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Short-term Density Forecasting of Wave Energy Using
ARMA-GARCH Models and Kernel Density Estimation

Abstract

Wave energy has great potential as a renewable source of electricity. Installed capacity is
increasing, and with developments in technology, wave energy is likely to play an important
role in the future mix of electricity generation. The short-term forecasting of wave energy is
needed for the efficient operation of wave farms and power grids, as well as for energy
trading. The intermittent nature of wave energy motivates the use of probabilistic forecasting.
In this paper, we evaluate the accuracy of probabilistic forecasts of wave energy flux from a
variety of methods, including unconditional and conditional kernel density estimation,
univariate and bivariate autoregressive moving average generalised autoregressive
conditional heteroskedasticity (ARMA-GARCH) models, and a regression-based method.
The bivariate ARMA-GARCH models are implemented with different pairs of variables,
such as (1) wave height and wave period, and (2) wave energy flux and wind speed. Our
empirical analysis uses hourly data from the FINO1 research platform in the North Sea to
evaluate density and point forecasts, up to 24 hours ahead, for the wave energy flux. The
empirical study indicates that a bivariate ARMA-GARCH model for wave height and wave
period led to the greatest accuracy overall for wave energy flux density forecasting, but as the
lead time increases, its usefulness reduces for point forecasting. This model also performed
well for wave power data that had been generated from wave height and wave period

observations using a conversion matrix.
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1. Introduction

The growing demand for energy and sustained efforts to reduce carbon emissions, in
light of the threat of global climate change, have led to the development of new technologies
for harnessing energy from renewable sources. Among renewable energy sources, ocean
energy has relatively high energy density in the form of currents, waves, heat and tides, with
the benefit of reduced visual impact (Brekken et al., 2009). Estenban and Leary (2012)
predict ocean energy could deliver around 7% of global energy production by 2050. Among
the ocean energy sources, which include tidal and thermal, wave energy is known to have the
greatest capacity (Clément et al., 2002; Falnes, 2007).

Wave energy forecasts from a few hours to several days ahead are of interest for the
management of power grids (Pinson et al., 2012; Reikard et al., 2015). When the technology
is fully commercialised, inaccurate forecasts for wave power are likely to induce penalties for
wave generators that reflect over- or under-production, and increase the cost of the spinning
reserve needed when the wave energy production is integrated into the power system. To
ensure reliable grid operation, system operators are interested in probabilistic forecasts, such
as probability density forecasts, as these deliver a fuller description of the future energy.

Ocean waves are generated mainly by the wind blowing over the sea surface, which
propagates its energy horizontally on the surface. The rate of transfer of the energy is called
the wave energy flux, and it is a nonlinear function of wave height and period. Due to its
nonlinear dependence on meteorological and ocean variables, forecasting the wave energy
flux is challenging, even for a lead time of just a few hours. As data on the power output from
wave farms has not been available, researchers have largely focused on the wave energy flux,
which is the energy that theoretically could be obtained. In this paper, we follow the literature
by having the wave energy flux as our main focus. However, as the electricity obtained in

practice from wave power devices can differ notably from the wave energy flux, we also



consider the prediction of wave power data, which we generate from wave height and wave
period observations using a theoretical conversion matrix.

Studies of wave energy forecasting have generally involved the modelling of wave
height and period using statistical and physics-based approaches. The statistical models used
for this application include time-varying parameter regressions (see Reikard, 2009, 2013),
unconditional kernel density estimation (see Ferreira and Guedes-Soares, 2002), neural
networks (see, for example, Zamani et al., 2008), and autoregressive models (see, for
example, Guedes-Soares and Ferreira, 1996; Guedes-Soares and Cunha, 2000; Fusco and
Ringwood, 2010). Physics-based models are used by Hasselmann et al. (1976, 1980, 1985)
and Janssen (1991, 2007). Combined models using both time series and physics approaches
are used by Roulston et al. (2005), Woodcock and Engel (2005), Woodcock and Greenslade
(2006), Durrant et al. (2008), Reikard et al. (2011) and Pinson et al. (2012).

In terms of probabilistic forecasting for wave energy, we are aware of only one
published paper. Pinson et al. (2012) model wave energy flux under the assumption that the
density is log-normal. Using time-varying recursive regression, they model the errors from
atmospheric model forecasts for wave height and wave period up to 48 hours ahead.

In this paper, we provide an empirical comparison of statistical approaches to
producing density forecasts of wave energy flux. We consider a regression-based method,
conditional kernel density estimation, and ARMA-GARCH models. Our study is the first that
we are aware of to use ARMA-GARCH models in the wave energy forecasting context. As
statistical models have been found to be more useful than atmospheric models for shorter lead
times (Reikard and Rogers, 2011; Reikard, 2013), we consider lead times from 1 to 24 hours.

Section 2 describes our data. Section 3 presents the forecasting methods that we
consider in our empirical analysis of Section 4 for wave energy flux. In Section 5, we present

empirical results for wave power. Section 6 summaries, and provides concluding comments.



