of the EVs passing by the node. A larger value is assumed to
reflect larger probability that the EVs need to be conveniently charged. So, in this way,
the traffic information can be used to simulate the charging behavior and help estimate
the charging demand, and the planning of the CSs further. Generally, navigation systems,
like BaiduMap API [25], could provide a large volume of real-time or historical data of
traffic flows. However, the raw dynamic traffic flow data cannot be used directly in the
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CS planning. Thus, typical daily OD data are utilized to generate typical traffic flow for
planning. In order to achieve that, SO model [26] is used to generate and assign the
traffic flow for each road of a transportation network. The objective of the model is to
achieve minimum traveling cost:

min Y fi.t,(f¥,) @)

aeNy
st. ) o =4, SO 20 3)
k
Jr, =220 iy “)
r o u k
t (fi)=t {1 +b(&)v} (5
ca

It is assumed that the travel time ¢, for road a is a strictly increasing function with
respect to the aggregated flow on the road, i.e. ¢ (f,). Thus, the Bureau of Public Roads

(BPR) function [21] shown in Eq. (5), is used. The assigned traffic flow based on the
SO model is defined as “equilibrium traffic flow” in this paper. A detailed description of
the SO model can be found in [26].

3.2 Capacity determination based on queuing model

After the equilibrium traffic flow of each road is obtained, queuing theory is used to
analyze the mobility and randomness of EVs and help determine the capacity of the CSs,
1.e. the number of the charging devices.

The service system of CSs can be regarded as an M/M/S queuing system, and thus the
customers of the queuing system are represented by EVs, where reception corresponds
to the charging devices and providing service means charging. In reality, the arrival time
of each EV at a CS is random, but it may follow certain distributions in some time
periods according to the statistic studied. Thus, in the paper, the arrival of EV in a
certain CS is described as a Poisson process while the interval time of arriving obeys
negative exponent distribution [27].

According to the characteristics of Poisson process, an important parameter, which is
the average arrival rate, i.e. 4, represents the number of occurring random events in unit
time in theory. It indicates the average number of EVs arriving CSs in a time segment.
Integrated with the generated traftic flow, it can be formulated as:

fnj,t
/ At (©6)

ZjeQ fnjat
where H is the total daily charging times of vehicles in the CSs of the planning area
within time horizon 7, which could be predicted according to several factors, like EV
scale in the area, statistical EV proportion, charging frequency etc. [28].

Then, the performance indices of the service system, i.e. a certain CS, can be
obtained:

A, =Haoe,

(7

®)



571 pn ps 1
Do =1/[znzoﬁ+ﬁg] ©

s+1
= sp—poz (10)
Asl(s — p)

In theory, more charging devices mean more investment, which however is not
economic in planning. Thus, W, is used to indicate customers’ patience for charging in a
CS, and help deploy charging devices. In another way, if the waiting time of a customer
is over a certain period, they will leave, i.e. W, <W™ is used to determine the number
of charging devices. Generally, it is difficult to obtain the inverse functions of Eq. (10)
and solve the appropriate result directly, and thus an enumeration method is used. For

the candidate CS at node j according to the maximum 4; among time periods, we can

initialize s, and try to increase it by plus 1 in each step, calculate #, and compare it with
the given W™, till w, <wr. Then the corresponding s would be the cost-effective

number of charging devices.
In sizing process, the number of charging devices in a possible location should also
satisfy:
SmmeS <SX <SrnaxxCS (11)
where ™", s™ are the lower and upper limits for the number of charging devices in
each CS respectively.

4. Economic planning model

4.1 Economic objectives

An economic model is designed for the planning. The cost in the target year can be
optimized by comparing a suitable set of alternative plans using the following
economic model, which includes investment and operational cost:

min f. =C+C,, +C,, (12)
r(+r)™ CS [ ~CS_fi cs
C.=C, +C =00 N x(CO s C 13
CS CS_fix CS_var (1+I’O)mC —1,»;‘; i ( i i ) ( )
M
Cub :Dzm:lpm(é‘szzplfmxz (14)
tel ieyyq
M oss
Closs:Dzmzlpm(é‘l Z z X g ( ltm-i‘V]ztm—2Kth]thOS€l]tm)) (15)
tel (ij)eyy

where Fc is the total cost, including three parts: Cis the annual investment for CSs;
C,,1s the annual operation cost of the substations; C

sul loss

is the annual cost for the power

loss. v,, w. are the bus sets of the lines and the candidate CSs. x°, x., x_° are the

A/
binary variables for indicating the state of substation buses, lines and CSs. If a
substation exists at bus i, xl.S =1, otherwise 0. If a line is in operation in the final solution,

xl.jL. =1, otherwise 0. If a candidate CS exists at bus i and is included in the final solution,
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=1, otherwise 0. It is noted that except for the cost type in the objective function,

other elements like maintenance cost of the transmission lines, etc., are almost the same
in each candidate plan, so they would not affect the final results and thus are not added
into the optimal formula.

