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Abstract: The mitigation of peak-valley difference and transient power fluctuation are
both of great significance to the economy and stability of the power grid. This paper
proposes a novel vehicle-to-grid behavior management method that can provide peak-
shaving and fast power balancing service to the grid simultaneously. Firstly, a multi-
time scale vehicle-to-grid behavior management framework is designed to enable large-
scale optimization and real-time control at the same time in vehicle-to-grid scheduling.
Then, the grid peak-shaving requirement is modeled as a mathematical optimization
problem in a centralized VV2G state coordinator, where the charging behavior of all grid-
connected electric vehicles can be synergistically scheduled. The optimization variable
is designed as a group of vehicle-to-grid state control signals that can respond to grid
peak-shaving requirements. Further, a V2G power controller is designed to manage the
vehicle charging power in real-time based on the sampled grid frequency state and
discrete state control signal. In the developed scheduling method, the charging power
of grid-connected electric vehicles is scheduled by the cooperation between the V2G
state coordinator and the power controller. The effectiveness of the proposed
methodologies is verified on a microgrid system, and results indicate that the V2G
scheduling can achieve multi-time scale grid power balancing.

Keywords: Electric vehicle, multi-time scale scheduling, vehicle to grid, grid energy
storage, peak management, power balancing.

Abbreviations

EV Electric vehicles

GEVs Grid-connected electric vehicles

V2G Vehicle to grid

G2v Grid to vehicle

FLC Fuzzy logic control

ICT Information and communications technology
VSC V2G state control

MSVBM Multi-time scale V2G behavior management
GA Genetic algorithm

FLVPC Fuzzy logic V2G power controller

SD Standard deviation
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I. Introduction

Vehicles and power grids are two important components of the modern energy
system. In recent years, the growing concerns with the shortage of fossil fuels and
greenhouse gas emissions call for a paradigm shift in power grids [1, 2]. The traditional
energy generation devices, including the diesel generator and the coal-fired power plant,
are gradually replaced by renewable energies [3, 4]. Different from traditional energy
generation sectors, the intermittent nature of renewable energy makes it difficult to
maintain the power balance between supply and demand. The unstable power balancing
state may cause frequency fluctuation and voltage deviation problems, which can
further do harm to the grid economy and stability [5, 6].

Meanwhile, with the electrification of transportation systems, conventional fuel
vehicles are replaced by electric vehicles (EVs) due to environmental and economic
benefits [7, 8]. Inherently, grid-connected electric vehicles (GEVs), or more
specifically, power batteries of GEVs are regarded as the intruder to the power grid,
and with the large-scale adoption, their uncoordinated charging adds significant
pressure on the power grid [9, 10]. As a result, if GEVs charging is uncoordinated, it
can cause significant power fluctuations, bringing significant challenges to both system
economy and stability, particularly for power systems with large renewable energy
penetration [11]. Fortunately, different from conventional energy consumption
equipment, the vehicle battery can also be used as the named “energy storage system”
to feed energy back to the grid when necessary. The inclusion of EVs, however,
introduces a challenging problem, i.e. how to coordinate the operation of renewable
energy systems, domestic loads, and charging behaviors of GEVs.

To improve the economy and stability of the power grid with renewable energy
penetrations, a large volume of studies has investigated vehicle to grid (V2G) behavior
management techniques in recent years [12-15]. Decentralized scheduling is one of the
most popular V2G management methods. In decentralized methods, GEV charging is
scheduled independently by distributed controllers and algorithms [16, 17]. A rule-
based decentralized VV2G control method was proposed in [18] for GEVs to participate
in grid frequency regulation service. Simulations on a two-area interconnected power
grid showed that the proposed decentralized method can suppress transient grid power
fluctuations while meeting GEVs charging requirements. Mukesh Singh et al. [19]
proposed a decentralized V2G scheduling method for grid peak demand management
using fuzzy logic control (FLC). Experiment results revealed that the charging and
discharging power of GEVs can be controlled in real-time to provide grid power
balancing service. Grid state information is sampled and used locally in decentralized
methods to schedule the charging power of GEVs [20, 21]. Thus, the transient
unpredictable load and power generation fluctuation can be efficiently suppressed and
grid frequency can be effectively stabilized. However, each GEV is controlled
independently in conventional decentralized methods, and there is no centralized long-
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term planning or information-sharing mechanism [22, 23]. Consequently, the peak-
shaving requirement of the grid can hardly be satisfied in most decentralized V2G
methods.

