
        

Citation for published version:
Chen, Z, Zhou, B, Zhang, L, Li, C, Zang, J, Zheng, X, Xu, J & Zhang, W 2018, 'Experimental and numerical
study on a novel dual-resonance wave energy converter with a built-in power take-off system', Energy, vol. 165,
no. Part A, pp. 1008-1020. https://doi.org/10.1016/j.energy.2018.09.094

DOI:
10.1016/j.energy.2018.09.094

Publication date:
2018

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. Mar. 2023

https://doi.org/10.1016/j.energy.2018.09.094
https://doi.org/10.1016/j.energy.2018.09.094
https://researchportal.bath.ac.uk/en/publications/2c3990f1-754a-4173-8d92-9bf800e31002


 

 1 / 28 

 

Experimental and numerical study on a novel dual-resonance wave energy converter with a built-1 

in power take-off system 2 

Zhongfei Chena, Binzhen Zhoua,b*, Liang Zhanga,*, Can Lia, Jun Zangc, Xiongbo Zhengd, Jianan Xue, Wanchao Zhangf 3 

aCollege of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China 4 
bKey Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 5 

Guangzhou 510640,, China 6 
cDepartment of Architecture and Civil Engineering, University of Bath, Bath, BA2 7AY, UK 7 

dCollege of Science, Harbin Engineering University, Harbin 150001 China 8 
eCollege of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001 China 9 

fSchool of naval structure and ocean engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China 10 

Abstract 11 

A new concept of point-absorber wave energy converter (WEC) with a waterproof outer-floater and 12 

a built-in power take-off (BI-PTO) mechanism, named Dual-Resonance WEC (DR-WEC), is put forward 13 

and investigated by experiments and numerical simulations. The BI-PTO mechanism includes spring, 14 

sliding-mass and damping systems, where the spring system is the most complicated and should be 15 

designed specially. A 1:10 scale model is designed for the experiments. The mechanical performance of 16 

the BI-PTO system is investigated by a bench test. The results have shown that the design is feasible, and 17 

the added inertia effect of the BI-PTO has a negative influence on the power output. The average 18 

mechanical efficiency of the BI-PTO is 65.8% with maximum up to 80.0%. The motion and power 19 

responses of the DR-WEC are studied by a wave tank experiment and a linear numerical model with 20 

corrected mechanical added mass and viscosity. The viscous added mass and damping correction 21 

coefficients are obtained by a free decay test. The good agreement between the experimental 22 

measurements and numerical simulations has indicated that the present numerical model with corrections 23 

is of enough accuracy and the effects of mooring system and other degree of freedoms on the heave motion 24 

and power responses can be ignored. 25 

Key words: Wave energy converter; Dual-resonance; Built-in power take-off system; Viscous 26 

correction; Motion response; Capture width ratio 27 
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1. Introduction 1 

Wave energy is one of ocean renewable energy with huge reserves. Approximately, it could meet the 2 

electricity requirement of most countries that have enough coastline, if it is extensively exploited [1]. 3 

Generally, wave energy converter (WEC) techniques can be classified into attenuator, terminator, and 4 

point-absorber (PA) [2]. Extensive reviews can be found in [2-5]. A point-absorber WEC is convenient for 5 

array arrangement because of its small dimension relative to the encounter wavelength, and this type is 6 

very efficient in terms of wave-power absorption per unit volume [6]. These features make it perfectly 7 

suitable for the ocean areas with relatively low wave energy density such as the Chinese adjacent seas [7]. 8 

Even though, in these areas, the wave energy may not be sufficient enough to steadily supply the power 9 

for main-land grids, it could be an effective supplement for microgrids of islands, oil platforms, or other 10 

offshore marine structures [8]. 11 

There is one type of configuration of WEC that all power take-off (PTO) systems are built inside a 12 

water-proof outer-floater, such as, SEAREV (France) [9], Penguin (UK) [10], GyroPTO (Denmark) [11], 13 

and PS Frog Mk5 (UK) [12], etc. The wave energy is absorbed by the outer-floater and converted into 14 

mechanical energy, and then the PTO converts it to a more usable type of energy (e.g., electrical energy). 15 

Compared with many existing or proposed concepts that have moving mechanical parts immersed in the 16 

water, this kind of configuration could increase the reliability, reduce the difficulty of maintenance, and is 17 

good for the survivability in the harsh environments. The cost of a traditional point-absorber WEC is 18 

sensitive to the water depth, because it needs a fixed structure on sea-bottom or on shore as the reaction 19 

for the PTO. However, for a point-absorber WEC with a built-in PTO (BI-PTO), the PTO is built inside 20 

the outer-floater. Therefore, it is more cost-effective in term of water depth, because only a slacking 21 

mooring system is in need to overcome drift forces. 22 

For a point-absorber WEC with a BI-PTO, the hydrodynamic properties of the outer-floater are 23 

relatively easy to compute, while the key issue is the design of a feasible BI-PTO system. The PTO consists 24 

of an inertial reaction body to form a relative motion with respect to the outer-floater. Generally, the 25 

