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Abstract 

This paper develops a novel solution to integrate electric vehicles and optimally 

determine the siting and sizing of charging stations (CSs), considering the interactions 

between power and transportation industries. Firstly, the origin-destination (OD) traffic 

flow data is optimally assigned to the transportation network, which is then utilized to 

determine the capacity of charging stations. Secondly, the charging demand of charging 

infrastructures is integrated into a cost-based model to evaluate the economics of 

candidate plans. Furthermore, load capability constraints are proposed to evaluate 

whether the candidate CSs deployment and tie line plans could be adopted. Different 

scenarios generated by load profile templates are innovatively integrated into the 

planning model to deal with uncertain operational states. The models and framework are 

demonstrated and verified by a test case, which offers a perspective for effectively 

realizing optimal planning of the CSs considering the constraints from both 

transportation and distribution networks. 

  

Key words: electric vehicle charging stations, planning, traffic flow, load capability, 

load profile templates. 

 

 

Nomenclature 

 
 

Scalars and Parameters: 

 

b is a parameter for the BPR function. 

ND is the set of buses in the distribution network. 

LD is the set of lines in the distribution network.  

NT is the set of nodes in the transportation 

network. 

LT is the set of links in the transportation network. 

m nd   is the distance between CSs at node m and 

n.  
mind  represents the allowed minimum distance 

between any CS pair. 
0

at  is the free-flow travel time for road a.  

ac  is the traffic capacity of road a.  

b,   are the retardation factor, respectively. 

 is the set of candidate CS nodes in the 

T-network. 

t  is the predicted time interval. 

 

Variables: 

 

afr   is the traffic flow on road a. 

( )a at fr   is the road impedance function, mainly 

indicating the travel time for road a. 
ru

kfp  is the traffic flow on path k connecting the 

original-destination (OD)  pair r-u.  

ruq  is the total traffic flow between the OD pair 

r-u.  

,

rs

a k  is the 0-1 variable reflecting whether road a is 

included in path k connecting the OD pair r-u. 

,j t  is the equivalent average arrival rate at node j 

in time period t. 

,j tfn  is the traffic flow captured by the CS at node 

j in the time period t, which can be obtained 

through the sum of the corresponding
afr  with 
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H is the typical daily charging times of vehicles in 

the planning area. 

  is the average ratio of daily charging in CS. 

t  is the normalized traffic flow coefficient, in 

time period t, to reflect the daily charging ratio. 

  is the average service rate of charging device. 

0p  is the free probability of the CS that EV can 

get charged by a charging service. 
max

qW  is the maximum average waiting time.  

mins , maxs are the lower and upper limits for the   

number of the charging devices in each CS, 

respectively. 

0r   is the interest rate. 

mC  is the capital recovery coefficient for the 

CSs. 

M   is the total number of the scenarios. 
CS_fix

iC and CS_var

iC  are the fixed and variable 

investment of the CS at bus i, respectively.  
S  is the unit operation cost for substations.  
loss is the unit cost for the power loss.  

D   is the days of the target year.  

ijg  is the conductance of line ij. 

L
 , 

C
  are the bus sets for the lines, and the 

candidate CSs in the distribution network. 

BiP  represents the base value for the load profile.  

,k iN is the number of the kth type of the classes at 

bus i.  

, ,k t m  is the profile coefficient of the kth type 

classes in the time period t for scenario m.  

L , ,i t mP  represents the conventional active load 

demand at bus i in time period t.  
CP

i,tP represents the charging demand from the 

charging points (CPs) at bus i in time period 

t. 
S

, ,i t mQ  and 
L , ,i t mQ are reactive power of the 

substation and the conventional reactive load 

demand at bus i in time period t, 

respectively. 
minV , maxV are the lower and upper limits for the 

voltage magnitude, respectively. 
max

ijP is the upper limit of the power flow at line 

ij. 
S_0

iP  is the capacity of the substation at bus i, if 

S

ix =0, 
S_0

iP =0. 

BN  is the total number of buses.  

SN  is the number of the substations.   

LN is the number of lines in operation. 

the same injection direction. 

    is the average service rate of the CS. 

s    is the number of available charging devices.  

qW  is the average waiting time.  

   is the average service rate of a charging 

device. It is noted that 
 

should be less than 

1.0, to guarantee the statistic equilibrium for 

the operation of the system. 
CS

ix  is the binary variable for indicating the state 

of CSs in the D-network. If a candidate CS 

exists at bus i and is included in the final 

solution, 
CS

ix =1, otherwise 0.  

Fc  is the total cost. 

CSC is the annual investment for CSs. 

subC is the annual operation cost of the substations.  

lossC is the annual cost for the power loss. 

S

, ,i t mP  is the power output of the substation at bus i 

in time period t in the mth scenario.  

, ,i t mV  is the voltage magnitude at bus i in time 

period t in the mth scenario.  

, ,ij t m  is the phase angle deviation of line ij in 

time period t in the mth scenario. 
S

ix  is the binary variable for indicating the state of 

substations. If a substation exists at bus i, 
S

ix =1, otherwise 0.  

L

ijx  is the binary variable for indicating the state of 

lines. If line ij is in the final solution, 
L

ijx =1, 

otherwise 0.  
L( )ij ijG x and 

L( )ij ijB x are the real and imaginary 

item of the nodal admittance matrix, 

respectively. The matrix is closely affected 

and determined by the state of 
L

ijx . 