2. THE DATA FOR WAVE ENERGY FORECASTING

Wave energy flux is the average horizontal transport momentum of a wave, per unit

of wave-crest length. It is a function of wave height and wave period as in the following:
E. = (pg?/64m)HEP, 1)

E; is the wave energy flux, which is expressed in kilowatts per metre of wave-crest length; H,
is the significant wave height, which is defined as the average height of the highest third of
the waves, where height is measured in metres from trough to crest; P, is the mean wave
period in seconds, which is the average of the time taken for two successive wave crests to
pass a given point; g is the acceleration due to gravity; and p is ocean water density, which is
approximately 1025 kg/m? at the sea surface.

We used data recorded at the FINO1 research platform, which is located in the North
Sea approximately 45km to the north of Borkum, Germany. FINO1 was brought into service
to facilitate the research in offshore wind energy by providing meteorological and
oceanographic data. Raw wind speed data (m/s) are measured at FINO1 every second, and
then averaged every 10 minutes. Raw wave height and wave period data are measured every
half second from a buoy, which follows the movement of the sea surface and is located 200
metres away from FINOL1. The significant wave height and peak wave period, which is
defined as the wave period where the highest energy occurs among the individual wave
periods, are derived every 30 minutes following the definitions below expression (1). As
mean wave period data was not available, we instead used peak wave period observations. In
our study, wind speed, significant wave height and peak wave period data were averaged to
give hourly observations. We used hourly values of significant wave height and peak wave
period to obtain hourly values of wave energy flux based on expression (1).

To avoid long periods of missing observations, two periods were chosen: (a) 1 June

2011 to 30 June 2012, inclusive, and (b) 1 September 2012 to 31 October 2013, inclusive. We
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name these periods FINOl1a and FINO1b, respectively. For each period, the last two months
are used for post-sample evaluation, with the earlier observations used for model fitting. We
evaluated forecasts produced using each period of the evaluation sample as forecast origin.

In FINO1a, one observation for wave height and wave period is missing from the
estimation sample, and none from the evaluation sample. In FINO1b, seven separate
observations for wave height and wave period are missing from the estimation sample, and
one from the evaluation sample. For these periods with missing observations, we used linear
interpolation to generate values. We did not evaluate forecast accuracy for these periods
when they occurred in the evaluation sample. We used wind speed observations from a height
of 33m, which was the lowest height available. Around 3.5% of the measurements at this
height were missing. Any missing wind speed observations were replaced with the
measurements at 50m, 60m or 70m height after level adjustment, which uses linear scaling to
minimise the bias from the different dynamics of wind speed at different heights.

Fig. 1 shows the time series of wind speed, wave height, wave period, and wave
energy flux for FINO1b. All four series are highly volatile, bounded below by zero, and
skewed to the right. This is shown in the first column of histograms in Fig. 2. The other
histograms in Fig. 2 relate to transformations of the series, and we discuss this further in
Section 3.3.1. It is interesting to see from Fig. 1 that the variation in wave height appears to
be related to the variation in wind speed. The correlation between these two series is 0.74.
The wave energy flux seems to be more related to the wave height than the wave period. It is
not clear that the wave period has any similar movement with the wind speed, and this is

supported by the correlation between wind speed and wave period, which is -0.04.

3. DENSITY FORECASTING METHODS FOR WAVE ENERGY FLUX
In this section, we describe the methods that we implement in our empirical study. We

present a regression approach, kernel density estimators, and ARMA-GARCH models.



3.1. Regression models

Reikard (2009) finds that the best approach to the point forecasting of wave energy
flux, up to 4 hours ahead, is to use independently estimated least squares regression models
for wind speed, wave period and wave height, as shown in expressions (2) to (4).

log Sy = 6o + 01¢logSp_q + 0. logSe_p + 035,108 S¢_3 + Op4¢ l0gSp_pa + €, (2)
log P, = vor + vy log Pr_q + vy log Py + V3 log Pz + vy log Py + € 3)

log Hf = 8o; + 61¢log H{; + 83 log HE_; + 83, log HE 5
+ 84 log HE 4 + 85, log P + 86, log Sy + €, (4)

P, and H, were defined in Section 2, and S; denotes wind speed at time t. 8;;, v;; and §;; are
parameters estimated separately for each expression and for each forecast origin using
ordinary least squares. €, is assumed to be Gaussian white noise, implying that the energy
flux E; of expression (1) follows a conditional log-normal distribution, which was also
assumed by Pinson et al. (2012). The resulting forecasts for wave period and wave height are

plugged into expression (1) to deliver a wave energy flux forecast.

3.2. Kernel density estimation

Kernel density estimation is a nonparametric approach, which has the appeal of
avoiding the need for a distributional assumption. We used both unconditional and
conditional kernel density estimation in our modelling. In both approaches, the kernel
bandwidth parameters were chosen by minimising the mean continuous ranked probability
score (CRPS) calculated for the in-sample period. The CRPS, which is described by Gneiting
et al. (2007), assesses the calibration and sharpness properties of density forecasts. They
explain that calibration measures the statistical consistency between the predicted density and
the observed value, while sharpness refers to the concentration of the density forecast, which
is a property of the density forecast alone. By contrast with the other methods that we

considered, we applied the kernel density estimation methods to untransformed data.



