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ABSTRACT: Subphthalocyanine (SubPc)-stoppered [2]rotaxanes were synthesized for the first time. The rotaxane bearing
unsubstituted SubPc as a stopper exhibited equilibrium of slipping-on and slipping-off, whereas a perfluorinated SubPc stop-
per completely blocked slippage of the ring due to its slightly larger size. Kinetics studies revealed the Gibbs free energy of
activation for the slipping-on and slipping-off processes. The optical properties of the rotaxanes including photo-induced

electron transfer (PET) were also revealed.

Rotaxanes are a class of mechanically interlocked mole-
cules (MIMs) that have been intensively researched due to
their potential use in molecular machines.'-3 The function of
molecular machines can be attained by controlling the mo-
bility of rotaxanes using external stimuli. In this context,
functional dye molecules are promising building blocks due
to their optical and redox properties and interactions with
n-conjugated molecules. For example, porphyrin-based ro-
taxanes have been intensively studied to develop charge-
transfer systems,*8 high-order rotaxane assemblies,*-12 ca-
talysis314 and so on.15 Other dye molecules such as phthal-
ocyanine,1617 boron-dipyrromethene,!8 diketo-
pyrrolopyrrole,’® squarene,?’ rhodamine,?! and perylene
diimide22 were also investigated as building blocks of rotax-
anes. However, the number of dye molecules available for
rotaxane syntheses is still limited, and broadening their va-
riety is important.

Subphthalocyanine (SubPc) is a ring-contracted homo-
logue of phthalocyanine.23 Its intriguing electronic and opti-
cal properties have allowed chemists to investigate several
applications such as organic photovoltaics?4-27 and organic
light emitting diodes.2428 SubPc has a bowl-shaped struc-
ture with an axial ligand on the central boron atom. Despite
this unique structure in terms of supramolecular chemistry,
only a few examples of SubPc-based supramolecular archi-
tectures have been reported so far. Torres and Claessens re-
ported cage structures of SubPc and self-assembly of SubPcs

with Ce0.2° Homochiral supramolecular polymers of SubPcs
and their ferroelectric properties were reported by Gonza-
lez-Rodriguez et al.3%3! The group of Watarai reported su-
pramolecular complex of SubPc-cyclodextrin assemblies.32
A similar assembly was also reported by Ng et al.33 These
works indicate the advantage of the bowl-shaped structure
bearing an axial ligand for creating MIMs, because of unique
interactions such as concave-convex n-n interactions. How-
ever, as far as we know, a SubPc-based MIM has not been
reported yet.

Here, we describe the first synthesis of SubPc-stoppered
[2]rotaxanes using donor-acceptor interaction between
naphthalene diimide (NDI) and dialkoxy-substituted naph-
thalene (DN). Slippage behaviours of the ring unit depend-
ing on the size of SubPc stoppers were also investigated.

Starting from unsubstituted SubPc (1-H) and perfluori-
nated SubPc (1-F), the target [2]rotaxanes were synthe-
sized (Scheme 1). The axial ligand of the central boron was
activated by replacing Cl with OTf using AgOTf.3* N,N'-di(5-
hydroxypentyl)-1,4,5,8-naphthalene diimide3> was, then,
reacted under microwave irradiation to afford doubly-
capped axles, 3-H (9%) and 3-F (3%), and singly-capped ax-
les, 3’-H (40%) and 3’-F (12%), respectively. The use of ex-
cess amount of NDI caused formation of 3’-H and 3’-F as
main products. Fortunately, single crystals of 3-H and 3’-H
suitable for X-ray diffraction analysis were obtained (Figure
1). In the crystal structure of 3-H, intermolecular n-n



interactions between neighboring SubPc and NDI and those
between SubPcs were observed (Figures S18 and S19). In
the case of 3’-H, intermolecular ©-n interactions between
neighboring NDIs and SubPcs were also observed in
Scheme 1. Synthesis of SubPc-stoppered [Z]rotaxanes.
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Figure 1. X-ray crystal structures of (a) 3-H and (b) 3’-H. The
thermal ellipsoids were scaled at 50%.

and S21).

To convert 3’-H and 3’-F to the corresponding [2]rotax-
anes, 3’-H and 3’-F were at first mixed with the DN ring (4).
This mixture was reacted with axially activated SubPcs (2-
H and 2-F) for a few days to give the target rotaxane mole-
cules, 5-H (trace) and 5-F (1.4%). All compounds were fully
characterized by NMR spectroscopy (Figures 2 and S1-S16)
and high-resolution mass spectrometry (Figures S22-S27).