CS

,i tP  represent the charging demand from the CSs 

at bus i in time period t.  

, ,ij t mP  is the power flow at line ij in time period t 

in the mth scenario. 

 
CS_T

jx  is the binary variable for indicating the 

state of CSs in the T-network. If 
CS

*jx =1( *j is the corresponding bus to node j 

in the coupled network), 
CS_T

jx =1, otherwise 

0.  

, ( )i jF x  is the value of the ith objective function in 

the jth candidate plan. 
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  is the working efficiency of the charging 

device (0<  1).  

CDP  is the charging capacity of a charging device. 

CPP  is the charging rate of a CP.  

 is the service ability of a CP (vehicles/day).  

 is the vacant rate (0    1).  

,i t  is the normalized parking demand coefficient 

to reflect the charging demand of the CPs at 

bus i in time period t. 

i  is the weight factor for the ith 

objective, if all objectives share the 

same weight, then i =1 

 

*( )iF x  is the best value based on the ith objective 

function. 
W

iF  is the worst value based on the ith objective 

function. 

Np  is the number of the available plans. 

, ( )i jF x  is the ith objective value in the jth plan.  

( )jBI x  is the bargaining value for the jth plan. 

 

 
 

1. Introduction 

Driven by the low carbon target, many countries have considered the electrification of 

transportation as one of national strategic plans and key investment areas [1-6]. As a 

novel distributed mobile resource, electric vehicles (EVs) are becoming a vital part for 

smart grid development. Charging infrastructures are the essential connection between 

EVs and the corresponding power system. Thus, appropriate planning of charging 

infrastructures is fundamental for promoting fast development of EVs while 

guaranteeing the normal operation of the power system. So, in this paper, how to 

economically plan the charging infrastructures, particularly charging stations (CSs), is 

studied and discussed.  

  Charging load estimation or forecasting is the basis for the planning of the charging 

infrastructures. The charging load profile was estimated in [7] by a Markov decision 

process, while Monte Carlo simulation based on probability distribution functions was 

investigated in [8]. The models were mainly from the temporal view. Moreover, a 

spatial-temporal model (STM) was proposed in [9] to evaluate the impact of large-scale 

deployment of EVs on the distribution network. The model ran based on the systematic 

integrations of power and transportation system analysis. An origin-destination (OD) 

analysis was also utilized in the model to reflect the spatial and temporal characteristics 

of EV charging stations. Considering multiple factors, such as oil price, social demand, 

battery development, etc., system dynamic and multi-agent methods were proposed in 

[10] to obtain more comprehensive results. The above literature provided methods for 

charging load estimation or forecasting from different aspects. However, not all the 

method could be fit for CS planning. The charging load used for planning would be 

aggregated by the profiles directly from EVs or reflected by other quantities, like the 

traffic flow, in a typical operational mode.  

  Moreover, the charging load should be effectively integrated with planning methods. 

A large volume of studies have been undertaken in planning CSs. Several Indices were 

proposed for selecting the site and capacity of the CSs. For example, in [11], from the 

view of the load density distribution, the Voronoi diagram was used for partitioning 

geographic areas to locate CSs and optimization models were proposed for resolving the 

planning problem. In [12], the criteria performance of different alternatives and criteria 

weights were judged by five groups of expert panels in the environmental, economic 

and social criteria associated with a total of sub-criteria. Indices could help make an 
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assessment of the performance of the system with the charging load from the CSs in the 

corresponding deployment. Another common way is to build the optimal models to take 

various constraints into consideration to determine the best site and size for CSs. 

Reference [13] summarized a basic CS placement model and four potential solutions 

were reviewed. A mixed-integer non-linear (MINLP) optimization approach for optimal 

placing and sizing CSs was designed in [14]. Different station development policies 

were also discussed. Furthermore, customers’ benefits were integrated into the models 

proposed in [15] and different types of charging infrastructures were considered in a 

social cost-based planning model [16]. 

  As a matter of fact, since the charging behavior of EVs could be reflected by the 

traffic flow conditions in the transportation network, the distributions of traffic flow 

could be used for locating and sizing CSs. A traffic-flow capture model integrated with 

traffic flow data was proposed in [17] to help locate CSs. Reference [18] introduced a 

charging traffic flow, which contains both spatial and temporal properties of a charging 

load, as a discrete sequence to describe charging start events. In [19], a battery 

capacity-constrained EV flow capturing location model was proposed to maximize EV 

traffic flow.  

  The above literature proposed different planning models for CSs. However, most of 

them are investigated on the transportation network or the CS itself without considering 

the power supply ability of the corresponding power networks. The fact is that the 

increasing charging load demand would threaten the reliable operation of the coupled 

distribution network [20], and the network constraints from the distribution network 

would greatly impact the deployment of the charging infrastructures. So, the network 

from the corresponding power network should be also considered in the CS planning. 

siting and sizing of CSs should be also integrated into the distribution network planning 

model.  A traffic flow based siting and sizing model for CSs in the transportation 

network was presented in [21], and the network constraint of the distribution network 

was also included. An integrated planning model of CS placement was proposed in [22], 

and the load shift performance was considered in the model. Additionally, an economic 

model aiming at minimizing the total cost was proposed in [23] to achieve the 

coordinated planning both the reinforcement of distribution network and deployment of 

CSs.  