To provide large-time scale peak-shaving service to the grid, V2G behavior of all
GEVs should be synergistically scheduled [24, 25]. Recently, with the development of
information and communications technology (ICT), researchers have begun to develop
centralized V2G scheduling methods to improve peak-shaving performance [26-28].
Kristien Clement Nyns et al. [29] proposed a centralized GEV charging coordination
approach by using a dynamic programming algorithm, and the optimal charging profile
was formulated by minimizing grid power fluctuations. Literature [30] proposed a
method to coordinate VV2G behavior based on a self-adaptively imperialist competitive
algorithm, where each GEV was scheduled to minimize power imbalance cost
considering network constraints. Experiment results on a microgrid system indicated
that the grid peak-valley difference can be significantly reduced by the proposed
method. In the centralized method, GEV charging demand, load, power supply, and
grid state information are synthetically utilized to achieve optimal V2G scheduling [31].
However, centralized V2G scheduling is a time-consuming process, and the control
time-step is 5 to 10 minutes or even longer [32, 33]. Therefore, transient unpredictable
load and power generation fluctuations can hardly be suppressed in centralized methods
[34].

The reduction of peak-valley difference and the suppression of transient load
fluctuation are both of great significance to grid economy, stability, and power supply
quality [35-37]. However, because lacking of information sharing mechanism in
decentralized methods and the limitation of calculation speed in the centralized methods,
both are not able to provide peak-shaving and transient power balancing services for
the grid at the same time [38]. This paper aims to resolve the aforementioned problems
by developing a multi-time scale V2G scheduling method. Grid peak-shaving
requirement is modeled as a large-scale optimization problem in a centralized GEVs
charging state coordinator, where the charging behavior of all GEVs can be
synergistically scheduled. The optimization variable is designed as a group of V2G
state control signals that can respond to grid peak-shaving requirements. On the basis
of the established centralized GEVs charging state coordinator, a V2G power controller
is further designed to manage the vehicle charging power in real-time based on the
sampled grid frequency state and discrete state control signal. In the developed
scheduling method, the charging power of GEVs is scheduled by the cooperation
between the VV2G state coordinator and real-time power controller. The key contribution
of this paper is summarized as follows:

e This paper is the first attempt to investigate a V2G scheduling method that can
satisfy the multi-time scale power balancing requirement of the grid. With the
proposed scheduling method, both grid peak-valley difference and transient
power fluctuation can be reduced significantly.
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e A multi-time scale V2G behavior management (MSVBM) framework is designed,
which enables the large-scale optimization and real-time control at the same time
in V2G scheduling. Under the MSVBM framework, the charging power of GEVs
can be scheduled by the cooperation between the centralized V2G state
coordinator and real-time power controller.

e It designs the V2G state control (VSC) signals in a centralized V2G state
coordinator, which can model the grid peak-shaving requirement as a
mathematical optimization problem. With the VSC signals, GEV charging can be
synergistically scheduled to respond to grid peak-shaving requirements.

e It designs a novel V2G power controller, which can schedule V2G power for
balancing grid transient power fluctuation in real-time. With the designed real-
time controller, the transient grid power fluctuation can be suppressed and the
power quality can be significantly improved.

The rest of the paper is organized as follows: The developed MSVBM framework
is introduced in Section Il. Section Il presents the centralized GEVs charging state
coordinator. The developed real-time V2G power controller is described in Section 1V.
The simulation platform and the performance of the proposed V2G scheduling method
are provided and evaluated in Sections V, followed by concluding remarks in Section
VI.

I1. Multi-time scale V2G behavior management framework

To improve grid economy and power quality at the same time by better utilizing
GEVs resources, a novel MSVBM framework is developed in this section. As shown
in Fig. 1, the developed MSVBM framework consists of two parts: the centralized V2G
state coordinator and real-time VV2G power controller. The peak-shaving and transient
power balancing requirements of the grid are processed with the centralized V2G
coordinator and real-time V2G power controller, respectively.