4.2 Load templates and scenarios

The planning of CSs needs to take care of the uncertain operational states of the
distribution network. Scenarios are utilized to reflect a very limited number of but
typical operational states in this paper, which can be aggregated and generated by
customers’ load profiles. Due to the diversity of customer types, it is impractical to
collect the load profile of every customer continuously over time [29]. Thus,
representative load profile templates can be clustered to reflect the detailed features of
each customer through clustering technology [30]. For example, in the UK, the
Electricity Association has studied loads in England and set about a program of analyses
in order to define the number and types of profiles to be used in the settlement, which
leads to eight generic profile classes representing a large population of similar
customers [31]. In Norway, the Norwegian Water Resources and Energy Administration
also developed the standard load profiles for unmetered customers [29]. According to
different energy utilization habit, particular load profile templates could be produced in
different countries or areas.

With the available load templates of the target area, the aggregated load profiles in
different scenarios will be obtained using the templates and other information, and the
aggregated load profile at bus 7 can be formulated:

Lt,t,m Zk 1 O-ktm ki (16)

4.3 Load capability constraints

The charging demand from charging infrastructures should satisfy the capacity of the
distribution network, i.e. load capability constraints. In this paper, the load capability
can be determined by two elements: one is network topology, which is to say that
different network configuration plans contribute to a different quantification

combination of xl.jL., that will affect the capability to adopt charging infrastructures;

another is the basic network and operation constraints. Without considering distribution
network reinforcement, different network configurations, i.e. tie lines setting, as well as
different operational states, i.e. load profiles, will contribute to the different load
capability of the system. The main load capability constraints are listed as follows:

a. Power balance equations:

Rs;mxls Bim— thp PCs CS—Vtm /tm(G (x )cos@ ,m+B (x )sin Utm) (17)
JjeNp
O =0ty =V DV, (G (x))sinG,,, — B, (x;)cos b, ) (18)
Ny
b. Voltage magnitude: /
e <Vim e (19)
c. Power flow of the lines:
| By IS B (20)

d. Power output for the substations
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0< P <P
hem LT (21)

e. Radial topology in operation
It is noted that the reinforcement of the distribution network itself is not considered in
the planning, i.e. no new lines added or substation expansion. However, the status of the
tie lines should be determined, to be fit for the placement of CSs with the best objective
performance, and satisfy:
Ny=Nsg=N, (22)
Equations (17), (18), (22) together make up the conditions of radiality constraint for
stable operation of the distribution network without no isolated island.

5. Planning flowchart

The main steps for the whole planning are listed as follows:

1) Collect traffic OD data, geographic data, and assign traffic flow according to the
SO model. In this way, the equilibrium traffic flow data could be obtained.

2) Assume the total number of CSs are given in the first place, then according to Eq.
(1) and the geographic information, potential siting combination in the transportation
network could be obtained from candidate locations.

3) Based on the queuing model formulated in Egs. (6)~(11), the minimum
deployment of charging devices corresponding to the candidate sitting plans would be
calculated according to the maximum waiting time. In that way, the capacity (sizing) of
the corresponding CSs in each plan can be determined.

From the view of distribution network, the charging demand from the CSs at bus j in
time period ¢ in each candidate plans can be estimated based on:

szs =s,Fpaf;, (23)

Regarding to CPs, they are distributed in residential or office areas, stores or bus
parking slots, and it is assumed aggregated CPs are deployed at each bus. Thus, the

charging demand from the CPs A" would be estimated based on the aggregated load
profiles at the corresponding bus, as formulated:

M T
Hx(-0)xY " > puBiim
Np M T
K X (1 — }/) X Zi:l Zm:l Zt:l pm})Li,t,m
B :PCP77i,zNiCP (25)

N = (24)

it
where N is the estimated number of CPs at bus i.

