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Abstract 

As the debate on policy responses to climate change gathers pace, there has 

been an increasing focus on tools to model national scale energy use and 

emission characteristics of UK dwellings. This paper reviews some existing 

models and highlights limitations of their common underlying methodologies. 

We argue that a radically different, integrated, approach is required to tackle 

these challenges and ensure that the modelling remain robust and able to 

meet future demands. We suggest that Agent Based Modelling (ABM) is 

a suitable candidate modelling paradigm to achieve an integrated modelling 

framework. We also present DECarb-ABM (an ABM based implementation 

of an existing model, DECarb) with many of the desired properties of such an 

integrated framework. The new model is validated against both the existing 

model and historical data. 

∗Corresponding author 
Email addresses: s.natarajan@bath.ac.uk (Sukumar Natarajan), 

j.a.padget@bath.ac.uk (Julian Padget), liame3@googlemail.com (Liam Elliott) 
1The development of the ABM model described here was undertaken while Liam Elliott 

was an undergraduate student at the Dept of Computer Science, University of Bath. Liam 
is no longer associated with the university. 

Preprint submitted to Energy and Buildings May 27, 2011 

mailto:liame3@googlemail.com


Keywords: climate change, residential energy, stock models, agent based 

modelling 

1. Introduction 

It is now widely recognized that climate change is a severe threat with 

a projected increase in global average surface temperatures between 1.1◦C 

and 6.4◦C by the end of this century [1]. The UK government is committed 

to making deep cuts in carbon emissions to mitigate the impacts of climate 

change, especially in the light of higher energy prices and reduced availability 

of oil. Under the Climate Act of 2008, every household in the UK will need to 

contribute to reducing national carbon emissions by 80% by 2050 from 1990 

levels of which 34% would have to be met by 2020 [2]. Given the scale of 

cuts, it is likely that most households will need to get quite close to, or even 

exceed, this figure as other sectors are unlikely to exceed 80%. This target is 

a revision of the 60% target previously proposed by the Royal Commission 

on Environmental pollution [3] and the Energy White Paper of 2003 [4]. 

The UK domestic sector is a major focus for both mitigation and adaptation 

strategies because it is currently estimated to emit around 26% of the UK’s 

CO2. 

Meeting the target requires strategic planning, efficient resource man­

agement and technological development. An important tool to assess the 

viability of options are long term demand side scenarios that balance future 

climate projections, demographic change and user behaviour. For example, 

Natarajan and Levermore recently demonstrated the technical challenges and 

opportunities that exist in meeting a 60% emission reduction target by 2050 
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[5]. This work showed that the potential to decrease emissions to such lev­

els exists under at least three different scenarios, but each requires a major 

departure from current policy and practice if the required levels of reduc­

tion are to be achieved. For instance, the Tyndall Centre funded 40% House 

approach requires a combination of rapid replacement (i.e. demolition of 

inefficient stock to be replaced by more efficient buildings) as well as refur­

bishment of existing dwellings and a good spread of domestic low and zero 

carbon technologies [6]. The BRE’s Step Change 2 scenario relies heavily 

on prescribing a shift towards heat pumps and biofuel boilers to replace all 

current and future heating systems [7]. A third scenario suggested by Natara­

jan and Levermore found that failing the above two strategies, only a heavy 

uptake of low and zero carbon technologies (particularly solar PV for elec­

tricity consumption and export) could deliver the necessary cuts [5]. Clearly, 

achieving an 80% reduction is likely to pose even greater difficulties. 

From the supply side, a major focus of recent work has been the potential 

impact of distributed generation [8, 9]. This is likely to propel a shift away 

from the current demand-led generation model to a supply-led consumption 

model. An important factor in this will be the emergence of a smart grid 

that can adapt, smooth and self-heal to account for intermittent generation 

and time-variable load peaks and troughs. The domestic sector will play 

an important role in this equation through smart metering and smart ap­

pliances. Smart metering works through providing real-time consumption 

cost (monetary, energetic and environmental) to occupants with the expec­

tation that they will be able to adopt informed cost-reducing behavioural 

changes. At the same time these data will be fed back to the district net­
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work operators for load management. Smart appliances could provide even 

more fine-grained control (both automated and occupant-mediated) over the 

operation of individual appliances in the home for load shaping and shifting. 

As smart meters and appliances effectively close the loop between demand 

and generation, robust communication between the actors at both ends is 

essential. Models will be required that can test the combined effectiveness of 

policy measures (pricing mechanisms, technology uptake subsidies, initiatives 

for the fuel poor etc) and control systems (smart meters and appliances) on 

energy efficiency and carbon reductions. 

The purpose of this paper is to set an agenda for rethinking bottom-up UK 

domestic energy and carbon models and present a preliminary version of an 

agent-based simulation that has the potential to address current challenges. 

The paper also examines existing approaches to model domestic energy con­

sumption and carbon emissions (DECCE), discusses their limitations and 

looks forward to future challenges. 

2. Current models and methods 

Given the contribution of domestic sector emissions, considerable effort 

has gone into building models that can enable analysis of demand side (gen­

erally technology-led, bottom up) or supply side (generally policy-led, top-

down) changes. It is not within the scope of this paper to go into the detailed 

differences between these approaches, especially as these have been covered 

elsewhere [10] and more recently in a comprehensive review of bottom-up 

residential models [11]. This paper will focus on three current bottom-up 

UK models each of which was used to produce one of the three scenarios 
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described in Section 1. The BRE work uses the BREHOMES model [12]; the 

40% House work uses the UK Domestic Carbon Model (UKDCM) [6] and 

Natarajan’s work uses the Domestic Energy and Carbon model (DECarb) 

[13]. 

A common, and fundamental, feature of all three models is that although 

they were produced for different studies, they share the same energy model 

to calculate energy use and carbon emissions: the BRE’s BREDEM model 

[14]. This model has a well-established track record for producing accu­

rate predictions of dwelling energy consumption in the UK. It uses building 

physics based algorithms coupled with empirical data to arrive at energy 

consumption disaggregated by four end-use types (space heating, hot water 

consumption, cooking and lights and appliances). As BREDEM is modu­

lar, some elements can be replaced with more detailed sub-models. To date, 

this has mainly been done to replace the lights and appliances sub-model 

with the comparatively recent DECADE data [15]. With more work being 

undertaken to validate other aspects of the domestic energy mix, such as 

the BRE’s analysis of domestic hot water consumption from the 1998 EFUS 

survey [16], other parts of the model could also be replaced. 