  It can be seen from above literature that incorporating EV infrastructures into an 

existing transportation network and distribution network is challenging. Although there 

are plenty of studies on planning CSs, few captured both the network constraints for 

both the power and transportation networks. Another problem for planning lies in 

dealing with the selection of the appropriate operational modes (scenarios). In fact, it 

was often solved by deterministic approaches, e.g. the typical single load profile was 

used to check network constraints, where the impact of operational uncertainty and 

variability were ignored. Usually, they were treated in an overly simplified way by 

planning networks for the worst case. However, it would not work appropriately in 

long-run planning problems because of large variability in operation that can result in 

added stress to the system. Thus, the uncertainty of operational states should be handled 

in the load capability assessment of candidate plans.  

In order to effectively deal with the uncertain operational states problem and address 

the economic planning for CSs from both the power and transportation perspectives, the 

paper proposes a novel integrated planning framework. Origin-destination (OD) 

analysis is characterized to benchmark the behaviors of EVs, where a System 

Optimization (SO) assignment model is used to obtain the equilibrium traffic flow and a 
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queuing model is used to determine the sizing of CSs. The proposed planning, including 

the coordinated placement of CSs and the tie lines of the distribution network, aims at 

minimizing the investment and operational cost. The load capability of the whole 

distribution network considering charging load is constrained and integrated into the 

economic planning model to reflect EVs’ impacts on the distribution network, i.e. its 

ability to accommodate additional charging load demand. Representative load profile 

templates are introduced and used to generate different scenarios for presenting the 

operational uncertainties of the distribution network. Therefore, the organization and 

implementation of the integrated economic planning framework in the paper is 

presented as shown in Fig. 1. 

 

Different operational states

(Typical daily load demand) 
Typical daily OD data

Economic decision

Candidate CS plans

Traffic constraints

Transportation network Distribution network

Candidate tie line plans

Load 

capability 

constraints

Section 3 Section 4

Network modelling is presented in Section 2 while the main steps and flowchart is detailed in Section 6

 
Fig. 1 Integrated economic planning framework 

 

So, as depicted in Fig. 1, the rest of the paper are organized as follows. In Section 2, 

the network modelling of the coupled distribution and transportation is presented. Then, 

in Section 3, traffic flow is optimally assigned on each road and used in the capacity 

determination of candidate CSs based on a queuing model. An economic planning 

model is formulated in Section 4. And the load profile templates are also introduced and 

integrated into the model. In Section 5, the whole planning flowchart is provided. The 

test case is shown in Section 6 and Section 7 presents the conclusions and future work. 

 

 

2. Hierarchical network modelling 
 
In this paper, the transportation and distribution network are coupled and connected 

together according to the geographic information, as shown in Fig. 2. Let GD (ND, LD) 

denote the distribution network, where ND and LD are the sets of buses and lines, 

respectively. GT (NT, LT) denotes the transportation network in the same urban area, 

sharing the same geographic information with GD, where NT and LT are the sets of 

nodes and links, respectively. Assuming that travel demands originate from a set of 

origin nodes, and destine for a set of destinations 
TS N , which is defined as the OD 

pairs. 

javascript:void(0);
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Distribution 

network

Transportation 

network

Bus

Node

“node-bus” pair

 
Fig. 2 The coupled networks 

  CSs are assumed to be located at the nodes of the transportation network, and 

connected to the corresponding buses in the distribution network through special electric 

cables, shown as the mapping “node-bus” pair in Fig. 1. In the coupled networks, the 

charging behavior is reflected by the traffic flow in the transportation network, and the 

charging is accumulated as additional load demand at the corresponding bus in the 

distribution network. Although there is no direct correlation between CSs, the 

geography distance constraint exists between any two of them, i.e. two “neighboring” 

CSs should not be built “too close”, in order to be cost-effective. The distance between 

stations should meet: 
min

m nd d                               (1) 

  There are several ways to determine m nd  . If the detailed geographic road information 

about the area is obtained, m nd   can be set as the real shortest road length (km) between 

two locations. Otherwise, a simplified estimated method can be applied, which uses 

2 2( ) ( )m n m n m nd X X Y Y      to roughly present the distance, where (Xm, Ym) represents 

the geographical coordinate of node m in the transportation network,  is the distance 

modification coefficient [24]. 

 

3. Capacity determination for charging stations 

  In this part, the equilibrium traffic flow is firstly proposed and calculated by the 

system optimization (SO) model. Based on the assigned equilibrium traffic flow, a 

queuing model is then applied to determine the capacity of the CSs in the corresponding 

candidate plan.  

3.1 Traffic flow assignment 

  Since the EV is used for its owner’s transportation demand, the behavior of the EV is 

determined by the owner’s habit and trip demand, and thus, any studies related to EVs 

would be unrealistic without transportation features. The mobile and transportation 

features of EVs are reflected by CSs. As described in the paper, the “node” of the 

transportation network can be regarded as the candidate location for CS construction. 

