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Abstract. This paper reports a new figure of merit for the selection of pyroelectric materials for 

thermal energy harvesting applications, for example, when the material is exposed to heat or radiation 

of a specified power density. The figure of merit put forward and developed is of interest to those 

selecting materials for the design of thermal harvesting devices or the development of novel ceramic, 

single-crystal and composite materials for pyroelectric harvesting applications. 
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Introduction 

Energy harvesting is a topic of intense interest as a result of the growing energy demands of society 

and as a potential approach to create autonomous and self-powered systems; examples are energy-

harvesting devices for battery-free wireless sensor networks which do not require maintenance or 

replacement.  In the context of thermal energy harvesting, heat remains an almost ubiquitous and 

abundant ambient source of energy that is often wasted [1] [2]. A significant amount of waste heat is 

lost as a by-product of power, refrigeration, or heat pump cycles [3]. Pyroelectric harvesting by 

radiative heating has also been considered by a number of researchers [4] [5] [6]. 

Thermoelectrics have been widely used and considered as a means to convert temperature gradients 

(dT/dx, where T is temperature, and x is co-ordinate) into electrical energy using the Seebeck effect. A 

less widely researched area is ‘pyroelectric harvesting’ in which temperature fluctuations (dT/dt, 

where t is time) are converted into electrical energy. This has similarities to the way in which 

piezoelectric harvesters convert mechanical oscillations (d/dt,  is mechanical stress) into electrical 

energy. Pyroelectric materials are of interest as they have the potential to operate with a high 

thermodynamic efficiency and, compared to thermoelectrics, do not require bulky heat sinks to 

maintain the temperature gradient.  

Pyroelectric effect and energy harvesting 

All pyroelectrics are polar materials and exhibit a spontaneous polarisation in the absence of an 

applied electric field, and the spontaneous polarisation is defined as the average electric dipole 

moment per unit volume [7]. The presence of the spontaneous polarisation leads to a layer of charge 

on each surface of the material, and free charges, such as ions or electrons, are attracted to the charged 

surfaces of the poled material. The origin of pyroelectric effect stems from the behaviour of surface 

charge as the ambient temperature is changed and assuming that polarization level of the material is 

dependent on temperature [8].   

 

If a pyroelectric material is exposed to radiation of power density W (J s-1 m-2) for a time, Δt, radiation 

is absorbed onto the surface of the material which results in an increase in the temperature, ΔT (Figure 

1). It is assumed that all of the power absorbed in time Δt is rapidly distributed through the 

pyroelectric element volume, resulting in a uniform temperature increase. In this case, to simplify the 

process, heat losses from the pyroelectric are neglected. The increase in temperature is related to 

incident power density by:  

 

 Δ𝑇 =
𝑊.Δ𝑡

𝑐𝐸.ℎ.Δ𝑇 
 = 

𝑊.Δ𝑡

𝑐𝑝.𝜌.ℎ.Δ𝑇
      (1) 



 

where h is the pyroelectric thickness (m), cp is the specific heat capacity (J kg-1 K-1),   is the 

density (kg m-3), and cE is the volume specific heat (J m-3 K-1). As the temperature of the pyroelectric 

material increases (i.e. dT/dt > 0), there is a decrease in its level of the spontaneous polarisation as 

dipoles within the material lose their orientation due to thermal vibrations. This fall of the polarisation 

level leads to a decrease in the number of unbound charges on the material surface [8]. The 

pyroelectric coefficient of an unclamped material, under a constant stress and electric field, is defined 

by Equation 2, 

 

                                                         𝑝σ,𝐸 = (
𝑑𝑃𝑠

𝑑𝑇
)

𝜎,𝐸
                        (2) 

where Ps is the spontaneous polarisation, and the subscripts σ and E correspond to the conditions of 

constant stress and electric field respectively. While the pyroelectric coefficient is a vector quantity, 

the electrodes that harvest the charges are often normal to the polar direction, i.e. are on the upper and 

lower surfaces of the element (figure 1), and therefore, the pyroelectric coefficient is often treated as a 

scalar quantity [8].  

 

 
(a)                                                              (b) 

Figure 1. Pyroelectric element subjected to heat flux with (a) open and (b) closed circuit conditions. 

Polarisation direction (P) is through the thickness as shown and electrodes at the top and bottom 

faces. 

