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Abstract: The mitigation of peak-valley difference and transient power fluctuation are 
both of great significance to the economy and stability of the power grid. This paper 
proposes a novel vehicle-to-grid behavior management method that can provide peak-
shaving and fast power balancing service to the grid simultaneously. Firstly, a multi-
time scale vehicle-to-grid behavior management framework is designed to enable large-
scale optimization and real-time control at the same time in vehicle-to-grid scheduling. 
Then, the grid peak-shaving requirement is modeled as a mathematical optimization 
problem in a centralized V2G state coordinator, where the charging behavior of all grid-
connected electric vehicles can be synergistically scheduled. The optimization variable 
is designed as a group of vehicle-to-grid state control signals that can respond to grid 
peak-shaving requirements. Further, a V2G power controller is designed to manage the 
vehicle charging power in real-time based on the sampled grid frequency state and 
discrete state control signal. In the developed scheduling method, the charging power 
of grid-connected electric vehicles is scheduled by the cooperation between the V2G 
state coordinator and the power controller. The effectiveness of the proposed 
methodologies is verified on a microgrid system, and results indicate that the V2G 
scheduling can achieve multi-time scale grid power balancing. 
 
Keywords: Electric vehicle, multi-time scale scheduling, vehicle to grid, grid energy 
storage, peak management, power balancing. 
 

Abbreviations 

EV       Electric vehicles 
GEVs       Grid-connected electric vehicles 
V2G       Vehicle to grid 
G2V       Grid to vehicle 
FLC       Fuzzy logic control 
ICT       Information and communications technology 
VSC       V2G state control 
MSVBM      Multi-time scale V2G behavior management 
GA       Genetic algorithm 
FLVPC      Fuzzy logic V2G power controller 
SD       Standard deviation 
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I. Introduction 
Vehicles and power grids are two important components of the modern energy 

system. In recent years, the growing concerns with the shortage of fossil fuels and 
greenhouse gas emissions call for a paradigm shift in power grids [1, 2]. The traditional 
energy generation devices, including the diesel generator and the coal-fired power plant, 
are gradually replaced by renewable energies [3, 4]. Different from traditional energy 
generation sectors, the intermittent nature of renewable energy makes it difficult to 
maintain the power balance between supply and demand. The unstable power balancing 
state may cause frequency fluctuation and voltage deviation problems, which can 
further do harm to the grid economy and stability [5, 6]. 

Meanwhile, with the electrification of transportation systems, conventional fuel 
vehicles are replaced by electric vehicles (EVs) due to environmental and economic 
benefits [7, 8]. Inherently, grid-connected electric vehicles (GEVs), or more 
specifically, power batteries of GEVs are regarded as the intruder to the power grid, 
and with the large-scale adoption, their uncoordinated charging adds significant 
pressure on the power grid [9, 10]. As a result, if GEVs charging is uncoordinated, it 
can cause significant power fluctuations, bringing significant challenges to both system 
economy and stability, particularly for power systems with large renewable energy 
penetration [11]. Fortunately, different from conventional energy consumption 
equipment, the vehicle battery can also be used as the named “energy storage system” 
to feed energy back to the grid when necessary. The inclusion of EVs, however, 
introduces a challenging problem, i.e. how to coordinate the operation of renewable 
energy systems, domestic loads, and charging behaviors of GEVs. 

To improve the economy and stability of the power grid with renewable energy 
penetrations, a large volume of studies has investigated vehicle to grid (V2G) behavior 
management techniques in recent years [12-15]. Decentralized scheduling is one of the 
most popular V2G management methods. In decentralized methods, GEV charging is 
scheduled independently by distributed controllers and algorithms [16, 17]. A rule-
based decentralized V2G control method was proposed in [18] for GEVs to participate 
in grid frequency regulation service. Simulations on a two-area interconnected power 
grid showed that the proposed decentralized method can suppress transient grid power 
fluctuations while meeting GEVs charging requirements. Mukesh Singh et al. [19] 
proposed a decentralized V2G scheduling method for grid peak demand management 
using fuzzy logic control (FLC). Experiment results revealed that the charging and 
discharging power of GEVs can be controlled in real-time to provide grid power 
balancing service. Grid state information is sampled and used locally in decentralized 
methods to schedule the charging power of GEVs [20, 21]. Thus, the transient 
unpredictable load and power generation fluctuation can be efficiently suppressed and 
grid frequency can be effectively stabilized. However, each GEV is controlled 
independently in conventional decentralized methods, and there is no centralized long-
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term planning or information-sharing mechanism [22, 23]. Consequently, the peak-
shaving requirement of the grid can hardly be satisfied in most decentralized V2G 
methods.  