All three models have been successful in answering important questions 

on the feasibility of achieving long term carbon emission reductions. BRE­

HOMES is frequently used to inform and justify government policy, UKDCM 

was used to produce the 40% House scenario—an important set of policy op­

tions to achieve 60% reductions—and DECarb was used to validate these 

approaches independently. However, there are some common limitations to 

the capabilities of these models, which we now review. 
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2.1. Average dwellings 

Although each model operates at a different level of disaggregation, they 

all adopt a common approach by defining an average performance for a num­

ber of dwelling categories that are then scaled up to build a UK-wide picture 

of domestic carbon emissions. Natarajan has previously demonstrated that 

less disaggregated models will produce results with lower confidence whilst 

higher levels of disaggregation produce more accurate results as the averaging 

process can skew the individual energy and carbon profiles of dwelling cat­

egories unpredictably [13]. For example, in the case of a scenario developed 

using a model with only two ‘notional’ dwellings [17] it was shown that the 

expected carbon savings predicted by the author were significantly overesti­

mated [5]. Although DECarb, UKDCM and to a lesser extent BREHOMES 

went some way towards lowering such reliance on average performance by pro­

ducing heterogenous stock, they do not solve this problem. A second aspect 

of this approach is deciding the granularity of the model. Clearly, a model 

with only one or two dwelling categories is too coarse—but how many cate­

gories is too fine? Evidently, this will depend on the granularity of available 

data to feed these models. DECarb’s base dataset and structure is directly 

informed by the granularity of house condition survey data: 8,064 possible 

categories for each of six historic age-bands defined from seven metrics (6 

wall construction types, 7 dwelling archetypes, 6 heating systems, 4 climatic 

regions and binary values for wall, window and roof insulation). Linear trans­

formations are applied to these categories to produce future age-bands with 

8,064 categories each on a decadal basis. Where further categories need to be 

defined (for uptake of newer technologies such as photovoltaic panels or solar 

6




hot water heating), they are disaggregated from this basic definition using a 

weighted average approach. BREHOMES uses 1,000 categories for its base 

dataset but only one composite dwelling for predicting future emissions and 

UKDCM produces around 20,000 categories by 2050. Clearly, there needs 

to be an approach to validate and harmonize these approaches to obtain a 

unified and consistent method that delivers the best mix of detail and ro­

bustness of output. However, matching disaggregation to available data is 

complicated by the issue of future datasets, discussed below. 

2.2. Future datasets 

The government is currently undertaking a review of its English Housing 

Survey (EHS) and Energy Follow Up Survey (EFUS) to collect up-to-date 

data on energy use in the home [18]. The stated objectives of the new study 

are: 

“(i) understand, monitor and respond to changing patterns of 

energy use in households, including appliance use and wastage 

(ii) understand the impact in real homes of installing energy ef­

ficiency measures (iii) understand and improve the actual energy 

performance of new homes.” [19] 

The UK government (through the Technology Strategy Board, TSB) also 

recently awarded funding for 87 exemplar projects through its Retrofit for 

The Future call [20]. The projects are designed to test the commercial fea­

sibility and replicability of retrofit measures to achieve an 80% reduction in 

carbon emissions from existing housing. The Energy Saving Trust (EST) has 

been charged with creating and maintaining a common database of collected 
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physical and environmental monitoring data from all 87 projects to enable 

unified analysis of results. At the time of writing, the TSB has also called for 

projects on accelerating the integration of smart meters into ‘smart homes’2 

and case studies of ‘low-impact’ buildings3 . 

Apart from these government-led initiatives, independent research has 

also been carried out to investigate changes and new patterns in: electricity 

use through appliances [21], hot water use [16], space heating settings [22] 

and energy use in low energy housing [23]. Recent modelling work has fo­

cussed on generating domestic load signatures through innovative simulation 

techniques. Richardson et al have developed high resolution time use (i.e. 

occupancy profile) data using Markov-Chain Monte Carlo simulations [24]. 

A slightly different approach for deriving domestic load signatures has been 

proposed by Jardine [25]. In addition, approaches from the social sciences 

have contributed new understanding on the interaction between occupants, 

dwellings, energy saving measures and technologies. For example, it was 

recently suggested that householders may not adopt Compact Fluorescent 

Lamps (CFLs) as ready replacements for incandescent lamps because they 

do not meet the quality of light and design expectations of occupants [26]. 

As CFL replacements are an important policy tool to achieve energy savings 

2http://www.innovateuk.org/content/competition-announcements/ 

accelerating-progress-towards-integrating-smart-me.ashx, announced 20 

May 2010 
3http://www.innovateuk.org/content/competition-announcements/ 

innovating-to-reduce-the-energy-cost-and-carbon-fo.ashx, announced 20 

May 2010 
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and emission reductions — the government has planned a complete phase out 

of all incandescent lamps by January 2011 4 — reluctance to adopt the tech­

nology can significantly dent speed of uptake and potentially create residual 

demand for incandescent lamps or other more energy hungry options. 

All of these developments are signposts towards new data on, and un­

derstanding of, domestic energy use that will supersede our current datasets 

and understanding. In addition, there will be other studies—either already 

planned or not yet conceived—that could significantly impact our under­

standing of domestic energy use. They could be significant because there are 

areas where empirical evidence simply does not meet modelled expectations. 

For example, in a study of 3,000 dwellings for the Warm Front project, it 

was shown that installed energy saving measures (new heating systems and 

extra insulation/draught proofing) did not deliver expected energy efficiency 

savings [27, 28]. Significantly, the study could not isolate the cause of the 

shortfall [29]. As these energy saving measures are a central plank of all 

future scenarios, a robust study to tease out the underlying causes is quite 

likely to be undertaken. It is therefore essential that any model built today 

to investigate future carbon emissions is flexible and adaptable to the data 

demands of tomorrow. 