The siting of CSs would reflect the charging demand, and the traffic flow can indicate 

the aggregated degree of the EVs passing by the node. A larger value is assumed to 

reflect larger probability that the EVs need to be conveniently charged. So, in this way, 

the traffic information can be used to simulate the charging behavior and help estimate 

the charging demand, and the planning of the CSs further. Generally, navigation systems, 

like BaiduMap API [25], could provide a large volume of real-time or historical data of 

traffic flows. However, the raw dynamic traffic flow data cannot be used directly in the 
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CS planning. Thus, typical daily OD data are utilized to generate typical traffic flow for 

planning. In order to achieve that, SO model [26] is used to generate and assign the 

traffic flow for each road of a transportation network. The objective of the model is to 

achieve minimum traveling cost: 

min ( )
T

a a a

a N

fr t fr


                          (2) 

. . , 0ru ru

k ru k

k

s t fp q fp                        (3) 

,

ru ru

a k a k

r u k

fr fp                       (4) 

0( ) 1 ( )a
a a a

a

fr
t fr t b

c

 
  

 
                      (5) 

It is assumed that the travel time at  for road a is a strictly increasing function with 

respect to the aggregated flow on the road, i.e. ( )a at fr . Thus, the Bureau of Public Roads 

(BPR) function [21] shown in Eq. (5), is used. The assigned traffic flow based on the 

SO model is defined as “equilibrium traffic flow” in this paper. A detailed description of 

the SO model can be found in [26]. 

3.2 Capacity determination based on queuing model 

After the equilibrium traffic flow of each road is obtained, queuing theory is used to 

analyze the mobility and randomness of EVs and help determine the capacity of the CSs, 

i.e. the number of the charging devices. 

The service system of CSs can be regarded as an M/M/S queuing system, and thus the 

customers of the queuing system are represented by EVs, where reception corresponds 

to the charging devices and providing service means charging. In reality, the arrival time 

of each EV at a CS is random, but it may follow certain distributions in some time 

periods according to the statistic studied. Thus, in the paper, the arrival of EV in a 

certain CS is described as a Poisson process while the interval time of arriving obeys 

negative exponent distribution [27].  

According to the characteristics of Poisson process, an important parameter, which is 

the average arrival rate, i.e.  , represents the number of occurring random events in unit 

time in theory. It indicates the average number of EVs arriving CSs in a time segment. 

Integrated with the generated traffic flow, it can be formulated as: 

,

,

,

/
j t

j t t

j tj

fn
H t

fn
 



 


                     (6) 

where H is the total daily charging times of vehicles in the CSs of the planning area 

within time horizon T, which could be predicted according to several factors, like EV 

scale in the area, statistical EV proportion, charging frequency etc. [28].  

Then, the performance indices of the service system, i.e. a certain CS, can be 

obtained: 





                                 (7) 

s





                                (8) 
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1

0 0

1
1/ [ ]

! ! 1

n s
s

n
p

n s

 






 


                        (9) 

1

0

2!( )

s

q

s p
W

s s



 






                          (10)  

In theory, more charging devices mean more investment, which however is not 

economic in planning. Thus, Wq is used to indicate customers’ patience for charging in a 

CS, and help deploy charging devices. In another way, if the waiting time of a customer 

is over a certain period, they will leave, i.e. max

q qW W
 
is used to determine the number 

of charging devices. Generally, it is difficult to obtain the inverse functions of Eq. (10) 

and solve the appropriate result directly, and thus an enumeration method is used. For 

the candidate CS at node j according to the maximum j  among time periods, we can 

initialize s,
 
and try to increase it by plus 1 in each step, calculate Wq and compare it with 

the given max

qW , till max

q qW W . Then the corresponding s would be the cost-effective 

number of charging devices.  

In sizing process, the number of charging devices in a possible location should also 

satisfy: 

       
min CS CS max CS

i i i is x s x s x                        (11) 

where 
mins , maxs are the lower and upper limits for the number of charging devices in 

each CS respectively. 

 

 

 

4. Economic planning model 

4.1 Economic objectives 

  An economic model is designed for the planning. The cost in the target year can be 

optimized by comparing a suitable set of alternative plans using the following 

economic model, which includes investment and operational cost:  

C CS sub lossmin F C C C                      (12) 

C

C

CS CS_fix CS_var0 0
CS CS_fix CS_var

0

(1 )
( )

(1 ) 1
C

m

i i i im
i

r r
C C C x C s C

r 


   

 
        (13) 

S

S S S

sub ,1
( )

M

m i,t m im
t T i

C D P x


 


 

                       (14) 

L

loss L 2 2

loss , , , , , , , , , ,1
( )

( ( 2 cos ))
M

m ij ij i t m j t m i t m j t m ij t mm
t T ij

C D x g V V V V


  


 

          (15) 

where Fc is the total cost, including three parts: CSC is the annual investment for CSs; 

subC is the annual operation cost of the substations; lossC is the annual cost for the power 

loss. L
 , C

  are the bus sets of the lines and the candidate CSs. S

ix , 
L

ijx , CS

ix  are the 

binary variables for indicating the state of substation buses, lines and CSs. If a 

substation exists at bus i, S

ix =1, otherwise 0. If a line is in operation in the final solution, 
L

ijx =1, otherwise 0. If a candidate CS exists at bus i and is included in the final solution, 

javascript:void(0);
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CS

ix =1, otherwise 0. It is noted that except for the cost type in the objective function, 

other elements like maintenance cost of the transmission lines, etc., are almost the same 

in each candidate plan, so they would not affect the final results and thus are not added 

into the optimal formula. 
 