In the H NMR spectra, the signals from the NDI in the axle
and those from the DNs in the ring of 5-H and 5-F shifted
upfield compared with 3-H, 3-F and 4. Similar upfield shifts
were also reported for other rotaxanes,3¢ indicating the ax-
les were successfully threaded through the DN rings. The
threading was further confirmed by ROESY, which showed
a NOE contact between the NDI proton and the ethylene gly-
col chain of the DN ring (Figure S16). However, in the 'H
NMR spectrum of 5-H, a weak, but distinct signal of the NDI

proton of 3-H was observed at 8.61 ppm. Upon recrystalli-
zation of 5-H from a chloroform/hexane solution, we no-
ticed further intensification of this NDI signal. Meanwhile,
5-H was generated after storing 3-H and 4 in chloroform at
room temperature for several hours.
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Figure 2. 1H NMR spectra of 3-H, 5-H, 4, 3-F, and 5-F in CDCls.

These results clearly indicate slipping-on and -off behavior
of

the DN ring. In contrast, 5-F did not show such a behavior.
Pure 5-F was isolated by recrystallization, whereas a mix-
ture of 3-F and 4 did not provide 5-F either at room temper-
ature or at elevated temperatures (Figure S28).



The different slippage behaviors can be ascribed to slight
difference in size between unsubstituted SubPc and per-
fluorinated SubPc. In the crystal structures of SubPcs with
phenoxy axial ligands,?837 the distances from the central bo-
ron atom to the edge of the peripheral hydrogen atom and
fluorine atom in van der Waals model are 8.13 A for unsub-
stituted SubPc and 8.75 A for perfluorinated SubPc, respec-
tively (Figure S29). The stopper size threshold of slippage
can, therefore, fall between the size of unsubstituted SubPc
and that of perfluorinated SubPc. The radius of tris(4-(t-bu-
tyl)phenyl)methyl stopper, which can block both slipping-
on and -off of 4, was reported to be 8.53 A.36 The estimated
threshold is reasonable although the molecular shapes of
SubPc and tris(4-(t-butyl)phenyl)methyl stopper are differ-
ent (Figure S29). This indicates that a small difference in
size between unsubstituted and perfluorinated SubPcs crit-
ically affected the slippage behavior.

To give in-depth insight into the dynamic slippage behav-
ior of 5-H, kinetics studies were performed by 'H NMR spec-
troscopy. The rate constant can be estimated from Equa-
tions (1)-(4).38

kon
A + Ring k: R (1)
XInY =k,,t (2)

C,

2 e‘,g (3)

Co—

X=

_ Ce(ch—ce[RD
Y= c3(ce—[R]) “)

where A, Ring, and R refer to axle, ring, and rotaxane, re-
spectively. co, ce, and [R] are the concentrations of axle at the
initial state, rotaxane at the equilibrium state, and rotaxane
at time t. kon and kofr are rate constants for the slipping-on
and slipping-off of the ring. Among these variables, c. and
[R] can be experimentally determined by 'H NMR spectros-
copy, and co is known. The experiments were performed us-
ing a solution containing a 1:1 mixture of 3-H and 4 (3.6 mM
for both) in CDCls at three different temperatures (298, 308,
and 318 K). After mixing 3-H and 4 in CDCls, 'H NMR spectra
were recorded every 10 or 30 min (Figure 3a). The integral
ratio of the signals of 3-H and 5-H gradually changed as time
proceeded. By plotting the concentration changes of 5-H
against time, kon was estimated (Tables 1 and S3 and Figures
S30-S35). Then, kor and the association constant, K., were
determined. K. decreased upon increasing the temperature,
which is consistent with the entropically unfavorable slip-
ping-on process. Eyring plot analysis was also performed
for both slipping-on and slipping-off processes, and the ac-
tivation Gibbs free energy for slipping-on at 298 K,
Afon’ZgS x was determined to be 19.5 kcal mol-!, whereas
that for slipping-off, Aijflzgs w was 22.1 kcal mol-! (Figures
3b, ¢ and Table 1). The Gibbs free energy of the reaction,
AGS, 298k, Was estimated to be —2.6 kcal mol™ (Table 2 and
Figure 4). These small AG;FHI298 x and AGg, ,9g values,
which corresponds to the small AGsfff,298 x allowed 5-H to
dissociate into 3-H and 4 at room temperature.