3.2.1. Unconditional kernel density estimation (UKDE)

As a relatively simple benchmark method, we used kernel density estimation. The
unconditional kernel density estimator of wave energy flux (E-UKDE) is defined as:

f(e) = Xicn—r+1Kn,(Ec —e)/k

where e is a value of wave energy flux for which a density is to be estimated; n is the forecast
origin; k is the length of the sliding window used for the estimation; and K is a Gaussian
kernel function, with bandwidth h,, which dictates the smoothness of the estimated density.
Having observed that a relatively small sliding window performs better for short-term
forecasting of wave energy flux, we considered two versions of the E-UKDE approach using

the following sliding window lengths, k: (a) 4 hours and (b) 24 hours.

3.2.2. Conditional kernel density estimation (CKDE)

Given that wind passing over the sea surface generates wave energy, we also
considered the kernel density estimation of wave energy flux conditional on wind speed. We
implemented the two-step conditional kernel density estimation approach of Jeon and Taylor
(2012), which allows for a stochastic conditioning variable. As shown in Fig. 3(a), for our
data, the wave energy flux was most highly correlated with the third lag of wind speed, and
so we conditioned on this lag. Miller (1958) and Rieder (1997) find the time lag between the
rise of wind speed and the rise of wave height varied between several hours and twenty hours
depending on location and the persistence of wind speed and direction. Using an exponential
decay parameter 7 (0< 7 < 1), and an additional kernel for wind speed with bandwidth, h,
the density estimate of wave energy flux, conditional on wind speed (E-CKDE), is given as:

t=1 Tn_tKhS(St—:«: - S)Khe(Et —e)
Dt TV KR (Se—3 — 5)

flels) =

This estimator can be viewed as a weighted average of the kernels K, (E; — e), where the

weights are larger for more recent data and for observations for which the wind speed at time



t was closer to the conditioning wind speed s. The approach requires density forecasts of
wind speed. We generated these using a univariate ARMA-GARCH model, of the type

discussed in Section 3.3.2, with no exogenous variable, fitted to the wind speed series.

3.3. Univariate and multivariate ARMA-GARCH models

3.3.1. Data transformation

Fig. 2 and Table 1 show that positive skewness is a feature of the unconditional
distributions of wind speed, wave height, wave period, and especially wave energy flux. In
Table 1, the kurtosis values for wave height, wave period and wave energy flux indicate fat
tails relative to a Gaussian distribution. For time series models, transformations are often
used prior to model fitting. We considered the log, square root and Box-Cox transformations.

Previous studies of wave energy forecasting have involved the use of the log
transformation for wave energy flux, wave height, wave period and wind speed. We were
able to apply the log transformation to each of our time series, because they contained no
zero values. Table 1 and Fig. 2 show that wave height, wave period and wave energy flux are
each closer to being Gaussian when the log transformation is applied.

Taylor et al. (2009) find the square root transformation useful in modelling hourly
wind speed data. This transformation has the benefit that it can be used for data with zero
values. Table 1 and Fig. 2 show that the square root transformation is more useful for wind
speed than the log transformation, but clearly not for wave period and energy flux. For wave
height, the square root transformation is slightly better for kurtosis, but not for skewness.

A third transformation that we considered is the single parameter form of the Box-

Cox transformation (Box and Cox, 1964), which is given as:
BC(y,A) = (y*—1)/2 (if 2# 0,y > 0) (5)

=log(y) (if 2=0,y > 0). (6)



This transformation has been used in modelling wave height and period (see, for
example, Galiatsatou and Prinos, 2007; Ferreira and Guedes-Soares, 2002). The A parameter
can be optimised using maximum likelihood. Table 1 shows that the optimised value of A was
close to zero for wave height, wave period and wave energy flux, implying that the
transformation is very similar to the log transformation.

In summary, the log transform seems to be suitable for wave height, wave period and
wave energy flux, and this transformation is also reasonable for wind speed. In Section 4, we

present post-sample forecasting results comparing the four different transformations.

3.3.2. Univariate ARMA-GARCH
ARMA-GARCH models are widely used for capturing the autocorrelation in the
conditional mean and variance. In this paper, for wave energy flux, we use the ARMA(r,m)-

GARCHY(p,q) model with exogenous variables presented in expressions (7)-(9):

Ve =s(@t) + X1 @Yo + XL e, (7)
atz =s(w,t) + 25;1 aio-tz—i + 2?:1 ﬁj‘gtz—j' (8)
& = 0Ny, ©)

where yt is an observation of wave energy flux at time t; ; is an error term; n, is white noise;
o; is the conditional standard deviation (volatility); ¢;, ¥;, a; and B; are the coefficients of
the AR, MA, GARCH and ARCH components, and their orders are defined by non-negative
integer valued constants r, m, p and g, respectively; u and w are vectors of parameters; and
s(u, t) and s(w, t) are functions of exogenous variables that have an effect on the mean and
the volatility, respectively. We imposed restrictions on a; and g; to ensure positivity of ¢?.
For n., we considered Gaussian, Student t, and skewed t distributions, as they have often
been considered in the GARCH modelling of daily financial returns data, and Table 1 shows

a degree of skewness and high kurtosis in some of the variables.