4.2 Load templates and scenarios 

  The planning of CSs needs to take care of the uncertain operational states of the 

distribution network. Scenarios are utilized to reflect a very limited number of but 

typical operational states in this paper, which can be aggregated and generated by 

customers’ load profiles. Due to the diversity of customer types, it is impractical to 

collect the load profile of every customer continuously over time [29]. Thus, 

representative load profile templates can be clustered to reflect the detailed features of 

each customer through clustering technology [30]. For example, in the UK, the 

Electricity Association has studied loads in England and set about a program of analyses 

in order to define the number and types of profiles to be used in the settlement, which 

leads to eight generic profile classes representing a large population of similar 

customers [31]. In Norway, the Norwegian Water Resources and Energy Administration 

also developed the standard load profiles for unmetered customers [29]. According to 

different energy utilization habit, particular load profile templates could be produced in 

different countries or areas. 

  With the available load templates of the target area, the aggregated load profiles in 

different scenarios will be obtained using the templates and other information, and the 

aggregated load profile at bus i can be formulated: 

L , , B , , ,1

K

i t m i k t m k ik
P P N


                    (16) 

 

4.3 Load capability constraints 

  The charging demand from charging infrastructures should satisfy the capacity of the 

distribution network, i.e. load capability constraints. In this paper, the load capability 

can be determined by two elements: one is network topology, which is to say that 

different network configuration plans contribute to a different quantification 

combination of L

ijx , that will affect the capability to adopt charging infrastructures; 

another is the basic network and operation constraints. Without considering distribution 

network reinforcement, different network configurations, i.e. tie lines setting, as well as 

different operational states, i.e. load profiles, will contribute to the different load 

capability of the system. The main load capability constraints are listed as follows: 

a. Power balance equations: 
S S CP CS CS L L

, , L , , , , , , , , , , ,( ( )cos ( )sin )
D

i t m i i t m i,t i t i i t m j t m ij ij ij t m ij ij ij t m

j N

P x P P P x V V G x B x 


       (17) 

S S L L

, , L , , , , , , , , , ,( ( )sin ( )cos )
D

i t m i i t m i t m j t m ij ij ij t m ij ij ij t m

j N

Q x Q V V G x B x 


           (18) 

b. Voltage magnitude: 
min max

, ,i t mV V V                         (19) 

c. Power flow of the lines: 
max

, ,| |ij t m ijP P                           (20)  

d. Power output for the substations 
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                             (21) 

e. Radial topology in operation 

  It is noted that the reinforcement of the distribution network itself is not considered in 

the planning, i.e. no new lines added or substation expansion. However, the status of the 

tie lines should be determined, to be fit for the placement of CSs with the best objective 

performance, and satisfy: 

B S LN N N                           (22) 

Equations (17), (18), (22) together make up the conditions of radiality constraint for 

stable operation of the distribution network without no isolated island. 

 

5. Planning flowchart  

  The main steps for the whole planning are listed as follows: 

1) Collect traffic OD data, geographic data, and assign traffic flow according to the 

SO model. In this way, the equilibrium traffic flow data could be obtained. 

2) Assume the total number of CSs are given in the first place, then according to Eq. 

(1) and the geographic information, potential siting combination in the transportation 

network could be obtained from candidate locations.  

3) Based on the queuing model formulated in Eqs. (6)~(11), the minimum 

deployment of charging devices corresponding to the candidate sitting plans would be 

calculated according to the maximum waiting time. In that way, the capacity (sizing) of 

the corresponding CSs in each plan can be determined.  

From the view of distribution network, the charging demand from the CSs at bus j in 

time period t in each candidate plans can be estimated based on: 
CS

, CD ,j t j j tP s P                           (23) 

Regarding to CPs, they are distributed in residential or office areas, stores or bus 

parking slots, and it is assumed aggregated CPs are deployed at each bus. Thus, the 

charging demand from the CPs CP

i,tP  would be estimated based on the aggregated load 

profiles at the corresponding bus, as formulated: 

D

L , ,CP 1 1

L , ,1 1 1

(1- )

(1 )

M T

m i t mm t
i N M T

m i t mi m t

H P
N

P

 

  

 

  

  
 
    

 

  
              (24) 

CP CP

CP ,i,t i t iP P N                         (25) 

where CP

iN is the estimated number of CPs at bus i.  

4) Then the economic planning model is applied to select the optimal plan adapting 

ten scenarios. The possible network topology caused by different tie line plans in the 

operation of the distribution network are generated based on the branch exchange 

algorithm [33], indicating the possible allocation of real norm-open tie lines to meet the 

radial operation with no islands. The “tie lines” in reality are used for power transfer 

when the distribution network suffers faults. In the general operation states, the breaker 

on the tie lines is norm-open, that is to say, no power flow will pass. In that way, the 

radial operation constraint of the distribution network could be satisfied. In this case, the 

candidate tie lines need to be classified in the optimal result that some of them would be 

the real tie lines with norm-open breakers, while the other would be regarded as the 

transmission lines with norm-close breakers. That would be dependent on the economic 
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model in Eq. (12), and the radiality constraints satisfying every operational states or 

scenarios. 

