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Short-term Density Forecasting of Wave Energy Using 

ARMA-GARCH Models and Kernel Density Estimation 

 

Abstract 

Wave energy has great potential as a renewable source of electricity. Installed capacity is 

increasing, and with developments in technology, wave energy is likely to play an important 

role in the future mix of electricity generation. The short-term forecasting of wave energy is 

needed for the efficient operation of wave farms and power grids, as well as for energy 

trading. The intermittent nature of wave energy motivates the use of probabilistic forecasting. 

In this paper, we evaluate the accuracy of probabilistic forecasts of wave energy flux from a 

variety of methods, including unconditional and conditional kernel density estimation, 

univariate and bivariate autoregressive moving average generalised autoregressive 

conditional heteroskedasticity (ARMA-GARCH) models, and a regression-based method. 

The bivariate ARMA-GARCH models are implemented with different pairs of variables, 

such as (1) wave height and wave period, and (2) wave energy flux and wind speed. Our 

empirical analysis uses hourly data from the FINO1 research platform in the North Sea to 

evaluate density and point forecasts, up to 24 hours ahead, for the wave energy flux. The 

empirical study indicates that a bivariate ARMA-GARCH model for wave height and wave 

period led to the greatest accuracy overall for wave energy flux density forecasting, but as the 

lead time increases, its usefulness reduces for point forecasting. This model also performed 

well for wave power data that had been generated from wave height and wave period 

observations using a conversion matrix. 

 

Key words: Wave energy; Probability density; ARMA-GARCH; Kernel density estimation. 
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1. Introduction 

The growing demand for energy and sustained efforts to reduce carbon emissions, in 

light of the threat of global climate change, have led to the development of new technologies 

for harnessing energy from renewable sources. Among renewable energy sources, ocean 

energy has relatively high energy density in the form of currents, waves, heat and tides, with 

the benefit of reduced visual impact (Brekken et al., 2009). Estenban and Leary (2012) 

predict ocean energy could deliver around 7% of global energy production by 2050. Among 

the ocean energy sources, which include tidal and thermal, wave energy is known to have the 

greatest capacity (Clément et al., 2002; Falnes, 2007).  

Wave energy forecasts from a few hours to several days ahead are of interest for the 

management of power grids (Pinson et al., 2012; Reikard et al., 2015). When the technology 

is fully commercialised, inaccurate forecasts for wave power are likely to induce penalties for 

wave generators that reflect over- or under-production, and increase the cost of the spinning 

reserve needed when the wave energy production is integrated into the power system. To 

ensure reliable grid operation, system operators are interested in probabilistic forecasts, such 

as probability density forecasts, as these deliver a fuller description of the future energy.  

Ocean waves are generated mainly by the wind blowing over the sea surface, which 

propagates its energy horizontally on the surface. The rate of transfer of the energy is called 

the wave energy flux, and it is a nonlinear function of wave height and period. Due to its 

nonlinear dependence on meteorological and ocean variables, forecasting the wave energy 

flux is challenging, even for a lead time of just a few hours. As data on the power output from 

wave farms has not been available, researchers have largely focused on the wave energy flux, 

which is the energy that theoretically could be obtained. In this paper, we follow the literature 

by having the wave energy flux as our main focus. However, as the electricity obtained in 

practice from wave power devices can differ notably from the wave energy flux, we also 
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consider the prediction of wave power data, which we generate from wave height and wave 

period observations using a theoretical conversion matrix. 

Studies of wave energy forecasting have generally involved the modelling of wave 

height and period using statistical and physics-based approaches. The statistical models used 

for this application include time-varying parameter regressions (see Reikard, 2009, 2013), 

unconditional kernel density estimation (see Ferreira and Guedes-Soares, 2002), neural 

networks (see, for example, Zamani et al., 2008), and autoregressive models (see, for 

example, Guedes-Soares and Ferreira, 1996; Guedes-Soares and Cunha, 2000; Fusco and 

Ringwood, 2010). Physics-based models are used by Hasselmann et al. (1976, 1980, 1985) 

and Janssen (1991, 2007). Combined models using both time series and physics approaches 

are used by Roulston et al. (2005), Woodcock and Engel (2005), Woodcock and Greenslade 

(2006), Durrant et al. (2008), Reikard et al. (2011) and Pinson et al. (2012).  

In terms of probabilistic forecasting for wave energy, we are aware of only one 

published paper. Pinson et al. (2012) model wave energy flux under the assumption that the 

density is log-normal. Using time-varying recursive regression, they model the errors from 

atmospheric model forecasts for wave height and wave period up to 48 hours ahead. 

In this paper, we provide an empirical comparison of statistical approaches to 

producing density forecasts of wave energy flux. We consider a regression-based method, 

conditional kernel density estimation, and ARMA-GARCH models. Our study is the first that 

we are aware of to use ARMA-GARCH models in the wave energy forecasting context. As 

statistical models have been found to be more useful than atmospheric models for shorter lead 

times (Reikard and Rogers, 2011; Reikard, 2013), we consider lead times from 1 to 24 hours.  

Section 2 describes our data. Section 3 presents the forecasting methods that we 

consider in our empirical analysis of Section 4 for wave energy flux. In Section 5, we present 

empirical results for wave power. Section 6 summaries, and provides concluding comments. 
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2. THE DATA FOR WAVE ENERGY FORECASTING 

Wave energy flux is the average horizontal transport momentum of a wave, per unit 

of wave-crest length. It is a function of wave height and wave period as in the following:  

𝐸𝑡 ⋍ (𝜌𝑔2 64𝜋⁄ )𝐻𝑡
2𝑃𝑡                 (1) 

𝐸𝑡 is the wave energy flux, which is expressed in kilowatts per metre of wave-crest length; 𝐻𝑡 

is the significant wave height, which is defined as the average height of the highest third of 

the waves, where height is measured in metres from trough to crest; 𝑃𝑡  is the mean wave 

period in seconds, which is the average of the time taken for two successive wave crests to 

pass a given point; 𝑔 is the acceleration due to gravity; and 𝜌 is ocean water density, which is 

approximately 1025 kg/m3 at the sea surface. 

