
        

Citation for published version:
Fang, L, Ma, K, Li, R, Wang, Z & Shi, H 2019, 'A Statistical Approach to Estimate Imbalance-Induced Energy
Losses for Data-Scarce Low Voltage Networks', IEEE Transactions on Power Systems, vol. 34, no. 4, 8606229,
pp. 2825-2835. https://doi.org/10.1109/TPWRS.2019.2891963

DOI:
10.1109/TPWRS.2019.2891963

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

(C) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Mar. 2023

https://doi.org/10.1109/TPWRS.2019.2891963
https://doi.org/10.1109/TPWRS.2019.2891963
https://researchportal.bath.ac.uk/en/publications/028f6fa2-5a6d-4697-b10d-07a4543a8f92


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1

 
Abstract—Phase imbalance in the UK and European low 

voltage (415V, LV) distribution networks causes additional energy 
losses. A key barrier against understanding the imbalance-
induced energy losses is the absence of high-resolution time-series 
data for LV networks. It remains a challenge to estimate 
imbalance-induced energy losses in LV networks that only have 
the yearly average currents of the three phases. To address this 
insufficient data challenge, this paper proposes a new customized 
statistical approach, named as the CCRE (Clustering, 
Classification, and Range Estimation) approach. It finds a match 
between the network with only the yearly average phase currents 
(the data-scarce network) and a cluster of networks with time 
series of phase current data (data-rich networks). Then CCRE 
performs a range estimation of the imbalance-induced energy loss 
for the cluster of data-rich networks that resemble the data-scarce 
network. The Chebyshev’s inequality is applied to narrow down 
this range, which represents the confidence interval of the 
imbalance-induced energy loss for the data-scarce network. Case 
studies reveal that, given such few data from the data-scarce 
networks, more than 80% of these networks are classified to the 
correct clusters and the confidence of the imbalance-induced 
energy loss estimation is 89%.  

Index Terms— energy loss, low voltage, phase imbalance, power 
distribution, three-phase power 

I. INTRODUCTION 
 

MBALANCE-induced energy losses in the UK and European 
low voltage (415, LV) distribution networks account for up 

to 35% of the energy losses on distribution wires [1]. This is 
mainly due to the significant phase imbalance in the UK’s LV 
networks [2], [3], [4]. Data from Western Power Distribution (a 
UK distribution network operator) show that over 50% of their 
LV networks have the peak current of the “heaviest” phase 
exceeding that of the “lightest” phase by more than 50%,  e.g. 
it is common to have a peak current of 300 A on one phase and 
150 A on another phase, causing the phase residual current to 
be comparable to or even larger than phase currents [5]. The 
phase residual current then causes an imbalance-induced energy 
loss. Imbalance-induced energy losses are also widespread in 
distribution networks in other countries [6], [7]. Therefore, 
understanding imbalance-induced energy losses are important 
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for distribution network operators (DNOs) to evaluate the total 
cost of phase imbalance and the potential benefit of phase 
balancing [8], [9]. 
 There exist a number of references that focus on imbalance-
induced energy losses. Reference [10] calculates the energy loss 
on the neutral wire of overhead lines in the distribution network, 
using Carson’s equations to model the lines. Reference [11] 
calculates neutral energy losses, based on the ratio between the 
equivalent neutral line resistance and line resistance of a 
transposed three-phase line. Reference [12] calculates the 
neutral energy loss caused by non-linear three-phase loads. 
Reference [13] calculates the neutral energy loss in medium-
voltage distribution networks due to load imbalance. Reference 
[14], [15] calculates the energy losses in distribution networks, 
including energy losses on both the phases and the neutral wire.  

The above references all require networks to have high-
resolution time series data (e.g., data collected every 15 minutes 
or of a comparable resolution) or load curves. However, only a 
small portion of LV networks, the data-rich networks, have 
high-resolution time-series data, whereas the majority of LV 
networks only have data collected once a year, i.e., they are 
data-scarce networks. Therefore, a major challenge to 
understanding imbalance-induced energy losses is the lack of 
data. Existing imbalance-induced energy loss estimation 
methods are not applicable to data-scarce networks.  

This paper makes the following original contributions:  
1) It for the first time estimates imbalance-induced energy 

losses for data-scarce networks.  
2) To achieve 1), this paper proposes a new customized 

statistical approach named as CCRE, which consists of three 
stages: Clustering, Classification, and Range Estimation.  

The CCRE approach overcomes the insufficient data 
challenge by finding a cluster of data-rich networks whose 
features match the data-scarce network through clustering and 
classification, using only the yearly average currents of the 
three phases as the feature. Then this approach performs a range 
estimation of the imbalance-induced energy loss for the cluster 
of data-rich networks that resemble the data-scarce network. 
This range is narrowed down by applying the Chebyshev’s 
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inequality formula to counter the impact of outliers. This is the 
confidence interval of the imbalance-induced energy loss for 
the data-scarce network.  

Because the yearly average phase currents are widely 
available data in LV networks, this research enables the DNOs 
to estimate imbalance-induced energy losses on a mass scale 
across its business area, without the need to deploy high-
resolution monitoring devices. This is economically appealing 
in terms of significant cost savings. According to [16], if all 
UK’s 900,000 LV networks were to be made data-rich, the total 
cost of deploying and maintaining pervasive monitoring 
systems would be approximately two billion British pounds, 
which can be saved. The proposed method enables the DNO to 
evaluate a key cost of phase imbalance for the majority of the 
LV networks that are data-scarce, because imbalance-induced 
energy losses constitute a cost, which occurs year by year until 
the three phases are rebalanced. This cost is a key input for the 
cost-benefit analysis of phase balancing solutions.   