internal reaction body has three types, namely pendulum (vertical or horizontal axis), gyroscope, and 26 

sliding-mass (see examples in [9-12]). The pendulum and gyroscope can work in pitch or roll only, and 27 

the gyroscope needs a high rotational speed which may be bad for the fatigue life of the system. The 28 
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sliding-mass is working in the translational motion and the mechanical structure is relatively simple to 1 

design. The heave motion is more favorable for a point-absorber WEC because an axisymmetric out-2 

floater can be applied to reduce the sensitiveness of wave directions. Therefore, the DR-WEC works in 3 

heave and adopts the sliding-mass as the internal reaction body. 4 

The installing and testing of a WEC is difficult and expensive in the real marine environment, so that 5 

a device should be simulated and tested in small-scale first [13]. Ning et al. [14] tested a pile-restrained 6 

WEC-type floating breakwater, and the wave energy capture ability and the breakwater ability were 7 

studied. A coaxial-cylinder WEC was studied experimentally and numerically by Son et al. [15]. Liu et al. 8 

[16] studied wave overtopping behaviors of a circular ramp overtopping WEC experimentally. An 9 

experiment of a 1:30 scale WaveCat was performed by Allen et al. [17], which formed the basis for future 10 

development and optimization. The key issue of a point-absorber WEC with a BI-PTO is the design of the 11 

PTO mechanism which is required to be tested and validated on the bench (which is normally a dry-test 12 

facility) first before testing of the whole system in the water, due to the complexity and the high cost of a 13 

PTO system [13]. The specialized test benches are able to simulate the wave excited motion of the outer-14 

floater, so that the feasibility, reliability, and mechanical performance of PTOs can be validated and tested. 15 

Many researchers had conducted dry bench tests for PTOs. Dellicolli et al. [18] tested a permanent-magnet 16 

synchronous tubular linear generator for PA-WECs. The design and analysis were reported based on the 17 

experimental results on a rotating simulation test bench. Lasa et al. [19] designed and tested a hydraulic 18 

PTO on the bench to validate the dynamic performance. The experimental results were used for the 19 

improvement of an in-house numerical simulation model. Antolín-Urbaneja et al. [20] studied a hydraulic 20 

PTO device which consists of a double-acting hydraulic cylinder. The test results on the bench showed 21 

good correlations to that of the simulations. 22 

In the present paper, a novel DR-WEC working in heave motion with a BI-PTO system is put forward. 23 

A sliding-mass is placed inside the outer floater and the relative heave motion between them makes the 24 

PTO system capture energy. The BI-PTO system composed of spring, sliding-mass, and damping systems 25 

is specially designed for the DR-WEC. A 1:10 scale model is constructed. A special bench test was firstly 26 

carried out to study the feasibility of the design and the mechanical performance of the BI-PTO system. 27 

Furthermore, the motion and power responses of the DR-WEC in regular waves are investigated by the 28 

experiment conducted in the wave tank at Harbin Engineering University. Meanwhile, a linear numerical 29 
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model considering the mechanical added mass and viscous corrections is developed to study the 1 

hydrodynamic performance of the DR-WEC only in heave motion. The comparison with the experimental 2 

results is made to show the accuracy of the numerical model and the effect of mooring system and other 3 

degree of freedoms. 4 

2. DR-WEC concept 5 

The DR-WEC concept is demonstrated in Fig.1. There are two sets of mass-spring-damping in the 6 

DR-WEC. The first is the mass of the outer-floater, spring of the hydrostatic restoring effect, and 7 

hydrodynamic damping of the floater. The second is from the PTO mechanism which is inside the outer-8 

floater. Namely, the internal spring, the sliding-mass, and the damping of the generator. Because of the 9 

existence of these two sets of mass-spring-damping, the system has two undamped resonance frequencies. 10 

Therefore, we name this new WEC concept as the DR-WEC. The DR stands for the “Dual Resonance”. 11 

By manipulating the parameters of the internal one can change these resonance frequencies. This gives a 12 

possibility that we can match the one of the resonance frequencies to the wave encounter frequency to 13 

enhance the wave power absorbing ability. 14 

 15 

Fig.1. The general schematics of the DR-WEC. 16 

The outer-floater is axisymmetric to reduce the sensibility to wave directions. The conical bottom is 17 

to diminish the viscous dissipation, based on the research results in [21]. The radius and draft are a and d, 18 

respectively. The water depth is h. The hydrodynamic performance of the outer-floater can be evaluated 19 

by model tests in the wave tank with the consideration of the fluid viscosity. 20 
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3. Model design 1 

3.1. Outer-floater 2 

The outer-floater is made of the 6061 high tensile aluminum alloy. The thickness is 3.0mm. The upper 3 

part is a vertical cylinder and the lower part is a conical bottom, which is designed to reduce the viscous 4 

dissipation. At the tip of the conical bottom, a steel ring is attached to link the mooring system. The detailed 5 

geometry parameters can be found in Fig.2.  6 

   7 
(a)                    (b) 8 

Fig.2. Schematic (a) and photograph (b) of the floater of the DR-WEC [unit: mm]. 9 