4http://www.energysavingtrust.org.uk/Resources/Features/ 

Features-archive/Energy-saving-light-bulbs-take-over. Note however that 

this does nto include halogens. 
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2.3. Deterministic versus probabilistic modelling 

A recent study that undertook sensitivity analysis of model inputs to large 

scale domestic models rightly criticises existing models for not estimating the 

effect of uncertainty in model inputs on predictions [30]. This is because de­

terministic models, such as those used in the three studies quoted above, do 

not capture such uncertainty due to the use of what are essentially determin­

istic (fixed a priori) inputs. In modelling future emissions both the inputs 

and outputs are exploratory and therefore inherently uncertain—the objec­

tive being to develop a robust assessment of future options rather than any 

precise computation of a given scenario. Deterministic models are therefore 

clearly unsuitable for such a task, although they are very useful in identify­

ing a baseline technical potential5 for future emission reductions, as the three 

studies quoted above have done. The shift from baseline deterministic mod­

els to more sophisticated probabilistic models is reflected in the current UK 

Climate Impacts Programme (UKCIP) climate scenarios (UKCIP-09) and 

current EPSRC funded projects based on these probabilistic climate sce­

narios6 . Another limitation of current models is the short to medium term 

timeframe in which they operate (i.e. up to 2050). Given that the majority 

of projected increases in temperatures are likely to be after 2050 [1] and the 

5‘Technical potential’ may be defined as a model or scenario that does not explicitly 

take into account performance degradations or the likelihood of non-occurrence of events 

in an envisioned scenario that might occur due to either technical, operational, economic 

or social constraints in the real world. In such scenarios, the probability of a specified 

event occurring is always 1. 
6www.epsrc.ac.uk/CMSWeb/Downloads/Calls/ClimateChangeCall07.doc 
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current slow pace of change in emissions reductions, the extended time frame 

to 2100 cannot be ignored. Such an extension increases the uncertainty of 

projections and is therefore better addressed by probabilistic modelling. 

2.4. Human building interaction ↔

None of the scenarios described in Section 1 explicitly consider the im­

pact of human-building interaction on energy use. The behavioural aspect 

of building performance is often recognized as a major factor in energy con­

sumption although hitherto largely unquantified [31, 32]. For example, the 

fourth assessment report of the Inter-governmental Panel on Climate Change 

(IPCC) on mitigation states that “occupant behaviour, culture and consumer 

choice and use of technologies are also major determinants of energy use in 

buildings and play a fundamental role in determining CO2 emissions”. How­

ever, the IPCC report also recognizes that there is limited evidence to support 

this [32, p.389]. We have already hinted at the the fact that purely sectoral 

approaches to analysis and modelling of domestic energy consumption can 

be limited in their capacity to explain the disjunction between modelled and 

actual energy use (Section 2.2). While it is widely believed that these dis­

crepancies are due to inadequate characterization of occupant operation of 

buildings and systems, there is very little understanding of this phenomenon. 

All the models described earlier model energy use behaviour7 through 

7It has been suggested that the notion of an ‘energy behaviour’ is a misnomer since the 

occupant or user does not use energy, but rather a service (microwave to cook, washing 

machine to wash etc.) that results in energy use [33]. In this paper we use the terms 

‘energy behaviour’ and ‘energy use behaviour’ interchangeably to mean the use of energy 

resulting from the demand for a service. 
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defining “normal” behaviour. For example, although BREDEM is able to 

model different switching behaviour for heating system operation, the main 

document defines standard occupant operation profiles for weekdays and 

weekends [14, p.8] which are adopted de-facto by the stock models. Much of 

the data underpinning these “normal” building occupant behaviours relates 

to studies conducted in the wake of the energy crisis of the late 1970s— 

three decades ago—raising the question of their continued relevance. As the 

number of households in a given modelling category increases, the impact 

of different occupant energy usage profiles can significantly affect the model 

outputs. For example, in DECarb’s base dataset, the average number of 

dwellings per dwelling category was around 4500, and 70% of dwellings fell 

into categories with more than 10,000 dwellings in them. Ignoring the vari­

ance in occupant behaviour within each category could result in an erroneous 

estimate of future domestic carbon emissions just like the averaging errors 

discussed previously. 

The idea of an occupant-centred approach to energy use has primarily 

been examined by researchers in the social sciences. The most robust and 

important such study was that conducted by van Raaij and Verhallen in the 

Netherlands which established a novel model of household energy behaviour 

incorporating both the physical aspects of the dwelling and the behavioural 

aspects of the occupant showing a 30% variation between least and most 

energy efficient household groups [34]. Unfortunately, although this paper 

continues to be cited in studies on consumer behaviour and economic psy­

chology, the model has not been developed further by researchers and prac­

titioners in building science. Nearly a decade after van Raaij and Verhallen’s 
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study, Lutzenhiser proposed a ‘cultural model of household energy consump­

tion’ through a survey of existing approaches in engineering, economics, psy­

chology, sociology and anthropology [35]. In this model, individual actors 

(“consumers”) make choices that are ‘culturally-sensible’ and ‘collectively­

sanctioned’ and the engineering (i.e., the building fabric, technologies, etc.) 

and economic (i.e., monetary aspects of culture) aspects are subsets of the 

overall cultural framework. The model was an outcome of previous research 

indicating significant variations in the consumption of individual households’ 

energy consumption “even when controlling for weather, system efficiencies, 

family size, and [...] identically-equipped dwellings” [36, 37, 38]. However, 

this model does not appear to have moved beyond a purely theoretical con­

struct. 

More recently, efforts have been made to quantify the impact of occu­

pant effects on specific elements of domestic energy consumption—although 

in most cases it is difficult to extrapolate these to national levels due to their 

limited scope. For example, Yohanis et al found that though domestic elec­

tricity consumption correlates well with total floor area (a well established 

metric in BREDEM), households with higher incomes consumed 100% more 

than those with lower incomes [39]. However, the study comprised only 27 

dwellings in Northern Ireland, whose entire stock represents only around 2.5% 

of UK stock [40, p.108]. Firth et al also report wide variations in domestic 

electricity use in a monitored sample of 72 UK dwellings, though the study 

does not attempt to correlate occupant characteristics to these variations 

[21]. Similarly, Gram-Hanssen suggests that heating energy consumption in 

Danish households living in identical dwellings may vary by 300%, though 
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this appears to be a conclusion based on a small sample of 5 households [41]8 . 