To provide peak-shaving service to the grid in V2G scheduling, the charging
behavior of all V2G participants should be cooperatively scheduled. In the designed
MSVBM framework, the peak-shaving requirement of the grid is modeled as a
centralized optimization problem. The predicted grid load profile, renewable generation
profile, and GEVs state information are used to estimate grid power peak-valley
characteristics, and then the power level of GEVs is scheduled to provide grid peak-
shaving service based on the large-scale optimization algorithm. The optimization
variable is designed as a set of VSC signal which can respond to the peak-shaving
requirement of the grid. The optimization results: peak-shaving oriented VV2G control
commands are sent to real-time V2G controllers, working as a guidance signal to direct
the actual control of V2G power.
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Fig. 1. The developed multi-time scale V2G behavior management framework.

With strong transience and unpredictability, fluctuations of uncertain load and
power generation cannot be suppressed by the centralized V2G coordinator. To
suppress the transient power fluctuation and improve grid energy quality, a real-time
VV2G power controller is built to control the GEVs charging power directly. As shown
in Fig. 1, with sampled real-time grid frequency state and the VSC commands provided
by the centralized coordinator, a fuzzy-logic-based real-time VV2G power controller is
established to calculate V2G power. The scheduled V2G power command is used to
directly control the charging and discharging behavior of GEVs by a smart charger.

In the developed MSVBM framework, GEVs charging power is scheduled by the
cooperation between the centralized V2G state coordinator and real-time power
controller. V2G state control signal, which is coordinated in the centralized coordinator,
is used to respond to peak-shaving requirement and improve grid economy; and the
specific V2G power is scheduled by the real-time controller to improve the grid power
quality. With the above system operation mechanism, V2G resources can be better
mobilized to provide multi-time scale power balancing service to the grid. The rest of
the paper will detail the mathematical principle of the centralized V2G coordinator and
the real-time VV2G power controller

I11. Centralized V2G state coordinator

To make better use of GEV resources to provide peak-shaving service, this section
develops a GEV charging state coordination model to respond to the large time-scale
peak-shaving requirement of the grid. For centralized V2G scheduling, a fast and
effective decision algorithm is indispensable for scheduling the charging and
discharging power level of GEVs. The heuristic algorithm is one of the most effective
ways to solve complex optimization problems. Genetic algorithm (GA) is a typical
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heuristic algorithm, which has a better adaptability and can usually achieve the global
optimal solution, especially in discrete optimization problems [39, 40]. The essential of
GEV charging scheduling is a large-scale discrete optimization problem, and thus the
GA is used as the core algorithm in the developed centralized V2G state coordination
model in this section.

The designed optimization variable is the VSC signal, which is used to reflect the
charging/discharging power level of each GEV. To simplify the optimization and
facilitate real-time V2G control, the charging and discharging states of each GEV in
each time interval are divided into five levels: negative big (NB), negative small (NS),
zero (2), positive small (PS), and positive big (PB). When the load peak appears, the
VSC signal is assigned as NB or NS, and the GEVs are scheduled to discharge to reduce
the peak-valley difference of the grid. On the contrary, when load valley appears, the
VSC signal is changed to PS or PB according to different valley levels, and GEVs are
scheduled to charge to satisfy the charging requirement of owners. When the grid load
state is relatively stable, the VSC signal is set to Z to protect the vehicle battery from
additional cycles. Furthermore, the above five states are further represented with a
three-digit binary variable and the encoding rules are as follows

NB(111) Full power discharging
NS(110) Medium power discharging
S;.; =1 Z(000) No Action (1)
PS(010) Medium power charging
PB(011) Full power charging

Where: S, ; is charging state of EV, attime j.

Different from conventional GA algorithms, the individual coding format in the
proposed scheduling method is a three-digit binary variable. To improve calculation
efficiency, a new chromosome crossover and mutation mechanism is developed. Firstly,
in conventional GA, the crossover operation is generally performed in the form of
point-to-point, but it is inefficient in large-scale optimization problems, such as V2G
scheduling [41, 42]. Therefore, a segment-to-segment crossover approach is applied in
our work, shown in Fig. 2(a). The genes in different chromosomes are in 4 units, which
can effectively improve the chromosome crossover efficiency. Then, a novel
chromosome mutation mechanism is developed to ensure the validity of the
optimization. In the proposed coding format, each gene has five states (111, 110, 000,
010, and 011). To simplify chromosome mutation operation and accelerate optimization,
it is assumed that each gene mutates in 4 different directions with equal probability, as
shown in Fig. 2(b).
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The structure of chromosome S, in the centralized V2G scheduling model is
designed as:
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The dimension of S, is nx(u+w). Where n is the total number of GEVs; m
represents the number of GEVs that has just been connected to the grid and pending
V2G scheduling instructions, (n-m) is the number of GEVs that are already connected
to the grid. u and w represent historical and future V2G charging states. Historical
GEVs V2G behaviors are unchangeable but can affect overall system peak-shaving
performance, and therefore, S,,---S,, is also designed as part of the optimization
variable. Future GEV charging states S, ,,---S, .., are scheduled to provide peak-
shaving service for the grid by the optimization process, and the corresponding
objective function and constraints are described in the rest of this section. Firstly, the
V2G power of EV, attimej, P ., isderived by GEV charging state matrix:

ij?

1 S, =NB(@11)
P x|1

i > Siy=Ns@o)

P,={ O S, = Z(000) ©)

1

d S, . =PS(010

P x|2 o =0

1 S, =PB(011)

Where: P, and P, are the rated discharging and charging power of the battery. Based
on the derived V2G power state, the battery SOC of EV, can be calculated by the
following equation [43]:

AtxP ><77i

SoC, j,, = S0C; | ++x100 4)

i,j+1
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Where: At is the duration of a dispatch time interval, C' and 7' are the battery
capacity and operation efficiency of EV,.

The relationship between the scheduled V2G power matrix P, and V2G state
matrix is:

P =1(S)) (5)

Where: f isVV2G state-power transfer function.
The objective function in the centralized V2G scheduling system is to reduce load
fluctuation variance:

u+w

n 2
OBJ, =min {LZ{P@ () —P )+ (S, (1) - ﬁav} } (6)
u+w:i= i=1
Where: B, (t) and P, are system power requirement at time t and system average
power requirement. P (t) is the power generation at t in the microgrid. z f(S,(t) is
the power exchange between GEVs and microgrid. =1

The defined optimization problem is subjected to the following constraints that
reflect the charging requirements of V2G participants:

_Pmax < P S Pmax

i,discharg — " i i, charg
SoC i, £SoC;, <SoC, (7

min —

SoC™ >SoC™*

Where: BT, and B, constraint the maximum battery discharging and
charging power of V2G participants to protect the battery for high current; SoC_.,,
and SoC ., describe the allowed minimum and maximum battery energy state to
avoid over-discharging and over-charging. It is noted that charging should be
completed before participants' departure, and therefore, the final battery energy state
SoC™ should be higher than the vehicle charging requirement SoC™*.

The GA method is used to solve the optimal charging state of GEVs. The focus of
this section is to build the mathematical model of the centralized V2G charging state
scheme and the GA is the tool to solve the model. Thus, the GA principle will not be
introduced in detail. The scheduled optimal GEV charging state command can respond
to grid peak-shaving requirement, and it is used as the VSC signal for real-time V2G

power controller in the next section.

V. Real-time V2G power controller

The established centralized GEV charging state coordinator can only satisfy grid
peak-shaving requirements but not services to stabilize grid transient power fluctuations.
In this section, based on the generated VVSC signal in Section 111, a real-time V2G power
controller that can consider grid multi-time scale grid power balancing requirements is
developed to further improve energy quality.
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A. Real-time microgrid power balance model

The microgrid is a complex dynamic system with various sources and loads having
different characteristics. The power balance of the microgrid influences the energy
quality directly: the unbalanced reactive power will result in voltage fluctuation, and
the grid frequency fluctuation is contributed by unbalanced active power. In the non-
industrial microgrid (family, community, and workplace), the most frequently
discussed scenario is the unbalanced active power. Therefore, the power requirement
for suppressing transient grid power unbalance is calculated based on the real-time grid
frequency state information in this study. The system power balance equation can be
obtained as:

AP(t) = PWind (t) + Psolar (t) - PIoad (t) (8)

AP reflects the change of supply and demand balance in the microgrid. The
change of AP causes the frequency fluctuation, and to improve energy quality, the
power balance should be dealt with the power contributions from GEVs. As shown in
Fig. 3, in the studied microgrid system, the transient grid power fluctuation caused by
the uncertainty of renewable energy and household load will directly impact the
frequency state of the grid. Based on the deviations in nominal frequency (50 Hz), the
V2G controller schedules the V2G power of GEV batteries directly to provide fast
power balancing service for the grid.