Load capability constraints are checked in the optimization. The solution satisfying 

all the constraints with the lowest cost will be the final optimal plan, including the siting 

and sizing of CSs, as well as tie lines allocation for the distribution network. 

The whole planning flowchart is shown in Fig. 3. 
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Fig. 3  Planning flowchart 

 

6. Case study 

6.1 Case description 

  The load templates of the UK [33] is adopted in the test case. Typical profiles of the 

eight classes (weekday or weekend in spring/ summer/ hot summer/ autumn/ winter) are 

shown in Fig. 4, and K=8. Class 1~2 correspond to the household type load, while class 

3~5 are the small and medium enterprise type, and class 6 to 8 are industrial ones. 
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Fig. 4  Load profile classes and templates 

  Sioux Falls transportation network [34] is used as the test case, which contains 24 

nodes and bi-direction roads are connected between neighboring nodes. 12.66 kV 

33-bus distribution network [35] is used as the corresponding power grid. Detailed line 

parameters can be found in Table 1. As shown in Fig. 5 (a), the links between the two 

layers indicate the candidate locations for the CSs, which also capture the interactions 

between the distribution and transportation networks. The corresponding “node-bus” 

pairs are listed in Table 2, also as the candidate locations for the CSs. The transportation 

network is shown in Fig. 5 (b). Fig. 5 (c) shows the 33-bus distribution network, where 

the yellow stars are the substations (10 MW each), while line # 9, 10, 12, 14, 15, 20, 21 

are the candidate tie lines whose allocation need be also determined in the optimization 

to guarantee the secure and radial operation with charging load demand added. 

Assuming there are 10000 customers or households in the urban area. Their load classes 

and the corresponding number are also given in Fig. 5 (c).   

  Based on the load profile templates, ten scenarios are generated for the planning, 

made up of combinations according to different types of seasons and days, e.g., spring 

weekday, spring weekend, summer weekday, summer weekend, high summer weekday, 

high summer weekend, autumn weekday, autumn weekend, winter weekday, winter 

weekend. 
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(c) Distribution network and customers’ distribution with the average amount of the corresponding classes 

Fig. 5 Test system 

 

Table 1 Line parameters of the 33-bus distribution network 

Line 

# 

Starting 

bus 

Ending 

bus 
Resistance Reactance 

Line 

# 

Starting 

bus 

Ending 

bus 
Resistance Reactance 

1 1 2 0.0922 0.047 19 9 10 1.044 0.74 

2 21 22 0.7089 0.9373 20 12 13 1.468 1.155 

3 20 21 0.4095 0.4784 21 9 15 2 2 

4 19 20 1.5042 1.3554 22 13 14 0.5416 0.7129 

5 2 19 0.164 0.1565 23 14 15 0.591 0.526 

6 2 3 0.493 0.2511 24 15 16 0.7463 0.545 

7 3 23 0.4512 0.3083 25 16 17 1.289 1.721 

8 23 24 0.898 0.7091 26 17 18 0.732 0.574 

9 8 21 2 2 27 18 33 0.5 0.5 

10 7 8 0.7114 0.2351 28 32 33 0.341 0.5302 

11 6 7 0.1872 0.6188 29 31 32 0.3105 0.3619 

12 5 6 0.819 0.707 30 26 27 0.2842 0.1447 

13 3 4 0.366 0.1864 31 27 28 1.059 0.9337 

14 4 5 0.3811 0.1941 32 28 29 0.8042 0.7006 

15 8 9 1.03 0.74 33 30 31 0.9744 0.963 

16 6 26 0.203 0.1034 34 29 30 0.5075 0.2585 

17 11 12 0.3744 0.1238 35 24 25 0.896 0.7011 

18 10 11 0.1966 0.065      

 

Table 2 “Bus-node” pair 

Node Bus Node Bus Node Bus Node Bus 

7 21 8 20 10 7 11 11 

12 13 13 32 15 27 16 3 

18 19 19 23 22 28   
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  The main parameters are set as follows: the vehicle per household is set as 1.86 [36], 

while the charging frequency of a vehicle is 0.65 per day [1], since there are about 

10000 customers or households in the urban area, so H=3600. Let the maximum waiting 

time be 10min. The base value for the load profile is set as 0.15 kW with power factor 

0.9 and the charging rate of a CP is set as 2.2 kW while that of a charging devices is 30 

kW. 0 0.1r  , 10sm  ,   =0.2,   =1, b=0.15,  =1, m =0.1, mind = 10 km, M=10, 
loss =50 USD/MWh, S =50 USD/MWh, the fixed investment for each CS at the 

location of the “bus-node” pairs are 35, 27, 45, 38, 25, 20, 40, 45, 45, 35, 35 410  

USD, the variable cost is 11.5, 10.7, 12.5, 11.8, 10.5, 10, 12, 12.5, 12.5, 11.5, 12.5 
410 USD per charging device. Let the allowable voltage drop be 10%. Detailed daily 

trip OD data and coordinates can be found in [33], in which the link lengths of the road 

network are set and scaled by 410  (km) based on the given node coordinates. The unit 

time period for the operation of the coupled network is set as 1h. The normalized 

parking demand coefficient for different areas and traffic flow coefficient are given in 

Fig. 6 and Fig. 7 according to [37] and [21]. Programs are implemented in the 

MATLAB environment using Celeron E3300 2.5 GHz/1.96 GB computers. 

