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Abstract

We study the phenomenon of cavitation for the displacement boundary-value problem of radial,
isotropic compressible elasticity for a class of stored energy functions of the form W (F ) + h(detF ),
where W grows like ‖F‖n, and n is the space dimension. In this case it follows (from a result
of Vodop’yanov, Gol’dshtein and Reshetnyak) that discontinuous deformations must have infinite
energy. After characterizing the rate at which this energy blows up, we introduce a modified en-
ergy functional which differs from the original by a null lagrangian, and for which cavitating energy
minimizers with finite energy exist. In particular, the Euler–Lagrange equations for the modified
energy functional are identical to those for the original problem except for the boundary condition
at the inner cavity. This new boundary condition states that a certain modified radial Cauchy stress
function has to vanish at the inner cavity. This condition corresponds to the radial Cauchy stress for
the original functional diverging to −∞ at the cavity surface. Many previously known variational
results for finite-energy cavitating solutions now follow for the modified functional, such as the exis-
tence of radial energy minimizers, satisfaction of the Euler-Lagrange equations for such minimizers,
and the existence of a critical boundary displacement for cavitation. We also discuss a numerical
scheme for computing these singular cavitating solutions using regular solutions for punctured balls.
We show the convergence of this numerical scheme and give some numerical examples including one
for the incompressible limit case. Our approach is motivated in part by the use of the “renormalized
energy” for Ginzburg–Landau vortices.

Key words: nonlinear elasticity, cavitation, infinite energy solutions.
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1 Introduction

Cavitation (i.e., the formation of holes) is a commonly observed phenomenon in the fracture of polymers
and metals (see [5]). In his seminal paper [1], Ball formulated a variational problem, in the setting
of nonlinear elasticity, for which the energy minimising radial deformations of (an initially solid) ball
formed a cavity at the centre of the deformed ball when the imposed boundary loads or displacements
were sufficiently large. Following this paper, there have been numerous studies of aspects of the problem
of radial cavitation: some on analytical properties (see, e.g., [23], [18], [13]) and others relating to
specific stored energies (a helpful overview is contained in [11]). Subsequent studies, e.g., of [14], [19],
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[12], [8] have addressed general analytic questions of existence of cavitating energy minimisers in the
non–symmetric case. In all of these works, the Dirichlet part of the stored energy function grows like
‖∇u‖p with n− 1 < p < n, where u is a deformation and n is the space dimension. The case p = n− 1
for non-cavitating deformations and for a three dimensional compressible neo–Hookean material ([17]),
has been studied in [10] for axisymmetric deformations.

In this paper we study radial solutions of the equations of elasticity for a spherically symmetric,
isotropic, hyperelastic, compressible body, for the critical exponent p = n. It follows in this case
that cavitating solutions for the corresponding Euler–Lagrange equations have infinite energy. Using a
variational approach, we show that for a general class of stored energy functions, the radial equilibrium
equations do have cavitating solutions with infinite Cauchy stress at the origin and satisfying the outer
displacement boundary condition. Moreover these solutions are characterized as finite energy minimizers
of a modified energy functional (cf. (34)) with the same equilibrium equations as the original functional.
Our approach has connections with work of Henao and Serfaty [9] and Cañulef-Aguilar and Henao [3]
for incompressible materials and with the use of the ”renormalised” energy in the Ginzburg–Landau
vortices problem [2].

The case n = 2 of this problem, which corresponds to a two-dimensional compressible neo–Hookean
material, was studied by Ball [1, pp. 606-607] where he proved, for a particular stored energy function
having logarithmic growth for small determinants, the existence of cavitating solutions of the equilib-
rium equations having infinite Cauchy stress at the origin. His approach is based on an application of
Schauder’s fixed point theorem, and although he did not solve the full boundary value problem (there
was no attempt to match the outer boundary condition), the cavity size appears as a parameter in
his argument which in principle could be adjusted to match the outer boundary condition. The class
of stored energy functions studied in this paper (cf. (20)) includes compressible neo-Hookean stored
energies widely used in applications. The results of this paper, in the case n = 2, thus allow for a
variational treatment of cavitation of a disc in two dimensions, which has not been previously possible
for such neo–Hookean stored energy functions. The approach should also extend to treat axisymmetric
cavitation of a cylinder in three dimensions (the work in [10] on axisymmetric deformations may be
relevant here).

