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Abstract. The positronium (Ps) formation cross-section, QPs for positron-argon interactions 

has been measured for incident positron energies from threshold to 60 eV, in an attempt to 

resolve the apparent discrepancy between earlier experimental results.  QPs was found to vary 

smoothly with positron energy between 15 and 30 eV, in qualitative agreement with earlier 

results using methods involving the measurement of positron neutralization (as in the current 

experiment) and in disagreement with the double-peak energy dependence reported by 

Laricchia et al (2002), who used a positron-ion coincidence detection method.  Possible 

reasons for this discrepancy, including Ps fragmentation and excited-state Ps formation, are 

discussed. 
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1. Introduction 

For the last three decades there has been fundamental interest in measuring and calculating the cross 

section for the unique process of positronium  (Ps) formation, QPs [1].  

There is reasonably good agreement between recent measurements and calculations of QPs for 

helium; measurements for for neon, argon, krypton and xenon show general agreement to within ~ 

25%, and calculations for these four gases exhibit broadly similar energy dependences but often differ 

from experiment by a factor of ~ 2 in magnitude [1]. However, in argon there is a significant 

discrepancy in the energy dependence of QPs in the region 15-30 eV between three recent experimental 

results [2-4].  The QPs  reported by Marler et al [3] and Jones et al (2009) [4] rise to a peak at about 10 

eV above threshold (8.9 eV) and then fall smoothly with increasing positron energy.  In contrast the 

results of Laricchia et al [2] exhibit a double-peaked structure, with broad peaks at ~ 18 and 30 eV 

separated by a dip at ~ 21eV, an observation explained by the authors as most probably associated 

with the observation of the formation of excited-state Ps.  If this double-peak behaviour is real then it 

is unclear why a similar structure would not be seen in refs 3 and 4.  There is, however, a significant 

difference in the experimental methods used in refs 3 and 4 and that in ref 2.  In the former two 

experiments Ps formation is recorded when an argon ion is formed and detected without the coincident 

detection of a positron; in the last experiment Ps formation is recorded when a positron is lost from the 

beam (this being the only channel, except the negligible process of direct annihilation, which removes 

a positron from the beam).  Argon is the only gas for which a double-peak structure has been observed 

and for which there is a significant difference between results from different laboratories; shoulder-

like structures are seen in krypton and xenon in refs 2 and 3.  
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The current experiment uses the positron loss method for measuring QPs, this having been used 

successfully by the authors in the past (eg [5,6]).  A brief overview of the experimental method will be 

followed by results for QT and QPs in helium (to check the procedure) and argon, and a discussion of 

these results in light of the earlier discrepancy. 

 

2. Experimental apparatus 
Figure 1 shows a schematic diagram of the apparatus used, which was based on the system used by 

Jay and Coleman to study threshold effects in positron-noble gas scattering [7].  A 17MBq 
22

Na source 

was positioned behind an annealed double 50%-transmission tungsten mesh moderator [8] to produce 

a 4mm diameter beam of c. 2000 positrons sec
-1

 of mean energy 1.5eV with an approximately 

Gaussian energy distribution of FWHM 1.5eV. The moderated positrons were then accelerated to the 

final desired mean energy by applying a potential VM. 

To narrow the energy distribution a 92%-transmission tungsten mesh was held immediately in front 

of the moderator at a potential of (VM + 1.5) V.  The energy spread of the beam was reduced to ~ 

800meV, peaking at ~ (VM + 2) eV, with a consequent reduction in useable beam intensity of about 

50%.  This mesh also serves as an efficient reflector of positrons scattered back towards the source. 

The collimated beam then traverses a 30cm-long flight path along an evacuated tube under the 

guidance of an approximately uniform axial magnetic field of ~ 100G.  It first passes through a gas 

cell with an exit aperture 12.5 mm in diameter and 35 mm long which ensures maintenance of an 

appropriate pressure differential; a vacuum of ~ 10
-7

 mbar was maintained throughout the rest of the 

apparatus using a turbo-molecular pump. A needle valve controlled the gas flow into the cell, and the 

gas pressure was chosen so that no more than 15% of positrons entering the cell were scattered, with 

typical attenuations of 3-10%; this constitutes a reasonable compromise between statistically 

acceptable measurements of beam attenuation and the minimisation of multiple scattering effects, and 

is comparable to the situation in other recent measurements. 