We used data recorded at the FINO1 research platform, which is located in the North 

Sea approximately 45km to the north of Borkum, Germany. FINO1 was brought into service 

to facilitate the research in offshore wind energy by providing meteorological and 

oceanographic data. Raw wind speed data (m/s) are measured at FINO1 every second, and 

then averaged every 10 minutes. Raw wave height and wave period data are measured every 

half second from a buoy, which follows the movement of the sea surface and is located 200 

metres away from FINO1. The significant wave height and peak wave period, which is 

defined as the wave period where the highest energy occurs among the individual wave 

periods, are derived every 30 minutes following the definitions below expression (1). As 

mean wave period data was not available, we instead used peak wave period observations. In 

our study, wind speed, significant wave height and peak wave period data were averaged to 

give hourly observations. We used hourly values of significant wave height and peak wave 

period to obtain hourly values of wave energy flux based on expression (1).  

To avoid long periods of missing observations, two periods were chosen: (a) 1 June 

2011 to 30 June 2012, inclusive, and (b) 1 September 2012 to 31 October 2013, inclusive. We 

                                                           
1 http://www.fino1.de/ 
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name these periods FINO1a and FINO1b, respectively. For each period, the last two months 

are used for post-sample evaluation, with the earlier observations used for model fitting. We 

evaluated forecasts produced using each period of the evaluation sample as forecast origin.  

In FINO1a, one observation for wave height and wave period is missing from the 

estimation sample, and none from the evaluation sample. In FINO1b, seven separate 

observations for wave height and wave period are missing from the estimation sample, and 

one from the evaluation sample. For these periods with missing observations, we used linear 

interpolation to generate values. We did not evaluate forecast accuracy for these periods 

when they occurred in the evaluation sample. We used wind speed observations from a height 

of 33m, which was the lowest height available. Around 3.5% of the measurements at this 

height were missing. Any missing wind speed observations were replaced with the 

measurements at 50m, 60m or 70m height after level adjustment, which uses linear scaling to 

minimise the bias from the different dynamics of wind speed at different heights.  

Fig. 1 shows the time series of wind speed, wave height, wave period, and wave 

energy flux for FINO1b. All four series are highly volatile, bounded below by zero, and 

skewed to the right. This is shown in the first column of histograms in Fig. 2. The other 

histograms in Fig. 2 relate to transformations of the series, and we discuss this further in 

Section 3.3.1. It is interesting to see from Fig. 1 that the variation in wave height appears to 

be related to the variation in wind speed. The correlation between these two series is 0.74. 

The wave energy flux seems to be more related to the wave height than the wave period. It is 

not clear that the wave period has any similar movement with the wind speed, and this is 

supported by the correlation between wind speed and wave period, which is -0.04. 

 

3. DENSITY FORECASTING METHODS FOR WAVE ENERGY FLUX 

 In this section, we describe the methods that we implement in our empirical study. We 

present a regression approach, kernel density estimators, and ARMA-GARCH models. 
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3.1. Regression models 

Reikard (2009) finds that the best approach to the point forecasting of wave energy 

flux, up to 4 hours ahead, is to use independently estimated least squares regression models 

for wind speed, wave period and wave height, as shown in expressions (2) to (4).  

log 𝑆𝑡 = 𝜃0𝑡 + 𝜃1𝑡 log 𝑆𝑡−1 + 𝜃2𝑡 log 𝑆𝑡−2 + 𝜃3𝑡 log 𝑆𝑡−3 + 𝜃24𝑡 log 𝑆𝑡−24 + 𝜖𝑡  (2) 

log 𝑃𝑡 = 𝜈0𝑡 + 𝜈1𝑡 log 𝑃𝑡−1 + 𝜈2𝑡 log 𝑃𝑡−2 + 𝜈3𝑡 log 𝑃𝑡−3 +  𝜈4𝑡 log 𝑃𝑡−4 + 𝜖𝑡  (3) 

log 𝐻𝑡
2 = 𝛿0𝑡 + 𝛿1𝑡 log 𝐻𝑡−1

2 + 𝛿2𝑡 log 𝐻𝑡−2
2 + 𝛿3𝑡 log 𝐻𝑡−3

2  
+ 𝛿4𝑡 log 𝐻𝑡−4

2 + 𝛿5𝑡 log 𝑃𝑡 + 𝛿6𝑡 log 𝑆𝑡 + 𝜖𝑡   (4) 

𝑃𝑡 and 𝐻𝑡 were defined in Section 2, and 𝑆𝑡 denotes wind speed at time t. 𝜃𝑖𝑡, 𝜈𝑖𝑡 and 𝛿𝑖𝑡 are 

parameters estimated separately for each expression and for each forecast origin using 

ordinary least squares. 𝜖𝑡 is assumed to be Gaussian white noise, implying that the energy 

flux 𝐸𝑡  of expression (1) follows a conditional log-normal distribution, which was also 

assumed by Pinson et al. (2012). The resulting forecasts for wave period and wave height are 

plugged into expression (1) to deliver a wave energy flux forecast.  

 

3.2. Kernel density estimation  

Kernel density estimation is a nonparametric approach, which has the appeal of 

avoiding the need for a distributional assumption. We used both unconditional and 

conditional kernel density estimation in our modelling. In both approaches, the kernel 

bandwidth parameters were chosen by minimising the mean continuous ranked probability 

score (CRPS) calculated for the in-sample period. The CRPS, which is described by Gneiting 

et al. (2007), assesses the calibration and sharpness properties of density forecasts. They 

explain that calibration measures the statistical consistency between the predicted density and 

the observed value, while sharpness refers to the concentration of the density forecast, which 

is a property of the density forecast alone. By contrast with the other methods that we 

considered, we applied the kernel density estimation methods to untransformed data. 
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3.2.1. Unconditional kernel density estimation (UKDE) 

As a relatively simple benchmark method, we used kernel density estimation. The 

unconditional kernel density estimator of wave energy flux (E-UKDE) is defined as:  

𝑓(𝑒) = ∑ 𝐾ℎ𝑒
(𝐸𝑡 − 𝑒)𝑛

𝑡=𝑛−𝑘+1 𝑘⁄  , 

where 𝑒 is a value of wave energy flux for which a density is to be estimated; 𝑛 is the forecast 

origin; 𝑘 is the length of the sliding window used for the estimation; and 𝐾 is a Gaussian 

kernel function, with bandwidth ℎ𝑒, which dictates the smoothness of the estimated density. 

