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Abstract. Consider an incompressible hyperelastic material, occupying the unit ball B ⊂ Rn in its
reference state. Suppose that the displacement is specified on the boundary, that is,

u(x) = λx for x ∈ ∂B,

where λ > 1 is a given constant.

In this paper, isoperimetric arguments are used to prove that the radial deformation, producing a
spherical cavity, is the energy minimiser in a general class of isochoric deformations that are discontinuous
at the centre of the ball and produce a (possibly non-symmetric) cavity in the deformed body. This
result has implications for the study of cavitation in certain polymers.
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1 Introduction.

Let B ⊂ Rn denote the unit ball, the physically relevant values being n = 2 or 3. Consider
deformations u : B → Rn of an incompressible, nonlinearly elastic material occupying the
region B in its reference state. Thus, the admissible deformations u satisfy the incompressibility
constraint1

det∇u = 1 for a.e. x ∈ B. (1.1)

Deformations satisfying the above condition are known as isochoric deformations. In nonlinear
hyperelasticity, with each such deformation we associate a corresponding energy

E(u) =
∫

B
W (∇u(x)) dx, (1.2)

where W : Mn×n
1 → R is the stored-energy function and Mn×n

1 denotes the set of n × n

matrices with determinant equal to 1. In the variational approach, we seek equilibrium states by
minimising (1.2) on some class of admissible deformations satisfying given boundary conditions
(displacement or traction). In this paper we consider a problem which arises from the study
of radial cavitation initiated by Ball in the fundamental paper [2]. The work of Ball was,
in part, motivated by the work of [3] and subsequently developed by many authors (see, e.g.,
[6, 9, 17] and the review article [5]). In [2], Ball studies energy minimisers for compressible2 and
incompressible materials in the class of radial deformations of B. It is shown therein that if the
imposed boundary tractions or displacements are sufficiently large, then the radial deformation
which minimises the energy is discontinuous and corresponds to a hole forming at the centre
of the deformed ball. This is the phenomenon of cavitation. To date, little is known about the
minimising properties of these radial cavitation solutions in the general class of all (possibly
non-symmetric) deformations.3 The current paper addresses this problem in the incompressible
case and proves that the radial incompressible minimiser is the global minimiser of the energy
amongst all (possibly non-symmetric) isochoric deformations producing a hole at the centre of
the deformed ball. To prove this, we will draw on and refer to a number of key ideas and results
from [14].

We will consider the displacement boundary-value problem in which the deformations are
required to satisfy

u(x) = λx for x ∈ ∂B, (1.3)

where λ > 1 is a given constant and we study energy minimisers of (1.2) in the class of isochoric
deformations. Since it is not possible for a smooth isochoric deformation to satisfy (1.3) for any
λ > 1, we must enlarge the class of deformations. We therefore consider those deformations
u that produce a single discontinuity at the centre of the deformed ball. Such discontinuous
deformations can be viewed as an idealised limit, as ε → 0, of deformations uε of punctured
balls Bε = {x ∈ Rn : ε < |x| < 1}, where uε(x) = λx on the outer boundary of Bε and the inner

1Vulcanized rubber is often modelled as an incompressible material.
2In the compressible case, the condition (1.1) is replaced by det∇u > 0.
3In the compressible case, partial results on minimising properties are contained in [10, 11] (see also [13]).
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boundary is left free.4 Thus, such discontinuous equilibria should approximate the behaviour
of a ball containing a microvoid of radius ε at its centre, provided that ε is sufficiently small.

Radial Deformations.

If u ∈ C1(B\{0}; Rn) is a radial deformation of the form

u =
r(R)
R

x, R := |x|, r : [0, 1] → [0,∞), (1.4)

then

∇u(x) = r′(R)
(

x⊗ x
|x|2

)
+
r(R)
R

(
I− x⊗ x

|x|2

)
(1.5)

and so condition (1.1) forces

r′(R)
(
r(R)
R

)n−1

= 1 for R ∈ [0, 1], (1.6)

from which it follows that r(R) = (Rn + An)
1
n , where A is a constant. Therefore, the only

kinematically admissible, isochoric, radial deformation satisfying (1.3) is

urad
λ (x) = rλ(R)

x
|x|
, rλ(R) =

[
Rn + (λn − 1)

] 1
n
. (1.7)

Note that urad
λ creates a spherical hole of radius (λn − 1)

1
n > 0 at the centre of the ball.