An important factor in respect of this kind of variation could be ‘habitual’ 

behaviour (defined as frequent and automatic behaviour) which underpins 

most daily decisions. For example, Pierce et al found that much of everyday 

consumption behaviour was not the result of conscious or motivated action 

on the part of occupants [42]. Instead, they discovered that engagement 

with micro-level (e.g. local thermostat settings) and macro-level (e.g. HVAC 

standards and infrastructures) systems shaped everyday user experience. For 

example, two participants in their study, when asked about why they never 

altered the pattern in which they used their washer, replied “...I keep doing it 

because it is working” and “I’ve never needed different results. I’ve never had 

any reason to change what I do”. Interestingly, the reason for the adoption 

for many patterns of use were themselves not the result of a reasoned choice 

and in one case, the reason provided was simply that their mother had told 

them to do it that way. Habitual behaviour can also be quite powerful. For 

example, one participant reported that despite learning that warmer tem­

peratures on the washer were not required for better cleaning and could save 

money and energy, they preferred and continued to use the warmer settings. 

This demonstrates both the resilience of habitual behaviours, once set, and 

also their relatively arbitrary origins. This suggests that while habitual be­

haviours may be hard to change towards more conserving practices, once set 

they might be relied upon to continue without change. 

8The 5 selected households were a subset, ultimately, of 500 households part of a larger 

quantitative survey, so this conclusion may be representative of the full set, however this 

is not clear in the paper. 
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In addition to the impact of individual household decision making on 

DECCE savings, it is also important to consider what, if any, impact the 

household’s neighbourhood may have on these decisions. van Raiij and Ver­

hallen have explicitly stated this as a critical factor in determining household 

energy behaviour [43, 34]. More recent research such as that by Weenig and 

Midden [44] has suggested that the level of social cohesion and density of 

the social network are important indicators in determining the impact of the 

neighbourhood. Although the presence or absence of immediate neighbours 

is to some extent determined by dwelling typology, the impact of neighbour­

hood patterns on energy use is currently not explicitly considered in any of 

the existing models. This could be an important factor where future policy 

depends on self-regulation through peer feedback. For example, in a socially 

cohesive neighbourhood, a powerful motivation for DECCE reductions could 

be provided by smart meters that ranked individual household consumption 

against others in the same neighbourhood. Another potential benefit of such 

information could be the capacity for the modelling of local scale scenarios 

for a city or a region of the UK. Therefore, the absence of physical neigh­

bourhood information is a weakness of contemporary models that requires 

investigation and evaluation. 

Since achieving DECCE reduction centres on users adopting lifestyles, 

technologies and behaviours that can result in savings, modelling these be­

haviours to quantify both the opportunities and risks in putative strategies 

will be essential. 
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2.5. Summary of limitations 

This section has argued that though current national-scale UK domestic 

sector models have been successful in answering important questions, the 

approaches they adopt are not inherently sustainable. We highlighted some 

limitations common to all these models that will need rethinking if they are 

to continue to be useful. These include (i) the use of average dwellings and 

the granularity of the model, (ii) the difficulty of including emerging and 

future datasets, (iii) the use of deterministic modelling for uncertain futures 

and (iv) the difficulty of modelling the impact of building occupants through 

their interaction with both the building and the wider socio-economic envi­

ronment. The next section discusses some alternative approaches to solving 

these issues. 

3. Planning for the future 

Section 2 concluded that existing modelling approaches will need to be 

reconsidered in order to meet future modelling challenges. Clearly, some of 

these issues can be solved by modifying current approaches. For example, 

the problem of probabilistic modelling can be attacked by adopting well es­

tablished methods such as Monte Carlo simulations. New datasets can be in­

corporated by making piecemeal changes to existing code. Human building↔
interaction can be accounted for through implicit assumptions or through 

scenario specification. An example of this would be the current practice to 

account for changing thermal comfort expectations by specifying assumed 

demand temperatures. Conversely, other issues—such as the use of average 

dwellings or the impact of the neighbourhood—are not tractable through 
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traditional (equation based modelling) methods. In fact, the use of average 

dwelling categories would have to be an inherent feature of any resource-

effective equational model. 

As highlighted in Section 2.4, sectorally defined models can only answer 

a part of the problem. When framing national policy, it is crucial to under­

stand where outcomes from one sector are being supported or defeated by 

outcomes from another sector. We therefore need a single unified modelling 

framework that is capable of meeting all of these challenges with a com­

putational cost that is not greater than those available in typical research 

facilities. Whilst doing so, we need to remember that a model is only an 

idealised representation of the features considered significant from the real 

world and is not meant to represent every complexity of the real world. 

Before we discuss possible alternative approaches, it is worth noting that 

the issues we have raised are neither exhaustive nor selected for the greatest 

impact on domestic energy use and carbon emissions modelling. Rather, 

they have been selected to demonstrate the range of current and foreseeable 

problems with existing approaches. Indeed, the real impact of some of these 

issues (e.g. neighbourhood impact) is not known at present. What we are 

proposing is that the research community needs a unified and agreed upon 

approach that allows us to quantify the impact of these questions without 

requiring expensive or exhaustive methods to test them in the real world. 

3.1. An alternative modelling paradigm 

In reviewing current approaches used to undertake analysis of Domes­

tic Energy Consumption (DEC), Keirstead defines two broad frameworks: 

‘disciplinary frameworks’ and ‘integrated frameworks’ [45]. The disciplinary 
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frameworks he identifies are essentially the same as those identified by Lutzen­

hiser (engineering, economics, psychology, sociology and anthropology), as 

described in Section 2.4. However, Keirstead recognises Lutzenhiser’s pro­

posed ‘cultural model of household energy consumption’ as a different kind 

of approach which he terms an integrated framework. He defines this as “a 

conceptualisation of DEC that acknowledges the expertise of disciplinary ap­

proaches but seeks to situate this knowledge within the broader context of 

energy consumption including social and behavioural factors”. Clearly, the 

issues we have identified in Section 2 are inter-disciplinary and any effort to 

model them as part of the same system must necessarily fall under the defini­

tion of an integrated framework. This position (cited by Keirstead) was also 

identified as far back as 1983 by Yates and Aronson [46, p.435], saying that 

DEC “can no longer be viewed as a purely technical or economic problem 

but as a people problem as well”. 

Before moving on to describe the agent-based implementation of DECarb 

it is useful, from a modeller’s point of view, to reflect upon the macro-level 

requirements that an integrated framework imposes on the modelling tools 

that are going to support it. The two essential characteristics of an integrated 

model are that: 

(i) It comprises multiple discipline-specific models, some of which may be 

pre-existing; each of these needs independent and integrated verification 

and validation to ensure that isolated and embedded behaviour match; 

furthermore, each needs to be independently controllable for fidelity of 

modelling both for alignment with other components and for providing 

a means for the user to zoom in on particular aspects of the integrated 
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model. 