The positrons then passed through a retarding field analyser (RFA), a copper tube held at either 0V 

or (VM + 1.35)V, depending on the measurement being made (see later). The tube was 50 mm long and 

20 mm in diameter to ensure that fringe (field penetration) effects did not reduce the potential in the 

centre of the tube. 

The positron beam finally reaches the channel electron multiplier (CEM) which generates pulses 

for each particle detected after entering its 10mm-diameter cone. These pulses were amplified, shaped 

and recorded by a multi-channel scaler (MCS) after discriminating against small electrical noise 

pulses. A potential of -2 kV was applied to the cone of the CEM to repel as many electrons as 

possible; these are secondary electrons ejected from the source/moderator assembly by beta positron 

bombardment, and those transported by the magnetic field can have energies from ~ 1 to 10
3 

eV.  A 

fine mesh was held across the cone, also at -2 kV, to prevent electrons from the cone being sucked 

from the CEM.   

It is important for these measurements that essentially all scattered positrons could be guided to the 

CEM by the magnetic field.  The beam radius is 2 mm and the CEM cone radius is 5mm;  in the 

extreme worst-case scenario for the apparatus described here, a 60eV positron at the edge of the beam 

scattered away from the axis through 90º is has a Larmor radius of 2.6 mm, and so will be detected.  

3.  Experimental procedure 

3.1.  Total cross sections 

The total scattering cross section QT is deduced using the Beer-Lambert law I = I0 exp(-nlQT), where, I0 

and I are the incident and transmitted positron intensities, and n and l are the atomic number density of 

and path length through the target gas atoms, respectively.  In this experiment I and I0 are measured 

and the product nl obtained using the QT values of Caradonna et al for helium [9] and of Jones et al  

for argon [4].  This effectively is a procedure which normalises the current QT values to those of recent 

measurements by the ANU group (which are generally in agreement with earlier values – see figure 2 

below). 
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 In order to measure I and I0 four count rate measurements were required – essentially total and 

background rates with and without gas in the gas cell.  The RFA was held at (VM + 1.35)V for QT 

measurements, an experimentally-determined value which ensured that essentially all scattered 

positrons were prevented from passing through the RFA tube. The runs were controlled using the 

MCS, measuring count rates as the moderator potential VM was ramped from 5 to 58eV in 1eV steps. 

The MCS was set to perform repeated short scans to minimise the influence of any fluctuations in the 

measurement conditions; the count rate was measured for 10 s at each energy and 150 ramps were 

performed, so that the measurement time at each energy was 1500s – resulting in total counts of 

~1.5x10
6
 and a resultant statistical uncertainty of ~0.1%.   

 Total (signal + background) rates were measured with the cut-off mesh (in front of the moderator) 

at (VM+1.5)V.  Background rates were measured in the same way, but with the cut-off mesh at a 

potential of (VM + 5)V, so that all slow positrons were prevented from entering the gas cell and only 

those particles (mostly fast positrons and electrons) contributing to the background count would be 

detected. The background rates were measured at each value of VM with and without gas in the cell – 

they depend on VM and gas density, because the background consists of energetic positrons and 

electrons.    

 The intensities I and I0 were then used to find QT as described above. The mean energy of the 

positron beam was measured to be (VM + 1.5) eV, after a small adjustment was made for contact 

potential differences (after multiple measurements of QT) in order to replicate the rapid rise in the 

cross sections above the Ps threshold.   

 

3.2.  Ps formation cross sections 

 QPs was obtained from the thin-target result QPs = (APs/AT)QT, where APs and AT refer to the measured 

positron attenuations due to Ps formation only and to all scattering channels, respectively.  Using the 

terminology of the previous section, A = (I0 - I)/I0.   The measurement of AT is described above in 

section 3.1.  APs was measured by following identical procedures, but with the RFA potential set to 0 

V.  As Ps is a neutral particle it is not constrained by the magnetic field and will, therefore, never 

reach the detector - instead decaying by annihilation in the gas, vacuum, or upon collision with the 

apparatus wall. All other scattering channels, which the positrons survive, do not contribute to the 

attenuation as the RFA no longer prevents the scattered positrons from reaching the CEM detector. 