Given that wave energy flux is a function of wave height and wave period, it is
natural that wave energy flux will have annual seasonality (see, for example Jardine and
Latham, 1981; Guedes-Soares and Cunha, 2000). However, as our time series are not
sufficiently long to capture this, the only cyclicality that we model is the diurnal cycle. We

allow for this in the level and volatility, using expressions (10) and (11), respectively:

s(u, t) = yo + Zlivfl [llm sin (Zin %) + u; , cos (Zin %?)] (10)
s(w, t) = wg + ZIiV:’l [a)i,l sin (Zirt %) + w; , cos (Zin %)], (11)

where h(t) is the hour of the day; and N, and N,, are positive integers. To emphasise our use
of wave energy flux as the target variable y;, we denote the model as E-ARMA-GARCH. We
also built a wave energy flux model with only AR components, namely E-AR, to test the

usefulness of the MA and GARCH terms. We used AR lags from 1 to 4 in this simple model.

3.3.3. ARFIMA-FIGARCH

When a time series shows a slowly decaying persistence in the autocorrelation, this
pattern is called ‘long memory’ dependence, and it can be modelled by a fractional integrated
model. Reikard (2009) observes that wave energy flux is characterised by long memory, and
this pattern appears more clearly in deep water locations than coastal sites. Fig. 3(b) shows
that our wave energy flux data possesses long-memory, because there is significant
autocorrelation at long lags. This prompted us to consider a fractionally integrated model.

Long memory in the level of a series can be modelled by the autoregressive
fractionally integrated moving average (ARFIMA) model proposed by Granger and Joyeux
(1980) and Hosking (1981). Long memory in the volatility can be captured with the
fractionally integrated generalized autoregressive conditionally heteroscedastic (FIGARCH)
model of Baillie et al. (1996). Before the ARFIMA-FIGARCH is presented, we rewrite the

ARMA-GARCH model of expressions (7) and (8) as expressions (12) and (13), respectively:

o(L)y: = s(u, t) + P(L)e, (12)
9



a(L)of = s(w,t) + B(L)eZ, (13)
where @ (L), (L), a(L) and B(L) are polynomial functions of the lag operator L. Using the
fractional differencing parameter d, the ARFIMA and FIGARCH processes are defined in

expressions (14) and (15), respectively:

(L)1 — L)y, = s(u t) + P(L)ee,. (14)
a(L)of = s(@,8) + [1 - a(l) = (L)1 - %e?, (15)
(1- 1) = T g rommes (DL (16)

where {(L) is a polynomial function of L, I'(-) is the gamma function, and d: and d> are the
fractional differencing parameters, which determine the degree of long memory dependence
in the level and volatility processes, respectively. If di = 0, the process follows short memory
dependence. The time series has long memory dependence if 0 < di < 0.5 and moderate long

memory dependence if -0.5 < di < 0. When di = 1, the ARFIMA process is non-stationary.

3.3.4. VARMA-MGARCH

Soares and Cunha (2000) observe correlation between wave height and wave period,
and fit a bivariate vector autoregressive model in order to preserve the covariance structure.
In this paper, we jointly model wave height and wave period, and then convert the resulting
forecasts into predictions of wave energy flux using expression (1). (In Section 5, we
consider the conversion of wave height and wave period forecasts to wave power.)

We were also curious to investigate a joint model involving the variable wave energy
flux. In such a model, it makes no sense to include either wave height or wave period,
because we have, in this paper, used these two variables to construct the wave energy flux
series. Instead, we implemented a joint model for wave energy flux and wind speed.

We, therefore, implemented a bivariate model for two pairs of variables. One pair was
wave energy flux and wind speed, and the other was wave height and wave period. The

benefit of modelling wave height and wave period is that their forecasts can be conveniently
10



plugged into the formula in expression (1) for conversion to wave energy flux, or converted
to wave power as described in Section 5.

To model the dynamics of the conditional variance and covariance of the pairs of
variables, we implemented vector ARMA models with multivariate GARCH terms
(VARMA-MGARCH). Although similar models have been used by Cripps and Dunsmuir
(2003) and Jeon and Taylor (2012) to model wind velocity, we are not aware of the previous
use of ARMA-GARCH models in the wave energy context.

We used the VEC type VARMA-MGARCH model of Bollerslev et al. (1988) with
diurnal cyclical terms, as given in expressions (17)-(19):

Ye=s(@t) + X1 Ry + Xjz1 Mg, (17

vech(V,) = s(w,t) + XI_, Pivech(V,_;) + Z?=1 Q,vech(g._;&,_)), (18)

E =1y, (19)
where y; is a vector of (1) wave height and wave period or (2) wave energy flux and wind
speed; &; is a vector of error terms; V, is the conditional covariance matrix of &;; n; is a
vector of white noise, for which multivariate Gaussian, Student t or skewed t distributions are
considered in our empirical study; vech(-) denotes the column stacking operator of the lower
triangular part of its argument symmetric matrix; R; and M; are (2x2) matrices of parameters;
P; and Q, are (3x3) matrices of parameters; r, m, p and q are the order of R;, M;, P; and Q;
respectively, selected by the SBC. Among various forms of multivariate skewed t
distributions, we used the definition by Azzalini and Genton (2008). In our empirical study,
we imposed restrictions on P; and Q; using the sufficient condition for the positivity of V;
proposed by Gourieroux (1997). We also implemented the Baba-Engle-Kraft-Kroner
VARMA-MGARCH model (see Engle and Kroner, 1995), but this did not lead to improved
post-sample forecasting results, and so we do not discuss it further in this paper.