3.2. BI-PTO 10 

This section describes the design and assembly of the BI-PTO mechanisms. There are three parts in 11 

the BI-PTO, i.e., the spring system, mass system, and damping system, among which the spring system is 12 

the most complex part to design, while the mass and damping systems are relatively easier. 13 

3.2.1. Spring system 14 

The spring system has two major functions: One is achieving the variable spring coefficient, and the 15 

second is neutralizing the gravity force of the sliding-mass. The design sketch of the spring system is 16 

illustrated in Fig.3. It consists of a fixed spring (tension spring), wire ropes, and a stepped pulley. The 17 

radius ratio r1/r2 of the stepped pulley is set as 1/3.6, and the different spring coefficient Km is achieved 18 

by changing the fixed spring in the present experiment. In the real application, a possible solution is using 19 

an automatic gearbox which can provide different gear ratio (namely, different r1/r2) to vary Km 20 

automatically. 21 

Submerged part 
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 1 

(a) equilibrium                        (b) lowest                        (c) highest 2 

Fig.3. The design sketch of the spring system and the three special positions of the sliding-mass during operation. 3 

When the sliding-mass locates at the equilibrium position (Fig.3(a)) and the lowest position (Fig.3(b)), 4 

the moment equilibrium equations are 5 
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  (1) 6 

where K0 is the spring constant of the fixed spring. xk,m is the elongation of the fixed spring to neutralize 7 

the gravity of the sliding-mass. xr,max and xk,max are the maximum positions of the sliding-mass and the 8 

corresponding fixed spring elongation, respectively. Combining Eq.(1) and the relationship 9 

r1xr,max=r2xk,max, the relationship between the Km and K0 can be derived by 10 
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  (2) 11 

The stepped pulley is demonstrated in Fig.4. There are spiral grooves on the big and small pulleys to 12 

guide the wire ropes which are winded on them. The green pulley is aligned with the small pulley to lead 13 

the wire rope on the small pulley to the spring. The wire rope on the big pulley is linked with the sliding-14 

mass. There are four bearings for one such stepped pulley system, and all of them are chosen as ceramic 15 

bearings. Compared with normal bearings made by steel, the friction coefficients of the ceramic bearings 16 

are very small. By supplementary experiments, the equivalent friction coefficients of the whole stepped 17 

pulley system with steel bearings and ceramic bearings are 0.06 and 0.02, respectively. The geometrical 18 

parameters of the different components of the stepped pulley system are shown in Table 1. 19 
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 1 

Fig.4. The rendering of the stepped pulley. 2 

Table 1 Diameters of the components of the stepped pulley system [mm]. 3 

Big pulley 180.0 

Small pulley 50.0 

Leading sheave 50.0 

Shafts 20.0 

Wire ropes 3.0 

The spring system should satisfy three requirements. First, the fixed spring should be in tensile state 4 

all the time, because the fixed stepped pulley system cannot be compressed. When the sliding-mass is at 5 

the highest position (Fig.3(c)), the stretch of the fixed spring is the smallest. In other words, if the fixed 6 

spring has non-zero stretch when the sliding-mass is at the highest position, the fixed spring can be in 7 

tensile state all the time during the operation. Second, the allowable elongation ΔLa of the fixed spring 8 

should be large enough when the sliding-mass is at the lowest position (Fig.3(b)). Third, the original length 9 

of the fixed spring L0 should be small enough due to the limited vertical space of the waterproof outer-10 

floater of the DR-WEC. The allowable vertical space inside the outer-floater is set to two times of the 11 

allowable maximum amplitude of the relative motion, i.e. 2xr,max=0.8m. These three requirements are 12 

quantitatively shown in the following equation. 13 
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  (3) 14 

If there are N sets of stepped pulley spring system that are installed in parallel, combining Eq.(1) and 15 

(2), the relation between the Km and K0 as well as the limitations in Eq.(3) can be concluded as 16 

Big pulley 

Small pulley 

leading sheave 

Ceramic bearings 
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  (4) 1 

The non-dimensional spring ratio is defined as 
3/ms K K , where K3=ρgπa2 is the hydrostatic restoring 2 

coefficient of the outer-floater, ρ is the water density and g is the gravitational acceleration. Accordingly, 3 

the designed s  and corresponding Km and K0 are illustrated in Table 2. 4 

Table 2 The spring ratio, equivalent spring constants of the spring system, and the spring constants of the fixed 5 

spring. 6 

No. s  Km [N/m] K0 [N/m] 