B. Real-time V2G power scheduling method

On the basis described microgrid power balance model, to provide peak-shaving
service and stabilize the grid transient power fluctuation at the same time by utilizing
V2G resources, a fuzzy logic V2G power controller (FLVPC) is developed in this
section. The input variables of the FLVVPC are chosen as:

1) the frequency deviations of the grid Af , which reflects the power injection requirements
of the grid.

2) the centralized GEV state control command S, which reflects the power requirements for
grid peak-shaving service.

The output of the FLVPC is the V2G charging or discharging power P, . To make
the output function bounded, the V2G power variable R, withrange [-1 ~ 1] is used
to describe the V2G output power level. The relationship between P, and S, can
be denoted as:

Ped Sreal < O
IDreal = Rreal x (9)
Pec Sreal 2 O

The membership functions (MFs) of Af and R, are depicted in Fig. 3. The MFs
for input variable Af is designed as 1) large negative (LN); 2) negative (N); 3) zero
(2); 4) positive (P) and large positive (LP); the 'positive’ and 'negative’ represent the
direction of frequency deviations, 'large’ represents the degree of deviation. Similarly,
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the MFs of the output variable R, are negative big (NB), negative middle (NM),
negative small (NS), zero (Z), positive small (PS), positive middle (PM), and positive
big (PB). 'Negative' and 'positive’ represent grid-to-vehicle (G2V) and V2G mode,
respectively. The 'big’, 'middle’, and 'small’ represent the output power degrees.

1LN N Z P LP
20. £ i /
S5 / \ i \\ /
o 50 3 z \/
0] % \ y.
SEO / ' 7 7\
8 2 0 . /’/ 4 3
£ / bt
i i A v \
-0.125 0 . . 0.125 0.25
Frequency deviation, Af
B NM NS z PS PM PB

N A D D =Z OO N A O ®

Degree of
membership
© © o ©

T L} T L] T I\ T
b) f ""a,
L 7N
/ \
j‘l “sg
o / \
Y \
/ \
- ;" ‘a‘\
/ \
\
- /
f \
L \

1 08 06 04 02 0 02 04 06 08 1
V2G power reference, R,

Fig. 3. Membership functions of input and output variables. (a) Input variable Af , (b)
output variable R

real *

The V2G power output of GEVs is decided by the rule base of the fuzzy logic
control. Each of the outputs implements its rules based on the state of two inputs: the
system frequency deviation and the VSC signal. The rules in the proposed FFRVC are
shown in Table I. The transient grid load stabilizing performance is emphasized in the
designed FFRVC, and thus the charging state of GEVs is mainly decided by the
frequency deviation of the grid. When system frequency is lower than the standard
value, all GEVs are controlled to discharge power back to suppress the grid transient
load fluctuation. In contrast, when the system frequency is higher than the standard, no
GEVs are scheduled to discharge. The VSC signal is used to reflect the peak-shaving
requirements of the grid in FFRVC. With the same grid frequency state, more system
peak-shaving requirements, the higher V2G or G2V power is provided.

Table I. Rule base of the FFRVC to determine the V2G power

VSC
Af R,, NB NS z PS PB
LN NB NB NM NM NS
N NB NM NS NS z
z NM NS 4 PS PM
P Y4 Z PS PM PB

LP Z PS PM PB PB
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V. Case study

A. The studied microgrid system

As shown in Fig. 4 (a), a microgrid system [44] that consists of renewable energies,
generators, GEVs, and domestic loads is employed to verify the performance of the
developed V2G scheduling method. The energy consumptions and power balance state
of the grid are simulated based on the open-access power system operation data [45]
provided by UK National Grid ESO. The national household travel survey data [46] is
employed to simulate the charging behavior of V2G participants, and the Monte Carlo
simulation model [47] is used to simulate GEVs usage information. 30 GEVs each with
a 16 kWh battery are considered in our research to provide the power balancing service
to the grid. The real operation and prediction characteristics of generators and
renewable energies from [48] are employed to simulate the power flow between
different sectors. In this study, aiming to verify the power balancing performance of
GEVs, the smart energy system is simulated in the off-grid mode, the bi-directional
power interaction between the main grid and microgrid is not simulated. Therefore, the
household load and charging requirements of GEVs will all be satisfied with the energy
resources in the microgrid.