Having observed that a relatively small sliding window performs better for short-term 

forecasting of wave energy flux, we considered two versions of the E-UKDE approach using 

the following sliding window lengths, 𝑘: (a) 4 hours and (b) 24 hours. 

 

3.2.2. Conditional kernel density estimation (CKDE) 

Given that wind passing over the sea surface generates wave energy, we also 

considered the kernel density estimation of wave energy flux conditional on wind speed. We 

implemented the two-step conditional kernel density estimation approach of Jeon and Taylor 

(2012), which allows for a stochastic conditioning variable. As shown in Fig. 3(a), for our 

data, the wave energy flux was most highly correlated with the third lag of wind speed, and 

so we conditioned on this lag. Miller (1958) and Rieder (1997) find the time lag between the 

rise of wind speed and the rise of wave height varied between several hours and twenty hours 

depending on location and the persistence of wind speed and direction. Using an exponential 

decay parameter  (0<   ≤ 1), and an additional kernel for wind speed with bandwidth, ℎ𝑠, 

the density estimate of wave energy flux, conditional on wind speed (E-CKDE), is given as: 

𝑓(𝑒|𝑠) =
∑ 𝜏𝑛−𝑡𝐾ℎ𝑠

(𝑆𝑡−3 − 𝑠)𝐾ℎ𝑒
(𝐸𝑡 − 𝑒)𝑛

𝑡=1

∑ 𝜏𝑛−𝑡𝐾ℎ𝑠
(𝑆𝑡−3 − 𝑠)𝑛

𝑡=1

. 

This estimator can be viewed as a weighted average of the kernels 𝐾ℎ𝑒
(𝐸𝑡 − 𝑒), where the 

weights are larger for more recent data and for observations for which the wind speed at time 
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t was closer to the conditioning wind speed 𝑠. The approach requires density forecasts of 

wind speed. We generated these using a univariate ARMA-GARCH model, of the type 

discussed in Section 3.3.2, with no exogenous variable, fitted to the wind speed series.  

 

3.3. Univariate and multivariate ARMA-GARCH models 

3.3.1. Data transformation 

Fig. 2 and Table 1 show that positive skewness is a feature of the unconditional 

distributions of wind speed, wave height, wave period, and especially wave energy flux. In 

Table 1, the kurtosis values for wave height, wave period and wave energy flux indicate fat 

tails relative to a Gaussian distribution. For time series models, transformations are often 

used prior to model fitting. We considered the log, square root and Box-Cox transformations. 

Previous studies of wave energy forecasting have involved the use of the log 

transformation for wave energy flux, wave height, wave period and wind speed. We were 

able to apply the log transformation to each of our time series, because they contained no 

zero values. Table 1 and Fig. 2 show that wave height, wave period and wave energy flux are 

each closer to being Gaussian when the log transformation is applied. 

Taylor et al. (2009) find the square root transformation useful in modelling hourly 

wind speed data. This transformation has the benefit that it can be used for data with zero 

values. Table 1 and Fig. 2 show that the square root transformation is more useful for wind 

speed than the log transformation, but clearly not for wave period and energy flux. For wave 

height, the square root transformation is slightly better for kurtosis, but not for skewness. 

A third transformation that we considered is the single parameter form of the Box-

Cox transformation (Box and Cox, 1964), which is given as: 

𝐵𝐶(𝑦, 𝜆) = (𝑦𝜆 − 1) 𝜆  ⁄ (𝑖𝑓 𝜆 ≠ 0, 𝑦 > 0)    (5) 

                = log(𝑦)            (𝑖𝑓 𝜆 = 0, 𝑦 > 0).     (6) 
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This transformation has been used in modelling wave height and period (see, for 

example, Galiatsatou and Prinos, 2007; Ferreira and Guedes-Soares, 2002). The 𝜆 parameter 

can be optimised using maximum likelihood. Table 1 shows that the optimised value of 𝜆 was 

close to zero for wave height, wave period and wave energy flux, implying that the 

transformation is very similar to the log transformation. 

In summary, the log transform seems to be suitable for wave height, wave period and 

wave energy flux, and this transformation is also reasonable for wind speed. In Section 4, we 

present post-sample forecasting results comparing the four different transformations.  

 

3.3.2. Univariate ARMA-GARCH  

ARMA-GARCH models are widely used for capturing the autocorrelation in the 

conditional mean and variance. In this paper, for wave energy flux, we use the ARMA(r,m)-

GARCH(p,q) model with exogenous variables presented in expressions (7)-(9):  

𝑦𝑡 = 𝑠(𝝁, 𝑡) + ∑ 𝜑𝑖𝑌𝑡−𝑖
𝑟
𝑖=1 + ∑ 𝜓𝑗𝜀𝑡−𝑗

𝑚
𝑗=1 ,      (7) 

𝜎𝑡
2 = 𝑠(𝝎, 𝑡) + ∑ 𝛼𝑖𝜎𝑡−𝑖

2𝑝
𝑖=1 + ∑ 𝛽𝑗𝜀𝑡−𝑗

2𝑞
𝑗=1 ,      (8) 

𝜀𝑡 = 𝜎𝑡𝜂𝑡,          (9) 

where yt is an observation of wave energy flux at time t; 𝜀𝑡 is an error term; 𝜂𝑡 is white noise; 

𝜎𝑡 is the conditional standard deviation (volatility); 𝜑𝑖, 𝜓𝑖, 𝛼𝑖 and 𝛽𝑖 are the coefficients of 

the AR, MA, GARCH and ARCH components, and their orders are defined by non-negative 

integer valued constants r, m, p and q, respectively; 𝝁 and 𝝎 are vectors of parameters; and 

𝑠(𝝁, 𝑡) and 𝑠(𝝎, 𝑡) are functions of exogenous variables that have an effect on the mean and 

the volatility, respectively. We imposed restrictions on 𝛼𝑖 and 𝛽𝑖 to ensure positivity of 𝜎𝑡
2. 