The rest of this paper is organized as follows: Section II 
presents the clustering and classification methodology. Section 
III presents the range estimation of the imbalance-induced 
energy loss. Section IV performs case studies. Section V 
concludes this paper. 

II. METHODOLOGY 
To calculate the imbalance-induced energy loss, two 

variables, phase residual currents and the impedance data, are 
required as inputs. However, these two variables are not 
available in the UK’s data-scarce LV networks, which take the 
majority. For data-scarce networks, the protection systems (e.g. 
Schneider Sepam series 20) in the substations record the yearly 
average currents of the three phases [17]. On the other hand, we 
have time-series phase current data collected from N (in this 
case, N = 800 but the methodology supports a generic dataset) 
data-rich LV substations throughout a year at an interval of 15 
minutes. These substations, within Western Power Distribution 
(a UK DNO)’s business area, cover a good mix of geographical 
areas (urban, suburban, and rural) and customer composition 
(domestic, commercial, and industrial). For example, Cardiff 
city center is selected as an urban area with a large number of 
commercial customers; Monmouthshire is selected as a 
representative rural area [5]. These data are the deliverables of 
the project “Low Voltage Network Templates”. Reference [5] 
presents a detailed description of these data and this project. 

To estimate the phase residual currents for any data-scarce 
LV network using the available data from the 800 networks, the 
CCRE approach is proposed. The reason for having the 
clustering stage is to extract representative characteristics of the 
phase residual currents (expressed in the form of cumulative 
density functions) from the 800 data-rich networks, thus 
transforming the 800 data-rich networks into a few 
representative classes. Then, the purpose of the classification 
stage is to find the best match between the data-scarce network 
and one of the representative classes. Finally, the reason for 
applying the range estimation is to account for the uncertainty 
in the imbalance-induced energy loss estimation. Multiple 
scenarios on the impedance are considered.  The overall 

flowchart of the CCRE approach is presented in Fig. 1. It should 
be noted that all input current data are magnitudes only. 
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Fig. 1 Overview of the CCRE approach 

A. Data pre-processing 
The phase residual current ܫ௣௥௖(ݐ)  is a key variable. For the 

800 data-rich LV networks with time series phase current data, 
the time series phase residual current is given by  

(ݐ)௣௥௖ܫ   = (ݐ)௔ଶܫ] + (ݐ)௕ଶܫ + (ݐ)௖ଶܫ − (ݐ)௕ܫ(ݐ)௔ܫ
− (ݐ)௖ܫ(ݐ)௕ܫ −  ଵ/ଶ[(ݐ)௖ܫ(ݐ)௔ܫ

(1) 

where ܫ௔(ݐ), ,(ݐ)௕ܫ  denote the currents on phases a, b, and (ݐ)௖ܫ
c at time t, respectively. 

In reality, the time series of phase residual currents for 
different LV networks have different lengths because there are 
minor missing data. This paper resolves this problem by 
transforming each time series of phase residual currents into a 
cumulative distribution function (CDF). This is suitable 
because this paper is only concerned about the imbalance-
induced energy loss over a year (this is the basis for calculating 
the annual cost of the imbalance-induced energy loss), rather 
than the power loss at any specific time point.  

For each data-rich network, the time series of phase residual 
currents are transformed into a probability density function of 
the phase residual currents through kernel density estimation 
(KDE) [18]，as given by (2).  

  
(௡ܫ)݂ =

1
݊ ∙ ℎ

෍ܭ(
௡ܫ − (ݐ)௡ܫ

ℎ )
௡

௧ୀଵ

 (2) 

where ܫ௡ denotes the phase residual current; ܫ௡(ݐ) is the phase 
residual current at time ݐ; ݊ denotes the sample size; ℎ denotes 
the kernel bandwidth. In this paper, the kernel function ܭ is 
chosen to be the Gaussian kernel [19], given by : 

  
ܭ ൬

௡ܫ − (ݐ)௡ܫ
ℎ

൰ =
1
ߨ2√

݁ି
ଵ
ଶ(ூ೙ିூ೙(௧)

௛ )మ (3) 

where h is the bandwidth, given by [18]: 
  

ℎ = 1.06 ∙ ߪ ∙ ݊ି
ଵ
ହ (4) 

where ߪ  denotes the standard deviation of the sample data; ݊ 
denotes the sample size. 

For each data-rich network, its probability density function 
of the phase residual currents is transformed into a CDF. 
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Therefore, there are a total of 800 phase residual current CDFs 
for the 800 data-rich LV networks.   

B. Clustering 
Agglomerative hierarchical clustering and k-means 

clustering are applied to cluster these 800 phase residual current 
CDFs into k clusters. The reason why we use the agglomerative 
hierarchical clustering and k-means clustering is because they 
are commonly used classic clustering methods [20], [21]. The 
agglomerative hierarchical clustering method starts by taking 
each CDF as its own cluster; then it generates higher-level 
clusters by merging clusters with the least dissimilarity between 
each other until eventually achieving only one cluster [20]. This 
subsection presents three detailed aspects: 1) distance metrics; 
2) the selection of the number of clusters, and 3) the evaluation 
of clustering results. 
 Both Euclidean distance (ED) [16] and Jensen-Shannon 
distance (JSD) [22]  are applied to calculate the dissimilarity 
between any two CDFs.  
1)  Determine the number of clusters 

In this paper, the number of clusters k is determined by a bi-
objective optimization model. The optimization model aims to 
minimize the weighed sum of: 1) an overlap ratio; and 2) the 
relative within-cluster sum of squared distances. The 
optimization model is given by 

 min
௞

ܥ ∙ (݇)ݎ +  (݇)ݏ
subject to   2 ≤ ݇ ≤ ݇௨௣ = argmax ݎ(݇) 

݇ is an integer 
0 ≤ (݇)ݎ < 1 
0 ≤ (݇)ݏ < 1 

(5) 

where ܥ is a weighting factor (ܥ >  is the overlap ratio (݇)ݎ ;(0
defined in (6); ݏ(݇), defined in (7), is the relative within-cluster 
sum of squared distances as a function of ݇. 