(ii) It provides adequate means to specify and control—both at design time 

and during run-time—the linkage between the discipline-specific com­

ponents. 

It is exactly this flexibility, as Keirstead argues, that is provided by agent-

based modelling, encouraging as it does bottom-up thinking, focussing on the 

details of interactions between individuals. Such an approach also enables 

both the independent testing of small populations in isolation, the encapsu­

lation of existing models by individual agents, as needed, and the integration 

of multiple models through individual agent interactions. 

Equational- and agent-based modelling are often seen as opposing poles 

with no real connection between them, but this is not necessarily the case. 

Indeed, we argue there is clear progression from one to the other that is 

characterised by the degree of autonomy accorded to each individual: 

•	 at the equational end, the individuals are totally regimented, being 

represented at their simplest as a single datum, but perhaps more likely 

as a data tuple, and each undergoing a globally defined transformation 

that is the equation determining the evolution of the individuals. 

•	 at the opposite end, the individuals are completely autonomous, being 

represented at their most complicated as multiple planning systems 

with databases of information about their environment, other individ­

uals and themselves. Transformation comes about through communi­

cation with other individuals and consequent updates to the databases, 

but at all times, under the control of the individual. 

In between, there is a discrete spectrum of recognised modelling approaches 
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that go by various names, depending on discipline and characteristics. For ex­

ample: the transformation can be determined by a combination of the global 

rules and the current state—that is using elements of the current state to 

navigate conditional transformations, so that individuals are processed by 

the same rules, but which subset of those rules apply is a function of local 

state. There are a number of ways this can be achieved, but in general such 

systems are called “marionettes” [47] and have the attraction of being oper­

ationally very close to Equation Based Modelling (EBM), but through the 

random individual value, exhibit some variation in behaviour. We have used 

this technique to validate the ABM implementation of DECarb described in 

the next section. Other variations on the spectrum between EBM and ABM 

are recognisable in cellular automata, the classical Game of Life and swarm 

intelligence. 

In programming terms, the differences between the variations outlined 

above are not that significant; as with programming languages, it is a matter 

of choosing the right approach for the domain. What matters is that indi­

vidual behaviour is determined by using some combination of global rules 

and individual data to determine the next state of an individual. However, a 

simple reorganization of this model enables the progression to full autonomy: 

the first step is for each individual to have its own copy of the global rules; 

clearly the consequent behaviour would be equivalent to the previous model. 

Then, we may allow individuals to have their own distinct rules, leading to 

individual behaviours and subsequently to full autonomy as outlined earlier. 
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4. An ABM implementation of DECarb 

As a first step to realising the desired properties of a domestic stock mod­

elling system, we briefly present an implementation of DECarb as an ABM 

system. This implementation does not yet contain many of the requisite 

features for a fully fledged model, but does provide a robust framework for 

building up to a complete feature-set. To differentiate between the two im­

plementations, we refer to the equation-based model as DECarb-EBM and 

the agent-based model as DECarb-ABM. 

Firstly, to provide some context, we outline the equational model from 

which we started (DECarb-EBM: Figure 1) and briefly describe the main 

components. The model consists of an Interface into which a given sce­

nario can be fed. The Interface is supported by Core Data consisting of: 

(i) physical dwelling data, separated into six historical age-classes, derived 

from house condition survey and national statistics, (ii) spatial data for 

dwelling archetypes, (iii) UKCIP climate data (UKCIP02 at present) and 

(iv) other supporting data. We group the interface and the core data, as 

DECarb Core in the diagram. Information flows from DECarb Core to the 

EBM-Engine which uses the Age-Class Builder object to produce new age 

class data. These data are then fed into the DECarb Energy Calculator ob­

ject which implements a version of BREDEM to undertake energy and car­

bon emissions calculations. This last component is particularly important, 

since we are able to re-use it in the ABM simulation to compute changes for 

individual households (see section 4.2.1) 
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4.1. Model setup 

When modelling a problem domain, a critical early part of the process is 

the identification of individuals and of observables. Observables are measur­

able characteristics of interest that change over time; they can be associated 

with either an individual or a collection of individuals [48]. In DECarb-EBM, 

the individuals are the 8,064 dwelling categories (for each age class) and the 

observables are the attributes of these categories (dwelling type, construction 

type etc.). The essence of the computational model is then one of transform­

ing a dataset by applying the same set of mathematical operations to each 

individual at each time step9 to obtain a new dataset. Thus, the individuals 

are passive and the modelling approach is typically called “top-down”. Us­

ing the same observables, but modelling homes10 as individuals, it is possible 

to take a micro, or bottom-up, view of the problem, where the individuals 

are active and the behaviour of the model is characterised by observation of 

individual interactions, making it a kind of complex system. 

A complex system is typically defined as one with emergent properties 

that arise from non-linear interactions between its multiple, usually large in 

number, interacting constituents. Jennings defines a complex system as many 

subsystems related hierarchically, these subsystems work together to achieve 

9‘Time step’ here is used to mean an arbitrarily long period that is determined by the 

requirements of the domain being modelled. We have chosen a time step of one decade, 

starting from 2000, because this is appropriate for the phenomena under consideration 

and a finer resolution results in unnecessary computation, but this can be adjusted for 

other intervals, such as annually, as required. 
10Here, by home, we mean both the physical dwelling and the occupying household. 
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the functionality of their parent systems [49]. The separate subsystems can 

interact with their environment and are able to respond to changes by altering 

their internal structure. If a home is to be the finest grain constituent of the 

system, it is necessary to decide exactly how one home is represented. 

4.1.1. Dwellings as individuals 

The immediately intuitive idea is to model a dwelling as an individual. 

After all, it is the dwelling to which all these measurable attributes belong; 

it is the dwelling that has the insulated walls, double glazing etc. It is 

also to the dwelling that any energy consumption related changes will be 

made. But there are also problems with this approach: what happens if 

the dwelling is demolished? Estimations have placed an upper bound on 

the annual demolition rate as being 130,000 by 2030 [6], which would create 

a massive turnover every year and affect the continuity of the simulation. 

Additionally, a dwelling is a passive object for humans and cannot interact 

or exchange stimuli with another dwelling. The argument to model houses as 

individuals unravels rapidly from that point onwards. While it is necessary 

to model the physical characteristics of a dwelling, we also need to take 

account of behavioural properties, leading the discussion on to the concept 

of modelling households as individuals. 