For 𝜂𝑡 , we considered Gaussian, Student t, and skewed t distributions, as they have often 

been considered in the GARCH modelling of daily financial returns data, and Table 1 shows 

a degree of skewness and high kurtosis in some of the variables.  
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Given that wave energy flux is a function of wave height and wave period, it is 

natural that wave energy flux will have annual seasonality (see, for example Jardine and 

Latham, 1981; Guedes-Soares and Cunha, 2000). However, as our time series are not 

sufficiently long to capture this, the only cyclicality that we model is the diurnal cycle. We 

allow for this in the level and volatility, using expressions (10) and (11), respectively: 

𝑠(𝝁, 𝑡) = 𝜇0 + ∑ [𝜇𝑖,1 sin (2𝑖𝜋
ℎ(𝑡)

24
) + 𝜇𝑖,2 cos (2𝑖𝜋

ℎ(𝑡)

24
)]

𝑁𝜇

𝑖=1
,  (10) 

𝑠(𝝎, 𝑡) = 𝜔0 + ∑ [𝜔𝑖,1 sin (2𝑖𝜋
ℎ(𝑡)

24
) + 𝜔𝑖,2 cos (2𝑖𝜋

ℎ(𝑡)

24
)]

𝑁𝜔
𝑖=1 ,  (11) 

where ℎ(𝑡) is the hour of the day; and 𝑁𝜇 and 𝑁𝜔 are positive integers. To emphasise our use 

of wave energy flux as the target variable yt, we denote the model as E-ARMA-GARCH. We 

also built a wave energy flux model with only AR components, namely E-AR, to test the 

usefulness of the MA and GARCH terms. We used AR lags from 1 to 4 in this simple model. 

 

3.3.3. ARFIMA-FIGARCH 

When a time series shows a slowly decaying persistence in the autocorrelation, this 

pattern is called ‘long memory’ dependence, and it can be modelled by a fractional integrated 

model. Reikard (2009) observes that wave energy flux is characterised by long memory, and 

this pattern appears more clearly in deep water locations than coastal sites. Fig. 3(b) shows 

that our wave energy flux data possesses long-memory, because there is significant 

autocorrelation at long lags. This prompted us to consider a fractionally integrated model. 

Long memory in the level of a series can be modelled by the autoregressive 

fractionally integrated moving average (ARFIMA) model proposed by Granger and Joyeux 

(1980) and Hosking (1981). Long memory in the volatility can be captured with the 

fractionally integrated generalized autoregressive conditionally heteroscedastic (FIGARCH) 

model of Baillie et al. (1996). Before the ARFIMA-FIGARCH is presented, we rewrite the 

ARMA-GARCH model of expressions (7) and (8) as expressions (12) and (13), respectively: 

𝜑(𝐿)𝑦𝑡 = 𝑠(𝝁, 𝑡) + 𝜓(𝐿)𝜀𝑡,        (12) 
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𝛼(𝐿)𝜎𝑡
2 = 𝑠(𝝎, 𝑡) + 𝛽(𝐿)𝜀𝑡

2,        (13) 

where 𝜑(𝐿), 𝜓(𝐿), 𝛼(𝐿) and 𝛽(𝐿) are polynomial functions of the lag operator L. Using the 

fractional differencing parameter d, the ARFIMA and FIGARCH processes are defined in 

expressions (14) and (15), respectively: 

𝜑(𝐿)(1 − 𝐿)𝑑1𝑦𝑡 = 𝑠(𝝁, 𝑡) + 𝜓(𝐿)𝜀𝑡,.      (14) 

𝛼(𝐿)𝜎𝑡
2 = 𝑠(𝝎, 𝑡) + [1 − 𝛼(𝐿) − 𝜁(𝐿)(1 − 𝐿)𝑑2]𝜀𝑡

2,    (15) 

(1 − 𝐿)𝑑 = ∑
Γ(d+1)

Γ(i+1)Γ(d−i+1)
(−1)𝑖𝐿𝑖∞

𝑖=0
,      (16) 

where 𝜁(𝐿) is a polynomial function of L, Γ(∙) is the gamma function, and d1 and d2 are the 

fractional differencing parameters, which determine the degree of long memory dependence 

in the level and volatility processes, respectively. If di = 0, the process follows short memory 

dependence. The time series has long memory dependence if 0 < di < 0.5 and moderate long 

memory dependence if -0.5 < di < 0. When di = 1, the ARFIMA process is non-stationary. 

 

3.3.4. VARMA-MGARCH 

Soares and Cunha (2000) observe correlation between wave height and wave period, 

and fit a bivariate vector autoregressive model in order to preserve the covariance structure. 

In this paper, we jointly model wave height and wave period, and then convert the resulting 

forecasts into predictions of wave energy flux using expression (1). (In Section 5, we 

consider the conversion of wave height and wave period forecasts to wave power.) 

We were also curious to investigate a joint model involving the variable wave energy 

flux. In such a model, it makes no sense to include either wave height or wave period, 

because we have, in this paper, used these two variables to construct the wave energy flux 

series. Instead, we implemented a joint model for wave energy flux and wind speed.  

We, therefore, implemented a bivariate model for two pairs of variables. One pair was 

wave energy flux and wind speed, and the other was wave height and wave period. The 

benefit of modelling wave height and wave period is that their forecasts can be conveniently 
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plugged into the formula in expression (1) for conversion to wave energy flux, or converted 

to wave power as described in Section 5. 

To model the dynamics of the conditional variance and covariance of the pairs of 

variables, we implemented vector ARMA models with multivariate GARCH terms 

(VARMA-MGARCH). Although similar models have been used by Cripps and Dunsmuir 

(2003) and Jeon and Taylor (2012) to model wind velocity, we are not aware of the previous 

use of ARMA-GARCH models in the wave energy context. 