The same gas pressures were used for these runs as was used for the measurement of QT.  

 

4. Results 

The experimental procedure was first tested using helium gas, where there is reasonable agreement 

between earlier measurements of QT and QPs [5,9-15]. 

The results for QT for helium are shown in figure 2(a), along with previous results. Although these 

results were obtained using a normalisation procedure the good agreement seen between the energy 

dependence of the current results with earlier measurements is gratifying.    
Figure 2(b) shows QPs for helium, along with a selection of earlier measurements. Satisfactory 

agreement is again seen between measurements, giving confidence in the technique. The statistical 

uncertainties in these, as well as all other cross sections reported herein, are reflected in the scatter of 

the points, and thus for helium are ± (0.03-0.04) x 10
-20

 m
2
. 

 For argon the results for QT and QPs are shown in figures 3(a) and (b).  Statistical uncertainties are 

here of the same order as the symbol size; they are considerably smaller than those for the helium 

results because the latter were intended only to check the reliability of the system and thus the 

measurements were not repeated as many times.  The energy dependence of QT for argon, as for 

helium, agrees well with earlier results.  QPs, however, shows good agreement up to ~15eV, and then 

diverges from all recent results as the positron energy increases. This result was reproduced many 

times. 

 

5. Discussion 
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The aim of this experiment was to investigate the energy dependence of QPs at positron energies 

around 30eV.  While the absolute values of the measured cross sections results can suffer from errors 

due to non-measurement of small-angle elastic scattering, any corrections are (a) likely to be small, as 

elastic scattering makes a relatively small contribution to QT in the energy range of interest, and (b) are 

very unlikely to influence the broad shape of QT and QPs at these energies.  It is also true that the 

0.8eV energy width of the beam used here is not wide enough to mask the dip feature seen in the 

results of Laricchia et al [2]. 

The present results for QPs in argon (figure 3(b)) do not exhibit a double-peak structure, but do 

show a rather flat-topped energy dependence between ~ 18-30 eV. They are quantitatively higher than 

recent measurements at higher energies but, interestingly, agree well with earlier measurements.  To 

investigate the possibility that these higher values could be caused by an increasing inability to confine 

all surviving scattered positrons in the beam to the detector, a set of measurements were taken with the 

magnetic field decreased to 70G; there was a resultant increase in QPs at 60eV, but this was much 

smaller than the observed difference between the results shown.   

The results of the San Diego and Australian groups [3,4] show similar energy dependence but 

differ in absolute magnitude, probably as a result of different measurements of the gas cell product nl. 

They both employ the positron loss method used in the current experiment; in contrast, Laricchia et al 

detected argon ions with no coincident positron [1,2]. It is thus tempting to link the observed 

difference between the energy dependences of QPs reported in refs. 2-4 simply with measurement 

technique; however, the reasoning behind such a correlation is not easy to formulate.   

It was suggested by Murtagh et al [17] that the second peak at ~ 30eV may result from observation 

of Ps formation in exited states.  For this not to be seen in positron-loss experiments the longer-lived 

Ps* would presumably have to break up in a second collision, releasing the positron which would then 

be detected and Ps* formation would not be registered.  There are reasons why this explanation may 

not be correct: (a) similar beam attenuations (ie nl values) were used in both methods, so that Ps* 

break-up could occur in both measurements, (b) neutral Ps* drifts from the beam axis and so the 

detection of all the positrons released from the break-up of essentially all the Ps* formed in the gas 

cell has to be considered highly unlikely, especially with the 10mm-diameter detector used in the 

present experiment, and (c) the first measurements of cross sections for Ps* formation in the n = 2 

state [17] are considerably smaller than the second peak would suggest, and so contributions from Ps* 

formation in higher n states would need to be considerable.  QPs* (n = 2) from ref [17] is plotted in 

figure 3(b).  To investigate the possible consequences of multiple scattering an experiment was 

performed with higher gas pressure – so that the maximum attenuation was ~30%.  No significant 

change from the results presented in figure 3(b) was observed.  Measurements with lower gas 

pressures were not performed, as the maximum value of the attenuation due only to Ps formation, APs, 

was ~ 6%, and smaller attenuations were impractical.  

