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Abstract

The power captured by a wave energy converter (WEC) can be greatly increased through the use
of a well-conceived wave-by-wave control strategy. Optimal strategies including Model Predictive
Control (MPC) rely on a dynamic model of the WEC and prediction of the wave excitation force
several seconds into the future. Both the modelling and prediction processes are subject to errors.
This study investigates the impact of these errors on the performance of a WEC under MPC. Idealised
simulations are conducted to establish a suitable prediction horizon and establish a performance
benchmark against an optimally tuned passively damped system. Power increases of over 200%
are seen. The assumptions of perfect prediction and system modelling are progressively removed,
culminating in multi-body simulation of a specific multi-DOF submerged point absorber WEC with
constrained MPC. Under realistic conditions, the power gain is a more modest 30% at best across the
tested sea states, demonstrating that these errors have a significant impact on performance. However,
the ability to use constraints to limit motion in high energy seas and the tunability of the control
law are valuable attributes for practical deployment. Overall the performance gains demonstrate the
benefits of such control strategies for application to multi-DOF WECs.

Keywords–Wave energy converter, model predictive control, real-time estimation, prediction.

I. INTRODUCTION

The control system is key to enabling wave energy converters (WECs) to become economically1

viable by maximising energy capture in variable sea states. Many control strategies have been2

proposed to achieve a practically implementable optimal or sub-optimal power maximising objective.3

This study is concerned with the application of model-based optimal control strategies and uses a4

Model Predictive Control (MPC) formulation.5

Many simulation studies on the control of WECs use a simplified buoy constrained to move only6

in heave, though there are examples using multiple degree-of-freedom (DOF) devices. For example,7

Abdelkhalik et al have applied a pseudo-spectral optimal controller to a 3-DOF floating point absorber8

which extracts power from heave, surge and pitch motion [1]. Scruggs et al [2] developed an optimal9

causal controller for a tethered device with similarities to the WEC studied here, and an internal10

model control strategy is applied to a similar device in [3]. Example WEC applications of MPC can11

be found in [4], [5] and [6] and many variants have been proposed. In each case, the hydrodynamics12

are approximated by Boundary Element Method (BEM) solutions and embedded within the idealised13

model around which the MPC is formulated. The controller performance is then established by14

application to a system with identical dynamics, thus the assumption is that there is no model15

mismatch. MPC and other optimal strategies also require future knowledge of the wave excitation16

force. The common assumption is that this knowledge is readily available and many studies will17

assume perfect prediction over any control horizon. In practice the excitation force must be estimated18

(again a model-based procedure) and then forecast on-line based upon measurements and historical19

data. Errors will inevitably be introduced but there are relatively few studies that investigate the20

more realistic deployable situations. The focus here is not on the improvement of the control, but21



rather to test the effects on system performance of removing common assumptions made in other22

studies.23

The sensitivity of an MPC control strategy to model mismatch in the hydrodynamics (mass,24

damping and stiffness) has been studied in [7] with application to a simulated heaving buoy. The25

most significant performance degradation was found to be related to mismatch in the hydrodynamic26

stiffness model. A more generic study of closed-loop sensitivity to hydrodynamic model mismatch27

was conducted in [8]. The hydrodynamic added mass, radiation damping and hydrostatic stiffness28

parameters are varied from those fixed in the controller model. Two common control structures29

are investigated - approximate conjugate control (ACC) and approximate optimal velocity tracking30

control (AVT). These are applied to a simplified heaving buoy and the sensitivity of power absorption31

to parameter variations is established. It is found that ACC is sensitive to inertial and stiffness errors32

while the AVT is less so due to the robust nature of the tracking loop. In both studies perfect33

knowledge of the future wave excitation over the prediction horizon was assumed, and errors here34

will inevitably impact on the overall system performance.35

Here we study the effects of prediction errors and model mismatch by applying an MPC law to a36

specific multi-DOF WEC, known as WaveSub, in multiple situations with progressively more realistic37

assumptions:38

1) In section VII the effect of prediction horizon on performance is studied by applying the MPC39

law to an idealised linear model of the WEC. Both ideal prediction and combined on-line40

estimation and prediction of the wave excitation force are included.41

2) In section VIII, ideal prediction is assumed but the MPC law is applied to a nonlinear WEC42

model to study the effects of model mismatch.43

3) In section IX, constraints on displacement and control force are applied with model mismatch44

present.45

4) In section X, a WEC-Sim ([9]) simulation of the WEC is conducted which includes on-line46

estimation and prediction of the excitation force. The model includes full kinematic constraints47

plus further constraints on control forces to avoid slack PTO lines.48

The paper is organised as follows. An overview of the WaveSub WEC is provided in section II.49