Now this paper defines the overlap ratio ݎ(݇). Because this 
paper estimates the annual imbalance-induced energy loss 
which is proportional to the sum of data-rich network’s squared 
phase residual currents over a year, the clustering results are 
considered “good” if different clusters are distinguishable from 
each other in terms of their distributions of the sums of squared 
phase residual currents over a year. In other words, each cluster 
shall have a distinct distribution of the sum of squared phase 
residual currents as compared to other clusters. To quantify 
such a distinctiveness, the overlap ratio is defined in (6).  

(݇)ݎ  = ݊௢(݇)/ܰ (6) 
where k denotes the number of clusters; ݎ(݇) is the overlap ratio 
as a function of k; ݊௢ is the number of data-rich networks that 
have the same sum of squared phase residual currents across 
different clusters (the shadow area as illustrated in Fig. 2). ܰ 
denotes the total number of data-rich networks. An illustration 
of the overlap ratio is given in Fig. 2.  

 
Fig. 2 The objective overlap area  

The shadow area in Fig. 2, i.e., the overlap of the two clusters 
1 and 2, represents ݊௢ in (6) – this can be easily extended to k 
clusters. The overlap ratio ݎ(݇) is the shadow area divided by 
the total area of all clusters. When ݇ increases from 2 to the 
maximum number of clusters (800 in this case), ݎ(݇)  first 
increases then decreases to zero. Denote ݇௨௣  as the ݇  value 
when ݎ(݇) reaches the maximum.   

Now this paper defines the relative within-cluster sum of 
squared distances ݏ(݇), as given by 

 
(݇)ݏ =

∑ ∑ ௜ݔ) − ௣,௝)ଶ௜ (௫೔∈cluster ௝)ݔ
௞
௝ୀଵ

∑ ௜ݔ) − పഥ)ଶ௜ݔ
 (7) 

where ݔ௜  denotes the ݅ th element in cluster ݆ ௣,௝ݔ ;  is the 
prototype of cluster ݆; ݔ௣,௝ is the medoid of all elements. 
2) Evaluate clustering results 

After determining the number of clusters k, the 
agglomerative hierarchical clustering process is 
straightforward. The results show that the agglomerative 
hierarchical clustering with Euclidean distance yields the least 
overlap ratio, as compared to k-means with Euclidean distance, 
k-means with Jensen-Shannon distance, and agglomerative 
hierarchical clustering with Jensen-Shannon distance. The 
numerical results and detailed discussions are presented in 
section IV (case studies). Therefore, the agglomerative 
hierarchical clustering with Euclidean distance is chosen as the 
method for clustering the 800 phase residual current CDFs. The 
clustering output is a cluster label for each data-rich network, 
indicating which cluster this network belongs to. The medoid 
of each cluster is selected to be the prototype of this cluster [20]. 

C. Classification 
Given the clustering outputs, the classification process 

consists of the following steps: 1) feature vectors (input data for 
classification) are determined for both the data-scarce and data-
rich networks; 2) the feature vectors and cluster labels for the 
800 data-rich networks are used to train the classification model 
by applying multiclass support vector machine (MSVM) and 
kernel-based Adaptive Boost (kAdaBoost); MSVM and 
kAdaBoost then classify the data-scarce network to an existing 
cluster of data-rich networks. The classification results are 
validated by 10-fold cross-validation.  
1) Determine feature vector 

Data-scarce networks do not have time series data and they 
account for the majority of the UK’s LV networks. They only 
have data collected once a year. According to [17], this paper 
suggests that the yearly average currents for three phases 
௔௩௔ܫ) , ௔௩௕ܫ ௔௩௖ܫ ݀݊ܽ  ) be chosen as the known data for data-
scarce networks: 1) DNOs can obtain them directly from 
existing devices in a low-cost fashion for millions of networks 
and these data do not require the deployment of any high-
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resolution monitoring device; 2) the features derived from these 
data allow for a relatively high classification accuracy. 

Given the yearly average phase currents, this paper proposes 
a feature vector consisting of two features: the virtual average 
phase residual current value ܫ௩௣௥௖   and virtual average balanced 
current value ௩௕௖ܫ  . They can be readily calculated from the 
yearly average phase currents: 
௩௣௥௖ܫ  = ௔௩௔ଶܫ) + ௔௩௕ଶܫ + ௔௩௖ଶܫ − ௔௩௕ܫ௔௩௔ܫ

− ௔௩௖ܫ௔௩௔ܫ −  ௔௩௖)ଵ/ଶܫ௔௩௔ܫ
(8) 

௩௕௖ܫ       = ௔௩௔ܫ) ௔௩௕ܫ + (௔௩௖ܫ + 3⁄  (9) 

where ܫ௔௩௔ , ௔௩௕ܫ ௔௩௖ܫ ݀݊ܽ  denote the yearly average phase 
currents. Therefore, the feature vector ௜ܠ  = ௩௣௥௖ܫ ] , [௩௕௖ܫ  is 
available for the data-scarce network.  