Consider a body which in its reference configuration occupies the region

B = {x ∈ R
n : ‖x‖ < 1}, (1)

where n = 2, 3 and ‖·‖ denotes the Euclidean norm. Let u : B → R
n denote a deformation of the body

and let its deformation gradient be

∇u(x) =
∂u

∂x
(x). (2)

For smooth deformations, the requirement that u(x) is locally invertible and preserves orientation takes
the form

det∇u(x) > 0, x ∈ B. (3)

Let W : Mn×n
+ → R be the stored energy function of the material of the body where Mn×n

+ = {F ∈
Mn×n : detF > 0} and Mn×n denotes the space of real n × n matrices. We assume that the stored
energy function W satisfies W → ∞ as either detF → 0+ or ‖F‖ → ∞. The total energy stored in the
body due to the deformation u is given by

E(u) =

∫

B

W (∇u(x)) dx. (4)

We consider the problem of determining a configuration of the body that satisfies (3) almost everywhere
and minimizes (4) among all functions satisfying the boundary condition:

u(x) = λx, x ∈ ∂B, (5)
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where λ > 0 is given. Formally, a sufficiently smooth minimizer satisfies the equilibrium equations

Div

[

∂W

∂F
(∇u(x))

]

= 0. (6)

Note that if the stored energy W satisfies a growth condition of the form

c1 ‖F‖n + c2 ≤ W (F), ∀F with detF > 0, (7)

then (cf. [25]) any discontinuous deformation u of B with det∇u > 0 a.e., must have infinite energy.
For later reference we mention that if u is a smooth solution of (6), then (see [7])

div

[

W (∇u)x+

[

∂W

∂F
(∇u)

]T

(u− (∇u)x)

]

= nW (∇u). (8)

If u is smooth except at the origin, where it opens up a cavity, and Bε is a ball of radius ε > 0 around
the origin, then integrating this equation over the punctured ball B \ Bε, we get that

n

∫

B\Bε

W (∇u(x)) dx =

∫

∂B

[

W (∇u)x +

[

∂W

∂F
(∇u)

]T

(u− (∇u)x)

]

·N ds(x)

−
∫

∂Bε

[

W (∇u)x+

[

∂W

∂F
(∇u)

]T

(u− (∇u)x)

]

·N ds(x), (9)

where N is the outer normal to each boundary. Thus the blow up in the energy as ε becomes small,
comes from the integral over the boundary ∂Bε. Note that this integral is the sum of two terms:

∫

∂Bε

[

W (∇u)I−
[

∂W

∂F
(∇u)

]T

(∇u)

]

x ·N ds(x),

∫

∂Bε

[

∂W

∂F
(∇u)

]T

u ·N ds(x), (10)

the second one representing as ε → 0, the work done in opening the cavity. The tensor in brackets in
the first boundary integral above is the Eshelby energy–momentum tensor (cf. [4], [6]). It is interesting
to note that if the stored energy function grows like ‖∇u‖p, then for p < n both terms in (10) tend to
zero as ε → 0 (cf. [20]), while both tend to infinity if p > n. In the case p = n and in the radial case,
we will show that the first term has a finite limit while the second one is unbounded as ε → 0.

If the material is homogeneous and W is isotropic and frame indifferent, then it follows that

W (F) = Φ(v1, . . . , vn), F ∈ Mn×n
+ , (11)

for some function Φ : Rn
+ → R, symmetric in its arguments, where v1, . . . , vn are the eigenvalues of

(FtF)1/2 known as the principal stretches.
We now restrict attention to the special case in which the deformation u(·) is radially symmetric, so

that
u(x) = r(R)

x

R
, x ∈ B, (12)

for some scalar function r(·), where R = ‖x‖. In this case one can easily check that

v1 = r′(R) , v2 = · · · = vn =
r(R)

R
. (13)

Thus (4) reduces to

E(u) = ωnI(r) = ωn

∫ 1

0

Rn−1Φ

(

r′(R),
r(R)

R
, . . . ,

r(R)

R

)

dR, (14)
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where ωn = 2π or ωn = 4π if n = 2 or 3 respectively. (In general ωn is area of the unit sphere in R
n.)