Section III provides a description of the linearised equivalent model for use in the controller. The50

MPC law is described in section IV. Sea states used for assessment are given in section V and a51

method for wave force estimation and forecasting given in section VI. Simulation results for the52

idealised and WEC-Sim cases are provided in sections VII to X and conclusions are provided in53

section XI.54

II. OVERVIEW OF THE WAVESUB WEC55

WaveSub is under development by Marine Power Systems Ltd (MPS). It is a submerged point56

absorber with a unique multi-tether configuration and variable geometry which can be tuned to the57

prevailing sea state. A float moves with the waves and reacts against a moored base. The tethers58

pull on rotational drums which are attached to a PTO. The WEC is designed such that it can be59

lowered in energetic seas to avoid slam loading and aid survivability. An illustration of a full scale60

multi-float concept is shown in Figure 1.61

This study uses a single section of this device, comprising a single float with four taut tethers62

connected to individual drums and rotational PTOs. The float geometry and numerical mesh are63

illustrated in Figure 2 and the block diagram of the complete system is shown in Figure 3. This64

embodiment of WaveSub uses mechanical gearboxes connected to the PTO drums, which step up65

the drum speed and step down its torque accordingly. Electrical generators provide resistive or66

(occasionally) additive torques to extract or inject power according to a control strategy. The tethers67

are pretensioned to react the float buoyancy and are also connected to mechanical springs which68

are used to tune the natural frequency of the device to suit the incident sea state. Table I shows the69

important dimensions of the WEC system.70

III. LINEARISED DYNAMIC SYSTEM MODEL71

The MPC formulation requires a linearised approximation to the WEC and PTO systems. For72

simplicity we assume the reactor to be fixed as a taut mooring system is used. Therefore, the WEC73

dynamics can be represented by the state-space system74



Fig. 1. Illustration of a full scale multi-float WaveSub concept

Fig. 2. Float geometry and numerical mesh

Fig. 3. Block diagram representation of WEC/PTO systems

ẋ+(t) =

 ẋ
ẍ

ṗr

 = Acx+(t) + Bc(fe(t) + u(t))

y(t) = Ccx+(t)

(1)

where u is the 6DOF control force vector, fe is the wave excitation force vector and the position and75

velocity state vector is given by [x ẋ]
T . The state vector is augmented with the auxiliary states pr76

relating to a 4th order State-Space approximation Gr of the radiation impulse response functions77



TABLE I
DIMENSIONS OF THE GEOMETRY OF THE FULL SCALE WEC-SIM MODEL

Properties Value Unit
Float diameter 12 m
Float cylinder length 4.75 m
Float mass 1184 t
Reactor length 51.55 m
Reactor width 50 m
Reactor height 4.85 m
Water depth 75 m
Submergence (to top of float) 2 m

described by78

ṗr(t) = Arpr(t) + Brẋ(t)∫ t
0

Kr(t− τ)ẋ(τ)dτ ≈ Crpr(t) + Drẋ(t)
(2)

where the matrices {Ar,Br,Cr,Dr} describing Gr are computed using the bemio code supplied with79

WEC-Sim [9], which uses the radiation impulse response function computed using the NEMOH BEM80

solver [10]. Including all 36 modes in a general state-space model results in 144 states. For the float81

geometry studied here (please refer to Figure 2), there are nine significant radiation impulse response82

functions which need to be approximated (similar to the study in [3]). This results in a reduction to83

36 radiation force states and a more tractable model for control system design.84

The augmented plant and output matrices are obtained from linearising the WEC system about85

its nominal resting position. These are given by86

Ac =

 06×6 I6×6 06×36

−(M + A∞)−1K0 −(M + A∞)−1(Bv + Dr) −(M + A∞)−1Cr
036×6 Br Ar

 (3)

Bc =

 06×6

(M + A∞)−1

036×6

 (4)

Cc =
[

I12×12 012×36
]

(5)

where A∞ is obtained from the BEM solution, Bv is a linear viscous damping matrix empirically87

tuned to experimental data [11], and K0 is the linearised stiffness matrix (see [2]) comprising88

pretension and PTO spring stiffness terms with the form:89 
kxx 0 0 0 kx,θy 0
0 kyy 0 ky,θx 0 0
0 0 kzz 0 0 0
0 ky,θx 0 kθx,θx 0 0

kx,θy 0 0 0 kθy,θy 0
0 0 0 0 0 kθz,θz

 (6)

The state-space model is then discretized using a first-order hold approximation, such that90

x+
k+1 = Ax+k + B(fek + uk)

yk = Cx+k
(7)

IV. MODEL PREDICTIVE CONTROL91

The predicted state trajectory over the prediction horizon N is generated from the discrete time92

state-space model (7) according to93

X+
k = Mx+k + C(F̂e|k + Uk) (8)



where Uk and F̂e|k are the stacked future control force and estimated excitation force matrices94

given by95

Uk =


uk

uk+1

...
uk+N−1

 F̂e|k =


f̂e|k

f̂e|k+1

...
f̂e|k+N−1

 (9)

M =


A
A2

...
AN

 C =


B 0 · · · 0

AB B · · · 0
...