 

 

When the pyroelectric is subjected to radiation of power density, W, that results in a temperature 

increase (ΔT), the charge (ΔQ) released by the area (A) of material due to a decrease in polarisation is 

given by, 

 

       Δ𝑄 = 𝑝. 𝐴. Δ𝑇 
and from Eqn. 1, 

                                                           Δ𝑄   = [
𝑝

𝑐𝐸
] . [

𝐴

ℎ
] . W. Δt                                  (3) 

 

Under open circuit conditions, as schematically shown in figure 1(a), the charges that are free due to 

the decrease in polarisation remain at the electrode surface and an electric potential (ΔV) is generated 

across the material thickness.  From the relationship ΔQ=C.ΔV between charge and capacitance (C) 

and considering the pyroelectric element as a parallel plate capacitor, where C=A𝜀33
𝜎 /t, the potential 

difference is: 

 

 

                                                                                ΔV =
𝑝

𝜀33
𝜎 . ℎ . ΔT 

and from Eqn. 1 

                                                            ΔV  = [
𝑝

𝑐𝐸.𝜀33
𝜎 ] . W. ∆t                            (4) 

 

where 𝜀33
𝜎  is the permittivity of the pyroelectric material (F m-1). 



 

If the material is under short circuit conditions, as shown in figure 1(b), the change in temperature 

results in an electric current flowing between the two polar surfaces of the material. Eqn. 5 describes 

the relationship between generated pyroelectric current (ip), rate of temperature change (dT/dt), 

surface area of the element and pyroelectric coefficient (p) [9]: 

  

                  𝑖𝑝 =
𝑑𝑄

𝑑𝑡
=  𝑝. 𝐴.

𝑑𝑇

𝑑𝑡
 

and from Eqn. 1 

             𝑖𝑝   = [
𝑝

𝑐𝐸
] . [

𝐴

ℎ
] . 𝑊              

                    (5) 

 

Figures of Merit (FOM) for Pyroelectric Materials 

A variety of FOMs have been derived for pyroelectric materials selection based on consideration of 

the thermal and electrical circuits employed [9]. The most common FOMs are based on the generation 

of maximum current or voltage for a given power input for applications such as thermal imaging 

sensors [8] [10] [11].  

For a high voltage responsivity (Fv) the relevant figure of merit [8] to maximise pyroelectric voltage 

for a given W value can be seen from Eqn. 4, namely, 

𝐹𝑣 =
𝑝

𝑐𝐸.𝜀33
𝜎 =

𝑝

𝜌.𝑐𝑝.𝜀33
𝜎                                                (6) 

To maximise performance of infrared detection devices based on current responsivity (Fi) [8] in order 

to maximise the pyroelectric current generated for a given value of A, h and W, the FOM from Eqn. 5 

is given by 

   𝐹𝑖 =
𝑝

𝑐𝐸
=

𝑝

𝜌.𝑐𝑝
                                                        (7) 

The two FOMs from Eqns. 6 and 7 are often used for selection of materials for heat and infra-red 

detection, but these are not to be confused with energy-harvesting applications where generated power 

is a key criterion as well as the overall efficiency of the conversion of thermal energy to electrical 

energy. 

For energy harvesting applications two pyroelectric based FOMs have been proposed [12] [13].  An 

electro-thermal coupling factor has been defined to estimate the effectiveness of thermal harvesting 

[12]: 

𝑘2 =
𝑝2.𝑇ℎ𝑜𝑡

𝑐𝐸.𝜀33
𝜎 =

𝑝2.𝑇ℎ𝑜𝑡

𝜌.𝑐𝑝.𝜀33
                                        (8) 

where Thot is the maximum working temperature. 

An energy-harvesting FOM, FE, has also been proposed as [13]: 

 𝐹𝐸 =
𝑝2

𝜀33
𝜎                                                               (9) 

The FE FOM has been widely used for materials selection and materials design [14] [15] [16] [17] 

[18] for pyroelectric harvesting applications. It is of interest to note that compared to the voltage (Fv) 

and current (Fi) responsivities, the harvesting FOM, FE, does not include the volume heat capacity. 

Atulasimha et al. [19] have also provided a simple but effective analysis of the influence of harvested 

power on factors such as geometry, clamping conditions and material properties. 

 



 

We now derive a modified pyroelectric thermal harvesting figure of merit, 𝐹𝐸
′ , by considering the 

electrical energy associated with the temperature change or applied power density which gives rise to 

an increase in electric potential under open circuit conditions as in Eqn. 4. A similar approach has 

been used to derive criteria for the selection of piezoelectric vibration harvesting materials [20].  