We used the VEC type VARMA-MGARCH model of Bollerslev et al. (1988) with 

diurnal cyclical terms, as given in expressions (17)-(19):  

𝒚𝑡 = 𝑠(𝝁, 𝑡) + ∑ 𝑹𝑖𝒚𝑡−𝑖
𝑟
𝑖=1 + ∑ 𝑴𝑗𝜺𝑡−𝑗

𝑚
𝑗=1 ,       (17) 

𝑣𝑒𝑐ℎ(𝑽𝑡) = 𝑠(𝝎, 𝑡) + ∑ 𝑷𝑖𝑣𝑒𝑐ℎ(𝑽𝑡−𝑖)
𝑝
𝑖=1 + ∑ 𝑸𝑗𝑣𝑒𝑐ℎ(𝜺𝑡−𝑗𝜺𝑡−𝑗

′ )𝑞
𝑗=1 ,   (18) 

𝜺𝑡 = 𝜼𝑡,           (19) 

where 𝒚𝑡 is a vector of (1) wave height and wave period or (2) wave energy flux and wind 

speed; 𝜺𝑡  is a vector of error terms; 𝑽𝑡  is the conditional covariance matrix of 𝜺𝑡 ; 𝜼𝑡  is a 

vector of white noise, for which multivariate Gaussian, Student t or skewed t distributions are 

considered in our empirical study; 𝑣𝑒𝑐ℎ(∙) denotes the column stacking operator of the lower 

triangular part of its argument symmetric matrix; 𝑹𝑖 and 𝑴𝑖 are (2×2) matrices of parameters; 

𝑷𝑖 and 𝑸𝑖 are (3×3) matrices of parameters; r, m, p and q are the order of 𝑹𝑖, 𝑴𝑖, 𝑷𝑖 and 𝑸𝑖 

respectively, selected by the SBC. Among various forms of multivariate skewed t 

distributions, we used the definition by Azzalini and Genton (2008). In our empirical study, 

we imposed restrictions on 𝑷𝑖 and 𝑸𝑖 using the sufficient condition for the positivity of 𝑽𝑡 

proposed by Gourieroux (1997). We also implemented the Baba-Engle-Kraft-Kroner 

VARMA-MGARCH model (see Engle and Kroner, 1995), but this did not lead to improved 

post-sample forecasting results, and so we do not discuss it further in this paper.  

In addition to the standard VEC approach, which we refer to as MGARCH, we also 

implemented the approach with 𝑷𝑖 and 𝑸𝑖 restricted to be diagonal matrices. We refer to this 
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as MGARCH-DG and implemented this for the model for wave height and wave period (H-

P-MGARCH-DG), and for the model for wave energy flux and wind speed (E-S-MGARCH-

DG). The diagonal matrices ensure that 𝑽𝑡 is positive definite for all t (Bollerslev et al., 1988), 

although this is perhaps overly restrictive, as it allows no interaction between the conditional 

variances and covariances. For the joint model of wave energy flux and wind speed, to avoid 

wind speed being modelled in terms of wave energy flux or its lags, we restricted 𝑷𝑖 and 𝑸𝑖 

to be upper triangular. We refer to this as E-S-MGARCH-UP.  

As a relatively simple VAR benchmark model, we constructed a model for wave 

energy flux and wind speed with lags from 1 to 4, assuming a constant variance. We call this 

E-S-VAR. Similarly, H-P-VAR is the same model fitted to wave height and wave period.  

 

3.3.5. Orders of the various (V)ARMA-(M)GARCH models 

For the (V)ARMA-(M)GARCH models, we used the SBC to select the orders, and 

also to select terms (values of i) to use in the summations of expressions (10) and (11), which 

capture the diurnality. Table 2 summarises the resulting orders and values for models with 

Gaussian noise terms fitted to the in-sample FINO1b data. We consider only the Gaussian 

models here, and in the rest of the paper, because the post-sample results for models fitted 

with the Student t and skewed t distributions were no better.  

Table 3 presents the 𝑑1 and 𝑑2 parameters estimated for the ARFIMA-GARCH and 

ARFIMA-FIGARCH models applied to the log transformation of wave energy flux for the 

two in-sample periods. As explained in Section 3.3.3, a parameter between -0.5 and 0.5 

indicates the existence of long memory. The level parameter 𝑑1 indicates the level process 

does not have long memory, while the volatility parameter, 𝑑2 , indicates there are long 

memory effects when the models are fitted to FINO1a, but not when fitted to FINO1b. 
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4. EMPIRICAL POST-SAMPLE RESULTS FOR WAVE ENERGY FLUX 

As we explained in Section 2, for the final two months of the FINO1a and FINO1b 

periods, we produced 1 to 24 hour-ahead post-sample density forecasts for wave energy flux, 

using each period of the evaluation sample as forecast origin. For the VARMA-MGARCH 

models, we felt that it is not practical to re-optimise repeatedly the parameters for a sliding 

window of observations, and so, for each of the two periods (FINO1a and FINO1b), we 

estimated the parameters just once. For consistency, we followed the same approach with the 

other methods, although we acknowledge that the ranking of methods may change parameters 

were re-optimised. In Sections 4.1 and 4.2, we use the mean of the CRPS to evaluate density 

forecasting accuracy, which is the main focus in this paper. In Section 4.3, we consider point 

forecasting. As statistical methods have been shown to be more competitive with atmospheric 

models for short forecast horizons, our analysis provides more detail for the earlier horizons.  

 

4.1. Evaluation of the transformations for use with ARMA-GARCH 

Table 4 presents post-sample CRPS density forecasting results, averaged over the 

FINO1a and FINO1b periods, for the univariate ARMA-GARCH models in Section 3.3.2 

fitted to wave energy flux using the transformations described in Section 3.3.1. The table 

indicates that using any transformation was preferable to using none. The square root was not 

as useful as the log and Box-Cox transformations, which is consistent with the results for 

wave energy flux in Table 1. The log and Box-Cox transformations delivered similar results, 

and as the log transformation is simpler, in the rest of this paper, we report results for all the 

(V)ARMA-(M)GARCH models applied to variables that were logged prior to model fitting.  

 

4.2. Density forecasting results for wave energy flux 

Table 5 compares the accuracy of density forecasts from the ARMA-GARCH, 

ARFIMA-GARCH and ARFIMA-FIGARCH models applied to log transformed wave energy 
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flux. The table shows that the models with fractional integration were slightly outperformed 

by the ARMA-GARCH model. It is likely that the forecast lead times that we consider are 

not sufficiently long for models with fractional integration to be of benefit. In view of this, in 

the rest of the paper, we do not report results for the fractionally integrated models. 