In addition to the standard VEC approach, which we refer to as MGARCH, we also

implemented the approach with P; and @, restricted to be diagonal matrices. We refer to this

11



as MGARCH-DG and implemented this for the model for wave height and wave period (H-
P-MGARCH-DG), and for the model for wave energy flux and wind speed (E-S-MGARCH-
DG). The diagonal matrices ensure that V, is positive definite for all t (Bollerslev et al., 1988),
although this is perhaps overly restrictive, as it allows no interaction between the conditional
variances and covariances. For the joint model of wave energy flux and wind speed, to avoid
wind speed being modelled in terms of wave energy flux or its lags, we restricted P; and Q;
to be upper triangular. We refer to this as E-S-MGARCH-UP.

As a relatively simple VAR benchmark model, we constructed a model for wave
energy flux and wind speed with lags from 1 to 4, assuming a constant variance. We call this

E-S-VAR. Similarly, H-P-VAR is the same model fitted to wave height and wave period.

3.3.5. Orders of the various (V)ARMA-(M)GARCH models

For the (V) ARMA-(M)GARCH models, we used the SBC to select the orders, and
also to select terms (values of i) to use in the summations of expressions (10) and (11), which
capture the diurnality. Table 2 summarises the resulting orders and values for models with
Gaussian noise terms fitted to the in-sample FINO1b data. We consider only the Gaussian
models here, and in the rest of the paper, because the post-sample results for models fitted
with the Student t and skewed t distributions were no better.

Table 3 presents the d; and d, parameters estimated for the ARFIMA-GARCH and
ARFIMA-FIGARCH models applied to the log transformation of wave energy flux for the
two in-sample periods. As explained in Section 3.3.3, a parameter between -0.5 and 0.5
indicates the existence of long memory. The level parameter d, indicates the level process
does not have long memory, while the volatility parameter, d,, indicates there are long

memory effects when the models are fitted to FINO1a, but not when fitted to FINO1b.

12



4. EMPIRICAL POST-SAMPLE RESULTS FOR WAVE ENERGY FLUX

As we explained in Section 2, for the final two months of the FINOla and FINO1b
periods, we produced 1 to 24 hour-ahead post-sample density forecasts for wave energy flux,
using each period of the evaluation sample as forecast origin. For the VARMA-MGARCH
models, we felt that it is not practical to re-optimise repeatedly the parameters for a sliding
window of observations, and so, for each of the two periods (FINOla and FINO1b), we
estimated the parameters just once. For consistency, we followed the same approach with the
other methods, although we acknowledge that the ranking of methods may change parameters
were re-optimised. In Sections 4.1 and 4.2, we use the mean of the CRPS to evaluate density
forecasting accuracy, which is the main focus in this paper. In Section 4.3, we consider point
forecasting. As statistical methods have been shown to be more competitive with atmospheric

models for short forecast horizons, our analysis provides more detail for the earlier horizons.

4.1. Evaluation of the transformations for use with ARMA-GARCH

Table 4 presents post-sample CRPS density forecasting results, averaged over the
FINOla and FINO1b periods, for the univariate ARMA-GARCH models in Section 3.3.2
fitted to wave energy flux using the transformations described in Section 3.3.1. The table
indicates that using any transformation was preferable to using none. The square root was not
as useful as the log and Box-Cox transformations, which is consistent with the results for
wave energy flux in Table 1. The log and Box-Cox transformations delivered similar results,
and as the log transformation is simpler, in the rest of this paper, we report results for all the

(V)ARMA-(M)GARCH models applied to variables that were logged prior to model fitting.

4.2. Density forecasting results for wave energy flux
Table 5 compares the accuracy of density forecasts from the ARMA-GARCH,

ARFIMA-GARCH and ARFIMA-FIGARCH models applied to log transformed wave energy

13



flux. The table shows that the models with fractional integration were slightly outperformed
by the ARMA-GARCH model. It is likely that the forecast lead times that we consider are
not sufficiently long for models with fractional integration to be of benefit. In view of this, in
the rest of the paper, we do not report results for the fractionally integrated models.

Table 6 and Fig. 4 compare the density forecast accuracy from the regression-based
approach, the KDE methods, and the ARMA-GARCH models. Table 6 shows that the
regression method produced less accurate density forecasts than each of the ARMA-GARCH
models beyond four hours ahead. Both the UKDE and CKDE methods did not perform well,
particularly for the shorter lead times. The CKDE approach allows exponential weighting, but
there is little weight decay as the optimal values of the exponential decay factor T were 0.998
and 1.000 for FINO1a and FINO1b, respectively. We experimented with weight decay in the
UKDE, but the optimised decay parameter was close to zero, implying very large weight on
the most recent period, which had little appeal, and so we did not consider the method further.

The (V)ARMA-(M)GARCH models used three different combinations of data,
namely wave energy flux (E) alone, wave energy flux and wind speed (E-S), and wave height
and wave period (H-P). Table 6 shows no great difference in the results of the methods, with
the H-P models performing slightly better than the others. For both the E-S and H-P
combinations of data, the MGARCH-DG model, which is a diagonal form of multivariate
GARCH, delivered slight improvement over standard MGARCH. This is a useful result
because this simplified model has fewer parameters, and so is easier to estimate.