1 0.29 555.8 3601.8 

2 0.39 747.5 4843.9 

3.2.2. Sliding-mass system 7 

For the internal sliding-mass, shown in Fig.5, we use the distributed metal disks (0.45kg each) which 8 

are made by lead to vary the mass. The lead disks are placed on a metal base that weighted 22.0kg. The 9 

maximum mass of the sliding-mass is 58.0kg with 80 lead disks. The non-dimensional mass ratio is 10 

defined as /m m M , where m is the mass of the sliding-mass and M is the mass of the whole DR-WEC 11 

system. Thus, the varying range of the mass ratio m  is from 0.15 to 0.40. The sliding-mass is able to 12 

slide on two vertical axes by linear bearings. The extreme stroke of the sliding-mass is 0.8m which is 13 

confined by the vertical space inside the outer-floater, i.e., the maximum relative motion amplitude xr,max 14 

equals to 0.4m. On the top surface of the base, there are two linkers which are used for the connection 15 

with the spring system. Another two linkers used for the damping system locate at the center of the top 16 

and bottom surfaces of the base, respectively. 17 

 18 
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 1 

Fig.5. The rendering of the sliding-mass. 2 

3.2.3. Damping system 3 

The damping of a generator is relatively easy to manipulate. Son et al. [15] changed the damping of 4 

a permanent magnet linear generator by varying the air gap or the load resistance. The damping of a 5 

hydraulic system is able to be controlled by throttle valves [22]. Furthermore, like the spring system, we 6 

can also use the gear box (installed on the shaft of the generator) to alter the damping. 7 

In a full-scale DR-WEC, a permanent magnet synchronous generator (PMSG) will be used to convert 8 

the relative motion between the internal sliding-mass and the outer-floater into electricity. In this study, as 9 

shown in Fig.6, the damping of the generator is simulated by a permanent electromagnetic brake which is 10 

similar to the one used in [14]. The non-dimensional damping ratio is defined as d =Cg/λ33res, where λ33res 11 

is the hydrodynamic damping of the outer-floater at its resonance frequency. The brake can provide 12 

variable damping (16.8kg/s to 43.2kg/s, which corresponds to d =0.8 to 2.1) for the sliding-mass by the 13 

controller. The damping system is connected to the sliding-mass by wire ropes that are winded on the 14 

double-groove pulley. Because the movement of the sliding-mass is reciprocating, the pulley has to consist 15 

of two grooves to wind the wire ropes in order to prevent overlapping. A 1:1 orthogonal gear box is 16 

connected between the pulley and the brake to save the space. 17 

 18 

 19 

Fig.6. The rendering of the damping system. 20 

Distribute lead disks 

Connect to the 
spring system 

Linear bearings Connect to the damping 
system 

Base of the sliding-mass 
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3.2.4. Assembly 1 

The BI-PTO is installed inside this outer-floater. The spring, sliding-mass, and damping system of 2 

the built-in BI-PTO are assembled as illustrated in Fig.7. The main frame consists of upper deck, lower 3 

deck, and two circular reinforce ribs which are welded onto the inner surface of the outer-floater. The 4 

upper deck (or lower deck) is connected with the reinforce ribs by screws. The decks, reinforce ribs and 5 

outer-floater form a rigid frame structure. All components are connected to these two decks. Therefore, 6 

the PTO loads first act on these decks, then transfer to the reinforce ribs and to the outer-floater. 7 

                               8 
(a) Spring & mass               (b) Whole PTO system              (c) Damping & mass 9 

Fig.7. The assembly of the BI-PTO system. 10 

4. Methodology 11 

4.1. Motion and power response on the bench 12 

During the motion of the sliding-mass, other parts like the pulleys, wire ropes, shafts, etc. are also 13 

moving. Therefore, an added term fμ,mech= μmech 3rx  should be considered in the motion equation Eq.(5) 14 

to include the inertia effect of moving parts (except the sliding-mass). By Newton’s second law, the motion 15 

equation of the sliding-mass becomes 16 

 3 , ,m C total K mechmx f f f     (5) 17 

where fC,total= Ctotal rx  is the damping force of the whole PTO system. In reality, the friction force should 18 

be Coulomb friction. However, to conduct the linear frequency domain analysis in our paper, we use this 19 

linearized term to describe it. The linearized total damping Ctotal consists of the linearized mechanical 20 

Stepped pulley 
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Wire rope 

Lower deck 

Upper pulley 

Damping system 
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friction damping Cmech and the linearized electromagnet damping Cg, and Ctotal can be calculated by 1 

Eq.(13). fK= Kmxr is the spring force from the spring system. xr, rx  and
 rx

 
are the relative displacement, 2 

velocity and acceleration between the sliding-mass and the outer-floater, respectively. x3m=xr+x3f, 3 

3 3m r fx x x   and
 3 3m r fx x x    are the displacement, velocity and acceleration of the sliding-mass, 4 

respectively. x3f, 3 fx   and
 3 fx

  
are the displacement, velocity and acceleration of the outer-floater, 5 

respectively.  6 

The resonance period Tres of the BI-PTO has nothing to do with the outer-floater motion. By fixing 7 

the outer-floater and ignoring the influence of damping, Eq.(5) can be converted into the homogeneous 8 

motion equation 9 

   0mech r m rm x K x     (6) 10 

The resonance period Tres of the sliding-mass can be derived as 11 

 2 mech
res

m

m
T

k





   (7) 12 

Clearly, the existence of μmech increases the resonance period Tres. On the other hand, we can calculate 13 