Table 6 and Fig. 4 compare the density forecast accuracy from the regression-based 

approach, the KDE methods, and the ARMA-GARCH models. Table 6 shows that the 

regression method produced less accurate density forecasts than each of the ARMA-GARCH 

models beyond four hours ahead. Both the UKDE and CKDE methods did not perform well, 

particularly for the shorter lead times. The CKDE approach allows exponential weighting, but 

there is little weight decay as the optimal values of the exponential decay factor 𝜏 were 0.998 

and 1.000 for FINO1a and FINO1b, respectively. We experimented with weight decay in the 

UKDE, but the optimised decay parameter was close to zero, implying very large weight on 

the most recent period, which had little appeal, and so we did not consider the method further. 

The (V)ARMA-(M)GARCH models used three different combinations of data, 

namely wave energy flux (E) alone, wave energy flux and wind speed (E-S), and wave height 

and wave period (H-P). Table 6 shows no great difference in the results of the methods, with 

the H-P models performing slightly better than the others. For both the E-S and H-P 

combinations of data, the MGARCH-DG model, which is a diagonal form of multivariate 

GARCH, delivered slight improvement over standard MGARCH. This is a useful result 

because this simplified model has fewer parameters, and so is easier to estimate. 

To further evaluate the density forecasts, histograms of the probability integral 

transform (PIT) (see Gneiting et al., 2007) are provided in Fig. 5 for FINO1b. The figures 

show results, for lead times of 1, 4, 12 and 24 hours ahead, for the following four methods: 

the regression-based method, E-UKDE (4hour), E-CKDE, and H-P-VARMA-MGARCH-DG. 

The ideal shape of a PIT histogram is a uniform distribution. For the regression-based method, 

E-UKDE (4 hour) and E-CKDE, the PIT histograms are far from uniform. As the lead time 
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increases, the peaks in each tail become larger, indicating that the density forecasts were 

overly wide. The PIT histograms are closer to uniform for H-P-VARMA-MGARCH-DG. 

 

4.3. Point forecasting results for wave energy flux 

Although density forecasting is our primary concern, the evaluation of point 

forecasting is also of interest. Table 7 and Fig. 6 present the root mean squared error (RMSE) 

results, averaged over the FINO1a and FINO1b periods, for point forecasts produced by the 

different methods. The table shows that H-P-VARMA-MGARCH-DG produced the best 

results overall. Indeed, this method was not outperformed by any other method at any lead 

time. The regression method also performed very well. These findings show that modelling 

wave height and wave period, albeit separately, led to better results than directly modelling 

wave energy flux.  

For the longer lead times, the regression method and CKDE were much more 

competitive in terms of point forecasting than they were in Table 6 for density forecasting. 

The UKDE methods did not perform well in terms of point forecasting. 

With regard to the relative performances of the (V)ARMA-(M)GARCH models in 

Table 7, we can make a number of points. Firstly, the bivariate (E-S) models for wave energy 

flux and wind speed seem to offer very little over the univariate (E) models for wave energy 

flux. Secondly, all of the bivariate (H-P) models for wave height and wave period are, overall, 

more accurate than the univariate (E) models for wave energy flux and the bivariate (E-S) 

models for wave energy flux and wind speed. Thirdly, with regard to the (H-P) models for 

wave height and wave period, up to about 8 hours-ahead, there does seem to be benefit in the 

increased complexity of the VARMA-MGARCH-DG model over the much simpler H-P-

VAR model, and the diagonal (DG) version of the VARMA-MGARCH model does seem 

preferable to the more highly parameterised VARMA-MGARCH model.  
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5. EMPIRICAL POST-SAMPLE RESULTS FOR WAVE POWER 

We generated wave power density and point forecasts by converting wave height and 

wave period to wave power using a conversion matrix for the Pelamis P2 device (see 

Henderson, 2006; Retzler, 2006; Yemm et al., 2012), which is an established wave power 

technology. The matrix is presented and used by Reikard (Fig. 1, 2013). The Pelamis P2 

wave energy converter consists of semi-submerged multiple cylindrical sections. As waves 

pass along the length of the device, the differences in buoyancy make the joints of the 

cylinders bend, and this induces hydraulic cylinders to pump high pressure oil through 

hydraulic motors, which drives electrical generators to produce electricity.  

Since our wave period data ranges up to 20 seconds, which is higher than the upper 

limit of the conversion matrix, we extrapolated the conversion matrix using the inpaint_nan 

function by D’Errico (2012), which is based on sparse linear algebra and PDE discretizations, 

to give the conversion function of Fig. 7. It is notable from this figure that wave power from 

the Pelamis P2 device has an upper bound, and that, regardless of the value of wave height, 

wave power is at its highest when wave period is approximately 7.5 seconds, which is 

consistent with the finding of Retzler (Fig. 4, 2006) that the power capture of the device is 

highest when the frequency is around 0.13 Hz. Due to the shape of the nonlinear conversion 

function, the resulting wave power times series for the FINO1b data series in Fig. 8 exhibits 

less extreme spikes than the wave energy flux series of Fig 1.  

Fig. 9 shows that none of the log, square root and Box-Cox transformations are able 

to change the strong skewness in wave power. Consequently, there was no appeal in 

performing direct modelling of wave power using a univariate ARMA-GARCH model, or 

using this variable along with another in a bivariate VARMA-MGARCH model.  

In terms of modeling wave power directly, we applied the kernel density estimation 

methods of Section 3.2 to wave power. In addition, we generated wave power density 

forecasts by using the function of Fig. 7 to convert wave height and wave period density 
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forecasts produced by (a) the regression method of Section 3.1, and (b) the bivariate 

VARMA-MGARCH models of wave height and wave period, discussed in Section 3.3.4.  

For a selection of the methods, Figs. 10 and 11 present the CRPS and RMSE for the 

wave power density and point forecasts, respectively. Both figures show the KDE approaches 

performing relatively poorly. By contrast the results of the CKDE approach are competitive, 

and comparable with the regression approach. Overall, the best CRPS results correspond to 

the H-P-VARMA-MGARCH-DG method, although the regression method is as accurate for 

lead times less than about 8 hours. Fig. 11 shows that the point forecasting results were 

similar for these two methods and the CKDE method. 