To provide large-time scale peak-shaving service to the grid, V2G behavior of all 
GEVs should be synergistically scheduled [24, 25]. Recently, with the development of 
information and communications technology (ICT), researchers have begun to develop 
centralized V2G scheduling methods to improve peak-shaving performance [26-28]. 
Kristien Clement Nyns et al. [29] proposed a centralized GEV charging coordination 
approach by using a dynamic programming algorithm, and the optimal charging profile 
was formulated by minimizing grid power fluctuations. Literature [30] proposed a 
method to coordinate V2G behavior based on a self-adaptively imperialist competitive 
algorithm, where each GEV was scheduled to minimize power imbalance cost 
considering network constraints. Experiment results on a microgrid system indicated 
that the grid peak-valley difference can be significantly reduced by the proposed 
method. In the centralized method, GEV charging demand, load, power supply, and 
grid state information are synthetically utilized to achieve optimal V2G scheduling [31]. 
However, centralized V2G scheduling is a time-consuming process, and the control 
time-step is 5 to 10 minutes or even longer [32, 33]. Therefore, transient unpredictable 
load and power generation fluctuations can hardly be suppressed in centralized methods 
[34]. 

The reduction of peak-valley difference and the suppression of transient load 
fluctuation are both of great significance to grid economy, stability, and power supply 
quality [35-37]. However, because lacking of information sharing mechanism in 
decentralized methods and the limitation of calculation speed in the centralized methods, 
both are not able to provide peak-shaving and transient power balancing services for 
the grid at the same time [38]. This paper aims to resolve the aforementioned problems 
by developing a multi-time scale V2G scheduling method. Grid peak-shaving 
requirement is modeled as a large-scale optimization problem in a centralized GEVs 
charging state coordinator, where the charging behavior of all GEVs can be 
synergistically scheduled. The optimization variable is designed as a group of V2G 
state control signals that can respond to grid peak-shaving requirements. On the basis 
of the established centralized GEVs charging state coordinator, a V2G power controller 
is further designed to manage the vehicle charging power in real-time based on the 
sampled grid frequency state and discrete state control signal. In the developed 
scheduling method, the charging power of GEVs is scheduled by the cooperation 
between the V2G state coordinator and real-time power controller. The key contribution 
of this paper is summarized as follows: 

• This paper is the first attempt to investigate a V2G scheduling method that can 
satisfy the multi-time scale power balancing requirement of the grid. With the 
proposed scheduling method, both grid peak-valley difference and transient 
power fluctuation can be reduced significantly. 
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• A multi-time scale V2G behavior management (MSVBM) framework is designed, 
which enables the large-scale optimization and real-time control at the same time 
in V2G scheduling. Under the MSVBM framework, the charging power of GEVs 
can be scheduled by the cooperation between the centralized V2G state 
coordinator and real-time power controller.  

• It designs the V2G state control (VSC) signals in a centralized V2G state 
coordinator, which can model the grid peak-shaving requirement as a 
mathematical optimization problem. With the VSC signals, GEV charging can be 
synergistically scheduled to respond to grid peak-shaving requirements. 

• It designs a novel V2G power controller, which can schedule V2G power for 
balancing grid transient power fluctuation in real-time. With the designed real-
time controller, the transient grid power fluctuation can be suppressed and the 
power quality can be significantly improved. 

The rest of the paper is organized as follows: The developed MSVBM framework 
is introduced in Section II. Section III presents the centralized GEVs charging state 
coordinator. The developed real-time V2G power controller is described in Section IV. 
The simulation platform and the performance of the proposed V2G scheduling method 
are provided and evaluated in Sections V, followed by concluding remarks in Section 
VI. 

II. Multi-time scale V2G behavior management framework 
To improve grid economy and power quality at the same time by better utilizing 

GEVs resources, a novel MSVBM framework is developed in this section. As shown 
in Fig. 1, the developed MSVBM framework consists of two parts: the centralized V2G 
state coordinator and real-time V2G power controller. The peak-shaving and transient 
power balancing requirements of the grid are processed with the centralized V2G 
coordinator and real-time V2G power controller, respectively. 