Suppose further that E(urad
λ ) < ∞. Our aim is to use isoperimetric inequalities to prove

that the radial deformation (1.7) is a global minimiser in a set of deformations of the ball which
can produce (possibly non-symmetric) cavities at the centre. In particular, given a deformation
u in the admissible set5

Aλ =
{
u ∈ C1(B\{0}; Rn) : det∇u ≡ 1, u is one-to-one, u(x) = λx for x ∈ ∂B

}
,

we prove in Theorem 4.1 that
E(u) ≥ E(urad

λ )

for any stored-energy function W of the form6

W (F) = Φ(|F|n−1, | adjF|) (1.8)

where Φ : [0,∞)× [0,∞) → [0,∞) is convex and s 7→ Φ(s, t) and s 7→ Φ(t, s) are non-decreasing
functions for each t > 0.

We develop our results for deformations u ∈ C1(B\{0}; Rn), first for the case W (F) =
|F|n−1 (in Section 2) and then for the case W (F) = | adjF| (in Section 3). These proofs are
then easily generalised to the wider class of stored-energy functions (1.8) in Section 4 and
finally to general Sobolev deformations in Section 5. In order to emphasize the dimensional
dependence, we present our results for general n ≥ 2.

4See, e.g., [1] for the traction problem for incompressible materials and [5, 9, 15] for the displacement problem
for compressible materials.

5There are infinitely many such isochoric maps: simply set u = w ◦ urad where w is any non-radial isochoric

deformation of the annulus A = {x ∈ Rn : (λn − 1)
1
n ≤ |x| ≤ λ} satisfying w(x) = x for all x that obey |x| = λ.

6This class of stored-energy functions includes the energy functions
R

B
|∇u|p dx, n− 1 ≤ p < n. However, if

W (F) ≥ α1|F|n − α2 for some α1 > 0 then every u ∈ Aλ has infinite energy when λ > 1.
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1.1 Basic Notations.

For each F ∈Mn×n (the set of n× n matrices) we use adjF to denote the adjugate of F (i.e.,
the unique n × n matrix satisfying F(adjF) = (detF)I, where I ∈ Mn×n denotes the identity
matrix). The average value of φ over the (n− 1)-dimensional surface S ⊂ Rn, i.e., the surface
integral of φ over S divided by the area of S, will be denoted by7

−
∫

S
φ(x) :=

∫
S φ(x) dA∫

S dA

We use |F| to denote the Euclidean norm of the matrix F defined by |F|2 = Trace(FTF) for all
F ∈ Mn×n. For n ≥ 3, the vector product a1 × a2 . . . × an−1 of a1, . . . ,an−1 ∈ Rn is defined
to be the unique vector v ∈ Rn satisfying x · v = det(x,a1, . . . ,an−1) for all x ∈ Rn (see, e.g.,
[16]). The notation det(a1, . . . ,an), with a1, . . . ,an ∈ Rn, denotes the determinant of the n×n
matrix whose ith column consists of the entries from the vector ai.

We will make use of the following standard vector identities which are stated together for
convenience.

Lemma 1.1. Let n, t1, . . . , tn−1 ∈ Rn be positively oriented and orthonormal.

(i) If A ∈Mn×n
1 then adj (adjA) = A;

(ii) If G ∈Mn×n, n ≥ 3, and a1, . . . ,an−1 ∈ Rn then

Ga1 × . . .×Gan−1 = (adjG)T(a1 × . . .× an−1) ;

(iii) Since n = t1 × . . .× tn−1, it follows by part (ii) that

|(Gt1)× . . .× (Gtn−1)| =
∣∣∣(adjG)Tn

∣∣∣ ,
for any G ∈Mn×n and any n ≥ 3.

Remark 1.2. If n = 2 then part (iii) of the lemma still holds, i.e., |Gt1| = |(adjG)Tn|.

The next lemma is a straightforward consequence of part (iii) of Lemma 1.1 together with
the change of variables formula for smooth surfaces in Rn.