In accord with (3), we have the inequalities

r′(R),
r(R)

R
> 0, 0 < R < 1, (15)

and (5) reduces to:
r(1) = λ. (16)

Our problem now is to minimize the functional I(·) over the set

Aλ =
{

r ∈ W 1,1(0, 1) : r(1) = λ, r′(R) > 0 for a.e. R ∈ (0, 1), r(0) ≥ 0
}

. (17)

Formally, the Euler–Lagrange equation for I(·) is given by

d

dR

[

Rn−1Φ,1(r(R))
]

= (n− 1)Rn−2Φ,2(r(R)), 0 < R < 1, (18)

subject to (16) and r(0) ≥ 0, where:

Φ,i(r(R)) = Φ,i

(

r′(R),
r(R)

R
, . . . ,

r(R)

R

)

, i = 1, ..., n. (19)

If c = r(0) > 0, then the deformed ball contains a spherical cavity of radius c. In the case n = 2,
Ball [1, pp. 606-607] gives an example of a stored energy function satisfying (7) and proves existence
of corresponding radial cavitating equilibrium solutions of (18) which (necessarily) have infinite energy.
His approach is based on an application of Schauder’s fixed point theorem, and although he does not
solve the full boundary-value problem (there was no attempt to match the outer boundary condition),
the cavity size appears as a parameter in his argument which, in principle, could be adjusted to match
the outer boundary condition. In this paper we give a characterization of cavitating equilibria with
infinite energy as minimizers of a modified energy functional, which is related to the growth of the radial
component of the Cauchy stress of an equilibrium solution near a point of cavitation.

To highlight some of the general structure of the underlying problem, we will state certain of our
results for stored energy functions of the form1

Φ(v1, . . . , vn) =
κ

n

n
∑

i=1

vni + h(v1v2 · · · vn), (20)

where κ > 0 and h : (0,∞) → [0,∞) is a C1 function that satisfies

h′′(d) > 0, ∀ d > 0, (21a)

lim
d→0+

h(d) = ∞, lim
d→∞

h(d)

d
= ∞, (21b)

lim
d→0+

h′(d) = −∞, lim
d→∞

h′(d) = ∞. (21c)

In this case, the energy functional I(r) in (14) takes the form

I(r) =

∫ 1

0

Rn−1

[

κ

n

(

(r′(R))n + (n− 1)

(

r(R)

R

)n)

+ h(δ(R))

]

dR, (22)

where

δ(R) = r′(R)

(

r(R)

R

)n−1

.

1Our results can be readily extended to more general stored energies, e.g., of the form κ

n

∑

n

i=1
vn
i
+ ψ(v1, ..., vn) +

h(v1v2 · · · vn), under suitable assumptions on ψ.
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It is clear that (discontinuous) radial deformations with r(0) > 0 must have infinite energy as a result of
the term involving rn in the integrand. In Section 2, in the spirit of the “renormalized energy approach”
for Ginzburg-Landau vortices (see, e.g., [2]), we characterize the order of the singularity in the energy
and in the radial component of Cauchy stress for a cavitating solution as logarithmic in all dimensions.
To motivate the form of the regularisation, we use the specialization of (8) to the radial case satisfied
by smooth solutions of the radial equilibrium equation (18):

Rn−1Φ(r(R)) =
d

dR

[

Rn

n
(Φ(r(R)) − r′Φ,1(r(R))) +

rn

n
T (r(R))

]

, (23)

with the notation in (19) and where

T (r(R)) =

[

R

r(R)

]n−1

Φ,1(r(R)), (24)

is the radial component of the Cauchy stress. Integrating the above identity from R = ε to R = 1 for
a cavitating solution and using the form of the stored energy function (20), we show that all boundary
terms have a finite limit as ǫ → 0 apart from the term