To provide peak-shaving service to the grid in V2G scheduling, the charging 
behavior of all V2G participants should be cooperatively scheduled. In the designed 
MSVBM framework, the peak-shaving requirement of the grid is modeled as a 
centralized optimization problem. The predicted grid load profile, renewable generation 
profile, and GEVs state information are used to estimate grid power peak-valley 
characteristics, and then the power level of GEVs is scheduled to provide grid peak-
shaving service based on the large-scale optimization algorithm. The optimization 
variable is designed as a set of VSC signal which can respond to the peak-shaving 
requirement of the grid. The optimization results: peak-shaving oriented V2G control 
commands are sent to real-time V2G controllers, working as a guidance signal to direct 
the actual control of V2G power. 
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Fig. 1. The developed multi-time scale V2G behavior management framework. 

With strong transience and unpredictability, fluctuations of uncertain load and 
power generation cannot be suppressed by the centralized V2G coordinator. To 
suppress the transient power fluctuation and improve grid energy quality, a real-time 
V2G power controller is built to control the GEVs charging power directly. As shown 
in Fig. 1, with sampled real-time grid frequency state and the VSC commands provided 
by the centralized coordinator, a fuzzy-logic-based real-time V2G power controller is 
established to calculate V2G power. The scheduled V2G power command is used to 
directly control the charging and discharging behavior of GEVs by a smart charger. 

In the developed MSVBM framework, GEVs charging power is scheduled by the 
cooperation between the centralized V2G state coordinator and real-time power 
controller. V2G state control signal, which is coordinated in the centralized coordinator, 
is used to respond to peak-shaving requirement and improve grid economy; and the 
specific V2G power is scheduled by the real-time controller to improve the grid power 
quality. With the above system operation mechanism, V2G resources can be better 
mobilized to provide multi-time scale power balancing service to the grid. The rest of 
the paper will detail the mathematical principle of the centralized V2G coordinator and 
the real-time V2G power controller 

III. Centralized V2G state coordinator 
To make better use of GEV resources to provide peak-shaving service, this section 

develops a GEV charging state coordination model to respond to the large time-scale 
peak-shaving requirement of the grid. For centralized V2G scheduling, a fast and 
effective decision algorithm is indispensable for scheduling the charging and 
discharging power level of GEVs. The heuristic algorithm is one of the most effective 
ways to solve complex optimization problems. Genetic algorithm (GA) is a typical 
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heuristic algorithm, which has a better adaptability and can usually achieve the global 
optimal solution, especially in discrete optimization problems [39, 40]. The essential of 
GEV charging scheduling is a large-scale discrete optimization problem, and thus the 
GA is used as the core algorithm in the developed centralized V2G state coordination 
model in this section.  

The designed optimization variable is the VSC signal, which is used to reflect the 
charging/discharging power level of each GEV. To simplify the optimization and 
facilitate real-time V2G control, the charging and discharging states of each GEV in 
each time interval are divided into five levels: negative big (NB), negative small (NS), 
zero (Z), positive small (PS), and positive big (PB). When the load peak appears, the 
VSC signal is assigned as NB or NS, and the GEVs are scheduled to discharge to reduce 
the peak-valley difference of the grid. On the contrary, when load valley appears, the 
VSC signal is changed to PS or PB according to different valley levels, and GEVs are 
scheduled to charge to satisfy the charging requirement of owners. When the grid load 
state is relatively stable, the VSC signal is set to Z to protect the vehicle battery from 
additional cycles. Furthermore, the above five states are further represented with a 
three-digit binary variable and the encoding rules are as follows 

,

(111)              Full power discharging
(110)              Medium power discharging

 (000)                No Action
(010)              Medium power charging
(011)              Full power c

i j

NB
NS

S Z
PS
PB

=

harging









            (1) 

Where: ,i jS  is charging state of iEV  at time j.  
Different from conventional GA algorithms, the individual coding format in the 

proposed scheduling method is a three-digit binary variable. To improve calculation 
efficiency, a new chromosome crossover and mutation mechanism is developed. Firstly, 
in conventional GA, the crossover operation is generally performed in the form of 
point-to-point, but it is inefficient in large-scale optimization problems, such as V2G 
scheduling [41, 42]. Therefore, a segment-to-segment crossover approach is applied in 
our work, shown in Fig. 2(a). The genes in different chromosomes are in 4 units, which 
can effectively improve the chromosome crossover efficiency. Then, a novel 
chromosome mutation mechanism is developed to ensure the validity of the 
optimization. In the proposed coding format, each gene has five states (111, 110, 000, 
010, and 011). To simplify chromosome mutation operation and accelerate optimization, 
it is assumed that each gene mutates in 4 different directions with equal probability, as 
shown in Fig. 2(b). 
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Fig. 2. The designed chromosome crossover and mutation mechanism for three-digit 
binary variables in V2G scheduling. 