Lemma 1.3. Let u ∈ Aλ and n ≥ 3. Then for each R ∈ (0, 1]∫
SR

∣∣∣∣ ∂u∂t1
× . . .× ∂u

∂tn−1

∣∣∣∣ =
∫

SR

∣∣(adj∇u)Tn
∣∣ = Area(u(SR)), (1.9)

where SR denotes the sphere of radius R > 0 centred on the origin and ∂u
∂a := (∇u)a.

Remark 1.4. If n = 2 the above lemma still holds in the sense that∫
SR

∣∣(adj∇u)Tn
∣∣ = Length(u(SR)),

for each R ∈ (0, 1], where SR denotes the circle of radius R > 0 centred at the origin.
7In order to simplify our notation, we will often omit the surface measure dA from integrals over S.
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2 The case W (F) = |F|n−1.

Lemma 2.1. Let u ∈ C1(B\{0}; Rn). At each point x ∈ SR, R ∈ (0, 1], let n, t1, t2, . . . , tn−1

denote a positively oriented orthonormal basis with n = x
|x| . Then

|∇u(x)|2 =
∣∣∣∣∂u∂n

∣∣∣∣2 +
∣∣∣∣ ∂u∂t1

∣∣∣∣2 + . . .+
∣∣∣∣ ∂u
∂tn−1

∣∣∣∣2 for x ∈ SR.

Proof. This is a standard consequence of the invariance of the Dirichlet integral under orthog-
onal changes of coordinates (see, e.g., [14, Lemma 3.3]).

Lemma 2.2. Let u ∈ C1(B\{0}; Rn). Then for each x ∈ SR, R ∈ (0, 1], we have

|∇u|2 ≥ 1

|(adj∇u)Tn|2
+ (n− 1)

∣∣(adj∇u)Tn
∣∣ 2

n−1 . (2.1)

Proof. Suppose first that n ≥ 3, then Lemma 2.1 together with the arithmetic-geometric mean
inequality yields

|∇u|2 ≥
∣∣∣∣∂u∂n

∣∣∣∣2 + (n− 1)
(∣∣∣∣ ∂u∂t1

∣∣∣∣ ∣∣∣∣ ∂u∂t2

∣∣∣∣ . . . ∣∣∣∣ ∂u
∂tn−1

∣∣∣∣) 2
n−1

≥
∣∣∣∣∂u∂n

∣∣∣∣2 + (n− 1)
(∣∣∣∣ ∂u∂t1

× . . .× ∂u
∂tn−1

∣∣∣∣) 2
n−1

. (2.2)

Next, since u is isochoric, the Cauchy-Schwarz inequality implies

1 = (det∇u)(n · n) = ((∇u)n) ·
(
(adj∇u)Tn

)
≤

∣∣∣∣∂u∂n
∣∣∣∣ ∣∣∣(adj∇u)Tn

∣∣∣.
Combining this with (2.2) and using Lemma 1.1(iii) it then follows that (2.1) holds. If n = 2,
then (2.1) follows similarly from Lemma 2.1 on using Remark 1.2.

Lemma 2.3. For t > 0 define

g(t) =
[

1
t2

+ (n− 1)t
2

n−1

]n−1
2

.

Then g is convex on (0,∞) and monotone increasing for t ≥ 1.

Proof. The monotonicity of g on [1,∞) is a straightforward calculation. The convexity follows
on observing that

g(t) = tφ

(
1
t

)
, φ(y) :=

(
y

2n
n−1 + n− 1

)n−1
2
, g′′(t) =

1
t3
φ′′

(
1
t

)
,

and φ′′ ≥ 0.
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Lemma 2.4. Let u ∈ C1(B\{0}; Rn). Then for each R ∈ (0, 1]

−
∫

SR

|∇u|n−1 ≥ −
∫

SR

g
(∣∣(adj∇u)Tn

∣∣) ≥ g

(
−
∫

SR

∣∣(adj∇u)Tn
∣∣) .

Proof. This is a consequence of Lemma 2.2, the convexity of g, and Jensen’s inequality.

Lemma 2.5. Let λ > 1 and u ∈ Aλ. Then for each R ∈ (0, 1]

−
∫

SR

∣∣(adj∇u)Tn
∣∣ =

Area(u(SR))
ω̄nRn−1

≥
Area(urad

λ (SR))
ω̄nRn−1

= −
∫

SR

∣∣∣(adj∇urad
λ )Tn

∣∣∣
=

(
rλ(R)
R

)n−1

≥ 1,

where rλ and urad
λ are given by (1.7) and ω̄n is the surface area of the unit sphere in Rn.