− lim
ǫ→0

r(ǫ)n

n
T (r(ǫ)), (25)

which corresponds to the second term in (10). Thus, the infinite energy of a radial solution of the
equilibrium equation with r(0) > 0 corresponds to a singularity in the radial Cauchy stress. Thus, the
term (25) can be formally interpreted as the (infinite) work required to open the cavity. (If r(0) = 0,
then this term is zero.) Thus, for a cavitating solution,

lim
ε→0

[
∫ 1

ε

Rn−1Φ

(

r′(R),
r(R)

R
, . . . ,

r(R)

R

)

dR +
r(ǫ)n

n
T (r(ǫ))

]

is finite. Using the characterization of the asymptotic behaviour of the Cauchy stress given in Proposition
2.2, we introduce a modified energy functional, given by

Î(r) =

∫ 1

0

Rn−1Φ

(

r′(R),
r(R)

R
, . . . ,

r(R)

R

)

dR

−κ(n− 1)

n
lim
R→0

rn(R) ln

(

r(R)

R

)

, (26)

where the last term accounts for the singular behaviour in (25). This functional can also be expressed
as

Î(r) =

∫ 1

0

Rn−1

[

κ

n
(r′)

n
+ h (δ(R)) + κ(n− 1)δ(R)

(

1

n
+ ln

( r

R

)

)]

dR

− κ(n− 1)

n
λn lnλ.

It is easy to now show that there are r ∈ Aλ, with r(0) > 0 for which Î(r) is finite. Moreover, the
Euler-Lagrange equation for this modified functional coincides with that for the original functional (22)
since, by construction, they differ by a null lagrangian term (see Theorem 3.3). Moreover, for many
deformations with r(0) = 0, in particular for the homogeneous deformation r(R) ≡ λR, the two energies
coincide. However, we will show that for λ sufficiently large, energy minimisers for the modified functional
must satisfy r(0) > 0.

Many known results for finite energy cavitating solutions (see, e.g., [1], [23], [18]) now follow by
similar methods for the modified functional (26). In particular, in Section 3 we show that minimizers of
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the modified functional exist and that they satisfy the corresponding Euler-Lagrange equations for such
minimizers. Moreover, in Theorem 3.6 we show the existence of a critical boundary displacement λc for
cavitation for the modified functional, for which the minimizers of this functional with λ < λc must be
homogeneous.

In Section 4 we discuss a numerical scheme for computing the cavitating solutions of the modified
functional via solutions on punctured balls. In the usual cavitation problem, the convergence of the
solutions on these punctured balls to a solution on the full ball follows from the corresponding properties
of solutions of the Euler-Lagrange equations and by a phase plane analysis (cf. [18]). Since the Euler-
Lagrange equations for our modified functional are equal (except for the boundary condition at the inner
cavity) to those of the original functional, the proof of convergence of the punctured ball solutions in
the case of the modified functional is essentially the same as that for a functional in which we have
κ
p

∑n
i=1 v

p
i + h(v1v2 · · · vn) with p < n, instead of (20). In this section we also discuss some aspects of

the convergence of the corresponding strains of the punctured ball solutions depending on the size of the
boundary displacement. Finally we close with some numerical examples in Section 5 which includes one
for the incompressible limit case.

2 The modified energy functional

We call any solution of (18) for which r(0) > 0 a cavitating solution. In this section we introduce a
modified functional Î(·) defined over Aλ, having the same Euler-Lagrange equation as I(·), for which
cavitating solutions have finite modified energy, and for which the corresponding modified radial Cauchy
stress function is increasing on cavitating solutions. To achieve this, we first assume the existence of
a cavitating solution and obtain corresponding estimates that help us to better understand the rate at
which the energy of a cavitating solution and the corresponding radial Cauchy stress blow up at the
origin. We then use these estimates to construct a modified variational problem, using which we are
able to prove a posteriori that such solutions exist.