The structure of chromosome IS  in the centralized V2G scheduling model is 
designed as: 

                   

(2)

 
The dimension of IS  is ( )n u w× + . Where n  is the total number of GEVs; m 

represents the number of GEVs that has just been connected to the grid and pending 
V2G scheduling instructions, (n-m) is the number of GEVs that are already connected 
to the grid. u  and w  represent historical and future V2G charging states. Historical 
GEVs V2G behaviors are unchangeable but can affect overall system peak-shaving 
performance, and therefore, ,1 ,i n uS S  is also designed as part of the optimization 
variable. Future GEV charging states 1, 1 ,u n u wS S+ +  are scheduled to provide peak-
shaving service for the grid by the optimization process, and the corresponding 
objective function and constraints are described in the rest of this section. Firstly, the 
V2G power of iEV  at time j, ,i jP , is derived by GEV charging state matrix: 

,

,

, ,

,

,

1           (111)    
1          (110)
2

     0               (000)

1          (010)     
2
1          (011)

i j

ed
i j

i j i j

i j
ec

i j

S NB
P

S NS

P S Z

S PS
P

S PB

 =
 × =


= =

 =
 ×
 =

                    (3) 

Where: edP  and ecP  are the rated discharging and charging power of the battery. Based 
on the derived V2G power state, the battery SOC of iEV  can be calculated by the 
following equation [43]: 

,
, 1 , 100

i
i j

i j i j i

t P
SoC SoC

C
η

+

∆ × ×
= + ×                        (4) 
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Where: t∆  is the duration of a dispatch time interval, iC  and iη  are the battery 
capacity and operation efficiency of iEV . 

The relationship between the scheduled V2G power matrix IP  and V2G state 
matrix is: 

( )I If=P S                              (5) 

Where: f  is V2G state-power transfer function.  
The objective function in the centralized V2G scheduling system is to reduce load 

fluctuation variance: 
2

1 1

1min ( ) ( ) ( ( ))
u w n

p req ge I rav
t i

OBJ P t P t f t P
u w

+

= =

   = − + −  +    
∑ ∑ S          (6) 

Where: ( )reqP t  and ravP  are system power requirement at time t and system average 
power requirement. ( )geP t  is the power generation at t in the microgrid. 

1
( ( ))

n

I
i

f t
=
∑ S  is 

the power exchange between GEVs and microgrid.  
The defined optimization problem is subjected to the following constraints that 

reflect the charging requirements of V2G participants: 
max max
,discharg , ch arg 

min , max

end set 

SoC SoC SoC
i i i

i t

i i

P P P

SoC SoC

− ≤ ≤
 ≤ ≤
 ≥

                   (7) 

Where: max
,dischargiP  and max

, ch arg iP  constraint the maximum battery discharging and 
charging power of V2G participants to protect the battery for high current; minSoC  
and maxSoC  describe the allowed minimum and maximum battery energy state to 
avoid over-discharging and over-charging. It is noted that charging should be 
completed before participants' departure, and therefore, the final battery energy state 

end 
iSoC  should be higher than the vehicle charging requirement set

iSoC .  
The GA method is used to solve the optimal charging state of GEVs. The focus of 

this section is to build the mathematical model of the centralized V2G charging state 
scheme and the GA is the tool to solve the model. Thus, the GA principle will not be 
introduced in detail. The scheduled optimal GEV charging state command can respond 
to grid peak-shaving requirement, and it is used as the VSC signal for real-time V2G 
power controller in the next section. 