4.1.2. Households as individuals 

A household can be defined as the inhabitants of a dwelling: they are not 

physically tied to their residence and they can move freely from one house 

to the next. Modelling households as individuals addresses the limitations 

that modelling dwellings as individuals posed. If a dwelling is demolished, 
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the household will just move to another property. From this perspective, the 

physical dwelling simply becomes an attribute of the household. Crucially, 

households can have other attributes such as different behavioural character­

istics and traits, facilitating the creation of a heterogeneous model. House­

holds, as actors in a wider environment, can react to changes in the physical 

(environmental), political, regulatory and economic climate whilst simulta­

neously responding to changes in other households. For example, a two-

person household with young occupants would have a different occupancy 

and heating pattern to a two-person household with Old Age Pensioners 

(OAPs). Obviously, these households will exhibit varying energy use for the 

same heating set-point. This complexity is manageable with more traditional 

EBM methods. However, with a fully autonomous ABM, one could model 

the same young two-person household changing at some future time step to 

a three-person household with a different requirement for heating set-points 

and patterns. The ABM implementation explicitly allows for such traits to 

be associated with the household, though this has not been implemented yet. 

While BREDEM is somewhat simplistic in its treatment of these variables, 

it carries the capability for modelling these variations provided new data on 

household energy behaviour becomes available. 

4.1.3. RePast 

DECarb-ABM uses RePast which is a software framework for agent-based 

simulation created by Social Science Research Computing at the University 

of Chicago, for ABM in the social sciences11 . It provides an integrated li­

11http://repast.sourceforge.net/index.html 
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brary of classes for creating, running, displaying, and collecting data from an 

agent-based simulation. RePast has an unconstrained approach—allowing 

any type of agent-based model, and also offers explicit support for several 

common ABM tasks [47]. In addition to this, RePast was designed to have 

a short learning curve and offers comparable performance to similar frame­

works when weighed against its other benefits [50]. It provides a wide range 

of library packages which allow the modeller to access features such as Quick-

Time movies and snapshots and uses Java which is largely free of the mem­

ory leaks (found in C, C++ and Objective-C) that are often problematic for 

large-scale, long-running simulations. 

4.2. DECarb-ABM architecture 

A RePast model consists of three kinds of components: (i) a model, 

describing the essential elements of the simulation (ii) a space, which controls 

the environment (iii) at least one agent, being the entities that co-exist and 

interact in the space. Although the model is the most complicated part of 

the simulation, most of the details can be hidden from the developer, because 

they are the same for many kinds of simulation. Consequently, the developer 

typically just inherits this packaged behaviour by creating a subclass of the 

standard RePast model class SimModelImpl. A similar situation occurs with 

the space object which can just be a standard RePast container for the agents. 

DECarb-ABM’s space is a spatial grid rather than an abstract space and 

every agent has a location within this space defined by a pair of coordinates. 

Modelling the landscape spatially conveniently reflects a physical aspect of 

the real world, by giving households actual locations, which provides the 

means to model the influence of geographical neighbour’s actions. Although 
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we do not address it in the current implementation, we are also aware of the 

need to capture social structure, which can also be a strong influential factor 

on agent (in the economic sense) actions. RePast also provides the abstract 

spaces in the form of networks and these could readily be used to realize 

social connections and hence incorporate their influence on agent actions. 

Following the conclusion of the discussion in sections 4.1.1 and 4.1.2, the basic 

agent (individual) in DECarb-ABM is the household and encapsulates the 

seven metrics that define dwelling categories in DECarb-EBM (see Section 

2.1)—that is, the dwelling attributes are part of the household object, as 

argued above—which are then processed by the stock transformation method. 

Figure 2 shows the basic setup for DECarb-ABM and the individual elements 

are described below. 

It is noteworthy that while this paper primarily ascribes agent-behaviour 

to households, almost any entity that interacts with households can be an 

agent in the model space. For example, one could seed a Local Authority 

agent that set special renewable energy targets, a Central Government agent 

that sets time-varying tariffs for exported renewable energy and an Installer 

agent that provides free PV installation and recovers cost through a fixed 

repayment from the household. Indeed, the model is capable of handling an 

almost arbitrary number of (and types of) agents that can be customised to 

examine the impact of specific policy or technical measures on the housing 

stock. This type of seemingly arbitrary extensibility is extremely difficult to 

reproduce with other approaches, such as stochastic or Monte Carlo mod­

elling. 
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4.2.1. Adapter 

The adaptor class acts as an interpreter between the re-usable elements of 

DECarb-EBM and DECarb-ABM. The make-up of each static age class for 

the 1996 housing stock (the base year in DECarb-EBM) is defined in separate 

Microsoft Excel files. For each age class, the proportion of the population 

that each dwelling category represents is recorded. DECarb-EBM reads in 

these files and creates six objects, one for each age class. In DECarb-ABM, 

the Adapter passes each such object to the model and using these figures, 

agents are generated in a deterministic order and each one is placed at a 

randomly determined location on the grid. The effect of populating the grid 

in a deterministic order has, at present, not been explored as agent location 

does not affect output. In a situation where the location of an agent had a 

bearing on the output of the model and the results of the model were being 

used to prove a hypothesis, it would be necessary to examine the effect of 

placing the agents in a deterministic order versus the effect of placing the 

agents in a nondeterministic order. 

4.2.2. Model and Space 

DECarb-EBM models four different regions, representing different areas 

of the UK, whose outputs are added to form a national figure. There are 

currently no dependencies between these regions and they can therefore be 

modelled separately in DECarb-ABM. 

Library functions for 2D-spaces in RePast return all of the agents within 

a certain distance of a grid point. There are two common techniques for 

determining the neighbours of an agent: Moore and von Neumann (Figure 

3) [51]. DECarb-ABM adopts the Moore neighbourhood pattern as it was 
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Moore Neighbourhood von Neumann Neighbourhood

Figure 3: Moore and von Neumann neighbourhoods 

felt to capture better the realworld situation. There is no data to test this 

against and so this is simply an assumption made in the model. 

4.2.3. Agent Factory 

Agent generation is encapsulated using the “factory” design pattern [52]. 