μmech by Tres which can be achieved from the response curves (e.g., Fig.13) by experiments. 14 

 
2

2

4
mech

res m

m
T K


    (8) 15 

As illustrated from Eq.(8), μmech is associated with the sliding-mass and spring. By setting Cg=0.0kg/s, 16 

μmech is shown in Table 3 for different PTO parameters. The mean μmech is 4.79kg. By 17 

nondimensionalization as /mech mech M   , 
mech   equals to 0.033. The mechanical added mass is 18 

caused by the moving parts (except the sliding-mass), and these parts are the same for different cases. 19 

Therefore, the differences of μmech are small for different cases (Table 3). 20 

Table 3 The mechanical added mass for different PTO parameters. 21 

m [kg] Km [N/m] Cg [kg/s] Tres [s] μmech [kg] 

35.5 555.8 0.0 1.69 4.91 

44.5 555.8 0.0 1.78 4.75 

35.0 747.5 0.0 1.42 4.71 

The mechanical efficiency η is defined as the ratio of the absorbed power Pm by the damping system 22 
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and the total consumed power Ptotal by the whole PTO system, i.e. η=Pm /Ptotal100%. 1 

Under the harmonic motion hypothesis, the power absorbed by the damping system is 2 

 
221

ˆ
2

m g rP C x  (9) 3 

The power consumed by the whole system is 4 

 
221

ˆ
2

total total rP C x   (10) 5 

where ˆ
rx  is the amplitude of the relative motion. Accordingly, the mechanical efficiency can be written 6 

in the form of 7 

 100%
g

total

C

C
     (11) 8 

Clearly, the efficiency is equal to the ratio of Cg and Ctotal. Cg is rated by a supplementary test in advance, 9 

while Ctotal is needed to be calculated by the relative motion xr and floater motion xf. 10 

Through some rearrangement, the motion equation Eq.(5) can be expressed as  11 

   3mech r total r m r fm x C x K x mx       (12) 12 

Eq.(12) reveals that the motivation to move the sliding-mass is the inertia force 3 fmx , which determines 13 

the amount of energy transported from the outer-floater into the sliding-mass. The motion provided by the 14 

linear motor is harmonic    3 3
ˆRe i t

f fx t x e . Put it into Eq.(12), the total damping Ctotal can be derived 15 

as 16 
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  (13) 17 

To justify the correctness of Eq.(13), we put the results of Ctotal back to the motion equation and the 18 

numerical motion results can be found in Fig.8. It is illustrated that the numerical results match well with 19 

the experimental measurements. Moreover, we add the detailed derivation procedure in Appendix A. 20 

4.2. Motion and power responses in waves 21 

Bachynski et al. [23] argued that a slack mooring system only affected the pitch and surge motions 22 
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at a very low frequency and had little influence on the heave motion. Thus, the effect of the mooring 1 

system is neglected in the present numerical analysis. The motion equation of the DR-WEC in heave under 2 

linear waves is  3 
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where fe3 is the wave excitation force in heave and it equals to Re{AwX3e
-iωt} for linear regular waves. Aw 5 

is the wave amplitude, and X3 is the wave excitation force per unit wave amplitude. fr=−μvis 3 fx −λvis 3 fx  is 6 

the wave radiation force. fh=−K3x3f is the hydrostatic restoring force. Eq.(14) can also be written in the 7 

matrix form 8 
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 (15) 9 

The solution of Eq.(15) in the frequency domain can be represented by the RAOs of the floater 10 

motion RAOf and relative motion RAOr. 11 
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where 3
ˆ

fx is the amplitude of the floater motion. 13 

The capture width ratio is defined as  14 
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where PM is the absorbed power by the WEC (same as Eq.(9)) and PW=ρg
2

wA Vg/2 is the wave-power 16 

transportation per unit wave crest. Vg is the wave group velocity (Eq.(18)). η is mechanical efficiency of 17 

the BI-PTO system, as defined in Eq.(11). 18 
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where k0 is the wave number. 1 

Due to the existence of μmech, the inertia forces of both outer-floater (M m+μvis+μmech) fx and internal 2 

sliding-mass (m+μmech) mx  increase. Moreover, two coupled terms μmech fx  and μmech mx  are shown 3 

up. That is, the inertia forces are not independent, but are coupled due to the inertia effect of the moving 4 

parts (except the sliding-mass) in the BI-PTO system. As illustrated in Fig.8, without the consideration of 5 

μmech, the motion response deviates from the experimental data obviously (taken m=35.5kg, Km=555.8N/m, 6 

Cg=0.0kg/s as an example). After adopting Eq.(14) to consider the μmech, the theoretical results match the 7 

experimental data very well, especially the amplitude and the location of the response peak (Fig.8). 8 

Practically, μmech is inevitable due to the existence of other moving parts in the BI-PTO mechanism. 9 