IV. Real-time V2G power controller 
The established centralized GEV charging state coordinator can only satisfy grid 

peak-shaving requirements but not services to stabilize grid transient power fluctuations. 
In this section, based on the generated VSC signal in Section III, a real-time V2G power 
controller that can consider grid multi-time scale grid power balancing requirements is 
developed to further improve energy quality. 
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A. Real-time microgrid power balance model 
The microgrid is a complex dynamic system with various sources and loads having 

different characteristics. The power balance of the microgrid influences the energy 
quality directly: the unbalanced reactive power will result in voltage fluctuation, and 
the grid frequency fluctuation is contributed by unbalanced active power. In the non-
industrial microgrid (family, community, and workplace), the most frequently 
discussed scenario is the unbalanced active power. Therefore, the power requirement 
for suppressing transient grid power unbalance is calculated based on the real-time grid 
frequency state information in this study. The system power balance equation can be 
obtained as: 

wind solar load( ) ( ) ( ) ( )P t P t P t P t∆ = + −                     (8) 

P∆  reflects the change of supply and demand balance in the microgrid. The 
change of P∆  causes the frequency fluctuation, and to improve energy quality, the 
power balance should be dealt with the power contributions from GEVs. As shown in 
Fig. 3, in the studied microgrid system, the transient grid power fluctuation caused by 
the uncertainty of renewable energy and household load will directly impact the 
frequency state of the grid. Based on the deviations in nominal frequency (50 Hz), the 
V2G controller schedules the V2G power of GEV batteries directly to provide fast 
power balancing service for the grid.  

B. Real-time V2G power scheduling method 
On the basis described microgrid power balance model, to provide peak-shaving 

service and stabilize the grid transient power fluctuation at the same time by utilizing 
V2G resources, a fuzzy logic V2G power controller (FLVPC) is developed in this 
section. The input variables of the FLVPC are chosen as: 
1) the frequency deviations of the grid f∆ , which reflects the power injection requirements 

of the grid. 
2) the centralized GEV state control command S, which reflects the power requirements for 

grid peak-shaving service. 
The output of the FLVPC is the V2G charging or discharging power realP . To make 

the output function bounded, the V2G power variable realR  with range [-1 ~ 1] is used 
to describe the V2G output power level. The relationship between realP  and realS  can 
be denoted as: 

           0     
           0

ed real
real real

ec real

P S
P R

P S
<

= ×
≥

              (9) 

The membership functions (MFs) of f∆ and realR  are depicted in Fig. 3. The MFs 
for input variable f∆  is designed as 1) large negative (LN); 2) negative (N); 3) zero 
(Z); 4) positive (P) and large positive (LP); the 'positive' and 'negative' represent the 
direction of frequency deviations, 'large' represents the degree of deviation. Similarly, 
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the MFs of the output variable realR  are negative big (NB), negative middle (NM), 
negative small (NS), zero (Z), positive small (PS), positive middle (PM), and positive 
big (PB). 'Negative' and 'positive' represent grid-to-vehicle (G2V) and V2G mode, 
respectively. The 'big', 'middle', and 'small' represent the output power degrees.  

 

Fig. 3. Membership functions of input and output variables. (a) Input variable f∆ , (b) 
output variable realR . 

The V2G power output of GEVs is decided by the rule base of the fuzzy logic 
control. Each of the outputs implements its rules based on the state of two inputs: the 
system frequency deviation and the VSC signal. The rules in the proposed FFRVC are 
shown in Table I. The transient grid load stabilizing performance is emphasized in the 
designed FFRVC, and thus the charging state of GEVs is mainly decided by the 
frequency deviation of the grid. When system frequency is lower than the standard 
value, all GEVs are controlled to discharge power back to suppress the grid transient 
load fluctuation. In contrast, when the system frequency is higher than the standard, no 
GEVs are scheduled to discharge. The VSC signal is used to reflect the peak-shaving 
requirements of the grid in FFRVC. With the same grid frequency state, more system 
peak-shaving requirements, the higher V2G or G2V power is provided. 

Table I. Rule base of the FFRVC to determine the V2G power 

  NB NS Z PS PB 

LN NB NB NM NM NS 

N NB NM NS NS Z 

Z NM NS Z PS PM 

P Z Z PS PM PB 

LP Z PS PM PB PB 

VSC 
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V. Case study 
A. The studied microgrid system 

As shown in Fig. 4 (a), a microgrid system [44] that consists of renewable energies, 
generators, GEVs, and domestic loads is employed to verify the performance of the 
developed V2G scheduling method. The energy consumptions and power balance state 
of the grid are simulated based on the open-access power system operation data [45] 
provided by UK National Grid ESO. The national household travel survey data [46] is 
employed to simulate the charging behavior of V2G participants, and the Monte Carlo 
simulation model [47] is used to simulate GEVs usage information. 30 GEVs each with 
a 16 kWh battery are considered in our research to provide the power balancing service 
to the grid. The real operation and prediction characteristics of generators and 
renewable energies from [48] are employed to simulate the power flow between 
different sectors. In this study, aiming to verify the power balancing performance of 
GEVs, the smart energy system is simulated in the off-grid mode, the bi-directional 
power interaction between the main grid and microgrid is not simulated. Therefore, the 
household load and charging requirements of GEVs will all be satisfied with the energy 
resources in the microgrid.  