A static method in the factory returns an agent with a base set of attributes 

and the age class to which the agent belongs. Implementing in this fashion 

ensured that agent creation was kept separate from the computation in the 

model, and as such any changes to the creation of the agents was entirely 

hidden from the model. Every agent returned by the factory represents one 

UK household. However, as this implementation was developed on a small 

laptop machine, a scaling factor was introduced to reduce the number of 

agents to take account of the memory available at the time. The scale factor 

is defined as: 

30 



total households 
scalefactor = 

agents created 

The scale factor in this case was 200, but is calculated by the model 

at the start of the simulation to ensure that categories with dwellings less 

than 200 can be accounted for. Total households refers to all households in 

every dwelling category in the age class—even those that are not represented 

in the ABM (i.e. those for which the dwelling category contained fewer 

households than the scale factor). This ensures that the correct number of 

total households is represented. At any point in the simulation, multiplying 

the agent population of an age class by the scale factor provides the total 

number of households in that age class. 

4.2.4. Building Contractor 

The Building Contractor class was designed to allow greater fidelity in 

modelling dwelling demolition in DECarb-ABM compared to the demolition 

model in DECarb-EBM. In DECarb-EBM, the number of dwellings to be 

demolished are calculated from user-supplied data for total population, per­

sons per household and demolition rate per annum. From these data, the 

model demolishes dwellings starting from the oldest age class (with the as­

sumption that older dwellings would be more inefficient compared to newer 

ones). DECarb-ABM implements the Building Contractor class, initially for 

the purpose of replicating this behaviour, and thereby validating the ABM 

implementation, but also to allow for the evaluation of other demolition poli­

cies. 
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4.2.5. DECarb energy calculator 

In the current implementation, the agent attributes produced in the pre­

vious steps are passed to DECarb-EBM, which implements a version of BRE­

DEM to calculate energy consumption and carbon emissions (see Figure 2). 

In principle, this can be any model that can undertake such calculations. 

Apart from further technical improvements in model physics, future func­

tionality could include modelling of impact on space heating, hot water or 

lights and appliance use by accounting for household characteristics (age, 

income etc.) supported by empirical data. 

4.3. Validation and verification 

One of the important tasks for a simulation study is determining how 

accurate a simulation model is with respect to the real system [53]. Effective 

validation12 and verification13 can increase confidence in the model, which 

in turn makes the outputs more informative and valuable. Kennedy and 

Xiang have separated these methods into subjective (face validation, tracing, 

Turing test and parameter sweep) and quantitative (docking and historical 

data validation) approaches [53, 54]. 

As part of our approach to validating the new model, DECarb-ABM cur­

rently employs marionette agents [47, See also]. As described in Section 3.1, 

12Validation involves making sure that the correct abstract model was chosen to accu­

rately represent the realworld phenomenon, best captured through a qustion of the form 

“Did I produce the right simulation?” 
13Verification involves making sure that the code generating the phenomenon has been 

written correctly to match the abstract model, best captured through a question of the 

form “Did I produce the simulation right?” 
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these agents do not possess autonomous behaviour and are guided by sys­

tem level aggregate properties. Agents are assigned probabilites for adopting 

various traits (such as adding insulation characteristics) at a global level and 

they adopt these traits at each model time-step as a function of their individ­

ual assigned probability for that particular trait. Parunak et al promote this 

technique as a middle-ground between ABM and EBM in relation to how the 

behavioural decisions of an agent can be determined by evaluating equations 

[48]. Agents have no local or global knowledge—they are simply marionettes 

acting as they have been instructed. Taken with the case made by Parunak, 

we conclude that using marionettes in itself is a means to build confidence 

in the abilities of the ABM stock transformation method, and paves the way 

for further exploration of using ABM for this purpose, whilst opening the 

way to using agents with greater degrees of autonomy. 

DECarb-EBM was validated using back-casting from the base year, 1996, 

to 1970 and comparing output to known energy use (from the Digest of 

UK Energy Statistics, DUKES) and modelled carbon emissions (from the 

Domestic Energy Fact File, DEFF)14. DECarb-ABM uses the same approach 

[13]. This allows the output to be docked15 with DECarb-EBM and validated 

against known data. 

Figures 4 and 5 show the result of docking DECarb-ABM with DECarb-

EBM disaggregated by age-class, of which there are six, from pre-1900 to 

14Back-casting is just like forecasting in that it starts from a fixed time point, but the 

model is run backwards in time to test the capability of the model to reproduce observed 

data. See [13] for a detailed explanation of back-casting. 
15Docking is a process of validation through model-to-model comparison 
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1980–1996. Every point (p) on the plots is derived from the difference be­

tween the ABM and EBM value (in Peta Joules, PJ or Million tonnes of 

Carbon, MtC) for a given age-class (i) in a given year (y) divided by the cor­

responding sum (PJ or MtC) of all age-classes in the EBM for that year16 . 

Thus: 

ABMi,y − EBMi,y
pi,y = �1980−1996 % 

i=P re−1900 EBMi,y 

The results for the ABM are the mean averages of twenty runs of the 

ABM17. The figures show that the differences are very small in comparison 

with the total figure for any given year. In both figures, the 1980-1996 age-

class for the year 1990 shows the greatest difference between the two models: 

−2% (equivalent to 40.4 PJ) in Figure 4 and −1.5% (equivalent to 0.7 MtC) 

in Figure 5, respectively, of total predicted energy consumption and carbon 

emissions by the EBM in 1990. It is therefore evident that, whilst there are 

small differences, the ABM successfully replicates the behaviour of the EBM. 

Figures 6 and 7 compare aggregated DECarb-ABM outputs against DUKES 

and DEFF data with DECarb-EBM outputs for reference. Here again, the re­

sults are a mean of 20 runs of the ABM. The differences evident in the 1990 

time-point calculation have been documented and discussed for DECarb-

EBM [13], and are due to 1990 being a much warmer year than the 30-year 

16By measuring the deviation against the aggregate EBM for each year, we get a better 

picture of the ABM’s performance compared to measuring directly against the EBM age-

class. 
17The EBM is run only once as, being deterministic, it always produces the same result. 
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Figure 4: Deviation in modelled energy consumption of each age-class (DECarb-ABMi −


DECarb-EBMi) compared to DECarb-EBM’s aggregate for all age-classes, in each year.
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Figure 5: Deviation in modelled carbon emissions of each age-class (DECarb-ABMi − 

DECarb-EBMi) compared to DECarb-EBM’s aggregate for all age-classes, in each year. 
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Figure 6: DECarb-ABM and DECarb-EBM modelled energy consumption compared to 

actual energy consumption from DUKES [55] data (PJ). 
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Figure 7: DECarb-ABM and DECarb-EBM modelled carbon emissions compared to 

DEFF [56] modelled data (MtC). 
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Deviation from DUKES Deviation from DEFF


DECarb-ABM +2.5% (−2.4%) −2.7% (−4.5%) 

DECarb-EBM −5.4% (−1.3%) −0.9% (+2.0%) 

Table 1: Average deviation from historical domestic energy consumption data (DUKES) 

and modelled carbon emissions (DEFF). Figures in brackets show the deviation if data for 

1990 is suppressed. 

average climate data used in DECarb18 . Table 1 shows the difference between 

DUKES and DEFF data compared to outputs from both DECarb-ABM and 

DECarb-EBM, with and without 1990 outputs. 