Fig.9 reveals that as μmech increases, the amplitudes of the motion and power responses at the lower 10 

frequency peak decrease, while at the higher frequency peak increase. The frequencies of both the lower 11 

and higher peaks become smaller. Normally, the motion and power response at lower frequency peak are 12 

larger than that at the higher frequency peak, as illustrated in Fig.9 and Fig.10. In addition, waves with 13 

lower frequency tend to have more energy [7]. Consequently, the effect of μmech on the motion and power 14 

response of the DR-WEC is negative. In practice, μmech should be as small as possible. 15 

 16 

Fig.8. The motion response comparison with and without the mechanical added mass when m=35.5kg, 17 

Km=555.8N/m, Cg=0.0kg/s. 18 
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 1 

(a) Relative motion RAO           (b) Floater motion RAO             (c) Capture width ratio 2 

Fig.9. Motion and power response for different mechanical added mass with m =0.30, s =0.29, and d =1.0. 3 

The examples of the motion and power responses of the DR-WEC are shown in Fig.10 for different 4 

BI-PTO parameters. The dimensions of the example outer-floater are diameter 2a=0.5m, draft d=0.75m. 5 

The water depth is h=3.5m. The non-dimensional wave frequency is defined as /d g   . As 6 

mentioned in Section 2, the DR-WEC has two sets of mass-spring-damping system. The sliding-mass and 7 

the outer-floater together form the “dual resonance” system. The system has two distinct frequencies. 8 

Because both sliding-mass and the outer-floater are part of one system, so the motion responses of sliding-9 

mass and the outer-floater have the same resonance frequencies. Moreover, as illustrated in Fig.10, one of 10 

these two resonance frequencies is smaller than the resonance frequency of the outer-floater ω3, while the 11 

other is larger than that. With the PTO parameters varying, the response characteristics (both the resonance 12 

frequencies and the response amplitudes) of the DR-WEC are changing. Namely, the DR-WEC has the 13 

potential to adopt itself to different wave environment by manipulating the PTO parameters for better 14 

wave energy absorption. 15 

 16 

(a) Relative motion RAO           (b) Floater motion RAO             (c) Capture width ratio 17 

Fig.10. Examples of the motion and power responses of the DR-WEC, with 2a=0.5m, d=0.75m, and h=3.5m. 18 
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5. Experiments 1 

5.1. Experimental facilities 2 

5.1.1. Test bench 3 

To validate the performance and dynamic characteristics, the BI-PTO is needed to be tested on a 4 

special designed bench (Fig.11.) which is aimed to simulate the wave excited motion of the outer-floater. 5 

The main frame is made up of square steel. Four pulleys were set at the four corners. Then a closed loop 6 

was established by wire ropes with the test model, balance weight, and linear motor. The BI-PTO shown 7 

in Fig.7 was installed inside the outer-floater which mounted to the retaining frame. The balance weight 8 

at the right side was to neutralize the gravity force of the test model and the retaining frame at the left side. 9 

A linear motor was at the bottom of the main frame to provide linear reciprocating motion (harmonic 10 

motion). The ranges of the motion amplitude and period were 0.0-100.0mm and 0.8-2.5s, which 11 

corresponded to the wave making ability of the wave maker in the wave tank of Harbin Engineering 12 

University. 13 

 14 

 15 
Fig.11. The test bench with test model in position. 16 

5.1.2. Wave tank 17 

The wet test of the DR-WEC was conducted in a wave tank at Harbin Engineering University, as 18 

shown in Fig.12. The length, width, and depth of the wave tank is 108.0m, 7.0m, and 3.5m, respectively. 19 

A flap-type wave maker with eight panels was installed at one end of the tank, which can generate regular 20 

waves with wave periods in the range of 0.4s to 4.0s and the maximum wave height 0.4m. A wave-21 
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absorbing beach was located at the other end to reduce the wave reflection. The DR-WEC was put at the 1 

test location, which was 35.0m away from the wave-maker and the transverse center of wave tank. 2 

 3 

Fig.12. Wave tank, trailer, and wave maker at Harbin Engineering University. 4 

5.2. Bench test for the BI-PTO 5 

The motion of the outer-floater x3f(t) and the relative motion xr(t) were measured by two linear 6 

potentiometers which were mounted on the main frame and the upper deck inside the floater, respectively. 7 

The rotating speed n(t) and torque Tq(t) of the electronic brake could be read on the controller, so that the 8 

instantaneous power on the brake shaft could be calculated as Pm(t)=n(t)Tq(t). 9 

5.2.1. Response characteristics 10 

The examples of the time histories of x3f (t), xr(t) and instantaneous power Pm(t) are shown in Fig.13 11 

(a) and (b) (taken m=44.5kg, Km=555.8N/m, Cg=27.3kg/s, and period T=1.8s as an example). The input 12 

xf(t) is harmonic, while the output xr(t) and Pm(t) need some time to grow from zero to the stable state. In 13 

the following discussions, these time-domain data are transformed into frequency-domain results using 14 

the stable state data. 15 

 16 

(a) 
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 1 

Fig.13. Examples of the time histories of the motions (a) and power (b) when m=44.5kg, Km=555.8N/m, 2 