4) Then the economic planning model is applied to select the optimal plan adapting
ten scenarios. The possible network topology caused by different tie line plans in the
operation of the distribution network are generated based on the branch exchange
algorithm [33], indicating the possible allocation of real norm-open tie lines to meet the
radial operation with no islands. The “tie lines” in reality are used for power transfer
when the distribution network suffers faults. In the general operation states, the breaker
on the tie lines is norm-open, that is to say, no power flow will pass. In that way, the
radial operation constraint of the distribution network could be satisfied. In this case, the
candidate tie lines need to be classified in the optimal result that some of them would be
the real tie lines with norm-open breakers, while the other would be regarded as the
transmission lines with norm-close breakers. That would be dependent on the economic
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model in Eq. (12), and the radiality constraints satisfying every operational states or
scenarios.

Load capability constraints are checked in the optimization. The solution satisfying
all the constraints with the lowest cost will be the final optimal plan, including the siting
and sizing of CSs, as well as tie lines allocation for the distribution network.

The whole planning flowchart is shown in Fig. 3.

SO EﬁraffD (@)graPQ Cost etwork
model flow data data parameters data
\‘»T\ A\ e /

- /

Queuing 1 \\‘\/\/(::’ Tl N }
model 1 PP T~ R - \ P Y . L .
=" Tl T TN N 7 | Optimal economic site and size
| Capacity of the I T~ \\\ 7 } plan for CSs + Tie line allocation
char pin s};a tions in » Charging demand in the = Economic | plan
sng candidate plans model I
the candidate plans Eq. 23125 o I
Eq. ()-(11) S L <z ! Load
1 | ilitv
] i0i | capability
Load profile templates Eq. (16) Candidate economic } constraints |:‘|>
siting plans for the CSs, ! v
M = '}?'—7"-%\_ ——» and the possible tie line < »| Load capability
| — ;f:"'r N i S allocation plan for the checking
: distribution network Eq A7)
: Eq. (12)-(15) T
I
| !
I Weekday + ‘ Spring ‘ ‘ Summer ‘ ‘ High Summer ‘ | __J
Aggregated = [ Autumn | [ Winter |
scenarios

Fig. 3 Planning flowchart

6. Case study

6.1 Case description

The load templates of the UK [33] is adopted in the test case. Typical profiles of the
eight classes (weekday or weekend in spring/ summer/ hot summer/ autumn/ winter) are
shown in Fig. 4, and K=8. Class 1~2 correspond to the household type load, while class
3~5 are the small and medium enterprise type, and class 6 to 8 are industrial ones.
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Fig. 4 Load profile classes and templates

Sioux Falls transportation network [34] is used as the test case, which contains 24
nodes and bi-direction roads are connected between neighboring nodes. 12.66 kV
33-bus distribution network [35] is used as the corresponding power grid. Detailed line
parameters can be found in Table 1. As shown in Fig. 5 (a), the links between the two
layers indicate the candidate locations for the CSs, which also capture the interactions
between the distribution and transportation networks. The corresponding “node-bus”
pairs are listed in Table 2, also as the candidate locations for the CSs. The transportation
network is shown in Fig. 5 (b). Fig. 5 (c) shows the 33-bus distribution network, where
the yellow stars are the substations (10 MW each), while line # 9, 10, 12, 14, 15, 20, 21
are the candidate tie lines whose allocation need be also determined in the optimization
to guarantee the secure and radial operation with charging load demand added.
Assuming there are 10000 customers or households in the urban area. Their load classes
and the corresponding number are also given in Fig. 5 (¢).

Based on the load profile templates, ten scenarios are generated for the planning,
made up of combinations according to different types of seasons and days, e.g., spring
weekday, spring weekend, summer weekday, summer weekend, high summer weekday,
high summer weekend, autumn weekday, autumn weekend, winter weekday, winter
weekend.
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Table 1 Line parameters of the 33-bus distribution network