 
Fig. 6  Normalized parking demand coefficient for different areas 

 
Fig. 7  Normalized hour traffic flow coefficient  
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7.2 Case results 

According to the typical traffic OD data of the 24-node transportation network from 

[34], the equilibrium traffic flow distribution in each time period can be obtained. Some 

of them could be seen in Fig. 8. Deeper color indicates heavier traffic flow on the 

certain road. 

 

          

                     t=1, 6, 23                         t=17 

Fig. 8  Traffic flow profile in some time periods  

The arrival rate in each time period can be then obtained based on Eq. (6), and the 

candidate locations for the CSs and the corresponding charging devices are as shown in 

Table 3, i.e. 19 possible siting and sizing plans for the CSs could be generated, based on 

Eqs. (1)–(11).  

Table 3 Candidate siting and sizing (number of charging devices) plans for the CSs 

CS 

plan #  

Node 

7 

Node 

8 

Node 

10 

Node 

11 

Node 

12 

Node 

13 

Node 

15 

Node 

16 

Node 

18 

Node 

19 

Node 

22 

1 7 10 0 9 0 7 0 0 0 8 0 

2 7 9 0 9 0 7 0 0 0 0 9 

3 7 9 0 9 0 0 0 0 0 8 9 

4 7 10 0 0 9 7 0 0 0 8 0 

5 7 10 0 0 9 7 0 0 0 0 9 

6 7 9 0 0 9 0 0 0 0 8 9 

7 7 10 0 0 0 7 0 0 0 8 9 

8 7 0 0 9 0 6 0 10 0 0 9 

9 7 0 0 9 0 7 0 0 0 8 10 

10 7 0 0 9 0 0 0 10 0 8 9 

11 7 0 0 0 9 6 0 10 0 0 9 

12 7 0 0 0 9 7 0 0 0 8 10 

13 7 0 0 0 8 0 0 10 0 8 9 

14 0 9 0 9 0 6 0 0 0 8 9 

15 0 9 0 0 9 6 0 0 0 8 9 

16 0 0 0 9 0 6 0 10 0 8 9 

17 0 0 0 8 0 0 0 9 10 7 8 

18 0 0 0 0 8 6 0 10 0 8 9 

19 0 0 0 0 7 0 0 9 10 7 8 

 

The capacity of CSs in different plans produces different charging load demand to the 

corresponding distribution network. In order to guarantee radial topology in operation, 6 

possible network topologies, which indicates the corresponding allocation of the tie line, 

could be generated, as shown in Fig. 9.  

However, not all of the topologies are fit for the CS plans integrated with the load 

capability constraints. After power flow and constraint verification in every scenario, 12 

available combination plans (site & size for CSs and allocation for tie lines) pass the 

load capability checking, and the detailed results can be seen in Table 4.  
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Fig. 9 Possible network topology caused by different tie line allocation 

Table 4 Total cost and the constitution of the available plans 

Available plan # Network # CS plan # 
CF  

(
610 USD) 

 

CSC  

(
610 USD) 

 

subC  

(
610 USD) 

lossC  

(
510 USD) 

1 5 7 5.6415 1.4272 4.1019 1.1245 

2 6 4 5.6126 1.3979 4.1021 1.1262 

3 6 5 5.6499 1.4323 4.1036 1.1412 

4 6 6 5.6686 1.4507 4.1037 1.1425 

5 6 7 5.6464 1.4272 4.1043 1.1489 

6 6 11 5.6616 1.4443 4.1034 1.1394 

7 6 12 5.6449 1.4272 4.1036 1.1414 

8 6 13 5.6981 1.4802 4.1036 1.1418 

9 6 15 5.6337 1.4163 4.1034 1.1398 

10 6 17 5.7373 1.5102 4.1082 1.1881 

11 6 18 5.6636 1.4459 4.1036 1.1413 

12 6 19 5.6913 1.4752 4.1028 1.1331 

 

According to the economic planning model, the available plan #2 with the minimum 

total cost 5.6126 
610 USD is chosen as the final optimal solution, including the CS 

plan #4 and the network #6 (i.e. line 5-6, 7-8, 12-13, 8-21 are determined as the 

norm-open tie lines, as red dotted lines in Fig. 10). The detailed CS deployment result is 

shown in Fig. 10, where the site of the CSs is indicated by the green box while the 

number of the corresponding charging devices is listed in the neighboring boxes.  
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Fig. 10 Final optimal plan 

 

Compared with the result obtained by the method in [21], whose final plan includes 

CS plan #15 and the network #3, and could survive only in a typical load profile 

condition, i.e. the topology of network #3 cannot support any CS deployments in the ten 

scenarios checking, the final plan in this paper satisfies all the constraints from the 

coupled networks and pass the load capability constraints in the ten scenarios, which 

indicate the proposed planning framework can greatly incorporate the detailed 

operational conditions with the planning and make the solution more convincing. 