For data-rich networks, the above feature vector can be 
readily derived from the time series phase residual current data 
throughout a year. Therefore, each data-rich network has a 
cluster ID (this is an output from the clustering stage) as its label 
and a feature vector ܠ௜ . Then, the feature vectors and cluster ID 
for all data-rich networks and the feature vector for the data-
scarce network are used as the input data for the classification 
stage. 
2) Classification 

The classification is performed by applying two methods, 
kAdaBoost and MSVM. The reason for choosing MSVM 
(which uses the support vector machine as the base classifier) 
is because, by finding the largest margin to separate different 
classes, the performance of the support vector machine is 
widely recognized [23], [24]. kAdaBoost is chosen as a 
candidate because: 1) it reduces the bias of weak leaners by 
combining the weak learners into a strong learner and it is 
shown to be resistant against overfitting [25]; and 2) the 
Gaussian kernel transformation further improve the 
classification accuracy.  

The kAdaBoost method is a combination of the kernel 
transformation and the well-established Adaptive Boost method 
[25]. It consists of the following steps: 

Firstly, a Gaussian kernel transformation is applied to 
transform the original feature vectors ܠ௜ for all networks ݅ (both 
data-rich and data-scarce) into a high-dimensional feature 
space. Such a transformation improves the classification 
accuracy by up to 2%. The Gaussian kernel is given by [26]  

 
൫࢞௜,௝ܭ ,࢞௜,௞൯ = exp (−

ฮ࢞௜,௝ − ࢞௜,௞ฮ
ଶ

ଶߪ2 ) (10) 

where ݔ௜,௝  and ݔ௜,௞  denote the ݆௧௛ and ݇௧௛elements of network 
݅’s feature vector ܠ௜ , respectively; ߪଶ is the variance. 

Secondly, the Adaboost.M2 model takes the transformed 
feature ൫࢞௜,௝ܭ  ,࢞௜,௞൯  as the input. For Adaboost.M2, it is 
essentially a “boosting” method that combines a number of 
weak classification models (“weak models”) into a strong 
classification model (“strong model”) [27] . The strong model 
is given by [22]: 

 
(ݔ)ܪ = argmax෍ℎ௧(ݕ,ݔ) log

1
ܽ௧

்

௧ୀଵ

 (11) 

where ℎ௧ is the weak model; ܽ௧  denotes the weight parameter. 
The well-established algorithm of AdaBoost.M2 is detailed in 
[25].  

The MSVM is the multiclass support vector machine [28], 
[26]. The MSVM is essentially a one-versus-one framework 
that extends the support vector machine (a binary classifier) into 
a multiclass classifier [28]. For each binary classification sub-
problem, the support vector machine aims to find a separating 
hyperplane in the high-dimensional feature space (as a result of 
the Gaussian kernel transformation of the feature vectors) to 
separate the two classes with the maximum margin [24]. The 
support vector machine essentially solves an optimization 
problem, as given by [29]. 

  
min
ω, ௕

1
2
‖ω‖ଶ + ෍݁௜ܥ

ே೟

௜ୀଵ

 

  subject to ݕ௜(ω் ∙ (௜ܠ)߮ + ܾ) ≥ 1− ݁௜ 
௜݁ ≥ 0 

௜ݕ ∈ {−1, 1} 

(12) 

where ω and ܾ are the coefficient vector and the interception 
term, respectively; ݕ௜  is the label for training example ݅; ߮(ܠ௜) 
is the transformed feature vector in the high-dimensional space 
for training example ݅.  ܥ∑ ௜݁

ே೟
௜ୀଵ  is the regularization term that 

reduces the generalization error, where ܥ denotes the penalty 
coefficient; ௧ܰ denotes the total number of training examples; 
݁௜ represents the infringement an outlier causes. The algorithm 
of MSVM is detailed in [23].  

The classification process is validated by 10-fold cross-
validation. This is a well-established, popular validation 
method. It is detailed in [30], [31].  

The classification results from the two methods are compared 
with each other in the case studies. Given the clustering and 
classification model trained and the data-scarce network, the 
output of the classification stage is the cluster to which this 
network is classified. 

III. IMBALANCE-INDUCED ENERGY LOSS RANGE 
ESTIMATION  

The classification stage in Section II – C classifies the data-
scarce network into an established cluster derived in Section II 
– B. The maximum range of the imbalance-induced energy loss 
for this cluster is then derived. This range is then narrowed 
down to a confidence range by applying the Chebyshev’s 
inequality formula. This confidence range is where the 
imbalance-induced energy loss of the data-scarce network falls 
at a predefined confidence level, as cross-validated in Section 
IV. Detailed steps are given below.   

Firstly, the imbalance-induced energy losses for these data-
rich networks are calculated for two different earthing systems, 
TN-C and TN-S. The TN-C earthing system is presented in Fig. 
3 [32] : 
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Fig. 3 The TN-C earthing system 

For the TN-C earthing system, ܫ௣௥௖  is the phase residual 
current that flows into the transformer neutral point from the 
ground [32]. The imbalance-induced energy loss is given by 

௟௢௦௦ܧ   = ଶ(ݐ)௣௥௖ܫ ∗ ௚ܴ (13) 

where ܫ௣௥௖  denotes the phase residual current; ௚ܴ  is the 
equivalent ground resistance, which is 0.0953 (Ω/km) ∙ Length 
(km). 