Proof. The proof of this result is exactly analogous to the proof of [14, Lemma 3.8] and is a
consequence of the classical isoperimetric inequality on noting that the volumes enclosed by the
surfaces u(SR) and urad

λ (SR) are equal8 for each R ∈ (0, 1].

Theorem 2.6. Let λ > 1 and u ∈ Aλ. Then for each R ∈ (0, 1]

−
∫

SR

|∇u|n−1 ≥ −
∫

SR

|∇urad
λ |n−1

Proof. This inequality follows from Lemma 2.4, the monotonicity of g, and Lemma 2.5 on
noting that for each R ∈ (0, 1],

g

(
−
∫

SR

∣∣(adj∇u)Tn
∣∣) ≥ g

(
−
∫

SR

∣∣∣(adj∇urad
λ )Tn

∣∣∣) = g

((
rλ(R)
R

)n−1)
= |∇urad

λ |n−1,

by (A.1), (A.2), and the definition of g.

3 The case W (F) = | adjF|.

In this section we derive similar estimates to those obtained in the previous section but this
time for the energy function W (F) = | adjF|.

Lemma 3.1. Let u ∈ C1(B\{0}; Rn). Then for each x ∈ SR, R ∈ (0, 1], we have

| adj∇u|2 ≥
∣∣∣(adj∇u)Tn

∣∣∣2 +
n− 1∣∣∣(adj∇u)Tn

∣∣∣ 2
n−1

. (3.1)

8The change of variables formula implies that every smooth, isochoric, one-to-one map preserves volumes.
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Proof. Let n ≥ 3. Writing G := adj∇u we note that, using the arithmetic-geometric mean
inequality,

|G|2 =
∣∣GT

∣∣2 =
∣∣GTn

∣∣2 +
∣∣GTt1

∣∣2 + . . .+
∣∣GTtn−1

∣∣2
≥

∣∣GTn
∣∣2 + (n− 1)

∣∣(GTt1

)
× . . .×

(
GTtn−1

)∣∣ 2
n−1 . (3.2)

Next, observe that, by (i) and (iii) of Lemma 1.1,(
(adj∇u)Tt1

)
× . . .×

(
(adj∇u)Ttn−1

)
= (∇u)n. (3.3)

Finally, by the Cauchy-Schwarz inequality and the fact that det∇u = 1,

1 = |n|2 =
∣∣∣(∇u)n · (adj∇u)Tn

∣∣∣ ≤ ∣∣∣(∇u)n
∣∣∣ ∣∣∣(adj∇u)Tn

∣∣∣ . (3.4)

Equations (3.2)–(3.4) then yield (3.1). The case n = 2 follows similarly from (3.2)1 on using (i)
of Lemma 2.1 and Remark 1.2 (with G = (adj∇u)T).

Lemma 3.2. For t > 0 define

h(t) =
(
t2 +

n− 1

t
2

n−1

) 1
2

.

Then h is convex on (0,∞) and monotone increasing for t ≥ 1.

Proof. The monotonicity of h is a straightforward calculation. The convexity follows on ob-
serving that

h(t) = tψ

(
1
t

)
, ψ(y) :=

(
1 + (n− 1)y

2n
n−1

) 1
2
, h′′(t) =

1
t3
ψ′′

(
1
t

)
,

and ψ′′ ≥ 0.

Theorem 3.3. Let λ > 1 and u ∈ Aλ. Then for each R ∈ (0, 1]

−
∫

SR

| adj∇u| ≥ −
∫

SR

| adj∇urad
λ |.

Proof. First note that by Lemma 1.3,
∫
SR
|(adj∇u)Tn| is the area of u (SR). Hence, by Lemma

3.1, the convexity of h, and Jensen’s inequality

−
∫

SR

| adj∇u| ≥ h

(
−
∫

SR

∣∣∣(adj∇u
)Tn

∣∣∣) ≥ h

(
−
∫

SR

∣∣∣(adj∇urad
λ

)Tn
∣∣∣),

where the last inequality follows from the monotonicity of h and Lemma 2.5. Finally, note that
by (A.2) and (A.3),

h

(
−
∫

SR

∣∣∣(adj∇urad
λ

)Tn
∣∣∣) = h

((
rλ(R)
R

)(n−1))
= | adj∇urad

λ |,

where rλ and urad
λ are related by (1.7).
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4 The general case: W (F) = Φ(|F|n−1, | adjF|).