Some of the results in this section are stated for general stored energy functions satisfying the fol-
lowing conditions:

H1: Φ,11(q, v, . . . , v) > 0, ∀ q, v > 0;

H2:
Φ,1(q, v, . . . , v)− Φ,2(q, v, . . . , v)

q − v
+Φ,12(q, v, . . . , v) ≥ 0, ∀ q, v > 0, q 6= v;

H3: R(q, v) ≡ qΦ,1(q, v, ..v)− vΦ,2(q, v, .., v)

q − v
> 0, ∀q 6= v;

H4:
∂R(q, v)

∂q
≥ 0 for 0 < q ≤ v.

It is easy to check that the stored energy functions (20) satisfy these conditions.
We shall make use of the following well-known properties of solutions of (18) (cf. [1], [23]).

Proposition 2.1. Let r ∈ C2((0, 1]) ∩ C([0, 1]) be a solution of (18) on [0, 1] satisfying r(0) > 0 and

such that δ(R) := r′(R)
(

r(R)
R

)n−1

is bounded on [0, 1]. Then

1. r′(R) < r(R)
R on (0, 1],

2. r′(R) → 0 and r(R)
R → ∞ as R → 0,

3. if Φ satisfy (H1) and (H2), then any cavitation solution of (18) satisfies r′′(R) ≥ 0.
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Asymptotic behaviour of the Radial Cauchy Stress

The Cauchy stress (24) corresponding to a solution of the radial equilibrium equation (18) satisfies

d

dR
T (r(R)) =

(n− 1)Rn−1

rn(R)

(

r(R)

R
Φ,2(r(R)) − r′Φ,1(r(R))

)

. (27)

For later use, we invert the relation T =
Φ1(v1,v,..,v)

vn−1 to obtain v1 = g(v, T ) and then rewrite (27) in
terms of the independent variable v = r

R as

dT (v)

dv
= − (n− 1)

vn

(

vΦ,2(g(v, T ), v, ..v)− g(v, T )Φ,1(g(v, T ), v, .., v)

v − g(v, T )

)

. (28)

It follows from (27), (28), and (H3) that T (r(·)) is monotonic as a function of R or v along radial
solutions.

For the specific class of stored energy functions (20), equation (27) becomes

d

dR
T (r(R)) =

(n− 1)κ

R
− (n− 1)Rn−1κ

rn
(r′)n.

The second term on the right hand side is integrable on [0, 1] for a cavitating solution r and so

T (r(R)) = (n− 1)κ ln(R) +O(1) as R → 0.

In addition, for the stored energy function (20), equation (28) reduces to

dT (v)

dv
= − (n− 1)

vn
κ

(

vn − g(v, T )n

v − g(v, T )

)

= −κ(n− 1)

v

(

1 +
g

v
+ ...+

gn−1

vn−1

)

.

Now integrating on [λ, v] yields

T (v) + κ(n− 1) ln v = T (λ) + κ(n− 1) lnλ

−κ(n− 1)

∫ v

λ

(

g

w2
+ . . .+

gn−1

wn

)

dw,

showing that the growth in T (v) is logarithmic in the variable v as v → ∞. We summarize these results
in the following proposition.

Proposition 2.2. Let r ∈ C2((0, 1])∩C([0, 1]) be a solution of (18) on [0, 1] satisfying r(0) > 0. Then,
for the stored energy function (20), the radial component of Cauchy stress given by (24) satisfies

lim
R→0+

(T (r(R))− (n− 1)κ ln(R))

is finite, and as a function of the circumferential strain v = r
R ,

lim
v→∞

(T (v) + κ(n− 1) ln v)

is finite. In particular, limR→0+ T (r(R)) = limv→∞ T (v) = −∞.
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Asymptotic behaviour of the determinant

Lemma 2.3. [24, Theorem 3.1] Assume that (H1)–(H4) hold. Then the determinant function δ (see
(22)) corresponding to a cavitation solution, as a function of the circumferential strain v = r

R , satisfies:

1

vn−1
Φ,11

dδ

dv
= (n− 1)v−1 (q(v) − v)

∂R

∂q
(q(v), v), (29)

where q(v) = δ(v)/vn−1. Hence, δ(v) is a monotone decreasing function of v.