5. Exploration of non-deterministic issues and agent autonomy 

This paper has thus far concentrated on the replication of previous, equa­

tion based, results to demonstrate the validity and robustness of an ABM 

approach to domestic sector stock modelling. Work is currently in progress 

to explore the modelling of non-deterministic issues and agent autnomy. We 

discuss some preliminary results below to demonstrate the potential of ABM 

in terms of its easy extensibility. 

18As DECarb was built in the first instance to develop long term scenarios using the 

UKCIP climate data, it was necessary to use modelled 1960-1990 average UKCIP data 

so that changes resulting from climate change could be consistently compared. Since 

DECarb-ABM inherits legacy code from DECarb-EBM, it is not possible at present to 

use real weather data. We do not see anything to prevent its incorporation in the future 

if required, nor would we expect this to have any significant impact the validation results. 
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5.1. Demolition Policy 

We carried out a preliminary evaluation of three demolition policies19: 

(i) oldest properties are demolished first (ii) random properties are demol­

ished and (iii) least energy-efficient properties are demolished first. The sim­

ulation revealed differences between the three policies that were consistent 

with the expectation that demolishing oldest and least efficient properties 

would be better options than random demolition. However, the tests also 

showed that the magnitude of differences between the three scenarios is very 

small—scenarios (ii) and (iii) differed from (i) by only between 0.4% and 

2.8%—in terms of eventual overall stock energy characteristics. If true— 

and it is worth stressing again that these results are preliminary—this result 

could have important policy implications, as it suggests that aggressive re­

placement of inefficient stock may not have a significant net benefit compared 

to random (which we take as representative of market-driven) replacement. 

The only aspect of demolition that appears to count is the total number 

of demolished dwellings replaced with more efficient stock. Under such a 

scenario, resources would be better chanelled towards increasing demolition 

rates without regard for the nature of stock being replaced. 

5.2. Household Behaviour 

We designed a simple theoretical behavioural framework to test the ca­

pability of the model to simulate behavioural responses of households to 

changing conditions. Using van Raaij and Verhallen’s behavioural model, we 

posited that a household’s uptake of double glazing was influenced by three 

19That is, demolition of dwellings with the intention to replace with more efficient stock. 
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factors: (i) household income (ii) installation by neighbours and (iii) gov­

ernment policy. Preliminary evaluation suggests that the model captures 

expected behaviour under variations of all three variables: higher household 

income allowed households to adopt double glazing at a faster rate, the more 

neighbours with double glazing the greater the rate of adoption and fiscal 

incentives from the government stimulate uptake. Here, useful inferences for 

policy can be made by replacing the theoretical assumptions of the frame­

work (both the assumptions themselves and the starting conditions) with 

empirical data collected, say, from surveys. 

5.3. Emergent Properties 

What both these examples demonstrate is the value of an ABM approach 

for exploring emergent behaviour. In an equational environment, adding such 

functionality, if even feasible, would require significant re-coding. We were 

able to implement these tests—preliminary as they are—with very little cod­

ing and computational overhead. In both cases, the agents themselves were 

no longer marionettes responding to global level instructions. Each household 

agent had independent ability to make decisions within the boundaries spec­

ified by the simulation (i.e. they were bounded-rational agents). These two 

cases help underline what we see as the prime potential benefit of adopting 

ABM: the capacity to explore new issues with relatively small technical and 

computational overhead, while keeping the research focussed on the problem 

and not diverted by the complication of the tools. 
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6.	 Conclusions 

This paper presents a number of arguments for a step change in the 

methodology for modelling national scale domestic energy consumption and 

carbon emissions. In summary, the paper argues that: 

(i) The	 current use of average dwelling categories to represent dwelling 

stock requires validation and testing to achieve an efficient balance be­

tween modelling power and granularity of available empirical data. 

(ii) Future datasets from a range of current studies will need to be incor­

porated in stock models which will impact the granularity of dwelling 

categories. 

(iii) Methods using deterministic modelling are inappropriate for exploratory 

analysis of inherently uncertain scenario-based futures. 

(iv) The real-world impact of technological options on energy use and car­

bon emissions can only be achieved through incorporating household 

adoption, purchasing and maintenance behaviours. 

We also argue that these issues can be tackled through the use of an 

integrated Agent Based Modelling approach. A preliminary model using 

Agent Based Modelling, DECarb-ABM, based on an earlier equational model, 

DECarb-EBM, is presented. The ABM model was successfully docked with 

the EBM and validated through comparison with historical data. There are 

two noteworthy aspects to the results from the validation through docking: 

40




(i) DECarb-ABM tracks the results from DECarb-EBM quite closely over 

the entire backcast period (1970-1996) using the same input data. How­

ever, enough differences in the data are evident, particularly between 

1980 and 1996, to demonstrate that though these results are function­

ally equivalent they arise from methodologically diverse processes. This 

is important as it demonstrates that the ABM is not simply mimicking 

the EBM, even though the initial conditions for both simulations are 

the same. 

(ii) The back-cast is within ±5% of both actual measured domestic energy 

consumption obtained from DUKES and modelled carbon emissions 

from the well established DEFF data. This suggests that the model is 

robust and is able to replicate real-world conditions sufficiently, giving 

confidence in future simulations. 

Future work will expand the ability and scope of DECarb-ABM as indi­

cated in Section 5 to investigate the effect of different household behaviours 

and demographic and technical scenarios, through both increasing the au­

tonomy of individual agents—combined with regression testing to build and 

maintain confidence—and scaling simulations up to benefit from the greater 

computational power now available. 
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