Since the change in energy (ΔE) stored in a capacitor is ½.C.(ΔV)2, then 

                                    Δ𝐸 =
1

2
. [

𝑝2

𝜀33
𝜎 ] [𝐴. ℎ]. (Δ𝑇)2                    (10) 

and from Eqn. 2, 

                                   Δ𝐸 =
1

2
. [

𝑝2

𝜀33
𝜎 .(𝑐𝐸)2] . [

𝐴

ℎ
] . (W. Δt)2         (11) 

As follows from Eqn. 10, if the material with specific values of A and h is subjected to a specific 

thermal cycle (ΔT), then the relevant FOM is 𝑝2 𝜀33
𝜎⁄  as in Eqn. 9; this is valid if the harvesting device 

is subjected to two specific temperatures via a pumping cycle or if the pyroelectric is used for 

harvesting of a heat source and heat sink of specific temperatures [16]. However, in a number of cases 

the harvesting device may be subjected to an incident heat source of specific energy density, W, e.g. 

as in [21] [22] [23]. The new material FOM is written as, 

 

                                           𝐹𝐸
′ =

𝑝2

 𝜀33
𝜎 .(𝑐𝐸)2                                   (12) 

 

This particular pyroelectric-harvesting FOM indicates that potential materials operating under these 

conditions should have a high pyroelectric coefficient to develop a large charge with a temperate 

change, a low permittivity to develop a large potential difference as a result of the charge generated 

and a low volume specific heat to ensure the temperature rise due to the incident power density is 

large. Surprisingly this simple of merit has not used or reported in order to select potential materials 

for energy harvesting related applications. It is of interest to note that the relation 𝐹𝐸
′ = 𝐹𝑣 . 𝐹𝑖 holds, 

see Eqns. 6, 7 and 12. 

At this stage it is of interest to compare the Fv, Fi, k2, FE and 𝐹𝐸
′  FOMs for conventional pyroelectric 

materials, see Table 1, which includes a set of parameters of pyroelectric materials employed in heat 

detectors and thermal energy harvesting. Due to the relatively small difference in volume specific heat 

between materials the current responsivity, Fi, is largest for the materials with the highest pyroelectric 

coefficients, such as the poled ferroelectric ceramics (PZT) and domain-engineered relaxor-

ferroelectric single crystal (PMN-PT). The low permittivity of PVDF leads to a high voltage 

responsivity, Fv, for this material.  The k2 coupling coefficient is high for PMN-PT due to the high 

pyroelectric coefficient. In terms of the 𝑝2 𝜀33
𝜎⁄  energy-harvesting FOM, PMN-PT single crystal 

material is particularly high in addition to LiTaO3 single crystal and PZT ceramic; this is due to the 

high pyroelectric coefficient and strong dependency on p2. For the new 𝐹𝐸
′  FOM from Eqn. 12, PMN-

PT remains a material of high performance, however the low squared volume specific heat of PVDF 

leads to 𝐹𝐸
′  being almost as large as that of PZT. This is of interest sine PVDF based materials can be 

relatively low cost, easily manufactured in thin and large area sections, have high breakdown strength, 

are flexible and damage tolerant. Composite systems, such as those with tailored porosity, may be of 

interest for achieving a high 𝐹𝐸
′  value by maintaining a high pyroelectric coefficient but reducing both 

permittivity and volume specific heat [18]. 

 

 



 

 

 

 

              Table 1. Figures of merit Fi, Fv, k
2, FE and F’

E for variety of materials, Thot = 298K for k2 (%). 

Physical parameter PMN-0.25PT SCa PZTb PVDFc ZnO SC LiTaO3
 SC 

p (C m-2 K-1) 1790 [24] 533 [24] 33 [24] 9.4 [7] 230 [9] 




33 /0  
961 [24] 1116 [24] 9 [24] 11 [25] 47 [9] 

cE  (MJ m-3 K-1) 2.5 [24] 2.5 [24] 1.8 [24] 2.3 [26] 3.2 [9] 

Fi (pm V-1) 716 213 18.3 4.1 71.9 

Fv (m2 C-1) 0.08 0.02 0.23 0.04 0.17 

k2 (%) 4.5 0.34 0.23 0.01 1.18 

FE (J m-3 K-2) 376.7 28.8 13.6 0.91 127.2 

F’
E  (x10-12)(m3 J-1) 60.3 4.6 4.2 0.17 12.4 

a Relaxor-ferroelectric 0.75Pb(Mg1/3Nb2/3)O3–0.25PbTiO3 single crystal poled along [111] of the 

perovskite unit cell; b Poled ceramic; c Polyvinylidene fluoride, a polymeric ferroelectric. 

In summary, the present publication provides the new pyroelectric harvesting FOM,  𝑝2 𝜀33(𝑐𝐸⁄ )2, to 

select and compare materials for pyroelectric energy harvesting when the harvesting element is 

subjected to an incident power density. The FOM is of interest to those considering the design of 

thermal harvesting devices or the search and development of new materials and composites for 

pyroelectric harvesting applications. Additional FOMs that include dielectric loss and diffusivity 

have been defined for thermal sensing [9] and may be of interest to also adapt for harvesting 

applications. 
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