...
. . .

AN−1B AN−2B · · · B

 (10)

The control objective is to maximise the average absorbed power w̄ over the prediction horizon96

through appropriate manipulation of the control force u. This objective can be expressed as the97

discrete integral [12]98

w̄ =
1

N

k+N∑
i=k

x+i sui = X+T

SU (11)

where99

s =
[

06×6 I6×6 06×36 ]T (12)

and S ∈ <48N×6N is the N -block-diagonal matrix of s:100

S =

 s 0 0

0
. . . 0

0 0 s

 (13)

Substituting the state prediction (8) into the objective function (11) gives the quadratic cost function101

J(Uk) = UT
k HUk + FTUk (14)

where H = CTS, FT = X+T
k MTS + F̂

T

e|kC
TS. Since H is time-invariant it is computed offline, while102

FT is updated each time step according to the most recent estimates of the state prediction X+
k and103

forecast excitation force F̂e|k. To improve the tractability of the optimisation, the cost function is104

convexified with the addition of small diagonal terms to H equal to the absolute value of its smallest105

eigenvalue ([13]), such that Ĥ = H + |λmin|(H). It should be noted that other terms can readily be106

included within the cost function. Common examples include rate penalties on the control signal107

to restrict actuation bandwidth, and a penalty on power flow from the grid into the actuator (and108

ultimately a passivity constraint to eliminate this entirely). These are not included here as the focus109

of the study is to explore the effects of model and prediction errors on performance. Including110

additional variables could dilute these effects.111

With the addition of state constraints designed to limit surge and heave position amplitudes, and112

limits on the control force, the optimisation problem is defined as113

maximise UT
k ĤUk + FTUk

Uk

subject to


I

-I
Ci
−Ci

u [k] ≤


ū
−ū

x̄
−x

+


0
0

−Ai

Ai

 x+
k , i = 1 : N

(15)

where x̄ and x are the upper and lower bounds of the state variables, respectively, and ū is the114

upper limit on control force. There is a necessary additional constraint on control force to avoid slack115



PTO tethers, but including this in the optimisation can result in constraint conflict and subsequent116

intractability of the solution. Therefore this constraint is imposed as a dynamic saturation on the117

control force post optimisation, exactly as it is for the passive system.118

Performing this optimisation and applying only the output for the next time step to the WEC119

results in a 6DOF control force in Cartesian space. This control force vector is applied to idealised120

models in sections VII to IX. For WEC-Sim simulations conducted in section X, the control force is121

distributed to the four PTO tethers according to122

uPTO = JT0 u (16)

where JT0 is the transpose of the kinematic Jacobian matrix. The inverse kinematic matrix relates123

Cartesian and PTO tether spaces, and is given by [2]124

J−10 =

 eTs1 (F1 × es1)
T

...
...

eTs4 (F4 × es4)
T

 (17)

125

With reference to Figure 4, Fi is the the float connection point coordinate vector relative to the float126

centre of gravity and esi is the unit vector along the direction of the ith PTO tether in the nominal127

WEC position.128

Fig. 4. Illustration of WEC kinematics

It should be noted that, for the head-on wave loading cases studied here, and due to the symmetry129

of the WEC float, the PTOs act in pairs. It would therefore be possible to reduce the control problem130

to two inputs and reduce the computational burden. However, the general case for off-axis loading131

requires control in all DOFs and the PTOs will have to behave independently. Future work will study132

these aspects of the problem, so we maintain generality here.133

V. SEA STATES134

Three irregular sea states were selected for this study, covering the full range of expected energy135

periods and significant wave heights. All spectra are Pierson-Moskowitz (PM) type and identical136

time-domain wave elevation sequences are applied across all simulations to enable fair comparison137

between the performance of the passive and actively controlled systems.138

The PM wave height spectrum for a frequency ω [rad/s] is defined by139

S(ω) =
αg2

ω5
exp

[
−1.25

(ωp

ω

)4]
(18)

where g is gravitational acceleration and ωp is the peak frequency. This spectrum has a peak period140