Line  Starting  Ending Resistance Reactance Line  Starting  Ending Resistance Reactance
# bus bus # bus bus
1 1 2 0.0922 0.047 19 9 10 1.044 0.74
2 21 22 0.7089 0.9373 20 12 13 1.468 1.155
3 20 21 0.4095 0.4784 21 9 15 2 2
4 19 20 1.5042 1.3554 22 13 14 0.5416 0.7129
5 2 19 0.164 0.1565 23 14 15 0.591 0.526
6 2 3 0.493 0.2511 24 15 16 0.7463 0.545
7 3 23 0.4512 0.3083 25 16 17 1.289 1.721
8 23 24 0.898 0.7091 26 17 18 0.732 0.574
9 8 21 2 2 27 18 33 0.5 0.5
10 7 8 0.7114 0.2351 28 32 33 0.341 0.5302
11 6 7 0.1872 0.6188 29 31 32 0.3105 0.3619
12 5 6 0.819 0.707 30 26 27 0.2842 0.1447
13 3 4 0.366 0.1864 31 27 28 1.059 0.9337
14 4 5 0.3811 0.1941 32 28 29 0.8042 0.7006
15 8 9 1.03 0.74 33 30 31 0.9744 0.963
16 6 26 0.203 0.1034 34 29 30 0.5075 0.2585
17 11 12 0.3744 0.1238 35 24 25 0.896 0.7011
18 10 11 0.1966 0.065

Table 2 “Bus-node” pair

Node Bus | Node Bus | Node Bus | Node Bus
7 21 8 20 10 7 11 11
12 13 13 32 15 27 16 3
18 19 19 23 22 28
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The main parameters are set as follows: the vehicle per household is set as 1.86 [36],
while the charging frequency of a vehicle is 0.65 per day [1], since there are about
10000 customers or households in the urban area, so H=3600. Let the maximum waiting
time be 10min. The base value for the load profile is set as 0.15 kW with power factor
0.9 and the charging rate of a CP is set as 2.2 kW while that of a charging devices is 30
kW. 7 =01,m =10, o =02, @ =1, b=0.15, v=1, p =0.1, 4™ =10km, M=10,
5°*=50 USD/MWh, s%=50 USD/MWh, the fixed investment for each CS at the
location of the “bus-node” pairs are 35, 27, 45, 38, 25, 20, 40, 45, 45, 35, 35 x10*
USD, the variable cost is 11.5, 10.7, 12.5, 11.8, 10.5, 10, 12, 12.5, 12.5, 11.5, 12.5
x10* USD per charging device. Let the allowable voltage drop be 10%. Detailed daily
trip OD data and coordinates can be found in [33], in which the link lengths of the road
network are set and scaled by 10™* (km) based on the given node coordinates. The unit
time period for the operation of the coupled network is set as 1h. The normalized
parking demand coefficient for different areas and traffic flow coefficient are given in
Fig. 6 and Fig. 7 according to [37] and [21]. Programs are implemented in the
MATLAB environment using Celeron E3300 2.5 GHz/1.96 GB computers.
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Fig. 6 Normalized parking demand coefficient for different areas
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7.2 Case results

According to the typical traffic OD data of the 24-node transportation network from
[34], the equilibrium traffic flow distribution in each time period can be obtained. Some
of them could be seen in Fig. 8. Deeper color indicates heavier traffic flow on the
certain road.

. . . .
* - * L - i’
. 2 » n=ﬂ
L L ] L ] . ] L " » [
. .
-
=1, 6,23 =17

Fig. 8 Traffic flow profile in some time periods

The arrival rate in each time period can be then obtained based on Eq. (6), and the
candidate locations for the CSs and the corresponding charging devices are as shown in
Table 3, i.e. 19 possible siting and sizing plans for the CSs could be generated, based on
Egs. (1)—(11).

Table 3 Candidate siting and sizing (number of charging devices) plans for the CSs

CS Node Node Node Node Node Node Node Node Node Node Node
plan # 7 8 10 11 12 13 15 16 18 19 22
1 7 10 0 9 0 7 0 0 0 8 0
2 7 9 0 9 0 7 0 0 0 0 9
3 7 9 0 9 0 0 0 0 0 8 9
4 7 10 0 0 9 7 0 0 0 8 0
5 7 10 0 0 9 7 0 0 0 0 9
6 7 9 0 0 9 0 0 0 0 8 9
7 7 10 0 0 0 7 0 0 0 8 9
8 7 0 0 9 0 6 0 10 0 0 9
9 7 0 0 9 0 7 0 0 0 8 10
10 7 0 0 9 0 0 0 10 0 8 9
11 7 0 0 0 9 6 0 10 0 0 9
12 7 0 0 0 9 7 0 0 0 8 10
13 7 0 0 0 8 0 0 10 0 8 9
14 0 9 0 9 0 6 0 0 0 8 9
15 0 9 0 0 9 6 0 0 0 8 9
16 0 0 0 9 0 6 0 10 0 8 9
17 0 0 0 8 0 0 0 9 10 7 8
18 0 0 0 0 8 6 0 10 0 8 9
19 0 0 0 0 7 0 0 9 10 7 8

The capacity of CSs in different plans produces different charging load demand to the
corresponding distribution network. In order to guarantee radial topology in operation, 6
possible network topologies, which indicates the corresponding allocation of the tie line,
could be generated, as shown in Fig. 9.