 

6. SUMMARY 

In this paper, we evaluated density forecasts of wave energy flux and wave power 

produced by a regression method, UKDE methods, a CKDE approach, and univariate and 

multivariate ARMA-GARCH models. Our results showed the following: 

(i) Although the regression method performed well in terms of point forecasting for the 

longer lead times, overall, the best point and density forecast accuracy were produced by the 

ARMA-GARCH models. We found that the GARCH component was useful only for lead 

times up to about 8 hours ahead. Our results do not support the use of a Student t or skewed t 

distribution instead of a Gaussian distribution. 

(ii) Bivariate ARMA-GARCH modelling of the log transformed wave height and wave 

period produced the best result for both wave energy flux in Section 4 and wave power in 

Section 5. For energy flux, it was interesting that this was preferable to forecasting the energy 

flux directly.   

(iii) Despite evidence of long-memory in wave data, we could not find any clear evidence to 

support the use of fractionally integrated models. 

(iv) Kernel density estimation was not particularly competitive.  
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Fig. 1.  Time series of wind speed, wave height, wave period and wave energy flux from 

the FINO1b dataset. 
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Fig. 2.  Histograms of wind speed, wave height, wave period and wave energy flux, and 

their log, square root and Box-Cox transformed distributions from the FINO1b dataset. 

 

 

 

 
 

Fig. 3.  (a) Correlations between wave energy flux and lags of wind speed up to 24 hours 

from FINO1b. (b) Autocorrelations in wave energy flux of the FINO1b dataset. The 95% 

significance level is indicated as a dotted line. 
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Fig. 4.  CRPS evaluated for wave energy flux forecasts and averaged over FINO1a and 

FINO1b. Lower values are better. 

 

 
Fig 5.  PIT histograms of 1, 4, 12 and 24 hours ahead wave energy flux forecasts for FINO1b 

using (a) Regression, (b) E-UKDE (4 hour), (c) E-CKDE and (d) H-P-VARMA-MGARCH-DG 

(Gaussian) methods.  
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Fig. 6.  For wave energy point forecasts, RMSE averaged over FINO1a and FINO1b. 

 

 

 

 
Fig. 7.  Extended wave power conversation from wave period and wave height based on 

the conversion matrix for the Pelamis P2 device shown by Reikard (2013) and sparse 

linear algebra and PDE discretizations by D'Errico, J. (2012). 

 

 

 

 

 
Fig. 8.  Time series of wave power from the FINO1b dataset. 
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Fig. 9.  Histograms of wave power, and its log, square root and Box-Cox transformed 

distributions from the FINO1b dataset. 

 

 
Fig. 10.  CRPS evaluated for wave power forecasts and averaged over FINO1a and 

FINO1b. Lower values are better. 

 

 

 
Fig. 11.  RMSE evaluated for wave power forecasts and averaged over FINO1a and 

FINO1b. 
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Table 1.  Skewness and kurtosis for wind speed, wave height, wave period and wave 

energy flux, and log, square root and Box-Cox transformations of each variable. 

Statistics calculated for the in-sample period of FINO1b. In each row, value closest to 

Gaussian (skewness=0, kurtosis=3) is in bold. 

 

  Original Log Square Root Box-Cox 

Wind speed 
    

    skewness 0.48 -0.85 -0.11 -0.05 (λ= 0.54) 

    kurtosis 2.94 3.89 2.58 2.56 (λ= 0.54) 

Wave height 
    

    skewness 1.07 -0.32 0.35 -0.02 (λ= 0.22) 

    kurtosis 4.76 2.65 2.79 2.52 (λ= 0.22) 

Wave period 
    

    skewness 1.27 0.15 0.70 0.00 (λ=-0.14) 

    kurtosis 5.51 3.32 3.95 3.30 (λ=-0.14) 

Wave energy flux 
    

    skewness 5.11 -0.25 1.52 -0.01 (λ= 0.07) 

    kurtosis 49.46 2.79 7.16 2.68 (λ= 0.07) 

 
 

 

 

 

Table 2.  Lags, and terms in the diurnal expressions (10) and (11), selected by the SBC 

criterion for (V)ARMA-(M)GARCH models fitted to the in-sample period of FINO1b.  

 

Lags AR MA 
Diurnal 

in mean 
ARCH GARCH 

Diurnal in 

volatility 

Univariate models for log wave energy flux 

    E-AR  [1,2,3,4] no no no no no 

    E-ARMA-GARCH  [1,2,3,4] [1,2,24] no [1,2,24] [1,24] [2] 

    E-ARFIMA-GARCH  [1,2,3,24] no no [1,2,3] [1,24] [2,4,8] 

    E-ARFIMA-FIGARCH  [1,2] [1,2,24] no no [1] [2,4,8] 

Bivariate models for log wave energy flux and log wind speed 

    E-S-VAR [1,2,3,4] no no no no no 

    E-S-VARMA-MGARCH  [1,2,3,4] no [2,4,8] [1,2,3,24] [1] [2,4,6] 

    E-S-VARMA-MGARCH-UP  [1,2,3,24] [1,2] no [1] [1] [2] 

    E-S-VARMA-MGARCH-DG [1,2,3,4] [1,2] [2,4] [1,24] [1] no 

Bivariate models for log wave height and log wave period 

    H-P-VAR  [1,2,3,4] no no no no no 

    H-P-VARMA-MGARCH  [1] [1,2,3,4,5,6] [2,4,6] [1] [1] no 

    H-P-VARMA-MGARCH-DG  [1,2,3,4] [1,2,24] [2,4,6] [1,2] [1,2,3] [2] 
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Table 3.  Coefficients of the fractional integration models fitted to the log-transformed 

wave energy flux for the in-sample period of FINO1a and FINO1b. 