Tp = 2π/ωp and the energy period is defined as Te = 0.82Tp. The parameter α is used to adjust the141

spectrum for a defined significant wave height Hs according to the relationship142

α =
H2
s

16
∫∞
0
S(ω)dω

(19)

The three spectra and time-domain plots are shown in Figure 5.143



Fig. 5. Irregular sea states used for simulation studies

VI. WAVE EXCITATION FORCE144

A. Estimation145

The wave excitation or disturbance force is not measurable, but is a necessary input to the146

optimisation problem in order to generate the appropriate control force. In order to estimate the147

disturbance force it is required to know the dynamics of the float body and all other forces acting148

upon it, as well as estimates or measurements of the float motion. Float motion and all forces other149

than the excitation force are readily measured or estimated in practice. It is then possible to implement150

a dynamic observer to estimate the wave excitation force. Here we use a Kalman Filter approach as151

described in [14], to estimate the excitation force. As we are able to measure the tether forces directly152

using load cells, we can directly measure the combination of control force and passive spring force.153

The state vector x+ is further augmented with the estimated unknown force fe. Maintaining the154

notation x+ for the further augmented state vector for convenience, the discretized system dynamics155

are now described by156

x+k+1 =

[
x+

fe

]
k+1

= A+x+
k + B+ (fe − T)k + εk

y = C+x+k + µk

(20)

where ε describes the random walk process for excitation force estimation and unmodelled dynamics,157

and µ describes measurement noise. T is the Cartesian vector of PTO forces, derived from direct158

measurement of the combined control and spring forces as PTO tether tensions TPTO, according to159

T = J−T0 TPTO (21)

The system matrices are defined as follows:160

A+ =

[
A B
0 I

]
B+ =

[
B
0

]
C+ =

[
C 0

]
(22)

The prediction step estimates the next state x̂+
k|k−1 and covariance P+

k|k−1 matrices as:161

x̂+k|k−1 = A+
k−1x̂+k−1|k−1 + B+Tk−1|k−1

P+
k|k−1 = J+k−1P+

k−1|k−1J+Tk−1 + Q+
k−1

(23)

where Q+ is the process noise covariance matrix, which is assumed to represent a zero mean162

Gaussian process and is empirically tuned. The update step is defined by:163



S+
k = C+P+

k C+T + R+
k

K+
k = P+

k C+TS+−1

k

x̂+k|k = x̂+k|k−1 + K+
k

([
yk f̂e

]T
− C+x̂+

k|k−1

)
P+
k|k = (I −K+

k C+)P+
k|k−1

(24)

where S+ is the innovation residual, R+ is the observation covariance associated with the observed164

value y, and K+ is the Kalman gain. J+ is the Jacobian of A+. For a time invariant state transition165

matrix (as assumed here) this is equal to A+.166

Figure 6 shows good estimation of the excitation force for surge and heave directions. The result is167

presented only for one sea state for brevity. In all simulations, the true excitation force is calculated168

in the standard way using a prescribed wave elevation and hydrodynamic excitation coefficients169

estimated using the NEMOH BEM solver.170

Fig. 6. Estimation of wave excitation force in surge (TOP) and heave (BOTTOM) directions in irregular waves (Pierson-
Moskowitz with Hs = 3m, Te = 10s)

B. Prediction171

The estimated wave excitation force must also be forecast over a prediction horizon for the MPC172

optimisation. In practice the choice of horizon must balance the improvement in power absorption173

from the optimisation against the quality of the estimated wave force, which degrades as the forecast174

horizon increases. Inevitably there will be a point where the estimation is not accurate enough to yield175

power increases. A further limitation is the computational load, which increases as the prediction176

horizon increases but must be completed between computational steps.177

A number of methods for prediction are studied in [15]. Based on this study an auto-regressive178

(AR) modelling technique is adopted here. It should be noted that the prediction method is not the179

focus of this paper. It is sufficient to find a method which gives prediction estimates with a quality180

comparable with the findings in [15] and which would be implementable in practice.181

The N -step ahead prediction of the excitation force at instant k is given by182

f̂e [k +N |k] =

n∑
i=1

âif̂e [k +N − i|k] (25)

where âi are the AR coefficients resulting from an estimation procedure. Here we use the Burg183

method to estimate the AR parameters. The training data used for this estimation is excitation force184

data generated for sea states with the same spectra, but different random seeds (and hence different185

time-domain values in the sequences). An AR filter with order 200 was found to give acceptable186



results with a sampling time of 0.1s. This is sufficient to capture a full wave period in the lowest187

frequency sea state, and several periods in the highest frequency sea state.188

Figure 7 shows the goodness-of-fit for the three sea states of Figure 5 and with a range of prediction189

horizons. We observe reasonable estimation with the quality reducing as the prediction horizon and190

energy period of the sea states increase.191

Fig. 7. Goodness of fit of wave excitation force predictions for a range of horizons and sea states