Now suppose that W (F) = Φ(|F|n−1, | adjF|). If we now combine the arguments of Sections 2
and 3 we obtain the following result.

Theorem 4.1. Let λ > 1 and

W (F) = Φ(|F|n−1, | adjF|),

where Φ : [0,∞)× [0,∞) → [0,∞) is convex and s 7→ Φ(s, t) and s 7→ Φ(t, s) are non-decreasing
functions for each t > 0. Then for every u ∈ Aλ

E(u) =
∫

B
W (∇u) dx ≥

∫
B
W (∇urad

λ ) dx = E(urad
λ ).

Proof. We first note that Φ ≥ 0 and so if u ∈ Aλ has infinite energy we are done. Thus we
assume that E(u) < ∞. Using Jensen’s inequality, the monotonicity of Φ, and Theorems 2.6
and 3.3 we obtain∫

B
W (∇u) dx =

∫ 1

0

(∫
SR

Φ(|∇u|n−1, | adj∇u|)
)
dR

≥
∫ 1

0
ω̄nR

n−1Φ
(
−
∫

SR

|∇u|n−1,−
∫

SR

| adj∇u|
)
dR

≥
∫ 1

0
ω̄nR

n−1 Φ
(
−
∫

SR

|∇urad
λ |n−1,−

∫
SR

| adj∇urad
λ |

)
dR

=
∫ 1

0
ω̄nR

n−1Φ
(
|∇urad

λ |n−1 , | adj∇urad
λ |

)
dR =

∫
B
W (∇urad

λ ) dx.

5 Extension to Sobolev Deformations.

The results in [12, Theorem 4.1] guarantee the existence of an absolute minimiser for any
continuous polyconvex energy, satisfying appropriate growth conditions, amongst deformations
that create a single (possibly non-symmetric) hole at the centre of the ball9. A straightfor-
ward modification of the proof of this theorem yields a corresponding existence result in the
class of isochoric deformations. In this section we outline the main steps in an argument that
demonstrates that the radial function, urad

λ given by (1.7), is in fact the absolute minimiser of
the energy whose existence is given by such a modified theorem. We start with the necessary
technical preliminaries.

9The existence results in [12] follow by applying the direct method of the calculus of variations as used by
Ball [1] together with the extensions in [8, 12, 18] to include cavitation.
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For p > n − 1 the distributional Jacobian of a mapping u ∈ W 1,p(B; Rn) ∩ L∞(B; Rn) is
the linear functional, (Det∇u) : C∞

0 (B) → R, given by

(Det∇u)(φ) = − 1
n

∫
B
φ,αu

i(adj∇u)α
i dx for all φ ∈ C∞

0 (B). (5.1)

If u ∈ C2(B; Rn) then integrating (5.1) by parts yields

(Det∇u)(φ) =
∫

B
φ(det∇u) dx for all φ ∈ C∞

0 (B).

Thus, the distributional Jacobian is equal to the ordinary Jacobian, det∇u, and we write

Det∇u = (det∇u)Ln

in the sense of distributions, where Ln denotes n-dimensional Lebesgue measure. If, however,
the map u has a discontinuity at the centre of the ball, then roughly speaking, we pick up an
extra contribution from the point of discontinuity in the integration by parts process and find
that

Det∇u = (det∇u)Ln + αδ0, (5.2)

where δ0 denotes the Dirac measure supported at the centre 0 of the ball. The coefficient α
is the volume of the hole created at the origin. Thus specifying that a deformation satisfy
(5.2), for some α ≥ 0, in the sense of distributions is a precise mathematical formulation of the
requirement that a deformation opens at most one hole at the centre of B.

There are two other mathematical difficulties that must be addressed to obtain the existence
of an energy minimizer. Firstly, the distributional Jacobian as defined above does not detect
cavities that form at the boundary of the ball10 and, secondly, the minimizer obtained using
the direct method of the calculus of variations must not interpenetrate matter (see [8, §11]).