 

Fig. 4. The verification of the developed V2G scheduling method. (a) Schematic of the 
studied microgrid system. (b) Flowchart of the simulation process. 

In verifying the proposed scheduling method, we assume that the EV usage 
information, including grid-connected time and battery SOC, departure time, and 
charging requirement, is known in advance. The most active V2G period (16:00-24:00 
and 00:00-08:00) is considered in this study, and the duration of a dispatch time interval 
is set as 15 minutes. Therefore, the value of u  and w  in equation (6) are both limited 
between 0 to 64. Meanwhile, the V2G behavior of 30 GEVs is scheduled, and therefore 
the maximum value of n  is set as 30. The specific simulation process is shown in Fig. 
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4. (b). First, based on the supply-demand relationship between the generator and 
household load, the centralized scheduling system solves the optimal power level of 
GEVs. Then, according to the transient power fluctuation of renewable energies and 
household load, the real-time V2G power controller calculates the actual V2G power 
for GEVs. 

B. System power balancing performance 
Fig. 5 shows the power balancing results of the proposed MSVBM method, where 

GEV batteries are scheduled to provide long-short term power balancing service to the 
grid. As shown in (c), In the whole scheduling period (from 16:00 to 24:00 and 00:00 
to 08:00), with the FLVPC, the proposed scheduling algorithm can use GEVs batteries 
to provide power balancing service to the grid according to frequency deviations in 
real-time. With the fast-auxiliary power provided by vehicle batteries, the short-term 
power fluctuation of the grid can be suppressed and energy quality can be significantly 
improved. The V2G capacity can also be scheduled to provide peak-shaving service to 
the grid with the proposed MSVBM method, the corresponding VSC signal of a GEV 
from centralized V2G state coordinator is shown in (b). When domestic load peak and 
valley appear, GEVs are scheduled to discharge or charge to provide peak-shaving 
service according to the VSC signals in the centralized GEV charging state coordinator. 
The proposed MSVBM method can deal with the long-term peak-shaving and transient 
power balancing requirements of the grid at the same time. As shown in Area A, a 
transient load surge also appears around 21:00. The real-time V2G power controller 
samples the grid frequency state and controls GEVs to feed power back to the grid to 
maintain grid stability in real-time. As a result, to suppress this transient power 
fluctuation, the maximum V2G power in this area is elevated to 0.82p.u. After 00:00, 
GEV batteries are controlled to be charged. The proposed MSVBM method can also 
schedule the charging power of GEVs to absorb excess valley power and maintain the 
transient power balancing of the grid simultaneously, as shown in AREA B. With the 
cooperation of the centralized V2G state coordinator and real-time V2G power 
controller, the V2G resources can be reasonably used to improve the grid economy and 
stability. 
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Fig. 5. Power balancing performance of the MSVBM method. (a) Microgrid frequency 
fluctuations, (b) VSC signal of a GEV from centralized V2G state coordinator, (c) 
aggregated V2G power of the GEVs. 

To verify the effectiveness of the proposed MSVBM method, the V2G power 
profile of GEVs is compared to the traditional centralized V2G scheduling method [49], 
as shown in Fig. 6. In the traditional centralized scheduling method, almost all the EVs 
are scheduled to provide the peak-shaving service for the grid, and the grid economy 
can be improved. However, as most V2G resources are occupied by the peak-shaving 
service, the grid transient power fluctuation cannot be suppressed. Comparing to the 
centralized method, the proposed MSVBM method can utilize V2G resources more 
reasonably. As shown in (b), the discharging and charging behaviors of GEVs are not 
as concentrated as that of in the centralized method, more V2G capacity remains for 
fast power balance regulation service. Within the whole V2G scheduling period, the 
GEVs V2G power is dynamically controlled by the real-time V2G power controller to 
balance the grid power state. Meanwhile, during the grid peak hours (19:00~23:00), 
influenced by centralized GEVs’ state control command, most GEVs are still scheduled 
to provide peak-shaving service.  
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Fig. 6. V2G power profile of 30 GEVs. (a) Conventional centralized V2G scheduling 
method, (b) the proposed MSVBM method.  