Cg=27.3kg/s, and T=1.8s. 3 

Fig.14 shows the influence of the parameters of the BI-PTO system on the motion and power 4 

response, which has only one peak due to the outer-floater motion is given. The line 3 and 4 demonstrate 5 

that the damping affects the amplitude of responses only, while have little effect on the location of peaks 6 

(or resonance periods). The m and Km have influence on both amplitudes and locations of peaks. With m 7 

increasing, the location of peak moves to a larger T (line 1 vs. 2), while to a smaller T as Km increasing 8 

(line 1 vs. 3). This validates that the resonance period of the DR-WEC is controllable by manipulating the 9 

sliding-mass and spring. Therefore, the DR-WEC is able to tune itself to match the wave encounter 10 

frequency to enhance the power absorption ability. 11 

 12 
Fig.14. Motion (a) and power (b) responses for different PTO parameters. 13 

5.2.2. Mechanical efficiency 14 

The mechanical efficiency η of the BI-PTO with different parameters is shown in Fig.15. Generally, 15 

the variation of η for different PTO parameters is small. The average η of all cases is 65.8% with maximum 16 

(b) 

(a) (b) 
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up to 80.0%. For different cases that from 1 to 4 in Fig.15, the mean η is 70.4%, 64.1%, 62.6%, and 66.0%, 1 

respectively. From the comparisons of “line 1 vs. 2” and “line 1 vs. 3”, it reveals that a larger sliding-mass 2 

or spring constant leads to a lower efficiency. This is because the mechanical friction is larger when the 3 

gravity force of the sliding-mass or the spring force is larger. For a larger Cg, the mechanical efficiency is 4 

larger. The reason is that the varying of the damping system has little effect on the value of the mechanical 5 

friction, so that η increases as Cg increases from Eq.(11). The energy loss comes from the mechanical 6 

friction. With a better processing technology and bearings with smaller friction coefficients, the 7 

mechanical efficiency η could have a further increase. 8 

 9 
Fig.15. The test results of the mechanical efficiency for different PTO parameters. 10 

5.3. Wave tank experiment for the DR-WEC 11 

5.3.1. Viscous added mass and damping 12 

The numerical and experimental studies conducted by Tom [24] and Son et al. [25] demonstrated that 13 

the excitation forces could be well predicted by the linear potential flow theory, while the radiation forces 14 

(especially the damping term) are significantly affected by the viscous effect. Therefore, the viscous effect 15 

should be studied mainly on the radiation force. The detailed derivation of the linearized viscous 16 

corrections from the free decay curves can be found in [26]. Here we only introduce in the expression of 17 

the non-dimensional linearized viscous corrections 18 
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  (19) 19 

where μ33, λ33 are the potential added mass and radiation damping which are calculated by AQWA in 20 

frequency domain based on the Boundary Element Method (BEM). μvis and λvis denote the linearized added 21 
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mass and damping in the viscous fluid, respectively. The physical meaning of ,visf  and ,visf  shows the 1 

ratio of the linearized viscous added mass or damping and the potential added mass or damping. 2 

To achieve the free decay curve of the outer-floater in heave, the experiment was set up as shown in 3 

Fig.16. In the free decay test, the internal mass, which was fixed at the lowest point of its stroke, acted 4 

like a ballast. Therefore, all parts of the BI-PTO could not move during the free decay test. Firstly, we 5 

made the outer-floater float on the designed water line. Then, the suspension bridge was lifted with a 6 

distance x30, and the position was kept to make sure the initial velocity to be zero. Next, the lifting rope 7 

was quickly cut down to let the outer-floater free decay in heave. In this experiment, the initial excursion 8 

x30 was set as 0.25m. The free decay curve is shown in Fig.17, the resonance frequency is 1.8s. The viscous 9 

added mass and damping correction coefficients are ,visf =1.21 and ,visf =1.93, respectively. 10 

 11 
Fig.16. Schematic of the free decay test. 12 

 13 

Fig.17. Free decay curve of the outer-floater. 14 
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5.3.2. Motion and power response 1 

As shown in Fig.18, the test model of the DR-WEC was set in the middle of the wave tank and a 2 

single point mooring system was attached to the tip of the conical bottom. The motions of the outer-floater 3 

and the internal mass were captured by a visual motion measurement system, QUALISYS [27]. 4 

 5 
Fig.18. Schematic (a) and photograph (b) of the arrangement of the wave excitation experiment. 6 

Firstly, we fixed the internal mass with the outer-floater, so that the whole system became one rigid 7 

floating body. The Response Amplitude Operator (RAO) of the outer-floater is shown in Error! 8 

Reference source not found.. With viscous effect correction achieved by the free decay test (Section 9 

5.3.1), the numerical results match very well with the experimental measurements. This reveals that the 10 

viscous correction derived from the free decay test can be used in the prediction of the floater motion 11 

under linear wave condition with acceptable accuracy. 12 

 13 
Fig.19. Comparison of the outer-floater RAO between numerical and experimental results 14 

(a) (b) 
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 1 

 2 

Fig.20. Comparison of the motion responses (outer-floater motion and internal-mass relative motion RAOs) between 3 

numerical and experimental results for different cases 1 to 4 (a ~ d) which have same PTO parameter as in 4 

bench test (Fig.14). 5 

Next, we set the internal mass, spring, and damping to different values (same as in the bench test, i.e. 6 