@ (b)
1
S v I S le grid 1 t k
¢¢¢ i i amp e.grl ong— erm pt?a -
- i ~Shaving requirement informatio|
¥

PV array PV inverter

Solve the centralized optimization
problem (5), record the optimal
V2G reference state §;

v

M. | 1 Jectric Vehicle

— ~
S A

Electric vehicle with
smart charger

Wind Wind / Sample real-time
generator inverter ) grid frequenj:’y state Af,
E Household load Real-time V2G
= _ 5 power controller
& 7
Traditional Obtain V2G power

control signal P,

Fig. 4. The verification of the developed V2G scheduling method. (a) Schematic of the
studied microgrid system. (b) Flowchart of the simulation process.

generator

o na

In verifying the proposed scheduling method, we assume that the EV usage
information, including grid-connected time and battery SOC, departure time, and
charging requirement, is known in advance. The most active V2G period (16:00-24:00
and 00:00-08:00) is considered in this study, and the duration of a dispatch time interval
is set as 15 minutes. Therefore, the value of u and w in equation (6) are both limited
between 0 to 64. Meanwhile, the V2G behavior of 30 GEVs is scheduled, and therefore
the maximum value of n is set as 30. The specific simulation process is shown in Fig.
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4. (b). First, based on the supply-demand relationship between the generator and
household load, the centralized scheduling system solves the optimal power level of
GEVs. Then, according to the transient power fluctuation of renewable energies and
household load, the real-time V2G power controller calculates the actual V2G power
for GEVs.

B. System power balancing performance

Fig. 5 shows the power balancing results of the proposed MSVBM method, where
GEV batteries are scheduled to provide long-short term power balancing service to the
grid. As shown in (c), In the whole scheduling period (from 16:00 to 24:00 and 00:00
to 08:00), with the FLVPC, the proposed scheduling algorithm can use GEVs batteries
to provide power balancing service to the grid according to frequency deviations in
real-time. With the fast-auxiliary power provided by vehicle batteries, the short-term
power fluctuation of the grid can be suppressed and energy quality can be significantly
improved. The V2G capacity can also be scheduled to provide peak-shaving service to
the grid with the proposed MSVBM method, the corresponding VSC signal of a GEV
from centralized V2G state coordinator is shown in (b). When domestic load peak and
valley appear, GEVs are scheduled to discharge or charge to provide peak-shaving
service according to the VSC signals in the centralized GEV charging state coordinator.
The proposed MSVBM method can deal with the long-term peak-shaving and transient
power balancing requirements of the grid at the same time. As shown in Area A, a
transient load surge also appears around 21:00. The real-time V2G power controller
samples the grid frequency state and controls GEVs to feed power back to the grid to
maintain grid stability in real-time. As a result, to suppress this transient power
fluctuation, the maximum V2G power in this area is elevated to 0.82p.u. After 00:00,
GEV batteries are controlled to be charged. The proposed MSVBM method can also
schedule the charging power of GEVs to absorb excess valley power and maintain the
transient power balancing of the grid simultaneously, as shown in AREA B. With the
cooperation of the centralized V2G state coordinator and real-time V2G power
controller, the V2G resources can be reasonably used to improve the grid economy and
stability.
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fluctuations, (b) VSC signal of a GEV from centralized V2G state coordinator, (c)
aggregated V2G power of the GEVs.

To verify the effectiveness of the proposed MSVBM method, the V2G power
profile of GEVs is compared to the traditional centralized V2G scheduling method [49],
as shown in Fig. 6. In the traditional centralized scheduling method, almost all the EVs
are scheduled to provide the peak-shaving service for the grid, and the grid economy
can be improved. However, as most V2G resources are occupied by the peak-shaving
service, the grid transient power fluctuation cannot be suppressed. Comparing to the
centralized method, the proposed MSVBM method can utilize V2G resources more
reasonably. As shown in (b), the discharging and charging behaviors of GEVs are not
as concentrated as that of in the centralized method, more VV2G capacity remains for
fast power balance regulation service. Within the whole V2G scheduling period, the
GEVs V2G power is dynamically controlled by the real-time VV2G power controller to
balance the grid power state. Meanwhile, during the grid peak hours (19:00~23:00),
influenced by centralized GEVs’ state control command, most GEVs are still scheduled
to provide peak-shaving service.
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Fig. 6. V2G power profile of 30 GEVs. (a) Conventional centralized VV2G scheduling
method, (b) the proposed MSVBM method.