The time-domain plot of the ”actual” excitation force (from WEC-Sim simulations) versus the 8s192

ahead predictions for the surge direction for the three sea states are shown in Figure 8 by way of193

example.194

Fig. 8. Actual vs 8s ahead predictions of wave excitation forces. TOP: Hs = 1m, Te = 6s, MIDDLE: Hs = 3m, Te = 10s,
BOTTOM: Hs = 6m, Te = 16s

VII. SIMULATION RESULTS: EFFECTS OF EXCITATION FORCE PREDICTION ERRORS195

A simulation study was conducted whereby the system under control is an exact match for the196

state-space model embedded within the MPC optimisation. Many optimal control studies for WECs197

are limited to this ideal case, for example [4], [5]. Constraints are not applied at this stage to isolate198

the effects of prediction errors and to establish the maximum theoretical power gains. The PTO199

tethers are not modelled, and control forces are assumed to be directly applied to the float COG200

in the Cartesian frame. As a benchmark for performance comparison, a passively controlled system201

(i.e. the PTO forces are proportional to the float velocities by the damping constant λ) was tuned for202

each sea state. Figure 9 shows the tuning results for selecting the optimum damping coefficients.203



Fig. 9. Tuning results showing optimal passive damping coefficients in tested sea states

The block diagram illustrating these passively damped simulations is shown in Figure 10. In all204

simulations throughout this paper, a base sample rate of 50Hz was applied and, where appropriate,205

prediction and MPC blocks use a 10Hz sampling rate. The higher sampling rate is required for206

stability and accuracy in latter multi-body simulations, while the lower sampling rate is used to207

reduce computational times without compromising accuracy.208

Fig. 10. Block diagram of baseline idealised state-space WEC model simulation with passive damping

The ideal system was then placed under MPC with both ideal prediction and real-time prediction209

scenarios with a range of prediction horizons. Additionally, the state-space WEC plant model may210

be time-varying for use in the following section. The block diagram representing these scenarios is211

illustrated in Figure 11.212

Fig. 11. Block diagram of MPC simulations using fixed or time-varying state-space WEC model

Absorbed power is calculated as the sum of the product of force/torque and velocity/angular213

velocity in the surge, heave and pitch DOFs. Results are presented for ideal prediction and real-time214

prediction implemented as described in section VI-B. Figure 12 shows the results for mean power215

absorbed for each case.216

Fig. 12. Mean power absorbed for different horizons with and without real-time prediction of excitation force for idealised
system



The power is normalised against the optimal power captured with the passively damped system for217

each sea state. The time axis is normalised against the energy period of the relevant sea state. It is seen218

that a horizon of at least 3s is required to increase absorbed power compared to the optimal passive219

case in all three sea states. We also see the expected reduction in power as the horizon increases220

for the cases where online prediction is used. Again, as expected this effect is most pronounced for221

the sea state with the highest energy period as this case has the least accurate forecasting. Based on222

this and the fact that beyond an 8s horizon the benefits drop off, a pragmatic horizon to use would223

seem to be 8s, which is in line with other studies. The mean power gains for MPC with real-time224

prediction compared to the tuned passive system are rather dramatic, being up to a factor of > 3.225

VIII. SIMULATION RESULTS: EFFECTS OF MODEL MISMATCH226

Many previous studies assume that the system under control is precisely represented by the model227

embedded in the MPC control law. In reality this will never be the case as the system is nonlinear and228

subject to variation over time due to various forms of degradation. The WaveSub WEC is inherently229

nonlinear as the system stiffness matrix is dependent on the relative position of the float and reactor.230

Quadratic viscous drag is also a source of nonlinearity, though this is often considered negligible231

in comparison to other forces acting on the WEC. This is demonstrated experimentally in [16], for232

example. In this section, the MPC law remains as before - using the idealised model linearised about233

its nominal resting position (see equation 7), but the system under control is time-varying as the234

stiffness matrix is recomputed at each time step. As in the previous section, constraints are not235

applied at this stage to isolate the effects of model mismatch.236

Figure 13 shows the variation of the terms in the stiffness matrix as the float heave (x) and surge237

(z) positions are varied. Significant variation can be seen across the expected range of travel of the238

float, so it is important to investigate the effect this will have on the performance of the control law.239