 

  ARFIMA 𝑑1 FIGARCH 𝑑2 

FINO1a 
  

    E-ARFIMA-GARCH 0.62 
 

    E-ARFIMA-FIGARCH 0.62 0.17 

FINO1b 
  

    E-ARFIMA-GARCH 0.92 
 

    E-ARFIMA-FIGARCH 0.92 0.58 

 

 

 

 

 

Table 4.  Evaluation of transformation methods in terms of post-sample wave energy 

flux density forecast accuracy using CRPS (in kW/m) averaged for FINO1a and 

FINO1b.  

 

Lead Time (hours): 1 2 3-4 5-6 7-8 9-12 13-18 19-24 1-24 

ARMA-GARCH type with Gaussian for wave energy flux   

No transformation 0.9 1.4 2.1 2.8 3.4 4.1 5.1 5.8 4.2 

Log transformation 0.9 1.3 1.9 2.5 3.1 3.6 4.4 5.1 3.7 

Square root transformation 0.9 1.3 1.9 2.6 3.2 3.8 4.8 5.7 4.0 

Box-Cox transformation 0.9 1.3 1.9 2.5 3.1 3.6 4.4 5.1 3.7 

NOTE:  Smaller values are better. The best performing method at each horizon is in bold. 

 

 

 

 

 

Table 5.  Evaluation of the fractional integration models in terms of post-sample wave 

energy flux density forecast accuracy using CRPS (in kW/m) averaged for FINO1a and 

FINO1b.  

 

Lead Time (hours): 1 2 3-4 5-6 7-8 9-12 13-18 19-24 1-24 

Univariate models for log wave energy flux   

E-ARMA-GARCH 0.9 1.3 1.9 2.5 3.1 3.6 4.4 5.1 3.7 

E-ARFIMA-GARCH 0.9 1.3 1.9 2.6 3.1 3.7 4.5 5.3 3.8 

E-ARFIMA-FIGARCH 0.9 1.3 1.9 2.6 3.2 3.8 4.6 5.4 3.9 

NOTE:  Smaller values are better. The best performing method at each horizon is in bold. 
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Table 6.  Evaluation of post-sample wave energy flux density forecast accuracy using 

CRPS (in kW/m) averaged for FINO1a and FINO1b.  
 

Lead Time (hours): 1 2 3-4 5-6 7-8 9-12 13-18 19-24 1-24 

Regression 0.9 1.3 1.9 2.7 3.3 4.1 5.1 6.0 4.2 

Kernel density estimation for log wave energy flux 

E-UKDE (4 hour) 3.1 3.5 3.9 4.5 5.0 5.6 6.5 7.4 5.8 

E-UKDE (24 hour) 5.9 6.0 6.2 6.3 6.5 6.7 7.0 7.2 6.7 

E-CKDE 3.2 3.4 3.8 4.2 4.7 5.2 5.9 6.7 5.3 

Univariate models for log wave energy flux 

E-AR  0.9 1.3 1.9 2.6 3.1 3.6 4.3 5.0 3.7 

E-ARMA-GARCH  0.9 1.3 1.9 2.5 3.1 3.6 4.4 5.1 3.7 

Bivariate models for log wave energy flux and log wind speed 

E-S-VAR 0.9 1.3 1.9 2.5 3.0 3.6 4.3 4.9 3.6 

E-S-VARMA-MGARCH  0.8 1.3 1.8 2.5 3.0 3.6 4.4 5.1 3.7 

E-S-VARMA-MGARCH-DG 0.8 1.2 1.8 2.4 3.0 3.6 4.3 5.0 3.6 

E-S-VARMA-MGARCH-UP  0.9 1.3 1.9 2.5 3.0 3.6 4.3 5.0 3.7 

Bivariate models for log wave height and log wave period 

H-P-VAR  0.9 1.3 1.9 2.4 2.9 3.5 4.2 4.9 3.6 

H-P-VARMA-MGARCH  0.8 1.3 1.8 2.4 2.9 3.5 4.3 4.9 3.6 

H-P-VARMA-MGARCH-DG  0.8 1.2 1.8 2.4 2.9 3.5 4.2 4.8 3.5 

NOTE:  Smaller values are better. The best performing method at each horizon is in bold. 

 

 

 

 

Table 7.  Evaluation of post-sample wave energy flux point forecast accuracy using 

RMSE (in kW/m) averaged for FINO1a and FINO1b. 
 

Lead Time (hours): 1 2 3-4 5-6 7-8 9-12 13-18 19-24 1-24 

Regression 2.6 4.3 6.2 7.9 8.9 9.9 11.0 12.0 9.6 

Kernel density estimation for log wave energy flux 

E-UKDE (4 hour) 4.9 6.2 7.6 8.9 9.9 10.9 12.4 13.8 11.0 

E-UKDE (24 hour) 11.8 12.0 12.2 12.5 12.8 13.1 13.6 14.0 13.2 

E-CKDE 4.3 5.3 6.6 7.8 8.7 9.6 10.8 12.1 9.6 

Univariate models for log wave energy flux 

E-AR  2.8 4.3 6.2 7.8 8.9 9.9 11.3 12.6 9.8 

E-ARMA-GARCH  2.7 4.3 6.1 7.8 8.9 9.9 11.2 12.5 9.8 

Bivariate models for log wave energy flux and log wind speed 

E-S-VAR 2.7 4.2 6.1 7.7 8.9 9.9 11.1 12.4 9.7 

E-S-VARMA-MGARCH  2.7 4.2 6.0 7.7 9.0 10.2 11.9 14.0 10.3 

E-S-VARMA-MGARCH-DG 2.6 4.0 5.9 7.6 8.8 9.9 11.4 13.1 9.9 

E-S-VARMA-MGARCH-UP  2.7 4.2 6.1 7.8 8.9 9.9 11.3 12.7 9.8 

Bivariate models for log wave height and log wave period 

H-P-VAR  2.7 4.1 5.8 7.4 8.5 9.4 10.6 11.8 9.3 

H-P-VARMA-MGARCH  2.6 4.1 5.9 7.5 8.6 9.7 11.1 12.3 9.6 

H-P-VARMA-MGARCH-DG  2.5 3.9 5.7 7.2 8.4 9.4 10.6 11.8 9.2 

NOTE:  Smaller values are better. The best performing method at each horizon is in bold. 