However, not all of the topologies are fit for the CS plans integrated with the load
capability constraints. After power flow and constraint verification in every scenario, 12
available combination plans (site & size for CSs and allocation for tie lines) pass the
load capability checking, and the detailed results can be seen in Table 4.

Page 16



S3

13 14 15 16 17 18 33 32 31 13 14 15 16 17 18 33 32 31 13 4 15 16 17 18 33 32 31
(1) Network #1 (2) Network #2 (3) Network #3

22 21 20 19 2 3 23 24
4
8 7 6

5 25

2 11 10 |9 26 27 28 29
[ » p

30 S3 30 S3
S2 L S2 [ ]
o ¢ ¢ o o ¢ ¢ ¢ [ S S
13 14 15 16 17 18 33 32 31 13 14 15 16 17 18 33 32 31 13 14 15 16 17 18 33 32 31
(4) Network #4 (5) Network #5 (6) Network #6

Fig. 9 Possible network topology caused by different tie line allocation

Table 4 Total cost and the constitution of the available plans

Available plan# | Network#  CS plan# ch Ces Cab C;loss
(I0TUSD) (100 usp)  (x10°uspy  (¥107USD)
1 5 7 5.6415 1.4272 4.1019 1.1245
2 6 4 5.6126 1.3979 4.1021 1.1262
3 6 5 5.6499 1.4323 4.1036 1.1412
4 6 6 5.6686 1.4507 4.1037 1.1425
5 6 7 5.6464 1.4272 4.1043 1.1489
6 6 11 5.6616 1.4443 4.1034 1.1394
7 6 12 5.6449 1.4272 4.1036 1.1414
8 6 13 5.6981 1.4802 4.1036 1.1418
9 6 15 5.6337 1.4163 4.1034 1.1398
10 6 17 5.7373 1.5102 4.1082 1.1881
11 6 18 5.6636 1.4459 4.1036 1.1413
12 6 19 5.6913 1.4752 4.1028 1.1331

According to the economic planning model, the available plan #2 with the minimum
total cost 5.6126 x10°USD is chosen as the final optimal solution, including the CS
plan #4 and the network #6 (i.e. line 5-6, 7-8, 12-13, 8-21 are determined as the
norm-open tie lines, as red dotted lines in Fig. 10). The detailed CS deployment result is
shown in Fig. 10, where the site of the CSs is indicated by the green box while the
number of the corresponding charging devices is listed in the neighboring boxes.

Page 17



=
S}
2
5}
S
=
8
=
2
=
2
a
1)« { 2
3 4)e AG\/: 1 6
" » »
[10]
4 9 )« X8 )¢ N7
o
2
2 Tl ¥ e * ¥ 3
= @2—»11 10 16 18
S 4 N
£ ‘
5
o 17
s
&=
4 iy [8]
14)e {15) »(19
A/
23 22
Y | v
@,<—A24 (21 A20
. Number of Substation
6 . . .
O CS location charging devices location

Fig. 10 Final optimal plan

Compared with the result obtained by the method in [21], whose final plan includes
CS plan #15 and the network #3, and could survive only in a typical load profile
condition, i.e. the topology of network #3 cannot support any CS deployments in the ten
scenarios checking, the final plan in this paper satisfies all the constraints from the
coupled networks and pass the load capability constraints in the ten scenarios, which
indicate the proposed planning framework can greatly incorporate the detailed
operational conditions with the planning and make the solution more convincing.

On the other hand, the energy production and loss of the twelve available plans, i.e.
the annual average power generation and the annual average power loss could be
normalized formulated and presented as shown in Fig. 11.
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Fig. 11 Energy production and loss comparision of the available plans

It is clear to see from Fig. 11 that plan #1 is with the minimum energy production and
loss level. The reason why plan #1 is not determined as the final optimal one is its
corresponding annual investment for CSs is larger than that of plan #2, as shown in
Table 4, so the total cost. So, from the view of achieving the most economic objective in
this paper, plan #2 is the final optimal decision. Actually, the energy loss of plan #2 is
much lower than other majority plans, which would further prove that the most
economic plan based on the proposed model owns higher energy efficiency and lower
energy loss.