Fig. 13. Variation of terms in WEC stiffness matrix as float position changes



This time-varying system was placed under MPC with ideal prediction and the average captured240

power compared to that achieved with no model mismatch for a range of prediction horizons (the241

latter data set is identical to the ideal prediction dataset in Figure 12). Figure 14 shows the results for242

mean power absorbed for each case. As before, the power is normalised against the optimal power243

captured with the passively damped system for each sea state. Large differences in captured power244

are seen when model mismatch is present. For the 16s period seastate there is a substantial reduction245

in captured power, while the 6s and 10s period sea states show substantial increases in captured246

power for prediction horizons longer than 4s. To understand the reasons for these differences, it is247

beneficial to examine the motions and control forces.248

Fig. 14. Mean power absorbed for different horizons with linear and nonlinear WECs

The following results all use an 8s prediction horizon, based on the findings of section VII.249

Figures 15 to 17 show the surge, heave and pitch displacements for the three sea states.250

Fig. 15. Surge, heave and pitch float displacements and control forces for linear and nonlinear WECs under MPC for irregular
sea state (Hs = 1m, Te = 6s)

For sea states with energy periods of 6s and 10s we see increased motion amplitudes with a251

nonlinear WEC model (this is particularly apparent for the 6s period sea state in Figure 15). The252

accompanying nonlinear WEC control forces also show small increases, resulting in increased power253

capture. Figure 17 shows reduced motion with a nonlinear WEC with similar levels of force, resulting254

in reduced power capture with a nonlinear WEC. A further observation is that the motions are255

unrealistically large in the more energetic sea states, resulting in substantial changes in the WEC256



Fig. 16. Surge, heave and pitch float displacements and control forces for linear and nonlinear WECs under MPC for irregular
sea state (Hs = 3m, Te = 10s)

Fig. 17. Surge, heave and pitch float displacements and control forces for linear and nonlinear WECs under MPC for irregular
sea state (Hs = 6m, Te = 16s)

stiffness matrix (see Figure 13) which the WEC model embedded within the MPC law does not257

capture. This is the reason for the differences in the results seen here, which suggest that model258

mismatch can be a significant factor in the performance of MPC with a WEC. However, we cannot259

come to this conclusion for this application as the motions are not realistic. Of course, one of the most260

significant benefits of MPC over some other control strategies is the ability to incorporate constraints.261

In the following section, the more realistic constrained solution is studied.262

IX. SIMULATION RESULTS: CONSTRAINED MPC WITH MODEL MISMATCH263

A real WEC will have multiple constraints in operation. Here we apply constraints on the surge264

and heave displacement amplitudes to maintain motion within limits imposed by other structural265

components of the WEC, and also a control force limit to represent the torque limit of the PTO266



generators. Here the surge and heave displacement limits are set at ±3m and ±5m respectively, while267

the control force limit is set at ±5MN. The torque limit is chosen to enable optimal control across all268

tested sea states, in reality it may be set lower based on a cost study and it would be accepted that269

the generator is saturated in higher energy sea states. Figures 18 to 20 show the displacements and270

forces for the three tested sea states.271

Fig. 18. Surge, heave and pitch float displacements and control forces for linear and nonlinear WECs under MPC for irregular
sea state (Hs = 1m, Te = 6s)

Fig. 19. Surge, heave and pitch float displacements and control forces for linear and nonlinear WECs under MPC for irregular
sea state (Hs = 3m, Te = 10s)

As before, these results are achieved using an 8s prediction horizon as this generated the maximum272

average power in the tested sea states. They show the comparison of results using a linear WEC273

and a nonlinear WEC. The purpose of these results is to investigate in isolation the effects of model274

mismatch under constrained control. It is seen that the differences are far less pronounced than for275

the unconstrained control cases (see Figures 15 to 17). This is to be expected since the constraining276

of the displacements reduces the stiffness changes in the nonlinear WEC.277



Fig. 20. Surge, heave and pitch float displacements and control forces for linear and nonlinear WECs under MPC for irregular
sea state (Hs = 6m, Te = 16s)

The instantaneous captured power for constrained MPC with linear and nonlinear WECs is shown278

in Figure 21.