The TN-S earthing system is shown in Fig. 4 [32]: 

 
Fig. 4 The TN-S earthing system 

For the TN-S earthing system, the protective wire and the 
neutral wire are separate conductors. When there is phase 
imbalance, the phase residual current ௣௥௖ܫ  , flows into the 
transformer neutral point through the neutral conductor. 
Therefore, the imbalance-induced energy loss is given by 

 
௟௢௦௦ܧ = ଶ(ݐ)௣௥௖ܫ ∗ ܴ௡ (14) 

where ܫ௣௥௖  denotes the phase residual current; R௡  denotes the 
neutral wire resistance. 
 Secondly, given that the clustering stage in Section II – B has 
already clustered the 800 data-rich networks into N clusters, the 
maximum range [ܧ௟௢௦௦௠௜௡  ௟௢௦௦௠௔௫] of the imbalance-inducedܧ,
energy loss for each cluster is derived, where ܧ௟௢௦௦௠௜௡  and 
௟௢௦௦௠௔௫ܧ  denote the minimum imbalance-induced energy loss 
and the maximum imbalance-induced energy loss, respectively.  

The above maximum range is sensitive to outliers. To 
counter the impact of outliers, the maximum range of the 
imbalance-induced energy loss for each cluster is narrowed 
down to a confidence range by applying the Chebyshev’s 
inequality formula [33]. In industry, a common practice is to 
remove 1 – 2% of the observed data close to the range 
boundaries [34], assuming that the data follow a Gaussian 
distribution. The reason why we choose the Chebyshev’s 
inequality formula is that, unlike other methods, it does not 
require that the data follow any particular classic distribution 
(e.g. Gaussian distribution). In this paper, the imbalance-
induced energy loss results for any cluster of data-rich networks 
are not assumed to follow any particular classic distribution. 
Therefore, the Chebyshev’s inequality formula is suitable in 
this case. The Chebyshev’s inequality formula states that the 
probability of a random variable falling beyond ݇σ from its 
mean is less than 1/݇ଶ, as given by 

 
Prob (|ݔ − |ߤ ≥ ݇σ) ≤ 1/݇ଶ (15)  

where ݔ is  the random value of the imbalance-induced energy 
loss; ߤ  denotes the expectation of the imbalance-induced 
energy loss; σ  is the standard deviation of the imbalance-
induced energy loss; ݇  is the coefficient. Reference [35] 
suggests that the coefficient ݇ be set as 3 to remove outliers, 
which means that the values falling in the interval [ߤ − 3σ, ߤ +
3σ] has a confidence level of 89%.  
 The confidence range corresponds to removing 11% of data 
from the original cluster by the Chebyshev’s inequality method. 
An illustration of the “tail cutting” effect is shown in Fig. 5. 
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Fig. 5 The distribution of example imbalance-induced energy loss for 
cluster i 
 To implement, the distance between the imbalance-induced 
energy loss of each data-rich network and the average 
imbalance-induced energy loss of each cluster i is calculated. 
Then, 11% of the data-rich networks in cluster i with larger 
distances than the rest are removed. The resulting range of the 
imbalance-induced energy loss is the 89% confidence range of 
imbalance-induced energy loss for cluster i.  

The choice of the 89% confidence level for the range 
estimation is validated by applying a 10-fold cross-validation. 
For each cluster of n data-rich networks, n number of 
imbalance-induced energy loss values are randomly divided 
into 10 groups of equal size. One of the ten groups of data-rich 
networks is retained as the validation group, the other 9 groups 
form a large training group to build a distribution of the 
imbalance-induced energy loss values. This distribution is 
narrowed down to the 89% confidence range by applying the 
Chebyshev’s inequality formula. Then, the percentage of the 
validation samples (the imbalance-induced energy loss values 
within the validation group) that fall within the distribution is 
calculated. This process repeats until every group has served as 
the validation group once. This process outputs 10 values, i.e. 
the percentages of the validation samples falling within the 
distribution. These 10 values are averaged and it is found that 
the average value is close to 89%. In this way, the choice of the 
89% confidence level is validated.  

The resulting estimation error of the imbalance-induced 
energy loss is given by 

 
ݎ݋ݎݎ݁ = ܮܣ| −   (16) ܮܣ/|ܮܯܧ

where AL denotes the actual imbalance-induced energy loss 
(IIBL) of the LV networks; EML is the mean value of the 
estimated range of the imbalance-induced energy loss.  
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IV. CASE STUDY 
This section presents the numerical results. The clustering 

and classification results are given in Sections IV – A and B, 
respectively. The imbalance-induced energy losses are 
calculated in Section IV – C. A discussion is presented in 
Section IV – D.  

A. Clustering  
The first step of clustering is to determine the number of 

clusters by solving the bi-objective optimization problem in (5). 
TABLE I presents the overlap ratio ݎ(݇) for different numbers 
of clusters ݇. 

TABLE I 
OBJECTIVE OVERLAP RATIO COMPARISON 

Number of 
clusters 

 under the ED (݇)ݎ
metric 

 under the JSD (݇)ݎ
metric 

6 3.2% 9.8% 
7 3.2% 9.8% 
8 3.45% 10.1% 

  In TABLE I, (8)ݎ > (7)ݎ = ݇ .(6)ݎ = 7 is preferred over 
݇ = 6  because the former corresponds to a lower sum of 
within-cluster errors. Therefore, the number of clusters ݇  is 
chosen to be 7 for both JSD and ED metric.  
 Given the number of clusters ݇ = 7, the second step is to 
perform the clustering process using both k-means and 
hierarchical clustering methods, based on JSD and ED distance 
metrics. The results are presented in TABLE II for comparison. 