AG:)IEH'298 x and AG;Fff,298  are kinetic terms relating to the
size effects of the SubPc stopper. Considering that the per-
fluorinated SubPc is larger than the size threshold of

slippage, partial fluorination of 1-H enables controlling the
AG:fn'ZgSK and AG:fff’ZgSK values. The AGg, 595 Value is a
thermodynamic term which is decomposed into an en-
thalpy term, AHg,,, of —10.4 kcal mol ™! and an entropy term,
ASgy, of —0.0259 kcal K 'molt. Compared with other slip-
page systems where slipping-on is allowed and slipping-off
is prohibited,38 ASg, of 3-H and 4 is larger, while AH;,, is a
similar value. The dissociation of 5-H can, therefore, be as-
cribed to the negative AS;,,.

The slippage synthesis, which was proposed by Stoddart
et al, is known as a high-yield synthesis of rotaxane mole-
cules.38 Despite its great potential, only a few systems have
been established because the size/energy tuning is critical.
The partial
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Figure 3. (a) Spectral changes of 1H NMR signals after mixing
3-H and 4 in CDCl3 at 298 K (inset: Schematic image of the slip-
page behavior of 5-H). Eyring plots of (b) slipping-on and (c)
slipping-off processes in CDCls.

Table 1. Kinetic parameters of the slippage of 5-H.

T/K kon / M-1s-1 kot / 51 K./ M-1
298 2.79 x 10-3 3.04 x 10-5 91.5
308 5.80 x 10-3 1.14 x 104 50.7
318 8.35 x10-3 2.74 x 10-4 30.5

Table 2. Thermodynamic parameters of the slippage of 5-
H.
AG:(’;)n,298 k / kcal mol-!

AHﬁn / kcal mol-! ASfm / kcal K-1mol-!

4.8 -0.0491 19.5
AHY . / kcal ASt .. / keal +
:rflfo{-l I((fn{ol-l AG o295 k / kcal mol-t
15.2 -0.0232 221
AH, / kcal mol-1  AS}, /kcal K-'mol-t  AGgp 298k / kcal mol-t
-10.4 -0.0259 -2.6
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Figure 4. Energy diagram for the formation of 5-H by slippage.

fluorination of the SubPc stopper might achieve the critical
size. In energetic terms, solvents at the opposite ends of the
polarity scale decrease the AS;,, value because the donor-
acceptor interactions between NDI and DN are enhanced
with increasing solvent polarity,3? or by decreasing it to the
low polarity of aliphatic solvent.#® The slippage synthesis of
SubPc-stoppered rotaxanes can also be realized by a careful
choice of solvent.
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Figure 5. UV/Vis absorption (solid line) and fluorescence
(dashed line) spectra of 3-H, 3-F, 5-H, and 5-F in CHCIs.

In chloroform, 3-H and 5-H both showed absorption at
563 nm and fluorescence at 574 and 573 nm with fluores-
cence quantum yields of 0.016 and 0.014, respectively (Fig-
ure 5). The sharp absorption and fluorescence bands, which
were similar to those of regular SubPcs indicated the ab-
sence of effective electronic interactions between the SubPc
stoppers and the NDI axle or the DN ring at the ground state.
The lower fluorescence quantum yields compared to that of
unsubstituted SubPc (ca. 0.30) were ascribed to photo-in-
duced electron transfer (PET) from the SubPc stoppers to
the NDI axle, as with the case reported by Fukuzumi et al.4
3-F and 5-F also showed sharp absorption at 569 and 570
nm, and fluorescence at 581 and 583 nm, respectively. In-
terestingly, 3-F was highly fluorescent, and its fluorescence
quantum yield was 0.15. This may be explained in terms of
the stabilized LUMO level by the peripheral fluorine atoms,
which might prevent the PET process. In the case of 5-F, the
fluorescence quantum yield dropped to 0.013, indicating a
PET from the DN ring to the SubPc stoppers. When all the
absorption spectra were carefully compared, 5-F showed
slight broadening of the absorption band (Figure S36). This
suggests that the DN ring of 5-F is in the vicinity of the per-
fluorinated SubPc stopper, which is also supported by the
upfield shifts of the protons in the DN ring of 5-F compared
with those of 5-H in the 'H NMR spectra (Figure S17).

In conclusion, we achieved the first synthesis of SubPc-
stoppered [2]rotaxanes and revealed the slippage behavior
as well as the two different PET processes. The Gibbs free
energies of activation for the slipping-on and slipping-off
were determined to be 19.5 and 22.1 kcal mol-1. This work
adds SubPc to the molecular toolbox for designing rotax-
anes with the slippage energy/size threshold, which gives
important directions of molecular design toward the slip-
page synthesis.38 The tunable nature of the SubPc stopper
as electron donor or acceptor in PET also enables various
molecular design of rotaxane-based charge-transfer sys-
tems, indicating high potential of SubPc in terms of not only
a useful stopper for rotaxane synthesis but also its func-
tions.
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