Fig. 21. Instantaneous captured power for constrained MPC with linear and nonlinear WECS in irregular sea states

279

Table II shows the comparison of mean captured power compared to the optimally tuned passive280

system. For comparative purposes, the mean powers achieved with unconstrained MPC with an 8s281

prediction horizon are also included.282

Despite the constraints, we see very large increases still in mean power capture compared to the283

optimal passive system. As for the unconstrained MPC there is a slight increase in captured power284

for the nonlinear WEC compared with the linear WEC. The action of the constraints means that285



TABLE II
MEAN POWER INCREASES COMPARED TO TUNED PASSIVE SYSTEM

Mean power ratio (MPC/passive)
Sea State Unconstrained Constrained

Te[s] Hs[m] Linear WEC Nonlinear WEC Linear WEC Nonlinear WEC
6 1 3.28 6.14 2.47 2.62
10 3 2.89 3.50 1.51 1.66
16 6 3.34 2.39 1.24 1.15

the captured power is reduced compared to the unconstrained results in the previous section. These286

results suggest that substantial gains can be achieved using a constrained MPC strategy compared to287

an optimally tuned passive strategy even when there is realistic model mismatch between the MPC288

embedded model and the controlled system. However, this WEC model is still somewhat idealised289

and does not capture some of the additional complications and constraints that would exist with the290

deployed physical system. The next section addresses this.291

X. SIMULATION RESULTS: DEPLOYABLE MPC WITH WEC-SIM MULTI-BODY WEC MODEL292

The MPC constrained optimisation together with estimation and real-time prediction of the293

excitation force is now applied to a nonlinear WEC-Sim model of the multi-DOF WEC. Here only294

quantities that are measurable on a physical system are used in the control, estimation and forecasting295

procedures. Additionally the control action is through the PTO lines and not in Cartesian space296

and quadratic viscous damping is included. These simulations, therefore, represent a more realistic297

scenario as the controller is deployable in a real system and there is model mismatch between the298

state-space idealisation embedded within the optimisation and the system under control. Results in299

this section are compared to the optimally tuned passive system, where both the PTO line stiffness300

and damping ratio are tuned to each sea state. This benchmark has been used in previous studies,301

for example [17]. A 10s prediction horizon was used with this system as it was found to give a302

small increase in captured power compared with an 8s horizon. Figure 22 shows an image of the303

simplified geometry used for simulation in the WEC-Sim package. We refer the reader back to table304

I for the important dimensions.

Fig. 22. Simplified geometry and mooring in WEC-Sim

305

The float and reactor are connected with four taut PTO tether lines, each modelled as a translational306

PTO actuation force incorporating a spring stiffness and damping force, a universal joint and gimbal.307

All motions and forces are available for use by the control strategy within this model and the control308

force applied to each PTO is incorporated by adding to the external preload force on each PTO. The309

damping force is used only for the benchmark passive optimally tuned system and is set to zero for310

active control. Irregular waves are applied in the x-direction.311

Figure 23 shows the surge (x), heave (z) and pitch (rotation about y) displacement responses of312

the float in the least energetic sea state (Hs = 1m, Te = 6s). We observe that the controlled motions313

are significantly exaggerated compared to the optimal passive system as we would expect.314



Fig. 23. Surge, heave and pitch displacement responses of the float in Pierson-Moskowitz sea state (Hs = 1m, Te = 6s).
Results shown for passive system and MPC with 10s horizon

Figure 24 shows the line tensions are also increased compared to the passively controlled system,315

which leads to increased power capture.316

Fig. 24. PTO forces and tether tensions in Pierson-Moskowitz sea state (Hs = 1m, Te = 6s) for passive system and MPC
with 10s horizon



Figures 25 and 26 show the motions and forces for the sea state Hs = 3m, Te = 10s, respectively.317

Fig. 25. Surge, heave and pitch displacement responses of the float in Pierson-Moskowitz sea state (Hs = 3m, Te = 10s).
Results shown for passive system and MPC with 10s horizon

Fig. 26. PTO forces and tether tensions in Pierson-Moskowitz sea state (Hs = 3m, Te = 10s) for passive system and MPC
with 10s horizon

Constraints on surge and heave displacements are not in danger of being violated and again the318

motions and PTO line tensions are higher than the passive system, resulting in increased power319

capture. It can now be seen that the slack line constraint is active from Figure 26, slightly reducing320

captured power.321

Figures 27 and 28 show the displacements and forces for the Hs = 6m, Te = 16s sea state. It can322

now clearly be seen that the MPC law is working to maintain constraints, with large control forces323

seen at instants to avoid violating position constraints. Displacements are reduced compared to the324



passive case, resulting in reduced captured power. However, in terms of power capture this is not325

a fair comparison as the passive system is not subject to constraints. In reality it is more desirable326

to reduce the power captured rather than violate the constraints in order to protect the integrity of327

the WEC. In high energy seas which are above the rated power of the WEC it is desirable to detune328

the controller, which is effectively what is being done here in an optimal sense. Therefore we argue329

that the reduced power is not a disadvantage compared to the passive system, rather the ability to330

incorporate constraints is a significant advantage.331

Fig. 27. Surge, heave and pitch displacement responses of the float in Pierson-Moskowitz sea state (Hs = 6m, Te = 16s).
Results shown for passive system and MPC with 10s horizon