To further evaluate the density forecasts, histograms of the probability integral
transform (PIT) (see Gneiting et al., 2007) are provided in Fig. 5 for FINO1b. The figures
show results, for lead times of 1, 4, 12 and 24 hours ahead, for the following four methods:
the regression-based method, E-UKDE (4hour), E-CKDE, and H-P-VARMA-MGARCH-DG.
The ideal shape of a PIT histogram is a uniform distribution. For the regression-based method,

E-UKDE (4 hour) and E-CKDE, the PIT histograms are far from uniform. As the lead time

14



increases, the peaks in each tail become larger, indicating that the density forecasts were

overly wide. The PIT histograms are closer to uniform for H-P-VARMA-MGARCH-DG.

4.3. Point forecasting results for wave energy flux

Although density forecasting is our primary concern, the evaluation of point
forecasting is also of interest. Table 7 and Fig. 6 present the root mean squared error (RMSE)
results, averaged over the FINOl1a and FINO1b periods, for point forecasts produced by the
different methods. The table shows that H-P-VARMA-MGARCH-DG produced the best
results overall. Indeed, this method was not outperformed by any other method at any lead
time. The regression method also performed very well. These findings show that modelling
wave height and wave period, albeit separately, led to better results than directly modelling
wave energy flux.

For the longer lead times, the regression method and CKDE were much more
competitive in terms of point forecasting than they were in Table 6 for density forecasting.
The UKDE methods did not perform well in terms of point forecasting.

With regard to the relative performances of the (V)ARMA-(M)GARCH models in
Table 7, we can make a number of points. Firstly, the bivariate (E-S) models for wave energy
flux and wind speed seem to offer very little over the univariate (E) models for wave energy
flux. Secondly, all of the bivariate (H-P) models for wave height and wave period are, overall,
more accurate than the univariate (E) models for wave energy flux and the bivariate (E-S)
models for wave energy flux and wind speed. Thirdly, with regard to the (H-P) models for
wave height and wave period, up to about 8 hours-ahead, there does seem to be benefit in the
increased complexity of the VARMA-MGARCH-DG model over the much simpler H-P-
VAR model, and the diagonal (DG) version of the VARMA-MGARCH model does seem

preferable to the more highly parameterised VARMA-MGARCH model.
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5. EMPIRICAL POST-SAMPLE RESULTS FOR WAVE POWER

We generated wave power density and point forecasts by converting wave height and
wave period to wave power using a conversion matrix for the Pelamis P2 device (see
Henderson, 2006; Retzler, 2006; Yemm et al., 2012), which is an established wave power
technology. The matrix is presented and used by Reikard (Fig. 1, 2013). The Pelamis P2
wave energy converter consists of semi-submerged multiple cylindrical sections. As waves
pass along the length of the device, the differences in buoyancy make the joints of the
cylinders bend, and this induces hydraulic cylinders to pump high pressure oil through
hydraulic motors, which drives electrical generators to produce electricity.

Since our wave period data ranges up to 20 seconds, which is higher than the upper
limit of the conversion matrix, we extrapolated the conversion matrix using the inpaint_nan
function by D’Errico (2012), which is based on sparse linear algebra and PDE discretizations,
to give the conversion function of Fig. 7. It is notable from this figure that wave power from
the Pelamis P2 device has an upper bound, and that, regardless of the value of wave height,
wave power is at its highest when wave period is approximately 7.5 seconds, which is
consistent with the finding of Retzler (Fig. 4, 2006) that the power capture of the device is
highest when the frequency is around 0.13 Hz. Due to the shape of the nonlinear conversion
function, the resulting wave power times series for the FINO1b data series in Fig. 8 exhibits
less extreme spikes than the wave energy flux series of Fig 1.

Fig. 9 shows that none of the log, square root and Box-Cox transformations are able
to change the strong skewness in wave power. Consequently, there was no appeal in
performing direct modelling of wave power using a univariate ARMA-GARCH model, or
using this variable along with another in a bivariate VARMA-MGARCH model.

In terms of modeling wave power directly, we applied the kernel density estimation
methods of Section 3.2 to wave power. In addition, we generated wave power density

forecasts by using the function of Fig. 7 to convert wave height and wave period density
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forecasts produced by (a) the regression method of Section 3.1, and (b) the bivariate
VARMA-MGARCH models of wave height and wave period, discussed in Section 3.3.4.

For a selection of the methods, Figs. 10 and 11 present the CRPS and RMSE for the
wave power density and point forecasts, respectively. Both figures show the KDE approaches
performing relatively poorly. By contrast the results of the CKDE approach are competitive,
and comparable with the regression approach. Overall, the best CRPS results correspond to
the H-P-VARMA-MGARCH-DG method, although the regression method is as accurate for
lead times less than about 8 hours. Fig. 11 shows that the point forecasting results were

similar for these two methods and the CKDE method.

6. SUMMARY

In this paper, we evaluated density forecasts of wave energy flux and wave power
produced by a regression method, UKDE methods, a CKDE approach, and univariate and
multivariate ARMA-GARCH models. Our results showed the following:
(i) Although the regression method performed well in terms of point forecasting for the
longer lead times, overall, the best point and density forecast accuracy were produced by the
ARMA-GARCH models. We found that the GARCH component was useful only for lead
times up to about 8 hours ahead. Our results do not support the use of a Student t or skewed t
distribution instead of a Gaussian distribution.
(it) Bivariate ARMA-GARCH modelling of the log transformed wave height and wave
period produced the best result for both wave energy flux in Section 4 and wave power in
Section 5. For energy flux, it was interesting that this was preferable to forecasting the energy
flux directly.
(iii) Despite evidence of long-memory in wave data, we could not find any clear evidence to
support the use of fractionally integrated models.