The final battery SoC of the 30 GEVs in the developed V2G scheduling method is 
shown in Fig. 7. The actual battery SoC at departure is 12% higher than the preset value 
on average, which indicates that the charging requirement of GEVs can always be 
satisfied. The charging requirements of GEVs are set as a constraint in the centralized 
V2G scheduling model, and with the optimization, the calculated strategies can always 
satisfy the corresponding constraints in the defined optimization model. Therefore, 
charging can always be completed before participant departure with the developed V2G 
scheduling method. 

 
Fig. 7. Actual and preset battery SoC value at departure in the developed MSVBM 
method.  

To better illustrate the improvement, we also quantify the long-term power 
balancing performance of the proposed scheduling method within 30 days, including 
22 workdays and 4 weekends. The performance of all V2G scheduling methods 
(centralized method [49], fuzzy logic method [50], and the proposed MSVBM method) 
are compared and summarized in Table II. With 16% and 19.7% overflow of maximum 
peak and average peak-valley difference, it is obvious that the random charging of 
GEVs causes additional grid demands. The coordination of GEVs' charging can be 
realized by the centralized V2G scheduling method. Compared to the random charging 
scenario, 19.7% peak power is shaved on average and thus the maximum grid peak load 
and load standard deviation (SD) are reduced by 32.1 % and 50.3%, respectively. 
However, the unpredictable transient grid power fluctuations cannot be suppressed in 
the centralized method, which can compromise energy supply quality. In the fuzzy 
logic-based V2G control method, the power fluctuation is suppressed by the sampled 
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grid frequency state, and the energy supply quality is improved significantly. However, 
the fuzzy logic method mainly focuses on suppressing the short-term load fluctuation 
but neglects the long-term peak-shaving, and thus only 7.6% peak load is shaved on 
average and the peak-valley difference is still as high as 312.4 kW. As a result, the 
calculated maximum SD is even higher than that of the centralized method. Both peak-
shaving and transient power balancing requirements of the grid are considered in the 
proposed MSVBM method. Therefore, as seen in Table II, the average peak-valley 
difference is further reduced (205.3 kW, 34.3% lower than the fuzzy logic method and 
only 6.5% higher than the centralized method). Meanwhile, because of the real-time 
V2G power controller in the MSVBM method, the grid power supply quality is 
improved significantly, where the power SD is reduced by 14.3% and 30.7% compared 
to the centralized method and fuzzy logic method, respectively).  

Table II. The long-term power balancing performance of different V2G scheduling 
methods. 

Scenario 
Maximum peak 

power (kW) 
Maximum 

load SD 
Average peak 
shaving (%) 

Average peak-valley 
difference (kW) 

Baseload 448.3 105.27 --- 336.2 
Random charging 533.7 132.55 --- 418.7 

Centralized method 362.5 65.83 20.7 191.8 
Fuzzy logic method 427.4 81.36 7.6 312.4 
MSVBM method 385.3 56.42 17.3 205.3 

VI. Conclusion 
In this paper, a multi-time scale V2G behavior management method is proposed to 

schedule the charging behavior of GEVs to provide peak-shaving and fast power 
balancing service for the microgrid. Through extensive demonstrations, the main 
findings are as follows: served as a power level guidance signal, the VSC signal 
generated by centralized GEV state coordinator can effectively reflect the peak-shaving 
requirement of the grid. With the real-time sampled frequency state information, the 
designed real-time V2G controller can schedule the GEVs to provide fast grid power 
balance regulation service to the grid. Both the economy and energy quality of the grid 
can be improved by optimizing the charging power of GEVs through cooperative 
scheduling between the V2G state coordinator and real-time power controller. The 
simulation experiment on a real microgrid system showed that the grid load peak can 
be reduced by 9.8% compared to the fuzzy logic method and the load SD can be reduced 
by 14.3% compared to the centralized scheduling method, which indicates that the 
proposed multi-time scale V2G behavior management method can suppress grid 
transient power fluctuation while providing the same peak-shaving services to the grid 
as expected. 
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