Fig. 28. PTO forces and tether tensions in Pierson-Moskowitz sea state (Hs = 6m, Te = 16s) for passive system and MPC
with 10s horizon



Figure 29 and table III show the instantaneous and mean absorbed mechanical power for each sea332

state with the passive and constrained MPC solutions in the three tested sea states.333

Fig. 29. Instantaneous absorbed power in irregular sea states for WEC-Sim model under passive and constrained MPC control
with 10s horizon

TABLE III
MEAN POWER INCREASES COMPARED TO TUNED PASSIVE SYSTEM

Sea State Mean power ratio (MPC/passive)
Te[s] Hs[m] Constrained NL state-space WEC-Sim multibody

6 1 2.62 1.26
10 3 1.66 1.30
16 6 1.15 0.96

334

335

336

Large increases in power are seen for the two lower energy sea states, though not as impressive337

as seen for the more idealised cases. The highest mean power increase here is +30% in the 10s338

sea state. The highest energy sea state results in a reduction of absorbed power compared to the339

passive system of -4%, though as previously stated this power comparison is not meaningful as the340

passive system was unconstrained. For comparative purposes, the results from simulations using a341

nonlinear state-space model under constrained MPC are also included in table III. We see a reduction342

in power capture using the multibody simulation compared with the nonlinear state-space model,343

which is most pronounced for the least energetic sea state. The reduction is attributed to additional344

model mismatch as a result of the kinematic transformations required to translate between PTO345

tether and Cartesian spaces, quadratic viscous damping, and also to the additional slack PTO tether346

constraint. The large discrepancy seen in the smallest sea state is attributed to amplification of the347

effects of model mismatch in this particular case. In this lowest energy sea state, the constraints348

are not active, resulting in large differences in the effectiveness of the controller and subsequent349

higher velocities and control forces achieved using the simplified state-space model compared to350

the multibody simulation.351

It is also of interest to examine the power flow in PTO pairs. For head-on waves, PTOS 1 and 2,352

and PTOS 3 and 4, behave in pairs. The power flow in these pairs is shown for the three sea states353

in Figure 30. The pairs operate out of phase as expected, and the periods where pairs behave as354



actuators inputting power to the WEC system can clearly be seen. This raises interesting possibilities355

for power-sharing power electronic conversion architectures, as explored in [18].356

Fig. 30. Instantaneous absorbed power for PTO pairs in irregular sea states for WEC-Sim model under constrained MPC
control with 10s horizon

XI. CONCLUSIONS357

An MPC law has been applied to the multi-DOF WaveSub WEC in idealised and more realistic358

scenarios with the purpose of investigating the effects of modelling and excitation force prediction359

errors on system performance. The results show that prediction errors have a significant effect on360

power absorption, so the choice of prediction horizon is critical to overall system performance.361

This study considers only a small range of sea states and real sea states may occur which are less362

predictable, resulting in further degradation of performance. Model mismatch is a significant issue363

and results in a very large variation in power absorption compared to the ideal case. In part this is364

due to changes in the controlled system stiffness matrix as the float moves away from its nominal365

position, and in part because the kinematic Jacobian matrix used to distribute the control forces to366

the PTO tethers also changes. This could potentially be alleviated by employing a nonlinear MPC367

law such as in [6], however the already considerable computational burden would further increase368

along with the risk of infeasibility in the optimisation.369

This study, though a step beyond using an idealised state-space model as the target system,370

is still limited by having at its heart the linearised BEM hydrodynamic coefficients comprising371

part of the system dynamics. In reality these coefficients will be nonlinear for large motions and372

complex geometries. Other studies e.g. [8] have shown the sensitivity of system performance to373

these inaccuracies. The performance results achieved here suggest that significant improvements374

can still be achieved with an MPC law in spite of these errors. Significant power gains over the375

optimised passive system were achieved in the more commonly occurring lower energy sea states376

and the ability to use constraints to limit motion in high energy seas and the tunability of the control377

law are valuable attributes for practical deployment. However, it is arguably better in reality to use378

a control strategy that is inherently more robust to uncertainty e.g. the relatively recently proposed379

pseudo-spectral optimal strategy, see [19] or an AVT strategy as noted in [8]. Indeed, the AVT strategy380

has been tested by the authors under the same conditions and with the same WEC-Sim model of381

Wavesub used here and was found to outperform the MPC strategy used here (see [17]).382
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