7.3 Extended analysis

According to the simulation results, we can also get some additional significant
conclusions. The planning result aiming at achieving minimum economic cost can be
selected from the candidate plans satisfying the load constraint. We can also analyze
and assess the performance of the candidate plans in different views. Here, the daily
captured traffic flow (CTF) index is used to present the benefit from the utilization of
the CSs, and formulated as:

Fr =D 2 f ;" (x0) (26)
jeQtel

The details about the CTF on each candidate plan are shown in Fig. 12. Higher CTF
indicates the plan with higher utilization of the CSs. As shown in Fig. 12, the CTF of
the final plan #2 by the framework in this paper is 3620.7, which is not the maximum.
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The CTF just cares about the traffic flow condition and the geography of the area, in
which the distribution network is barely considered. So in this purpose, plan #10, would
be the available solutions to achieve maximum CTF (the utilization of CSs). However,
the cost of plan #10 is still larger than plan #2.

5000
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4000
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Available plan #

Fig. 12 The captured traffic flow in candidate plans

The CTF index can be used to reflect the “energy efficiency” in the transportation
aspect to an extent. If both the economic and CTF objectives are adopted as the factors
for determining the optimal planning result, the integrated model can be formulated as:

{FC — min

F; — max 27

Equation (27) is an optimal multi-objective formulation. Each objective has its own
expected value and optimal trend. For the sake of different order of magnitudes of the
two objectives, normalization should be taken firstly, which is formulated as:
F,(x)=F(x)

EY - F@&)
Then, a game-theoretical decision method is introduced. A super criterion also known as

the Bargaining function [38] is applied to compare the relative efficiencies of various
multi-objectives, formulated as:

Fi(x)= (28)

Max BI, =]£[(1—E.}j.(x))f' J=L..., Np (29)

i=1
where Eq. (29) is the bargaining function used to describe the distance from the solution
point to the one with all worst value of the objectives.
Taken the Eq. (27) as the optimal objective, based on Egs. (28)-(29), the bargaining
function value of the available plans can be plotted in Fig. 13.
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As seen from Fig. 13, though the economy of the plan #2 is the best, but its CTF is
the lowest, so the bargaining function value is 0. So the same result (0) is with plan #10
with the highest CTF but largest economic cost. Plan #12 has the largest bargaining
function value with the best equilibrium performance reflected by the total economic
cost and the CTF. So it would be the final optimal planning result if the multi-objective
model in Eq. (27) is utilized.

Except the CTF to reflect the energy efficiency in the transportation aspect, other
indices, such as the reliability of the whole system, could be integrated to achieve the
CS planning. Different objectives can lead to different solutions, since the economic
objective is the basic and essential factor in the planning, so it is mainly proposed to be
the focus in this paper to help guide CS planning. If more objectives are considered
from different views, the multi-objective model can be applied as well.

7. Conclusion

This paper provides a novel planning framework for determining the siting and sizing
of CSs coupling the interactions between the distribution and transportation networks.
The capacity of the CSs is determined by the queuing model, in which the average
arrival rate is formulated by the equilibrium traffic flow. Besides, load capability
constraints are introduced to evaluate the plans including the CS and the tie line
deployments, considering different operation scenarios aggregated by load profile
templates. In this way, the static planning can be greatly integrated with the dynamic
operation to make the placement of the CSs adapt to different conditions of the
distribution network. The feasibility of the method is demonstrated and verified by the
test case. Such temporal and locational methods can effectively guide EV charging
infrastructures planning without violating the constraints from both the power and
transportation systems.

The model and algorithms used in the planning framework are generic for the coupled
networks to deploy the CSs, as well as the utilization of the load profile templates. If the
transportation and power network information of the target area, as well as the typical
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OD data and the load templates (many countries have investigated their particular load
templates, just as the UK load templates used in the test case, if there is no direct load
templates in the specific country, then the load templates can be generated by the
clustering method, also investigated by our research group and provided in [29]), then
the proposed planning framework can be easily applied. It should be also noted that, the
methodology presented in this paper mainly deploys the planning of the CSs from the
economic objective view, future work would incorporate the distribution network
expansion, aiming at achieving the coordinated planning as well.
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