The second possibility is that, rather than a second peak being missing from QPs in measurements 

based on positron loss, a broad dip is present in the results of Laricchia et al [2] at around 20eV.  This 

could also be explained by Ps dissociation collisions – that Ps formed at 6.8eV or more above 

threshold (ie at positron energies above the ionization energy of 15.7eV) can break up on a second 

collision, leading the ion detection method to register the scattering as direct ionization rather than Ps 

formation.  Fragmentation cross sections measured by Brawley and Laricchia [18] for Ps-He and Ps-

Xe collisions suggest that the probability of Ps break-up is significant at a few eV above threshold; the 

losses due to fragmentation would need to decrease between 20 and 30eV rather more rapidly than the 

measured cross sections of ref [18] suggest – this may happen if the more energetic Ps escapes the gas 

region or reach a region out of sight of the positron detector. 

Clearly the relative likelihood of these different scenarios is difficult to judge, being critically 

dependent on the geometries of the gas cell/region and the size of the positron detectors used in 

particular experiments. 

None of the theoretical calculations for QPs in argon [19-21] – not shown in Fig 3 for the sake of 

clarity (the reader is referred to [1]) – exhibits a significant second peak at 30eV, being more broadly 
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similar in energy-dependence (but not in magnitude) to the results of refs 3 and 4.  A small shoulder a 

few eV above the first peak is seen in the results of Gilmore et al [20], who included the formation of 

Ps* and of Ps from inner ns shells of argon.  Dunlop and Gribakin [21] argue that inclusion of QPs 

from the 3s shell of argon may produce a second peak similar to that seen in ref [2], having a threshold 

at 22.5eV - which the authors claim is a more realistic explanation than Ps* formation, whose 

threshold they consider to be too low.  

 

6. Conclusion 

Although one can attribute the observed differences between QPs(E) in the 20-30eV region solely to 

the two different measurement techniques used, an explanation as to why this should be is not 

straightforward as both techniques should in principle be able to measure QPs satisfactorily.  Indeed, 

one might symmetrically argue that second collisions could lead both to a dip in QPs measured by ion 

detection or a missing peak in QPs measured by positron loss.  The results of the present measurement 

do not offer conclusive support to either explanation, but do add to the number of results which do not 

possess a second peak (or dip) and, after the failure of attempts to induce such a feature in the results 

by varying experimental conditions, the authors are led to favour the existence of at most a modest 

shoulder in QPs associated with Ps* formation or Ps formation from inner shells, but not of a double-

peaked structure.   
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Figure 1  

Schematic diagram of the experimental apparatus. RFA - Retarding Field Analyser, CEM - Channel 

Electron Multiplier. The distance between source and CEM is ~ 300 mm. 
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Figure 2 

Experimentally-determined total and Ps formation cross sections for helium. Upper points are QT, 

lower points QPs.  ● – current measurements:  〇 – QT and QPs, Caradonna et al [9]:  – QT from 

Kauppila et al [10], lower limit of QPs from Stein et al [11]:   - QT, Brenton et al [12];  - QT from 

Griffith et al [13], QPs from Murtagh et al [14]; △ - QPs, Fornari et al [5]: ☆- QPs, Fromme et al [15]. 
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Figure 3 

(a) Experimentally-determined total cross sections QT for argon.  ● – current measurements:  △ – 

Jones et al [4]:   - Kauppila et al [10]:   - Griffith et al [13]:   - Tsai et al [16]. 

(b) Positronium formation cross sections QPs for argon.  ● – current measurements:  △ – Jones et al 

[4]:   - lower limit results of Stein et al [11]:   - Laricchia et al [2]:   - Fornari et al [5]:  〇 – 

Marler et al [3]:  - n = 2 Ps, Murtagh et al [17]. 
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