(iv) Kernel density estimation was not particularly competitive.
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Fig. 1. Time series of wind speed, wave height, wave period and wave energy flux from
the FINO1b dataset.
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Fig. 2. Histograms of wind speed, wave height, wave period and wave energy flux, and
their log, square root and Box-Cox transformed distributions from the FINO1b dataset.
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Fig. 3. (a) Correlations between wave energy flux and lags of wind speed up to 24 hours
from FINO1b. (b) Autocorrelations in wave energy flux of the FINO1b dataset. The 95%
significance level is indicated as a dotted line.
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Fig. 4. CRPS evaluated for wave energy flux forecasts and averaged over FINOla and
FINO1b. Lower values are better.
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Fig 5. PIT histograms of 1, 4, 12 and 24 hours ahead wave energy flux forecasts for FINO1b
using (a) Regression, (b) E-UKDE (4 hour), (c) E-CKDE and (d) H-P-VARMA-MGARCH-DG
(Gaussian) methods.
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Fig. 7. Extended wave power conversation from wave period and wave height based on
the conversion matrix for the Pelamis P2 device shown by Reikard (2013) and sparse
linear algebra and PDE discretizations by D'Errico, J. (2012).

Wave Power (kW)

600

400

200

0 , . . - : .
Sep-12 Nov-12 Jan-13 Mar-13 May-13 Jul-13 Sep-13

Fig. 8. Time series of wave power from the FINO1b dataset.

24



6000 1 3000 4000 3000

4000 2000 2000
2000
2000 1000 1000
0 y 0 : 0 : 0
0 500 4 5 6 0 10 20 1.6 1.8
wave power (kW) Log(wave power) Square root(wave power) Box-Cox(wave power)
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Fig. 10. CRPS evaluated for wave power forecasts and averaged over FINOla and
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Table 1. Skewness and kurtosis for wind speed, wave height, wave period and wave
energy flux, and log, square root and Box-Cox transformations of each variable.
Statistics calculated for the in-sample period of FINO1b. In each row, value closest to

Gaussian (skewness=0, kurtosis=3) is in bold.

Original Log Square Root Box-Cox

Wind speed

skewness 0.48 -0.85 -0.11 -0.05 (1=0.54)

kurtosis 2.94 3.89 2.58 2.56 (A= 0.54)
Wave height

skewness 1.07 -0.32 0.35 -0.02 (4= 0.22)

kurtosis 4.76 2.65 2.79 2.52 (1= 0.22)
Wave period

skewness 1.27 0.15 0.70 0.00 (1=-0.14)

kurtosis 5.51 3.32 3.95 3.30 (4=-0.14)
Wave energy flux

skewness 5.11 -0.25 1.52 -0.01 (4= 0.07)

kurtosis 49.46 2.79 7.16 2.68 (A=0.07)

Table 2. Lags, and terms in the diurnal expressions (10) and (11), selected by the SBC
criterion for (V)ARMA-(M)GARCH models fitted to the in-sample period of FINO1b.

Lags AR MA ia'r‘::é‘:r'] ARCH  GARCH l\)/g;;'t‘ﬁ: t';
Univariate models for log wave energy flux
E-AR [1,2,3,4] no no no no no
E-ARMA-GARCH [1,2,3,4] [1,2,24] no [1,2,24] [1,24] [2]
E-ARFIMA-GARCH [1,2,3,24] no no [1,2,3] [1,24] [2,4,8]
E-ARFIMA-FIGARCH [1,2] [1,2,24] no no [1] [2,4,8]
Bivariate models for log wave energy flux and log wind speed
E-S-VAR [1,2,3,4] no no no no no
E-S-VARMA-MGARCH [1,2,3,4] no [2,4,8] [1,2,3,24] [1] [2,4,6]
E-S-VARMA-MGARCH-UP [1,2,3,24] [1,2] no [1] [1] [2]
E-S-VARMA-MGARCH-DG [1,2,3,4] [1,2] [2,4] [1,24] [1] no
Bivariate models for log wave height and log wave period
H-P-VAR [1,2,3,4] no no no no no
H-P-VARMA-MGARCH [1] [1,23,456] [24,6] [1] [1] no
H-P-VARMA-MGARCH-DG [1,2,3,4] [1,2,24] [2,4,6] [1,2] [1,2,3] [2]
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Table 3. Coefficients of the fractional integration models fitted to the log-transformed

wave energy flux for the in-sample period of FINOla and FINO1b.

ARFIMA d, FIGARCH d,

FINO1la
E-ARFIMA-GARCH 0.62
E-ARFIMA-FIGARCH 0.62 0.17
FINO1b
E-ARFIMA-GARCH 0.92
E-ARFIMA-FIGARCH 0.92 0.58

Table 4. Evaluation of transformation methods in terms of post-sample wave energy
flux density forecast accuracy using CRPS (in kW/m) averaged for FINOla and

FINOL1b.