TABLE II 
CLUSTERING METHOD COMPARISON 
 r(݇) Hierarchical 

Cophenet 
Hierarchical 

clustering 
JSD 9.8% 0.7733 
ED 3.2% 0.7845 

K-means 
clustering 

JSD 22.%  
ED 10.3%  

 In TABLE II, the Hierarchical cophenet denotes the cophenet 
correlation coefficient for the Hierarchical cluster tree, 
indicating how faithfully the tree represents the dissimilarities 
among observations (the larger the better). Hierarchical 
clustering with the ED distance metric yields the lowest overlap 
ratio and a higher cophenet – this combination is therefore 
chosen for clustering.  

 Fig. 6 and Fig. 7 visualize how distinguishable the seven 
clusters are under: 1) hierarchical clustering with ED metric; 2) 
hierarchical clustering with JSD metric; 3) k-means with ED 
metric; and 4) k-means with JSD metric.  

 
Fig. 6 Hierarchical (left) and K-means (right) clustering results with ED 
metric 

 
Fig. 7 Hierarchical (left) and K-means (right) results with JSD metric 
 In these diagrams, each cluster is resembled as a bar. Fig. 6 
and Fig. 7 show that hierarchical clustering with the ED 
distance metric yields the most distinguishable seven clusters 
as compared to other methods.  

The phase residual current CDFs of the data-rich networks 
within each cluster are plotted as a heat map in Fig. 8.  

 
Fig. 8 The heat map of the squared phase residual current CDFs of the data-
rich networks within each cluster 

In Fig. 8, the diagram is separated into seven intervals by six 
vertical white lines, where each interval corresponds to a cluster 
(from Cluster 1 in the left to Cluster 7 in the right). Each blue-
yellow vertical line represents the phase residual current CDF 
of a data-rich network belonging to the cluster. Each red vertical 
line represents each cluster’s prototype. This figure 
demonstrates that each cluster has its own phase residual 
current CDF tendency, which is distinctive from other clusters. 
In addition, Cluster 1 accounts for 1.09% of the data-rich 
networks in this study; Clusters 2 – 7 account for 15.25%, 49%, 
23.96%, 6.72%, 2.72%, and 1.27% of the data-rich networks, 
respectively.  

B. Classification  
According to Section II – C, the virtual average balanced 

current and virtual average phase residual current are the 
features used for classification in this sub-section. This feature 
is derived from yearly average currents of three phases 
,ܽݒܽܫ) ܾݒܽܫ  and ܿݒܽܫ), recorded once a year by a relay protection 
metering function. The distribution of the features for each 
cluster is plotted in Fig. 9.  

 
Fig. 9 Data-rich networks’ feature distribution  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7

Fig. 9 shows that the features for different clusters overlap to 
a large extent. This overlap reflects the data scarcity, i.e., the 
available feature is rather limited.  
 From case studies, we find that the Gaussian-kernel-based 
MSVM and kAdaBoost achieve higher classification accuracies 
than alternative classification methods such as k-Nearest 
Neighbours (KNN) and decision tree. The comparison of the 
classification accuracies is presented in Fig. 10. 

 
Fig. 10 The classification results comparison of different methods 
  From Fig. 10, the MSVM achieves the highest classification 
accuracy of 82%, followed by kAdaBoost which achieves a 
classification accuracy of 81.7% and adaptive boost (AdaBoost) 
which achieves 79.5% accuracy. KNN and decision tree 
achieve 78.4% and 77.7% accuracies, respectively. In 
comparison, a blind guess would give an accuracy of only 
14.29%.  
 The confusion matrices for the classification results by 
MSVM and kAdaBoost are presented in Fig. 11. 

 
(a) 

 
(b) 

 Fig. 11 Confusion matrices for the MSVM and kAdaBoost methods 
The confusion matrices in Fig. 11 demonstrate the 

classification accuracies in details. For instance, for the MSVM 
classification, column two shows that the data-scarce network 
which should be classified into Cluster 2 has 5% probability of 
being misclassified into Cluster 1, 22% probability of being 
misclassified into Cluster 3. 

Both classification methods only require  virtual average 
balanced current and virtual average phase residual current, 
derived from the yearly average currents of three phases 
( ,ܽݒܽܫ ܿݒܽܫ and ܾݒܽܫ ), as the feature from data-scarce LV 

networks. This means it can be implemented in a cost-effective 
manner using existing devices only. 

For example, a data-scarce network has the yearly average 
phase currents ௔௩௔ܫ]  , ௔௩௕ܫ , [௔௩௖ܫ = [219.1A, 182.4A, 224.1A] . 
These data are transformed into a feature vector ௜ܠ  =
௩௕௖ܫൣ , ௩௣௥௖൧ܫ = [208.5A, 39.4A]. Given this feature vector, this 
data-scarce network is classified into Cluster 4 by applying 
either MSVM or kAdaBoost. 