A possible solution to the first problem (and the one adopted in [7, 12]) is to extend the
deformation using the boundary-values, i.e., for some ε > 0 define

ue(x) :=
{

u(x), x ∈ B
λx, x ∈ B1+ε\B

(5.3)

and then require that (5.2) be satisfied by ue on the extended domain B1+ε.

The specific mathematical difficulty encountered in the second problem is that the weak
limit of a sequence of one-to-one mappings contained in the Sobolev space W 1,p(B; Rn), with
p < n, need not be one-to-one. A possible solution to this problem (and the one which is
adopted in [7, 8, 12]) is to require that deformations satisfy condition (INV). Condition (INV)
is preserved under weak convergence ([8, Lemma 3.3]) and (INV) together with the positivity
of the Jacobian implies that a mapping is one-to-one almost everywhere ([8, Lemma 3.4]).
Condition (INV) is essentially11 the requirement that a mapping be monotone in the sense

10See [7, Remark 3.3] and [8, Figures 5 and 6].
11See [8, §3] for a precise statement of condition (INV).
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of Lebesgue and that a hole created in the body does not contain material originating from
another part of the body.

We now proceed with the extension of the results in §2–5 to Sobolev deformations.

Definition 5.1. Fix p ∈ (n − 1, n), λ > 1, and ε > 0. We define the set of admissible Sobolev
deformations by

Ap
λ =


ue satisfies condition (INV) on B1+ε,

u ∈W 1,p(B; Rn) : u(x) = λx for x ∈ ∂B, det∇u = 1 a.e. in B,

Det∇ue = (det∇ue)Ln + ω̄n
n (λn − 1) δ0

 ,

where ω̄n denotes the area of the (n− 1)-dimensional unit sphere in Rn (ω̄2 = 2π, ω̄3 = 4π) and
ue is given by (5.3).

The next result then extends Lemma 2.5 and follows from the proof of [14, Lemma 5.7].

Lemma 5.2. Let λ > 1, p ∈ (n− 1, n), and u ∈ Ap
λ. Suppose that urad

λ is given by (1.7). Then
for almost every R ∈ (0, 1 + ε)

Hn−1(u(SR)) ≥ Hn−1(urad
λ (SR)),

where Hn−1 denotes (n− 1)-dimensional surface (Hausdorff) measure.

Finally, we arrive at our main result.

Theorem 5.3. Let λ > 1 and suppose that W satisfies

W (F) = Φ(|F|n−1, | adjF|),

where Φ : [0,∞)× [0,∞) → [0,∞) is convex and s 7→ Φ(s, t) and s 7→ Φ(t, s) are non-decreasing
functions for each t > 0. Assume that there are constants p ∈ (n − 1, n), c0 > 0, and c2 such
that, for all s > 0 and t > 0,

Φ(s, t) ≥ c0s
p

n−1 − c2.

Suppose further that E(u) < ∞ for some u ∈ Ap
λ. Then urad

λ , given by (1.7), is a global
minimiser of the energy on Ap

λ.

Proof. The existence of a minimizer, um ∈ Ap
λ, under the above hypotheses follows from a

slight modification of the proof of [12, Theorem 4.1]. The fact that E(um) ≥ E(urad
λ ) is then a

consequence of the arguments used to prove Theorem 4.1. See the proof of [14, Theorem 5.8]
for details.
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A Appendix.

Lemma A.1. Let urad
λ (x) be given by (1.7). Then

∇urad
λ (x) =

(
R

rλ

)(n−1) (
x⊗ x
|x|2

)
+

(rλ
R

) (
I− x⊗ x

|x|2

)
and

|∇urad
λ |2 = Tr

[
(∇urad

λ )T∇urad
λ

]
=

(
R

rλ

)2(n−1)

+ (n− 1)
(rλ
R

)2
. (A.1)

Moreover,

adj(∇urad
λ )(x) =

(rλ
R

)(n−1)
(

x⊗ x
|x|2

)
+

(
R

rλ

) (
I− x⊗ x

|x|2

)
(A.2)

and

| adj(∇urad
λ )|2 =

(rλ
R

)2(n−1)
+ (n− 1)

(
R

rλ

)2

. (A.3)

Proof. These identities follow from (1.4), (1.5), and the incompressibility constraint (1.6).
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