On the other hand, the energy production and loss of the twelve available plans, i.e. 

the annual average power generation and the annual average power loss could be 

normalized formulated and presented as shown in Fig. 11.  
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Fig. 11 Energy production and loss comparision of the available plans 

 

  It is clear to see from Fig. 11 that plan #1 is with the minimum energy production and 

loss level. The reason why plan #1 is not determined as the final optimal one is its 

corresponding annual investment for CSs is larger than that of plan #2, as shown in 

Table 4, so the total cost. So, from the view of achieving the most economic objective in 

this paper, plan #2 is the final optimal decision. Actually, the energy loss of plan #2 is 

much lower than other majority plans, which would further prove that the most 

economic plan based on the proposed model owns higher energy efficiency and lower 

energy loss.   

 

7.3 Extended analysis 

  According to the simulation results, we can also get some additional significant 

conclusions. The planning result aiming at achieving minimum economic cost can be 

selected from the candidate plans satisfying the load constraint. We can also analyze 

and assess the performance of the candidate plans in different views. Here, the daily 

captured traffic flow (CTF) index is used to present the benefit from the utilization of 

the CSs, and formulated as: 

CS_T CS

*, ( )T j t
t T

j j
j

F D f xn x
 

                             (26)  

  The details about the CTF on each candidate plan are shown in Fig. 12. Higher CTF 

indicates the plan with higher utilization of the CSs. As shown in Fig. 12, the CTF of 

the final plan #2 by the framework in this paper is 3620.7, which is not the maximum. 
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The CTF just cares about the traffic flow condition and the geography of the area, in 

which the distribution network is barely considered. So in this purpose, plan #10, would 

be the available solutions to achieve maximum CTF (the utilization of CSs). However, 

the cost of plan #10 is still larger than plan #2.  

 
Fig. 12 The captured traffic flow in candidate plans 

 

 The CTF index can be used to reflect the “energy efficiency” in the transportation 

aspect to an extent. If both the economic and CTF objectives are adopted as the factors 

for determining the optimal planning result, the integrated model can be formulated as:  

min

max

C

T

F

F





                                    (27) 

  Equation (27) is an optimal multi-objective formulation. Each objective has its own 

expected value and optimal trend. For the sake of  different order of magnitudes of the 

two objectives, normalization should be taken firstly, which is formulated as: 
*

,N

, W *

( ) ( )
( )

( )

i j i

i j

i i

F x F x
F x

F F x





                        (28) 

Then, a game-theoretical decision method is introduced. A super criterion also known as 

the Bargaining function [38] is applied to compare the relative efficiencies of various 

multi-objectives, formulated as:  

N

,

1

Max (1 ( )) i

R

j i j

i

BI F x




    j=1,…, Np                  (29) 

where Eq. (29) is the bargaining function used to describe the distance from the solution 

point to the one with all worst value of the objectives. 

  Taken the Eq. (27) as the optimal objective, based on Eqs. (28)-(29), the bargaining 

function value of the available plans can be plotted in Fig. 13.  
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Fig. 13 Bargaining function value of each available plan 

 

  As seen from Fig. 13, though the economy of the plan #2 is the best, but its CTF is 

the lowest, so the bargaining function value is 0. So the same result (0) is with plan #10 

with the highest CTF but largest economic cost. Plan #12 has the largest bargaining 

function value with the best equilibrium performance reflected by the total economic 

cost and the CTF. So it would be the final optimal planning result if the multi-objective 

model in Eq. (27) is utilized. 

  Except the CTF to reflect the energy efficiency in the transportation aspect, other 

indices, such as the reliability of the whole system, could be integrated to achieve the 

CS planning. Different objectives can lead to different solutions, since the economic 

objective is the basic and essential factor in the planning, so it is mainly proposed to be 

the focus in this paper to help guide CS planning. If more objectives are considered 

from different views, the multi-objective model can be applied as well. 

 

 

 

7. Conclusion 

This paper provides a novel planning framework for determining the siting and sizing 

of CSs coupling the interactions between the distribution and transportation networks. 

The capacity of the CSs is determined by the queuing model, in which the average 

arrival rate is formulated by the equilibrium traffic flow. Besides, load capability 

constraints are introduced to evaluate the plans including the CS and the tie line 

deployments, considering different operation scenarios aggregated by load profile 

templates. In this way, the static planning can be greatly integrated with the dynamic 

operation to make the placement of the CSs adapt to different conditions of the 

distribution network. The feasibility of the method is demonstrated and verified by the 

test case. Such temporal and locational methods can effectively guide EV charging 

infrastructures planning without violating the constraints from both the power and 

transportation systems.  

The model and algorithms used in the planning framework are generic for the coupled 

networks to deploy the CSs, as well as the utilization of the load profile templates. If the 

transportation and power network information of the target area, as well as the typical 
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OD data and the load templates (many countries have investigated their particular load 

templates, just as the UK load templates used in the test case, if there is no direct load 

templates in the specific country, then the load templates can be generated by the 

clustering method, also investigated by our research group and provided in [29]), then 

the proposed planning framework can be easily applied. It should be also noted that, the 

methodology presented in this paper mainly deploys the planning of the CSs from the 

economic objective view, future work would incorporate the distribution network 

expansion, aiming at achieving the coordinated planning as well. 
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