C. Imbalance-induced energy losses estimation 
The resistance of the path on which the phase residual current 

flows is affected by many factors, including the length of the 
path, the resistivity of the cables and the ground, ambient 
condition, and the topology, etc. To account for the complicated 
nature, this paper considers multiple scenarios on the resistance 
and estimates the imbalance-induced energy losses for these 
scenarios. According to [36], the length of the UK’s LV 
networks normally ranges from 0.9 km to 2.1 km; the resistivity 
of the ground is 0.0953 Ω/km; the resistivity of the neutral 
conductor ranges from 0.168 Ω /km to 0.320 Ω /km. Therefore, 
for TN-C earthing system, the ground resistance ௚ܴ  varies from 
0.0858 Ω to 0.2001 Ω; for TN-S earthing system, the neutral 
conductor resistance ܴ௡  varies from 0.1512 Ω to 0.6720 Ω; 

For the TN-C earthing system, the confidence range of the 
imbalance-induced energy losses for each cluster is plotted in 
Fig. 12: 
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Fig. 12 The confidence range of the imbalance-induced energy losses of TN-C 
earthing system for the clusters 

For example, when the ground resistance is 0.143 Ω (a length 
of 1.5 km, which is the average length of the UK’s LV 
networks), for Cluster 1, the confidence range of the imbalance-
induced energy losses is [54 kWh, 76 kWh] per year. The 
confidence ranges of the imbalance-induced energy losses for 
Clusters 2 – 7 are [328 kWh, 1,163 kWh], [1,457 kWh, 4,271 
kWh], [4,601 kWh, 8,638 kWh], [10,005 kWh, 16,345 kWh], 
[16,904 kWh, 26,615 kWh], and [26,914 kWh, 41,405 kWh] 
per year, respectively. 

Given an estimation of 900,000 networks throughout the UK 
and an average electricity price of £ 0.18/kWh, the phase 
imbalance situation causes 3.01 × 10଺  to 6.02× 10଺ MWh of 
imbalance-induced energy losses each year, worth £451.2m to 
£903.0m per annum. 

For TN-S earthing system, the neutral conductor resistance 
ܴ௡varies from 0.1512 Ω to 0.6720 Ω. The confidence range of 
the imbalance-induced energy losses for each cluster is plotted 
in Fig. 13: 
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Fig. 13 The confidence range of the imbalance-induced energy losses 
of TN-S earthing system for the clusters 

For example, if the neutral conductor resistance is 0.252 Ω 
(with a length of 1.5 km and a resistivity of 0.163 Ω/km), for 
Cluster 1, the confidence range of the imbalance-induced 
energy losses is [94 kWh, 135 kWh] per year. The confidence 
ranges of the imbalance-induced energy losses for Clusters 2 – 
7 are [578 kWh, 2,050 kWh], [2,569 kWh, 7,531 kWh], [8,114 
kWh, 15,233 kWh], [17,644 kWh, 28,824 kWh], [29,809 kWh, 
46,934 kWh], and [47,461 kWh, 73,016 kWh] per year, 
respectively. 

Given an estimation of 900,000 networks throughout the UK 
and an average electricity price of £ 0.18/kWh, the phase 
imbalance situation causes 5.3 × 10଺  to 1.06× 10଻ MWh of 
imbalance-induced energy losses each year, worth £795.3m to 
£1,592m per annum. 

This paper applies a 10-fold cross-validation to validate the 
confidence range of the annual imbalance-induced energy loss. 
The cross-validation results show that 9% of the data-rich 
networks that belong to Cluster 2 fall beyond the confidence 
range of Cluster 2; 11%, 12%, and 11% of the data-rich 
networks that belong to Clusters 3, 4, and 5 falls beyond the 
respective confidence range of the cluster. Clusters 1, 6, and 7 
have 5, 15, and 6 data-rich networks, respectively – too few 
networks that it is not suitable to remove any data from them. 
Therefore, the confidence ranges of Clusters 1, 6, and 7 are the 
maximum range of these clusters.  

The same example in Section IV – B is used. Its estimated 
imbalance-induced energy loss is within a confidence range of 
[1,074 kWh, 2,131 kWh] per year, with a confidence level of 
89%.  

TABLE III presents a few examples showing the estimation 
errors: 

In TABLE III, the first three examples are classified into the 

wrong clusters, resulting in substantial errors of more than 40%. 

The last three examples are classified to the correct clusters, 
resulting in errors of less than 20%.  

D. Discussion 
To estimate the imbalance-induced energy loss, the proposed 

CCRE approach only requires the yearly average phase currents 
as the feature from data-scarce networks. This feature can be 
readily obtained from existing LV networks. This renders the 
CCRE approach applicability to the majority of the UK’s LV 
networks that are data-scarce, without the need for high-
resolution monitoring devices on neutral wires.  

In this paper, the 800 CDFs of the phase residual current ܫ௣௥௖ 
are used as the input data for clustering. The energy loss is 
proportional to the square of the phase residual current, i.e. ܫ௣௥௖ଶ . 
However, the reason why the CDFs of ܫ௣௥௖ are used as the input 
data instead of the CDFs of ܫ௣௥௖ଶ  is because the latter would 
increase the data dispersion from 0 – 300 to 0 – 90,000. This 
expands the range of the CDFs to a level too wide for clustering. 
Furthermore, the clustering results show that the former results 
in an overlap ratio as low as 3.2%, whereas the latter results in 
an overlap ratio of more than 20%. Therefore, the former is 
much better than the latter as the input data for clustering.  

The CCRE approach is designed to be generic. To apply the 
CCRE approach to other countries, it would require the 
following two groups of input data for the country in question: 
1) the time-series phase current data monitored throughout a 
year from at least hundreds of data-rich LV networks (these data 
are used as the training data); and 2) the yearly average phase 
currents for the data-scarce network (these limited data are 
called the feature). The more representative the training data 
are, the more accurate the estimated phase residual current for 
the data-scarce network is.  

This paper considers phase residual current profiles and there 
is a fundamental difference between a load profile and a phase 
residual current profile. The former depends on the number of 
customers and types of customers, whereas the latter depends 
on how evenly (or unevenly) customers are allocated across the 
three phases. Because urban, suburban, and rural areas have 
very different customer densities and types of customers, their 
load profiles are different – the classification of load profiles 
into these four areas is justified. However, different types of 
areas may have the same degree of phase imbalance, i.e. 
customers in these areas are allocated in the same uneven 

fashion, thus resulting in similar phase residual current profiles. 
On the other hand, two networks in the same type of areas (e.g. 