Fig.14) to test the motion and power response. As shown in Figs. 20 and 21, the numerical results match 7 

well with the experimental results. It has demonstrated that to simulate the motion and power response of 8 

the DR-WEC with reasonable accuracy, the mechanical added mass and viscous corrections are essential 9 

for the numerical simulation (Eq.(14)), while the effect of mooring system or other degree of freedom 10 

(surge, pitch, etc.) can be ignored.  11 

In this experiment, the outer-floater is connected with a slack single point mooring system (as shown 12 

in Fig.18). The mooring line is a 3.0mm Dyneema polyester rope. The purpose is to keep the model in 13 

position. We have tested that if we remove the mooring system, whether the changes on the motion and 14 

power response in heave is trivial. We have found out that the only difference is that the model is floating 15 

(a) (b) 

(c) (d) 
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away due to the drift force. As the model is axisymmetric and excited by regular waves, the motions in 1 

yaw, sway, and roll are very small. The major degree of freedoms (DOFs) are heave, surge, and pitch. The 2 

heave is the working DOF, while the surge and pitch are nauseous. Fortunately, the pitch and surge motions 3 

are small during the test. Example of the surge x1f and pitch x5f response can be found in Fig.22 (m=35.5kg, 4 

Km=555.8N/m, Cg=27.3kg/m).  5 

 6 

 7 

Fig.21. Comparison of the motion responses (outer-floater motion and internal-mass relative motion RAOs) between 8 

numerical and experimental results for different cases 1 to 4 (a ~ d) which have same PTO parameter as in 9 

bench test (Fig.14). 10 

(a) (b) 

(c) (d) 
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 1 

Fig.22. The surge (a) and pitch (b) response of the outer-floater under regular waves, when m=35.5kg, 2 

Km=555.8N/m, Cg=27.3kg/m. 3 

6. Conclusion 4 

A point-absorber wave energy converter with a PTO system built inside a water-proof outer-floater, 5 

named DR-WEC, is presented in this paper. Through all the above numerical and experimental studies, 6 

the conclusions can be drawn as follows. 7 

(1) The built-in PTO (BI-PTO) mechanism including sliding-mass, damping and spring systems 8 

specially for the DR-WEC is designed, where the spring system consisted of a fixed tension 9 

spring, wire ropes, and a stepped pulley is the most complicated because of the following three 10 

limitations practically. First of all, the fixed spring should be in tensile state all the time. 11 

Moreover, the allowable elongation of the fixed spring should be large enough. Finally, the 12 

original length of the fixed spring should be small enough due to the limited vertical space. 13 

(2) The mechanical performance of the BI-PTO is tested and validated on a special designed test-14 

bench. The parameters of the BI-PTO are controllable during the test. The damping can only 15 

affect the amplitudes of motion and power response, while the sliding-mass and spring have 16 

influences on not only the amplitudes of the motion and power response but also the resonance 17 

frequencies. The extra inertia effect, which comes from the moving parts (except the sliding-18 

mass) of the BI-PTO, is represented as the mechanical added mass. This inertia effect couples 19 

the inertia forces (the outer-floater and the sliding-mass) in the motion equation, increases the 20 

resonance period, and reduces the maximum amplitudes of motion and power response. The 21 

(a) (b) 
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mechanical added mass has a negative influence on the power response so that it should be made 1 

as small as possible. 2 

(3) The viscous effect for the DR-WEC during the motion in waves is mainly associated with the 3 

radiation force. The linearized viscous correction can be derived by free decay test. For th e 4 

outer-floater used in this study, the corrections are ,visf =1.21 and ,visf =1.93 respectively. 5 

(4) The linear numerical model is put forward, the predicted heave motion and power response of 6 

the DR-WEC are found to be in good agreement with the experimental measurements in the 7 

wave tank tests. This has shown that the mechanical added mass and viscous corrections are 8 

essential for the numerical simulation with reasonable accuracy, while the effect of mooring 9 

system and other degree of freedoms (surge, pitch, etc.) can be ignored.  10 

 11 
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Appendix A 16 

Starting from the equation of motion on the bench Eq.(5), and assuming all motions are harmonic. 17 
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Put Eq.(A.1) into Eq.(5) 19 
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Then, 21 
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The upper equation can also be expressed in the form of  23 
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For Eq.(A.4), the real part and the imaginary pare of the left- and right-hand-side should be equal 1 

correspondingly 2 
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Finally, we can derive the expression of the total damping from Eq.(A.5). 4 
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In Eq.(A.6), m and Km are given by the measurement. μmech can be calculated by Eq.(8). Consequently, 6 

the total damping can be calculated as long as we know the frequency and amplitudes of the motions ( 3
ˆ

fx  7 

and ˆ
rx ) which can be measured by the bench test. 8 