Y 000

The final battery SoC of the 30 GEVs in the developed V2G scheduling method is
shown in Fig. 7. The actual battery SoC at departure is 12% higher than the preset value
on average, which indicates that the charging requirement of GEVs can always be
satisfied. The charging requirements of GEVs are set as a constraint in the centralized
V2G scheduling model, and with the optimization, the calculated strategies can always
satisfy the corresponding constraints in the defined optimization model. Therefore,
charging can always be completed before participant departure with the developed V2G
scheduling method.

100 T T T
%50~ —1 Actual battery SoC at departure |
@ 25r — Preset battery SoC by EV owner | -
0 HEEENEENNEEE
0 5 10 15 20 25 30

GEVs

Fig. 7. Actual and preset battery SoC value at departure in the developed MSVBM
method.

To better illustrate the improvement, we also quantify the long-term power
balancing performance of the proposed scheduling method within 30 days, including
22 workdays and 4 weekends. The performance of all V2G scheduling methods
(centralized method [49], fuzzy logic method [50], and the proposed MSVBM method)
are compared and summarized in Table I1. With 16% and 19.7% overflow of maximum
peak and average peak-valley difference, it is obvious that the random charging of
GEVs causes additional grid demands. The coordination of GEVSs' charging can be
realized by the centralized V2G scheduling method. Compared to the random charging
scenario, 19.7% peak power is shaved on average and thus the maximum grid peak load
and load standard deviation (SD) are reduced by 32.1 % and 50.3%, respectively.
However, the unpredictable transient grid power fluctuations cannot be suppressed in
the centralized method, which can compromise energy supply quality. In the fuzzy
logic-based V2G control method, the power fluctuation is suppressed by the sampled
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grid frequency state, and the energy supply quality is improved significantly. However,
the fuzzy logic method mainly focuses on suppressing the short-term load fluctuation
but neglects the long-term peak-shaving, and thus only 7.6% peak load is shaved on
average and the peak-valley difference is still as high as 312.4 kW. As a result, the
calculated maximum SD is even higher than that of the centralized method. Both peak-
shaving and transient power balancing requirements of the grid are considered in the
proposed MSVBM method. Therefore, as seen in Table Il, the average peak-valley
difference is further reduced (205.3 kW, 34.3% lower than the fuzzy logic method and
only 6.5% higher than the centralized method). Meanwhile, because of the real-time
V2G power controller in the MSVBM method, the grid power supply quality is
improved significantly, where the power SD is reduced by 14.3% and 30.7% compared
to the centralized method and fuzzy logic method, respectively).

Table Il. The long-term power balancing performance of different V2G scheduling
methods.

Maximum peak  Maximum  Average peak Average peak-valley

Scenario . .
power (KW) load SD shaving (%)  difference (kW)
Baseload 448.3 105.27 336.2
Random charging 533.7 132.55 418.7
Centralized method 362.5 65.83 20.7 191.8
Fuzzy logic method 4274 81.36 7.6 312.4
MSVBM method 385.3 56.42 17.3 205.3

V1. Conclusion

In this paper, a multi-time scale V2G behavior management method is proposed to
schedule the charging behavior of GEVs to provide peak-shaving and fast power
balancing service for the microgrid. Through extensive demonstrations, the main
findings are as follows: served as a power level guidance signal, the VSC signal
generated by centralized GEV state coordinator can effectively reflect the peak-shaving
requirement of the grid. With the real-time sampled frequency state information, the
designed real-time V2G controller can schedule the GEVs to provide fast grid power
balance regulation service to the grid. Both the economy and energy quality of the grid
can be improved by optimizing the charging power of GEVs through cooperative
scheduling between the V2G state coordinator and real-time power controller. The
simulation experiment on a real microgrid system showed that the grid load peak can
be reduced by 9.8% compared to the fuzzy logic method and the load SD can be reduced
by 14.3% compared to the centralized scheduling method, which indicates that the
proposed multi-time scale V2G behavior management method can suppress grid
transient power fluctuation while providing the same peak-shaving services to the grid
as expected.
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