Lead Time (hours): 1 2 3-4 5-6 7-8 9-12 13-18 19-24 1-24

ARMA-GARCH type with Gaussian for wave energy flux
No transformation 0.9 14 21 2.8 34 4.1 51 5.8 4.2
Log transformation 0.9 1.3 1.9 25 3.1 3.6 4.4 51 3.7
Square root transformation 0.9 1.3 19 2.6 3.2 3.8 4.8 5.7 4.0
Box-Cox transformation 0.9 1.3 1.9 25 3.1 3.6 4.4 5.1 3.7

NOTE: Smaller values are better. The best performing method at each horizon is in bold.

Table 5. Evaluation of the fractional integration models in terms of post-sample wave
energy flux density forecast accuracy using CRPS (in kW/m) averaged for FINOla and

FINOL1b.

Lead Time (hours): 1 2 3-4 5-6 7-8 9-12 13-18 19-24 1-24

Univariate models for log wave energy flux
E-ARMA-GARCH 0.9 1.3 1.9 25 3.1 3.6 4.4 5.1 3.7
E-ARFIMA-GARCH 0.9 1.3 19 2.6 3.1 3.7 4.5 5.3 3.8
E-ARFIMA-FIGARCH 0.9 1.3 1.9 2.6 3.2 3.8 4.6 5.4 3.9

NOTE: Smaller values are better. The best performing method at each horizon is in bold.
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Table 6. Evaluation of post-sample wave energy flux density forecast accuracy using
CRPS (in kW/m) averaged for FINOZla and FINO1b.

Lead Time (hours): 1 2 3-4 5-6 7-8 9-12 13-18 19-24 1-24
Regression 0.9 1.3 1.9 2.7 3.3 4.1 5.1 6.0 4.2
Kernel density estimation for log wave energy flux
E-UKDE (4 hour) 3.1 35 3.9 45 5.0 5.6 6.5 7.4 5.8
E-UKDE (24 hour) 5.9 6.0 6.2 6.3 6.5 6.7 7.0 7.2 6.7
E-CKDE 3.2 3.4 3.8 4.2 4.7 5.2 5.9 6.7 5.3
Univariate models for log wave energy flux
E-AR 0.9 1.3 1.9 2.6 3.1 3.6 4.3 5.0 3.7
E-ARMA-GARCH 0.9 1.3 1.9 2.5 3.1 3.6 4.4 5.1 3.7
Bivariate models for log wave energy flux and log wind speed
E-S-VAR 0.9 1.3 1.9 2.5 3.0 3.6 4.3 4.9 3.6
E-S-VARMA-MGARCH 0.8 1.3 1.8 25 3.0 3.6 4.4 51 3.7

E-S-VARMA-MGARCH-DG 0.8 1.2 18 24 3.0 3.6 4.3 5.0 3.6
E-S-VARMA-MGARCH-UP 0.9 13 1.9 25 3.0 3.6 4.3 5.0 3.7

Bivariate models for log wave height and log wave period
H-P-VAR 0.9 1.3 1.9 2.4 2.9 3.5 4.2 49 3.6
H-P-VARMA-MGARCH 0.8 1.3 1.8 2.4 2.9 35 4.3 4.9 3.6
H-P-VARMA-MGARCH-DG 0.8 1.2 1.8 2.4 2.9 35 4.2 4.8 3.5

NOTE: Smaller values are better. The best performing method at each horizon is in bold.

Table 7. Evaluation of post-sample wave energy flux point forecast accuracy using
RMSE (in kW/m) averaged for FINOla and FINOL1b.

Lead Time (hours): 1 2 3-4 5-6 7-8 9-12 13-18 19-24 1-24
Regression 2.6 4.3 6.2 7.9 8.9 9.9 110 120 9.6
Kernel density estimation for log wave energy flux
E-UKDE (4 hour) 4.9 6.2 7.6 8.9 9.9 109 124 138 11.0
E-UKDE (24 hour) 118 120 122 125 128 131 136 140 13.2
E-CKDE 4.3 5.3 6.6 7.8 8.7 9.6 108 121 9.6
Univariate models for log wave energy flux
E-AR 2.8 4.3 6.2 7.8 8.9 9.9 113 126 9.8
E-ARMA-GARCH 2.7 4.3 6.1 7.8 8.9 9.9 112 125 9.8
Bivariate models for log wave energy flux and log wind speed
E-S-VAR 2.7 4.2 6.1 7.7 8.9 9.9 111 124 9.7
E-S-VARMA-MGARCH 2.7 4.2 6.0 7.7 9.0 102 119 140 10.3

E-S-VARMA-MGARCH-DG 2.6 4.0 59 7.6 8.8 9.9 114 131 9.9
E-S-VARMA-MGARCH-UP 2.7 4.2 6.1 7.8 8.9 9.9 113 127 9.8

Bivariate models for log wave height and log wave period
H-P-VAR 2.7 4.1 5.8 7.4 8.5 9.4 106  11.8 9.3
H-P-VARMA-MGARCH 2.6 4.1 59 75 8.6 9.7 111 123 9.6
H-P-VARMA-MGARCH-DG 25 3.9 57 7.2 8.4 9.4 106  11.8 9.2

NOTE: Smaller values are better. The best performing method at each horizon is in bold.
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