TABLE III 
EXAMPLE OF THE CCRE ESTIMATION ERROR 

 Ivprc 
(A) 

Ivbc 
(A) 

Correct 
cluster 

Actual IIBL 
(kWh) 

Classified 
cluster  

Estimated range of 
IIBL (kWh) Estimation error 

1 87.3 324 5 24,520 6 29,809 – 46,934 61.15% 
2 19.7 336 3 3,096 2 577 – 2,050 55.91% 
3 98.0 407 6 38,350 5 17,644 – 28,824 40.92% 
4 17.8 38.1 2 1,692 2 577 – 2,050 19.33% 
5 59.9 177 4 9,580 4 8,114 – 15,233  18.29% 
6 145 181 7 54,386 7 47,461 – 73,016 13.79% 
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urban) may have very different degrees of phase imbalance, 
resulting in vastly different phase residual current profiles. 
Therefore, the division into urban, suburban, and rural areas is 
not applicable in this paper.  

There can be full current measurements from high-voltage 
(132 kV / 33 kV) and medium-voltage (33 kV / 11 kV) 
distribution substations as well as customer billing data. 
However, these measurements are not normally available from 
low-voltage (11 / 0.415 kV, LV) substations downwards 
(inclusive), because of the prohibitively high cost to monitor 
millions of LV networks. Furthermore, even if smart meter data 
were available for all customers (which is not the case in the 
UK now), which phase each customer is connected to is still 
unknown [37], [38]. Because of the above field limitations, 
state estimation cannot be performed for LV networks. 

The load loss factor method is popular for calculating energy 
losses. However, it is not suitable in this paper, because it 
requires the average phase residual current and the maximum 
phase residual current as the input data, which are not available 
for data-scarce LV networks. Furthermore, the load loss factor 
is suggested to be updated every month to minimize the error of 
the estimation [39]. For the data-scarce networks, the cost to 
update the load loss factors for 900,000 LV networks every 
month would be unimaginably high.  

Increasing available features would improve the accuracy of 
the classification. If the sum or average of the phase residual 
currents over a year were known for data-scarce networks, the 
CCRE approach would achieve an accuracy of 96.8%, much 
higher than if only the average phase residual currents are 
known. However, increasing features pose more requirements 
on the monitoring of the LV networks, resulting in more costs.  

Phase imbalance causes two costs: 1) the imbalance-induced 
energy loss; and 2) the additional network investment cost. 
These two costs are required to be estimated for a cost benefit 
analysis of any phase balancing project. This paper finds out 
whether the 1st cost element is significant or not and how 
significant it is for both highly phase-imbalanced LV networks 
and not-so-imbalanced LV networks. Furthermore, this paper 
calculates the 1st cost for one year only. In reality, this cost 
occurs year by year until the three phases are fully balanced. 
Future work will be to perform a full cost-benefit analysis for 
phase balancing solutions considering the above two benefits 
together, the lack of data in LV networks, and the uncertainty 
associated with the phase balancing capability.   

V. CONCLUSIONS 
This paper addresses an unsolved problem faced by utility 

companies, i.e., estimating imbalance-induced energy losses for 
data-scarce low voltage (415V, LV) networks with only the 
yearly average phase currents data.  

The 800 LV data-rich networks with full time-series of phase 
currents data are clustered into 7 clusters, where each cluster 
represents networks of similar phase residual current profiles. 
Then, at the classification stage, cross-validation results show 
that nearly 82% of the data-scarce networks are classified to the 
correct clusters. The confidence interval of the imbalance-
induced energy loss for the data-scarce network is derived at a 

confidence level of 89%. The proposed methodology enables 
distribution network operators to evaluate a key cost of phase 
imbalance. This cost serves as a necessary input for the 
appraisal of the benefit from phase balancing. 

APPENDIX 
The phase residual current is the vector sum of the phase 

currents: 
 

௣௥௖ሬሬሬሬሬሬሬ⃗ܫ = ௔ሬሬሬ⃗ܫ  + ௕ሬሬሬ⃗ܫ + ௖ሬሬ⃗ܫ  (17)  

In the absence of phasor measurements, it is assumed that the 
phase currents are 120° apart from each other. Therefore,  

௣௥௖ሬሬሬሬሬሬሬ⃗ܫ  = ௔ܫ  cos 0° + ௔ܫ݆ sin 0° ௕ܫ+ cos−120°

+ ௕ܫ݆ sin−120° ௖ܫ+ cos 120°

+ ௖ܫ݆ sin 120° 

= ௔ܫ) −
1
2
௕ܫ −

1
2
(௖ܫ + ݆(

√3
2
௖ܫ −

√3
2
 (௕ܫ

(18)  

 
หܫ௣௥௖ห = ඨ൬ܫ௔ −

1
2 ௕ܫ −

1
2 ௖ܫ

൰
ଶ

+ ቆ
√3
2 ௖ܫ −

√3
2 ௕ቇܫ

ଶ

 

= ටܫ௔ଶ + ௕ଶܫ + ௖ଶܫ − ௕ܫ௔ܫ − ௖ܫ௕ܫ −  ௖ܫ௔ܫ

(19)  

where ܫ௣௥௖  is the phase residual current; ܫ௔, ܫ௕ and ܫ௖ denote the 
magnitudes of the phase currents.  
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