Combining Proposition 2.2 and Lemma 2.3 we obtain:

Corollary 2.4. For the stored energy function (20), the determinant function corresponding to a cavi-
tation solution, as a function of the circumferential strain v, satisfies:

(

1 +
1

(n− 1)κ

vn(n−1)

δn−2
h′′(δ)

)

dδ

dv
=

vn(n−2)

δn−2



−vn−1 − vn−1
n−2
∑

j=1

v−j

(

δ

vn−1

)j

+ (n− 1)
δn−1

v(n−1)2



 . (30)

Moreover, provided h′(d) → −∞ as d → 0+, it follows that δ(v) → 0+ as v → ∞.

We close this section now by establishing conditions under which the term in the energy functional
(22), containing the function h(·), is finite for a cavitating solution.

Proposition 2.5. Let the function h(·) in (20) satisfy the inequalities

K1

dγ+2
≤ h′′(d) ≤ K2

dγ+2
, d ≤ d0, (31)

and
K1

dγ
≤ h(d) ≤ K2

dγ
, d ≤ d0, (32)

for some γ > 0 and d0 > 0. Then the integral
∫ 1

0
Rn−1h(δ(R)) dR is finite for a determinant function

δ(·) corresponding to a cavitating solution.

Proof. Since by Corollary 2.4, δ(v) → 0 as v → ∞, we have that for some v0 > 0,

δ(v)

vn−1
<

v

2
, v ≥ v0,

where δ(v0) ≤ d0. Using this, we get that

−vn−1 − vn−1
n−2
∑

j=1

v−j

(

δ

vn−1

)j

+ (n− 1)
δn−1

v(n−1)2
≥ −vn−1 − vn−1

n−2
∑

j=1

v−j
(v

2

)j

= vn−1(−2 + 22−n).

Similarly we can get that

−vn−1 − vn−1
n−2
∑

j=1

v−j

(

δ

vn−1

)j

+ (n− 1)
δn−1

v(n−1)2
≤ vn−1(−1 + (n− 1)21−n).
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It follows now from (31) that

κ(n− 1)

2K2vn
δγ+2 ≤ vn(n−2)

δn−2

(

1 +
1

(n− 1)κ

vn(n−1)

δn−2
h′′(δ)

)−1

≤ κ(n− 1)

K1vn
δγ+2.

It follows now from (30), and the previous estimates that

(n− 1)
κ

vK1
(−2 + 22−n)δγ+2 ≤ dδ

dv
≤ (n− 1)

κ

2vK2
(−1 + (n− 1)21−n)δγ+2, v ≥ v0.

We have now that

C1 ln(v) + C2 ≤ 1

δγ+1
≤ C3 ln(v) + C4, v ≥ v0, (33)

for some constants Ci, i = 1, 2, 3, 4, with C1 and C3 positive. The result now follows from this estimate
and the hypothesis (32).

Asymptotic behaviour of the energy functional

We next study the rate at which the stored energy of a cavitating equilibrium diverges to infinity for
stored energy functions of the form (20). We do this using the divergence identity (23).

Proposition 2.6. Suppose that Φ is of the form (20) and define the modified energy functional by

Î(r) := lim
ǫ→0+

[
∫ 1

ǫ

Rn−1Φ(r(R)) dR − κ(n− 1)

n
r(ε)n ln

(

r(ε)

ε

)]

. (34)

Assume that the function h(·) in (20) satisfies

|d h′(cd)| ≤ K[h(d) + 1], |c− 1| ≤ γ0, (35)

for some positive constants K, γ0. Let r ∈ C2((0, 1]) ∩ C([0, 1]) be a solution of (18) on [0, 1]. Then

1. if r(0) > 0 and δ(R) := r′(R)
(

r(R)
R

)n−1

is bounded on [0, 1], the modified energy Î(r) is finite and

given by

1

n
[Φ(r(1)) − r′(1)Φ,1(r(1)) + λnT (λ)]− κ(n− 1)

n2
r(0)n

− lim
ε→0+

[

T (r(ε)) + κ(n− 1) ln

(

r(ε)

ε

)]

rn(ε)

n
. (36)

2. If r(0) = 0, then Î(r) = I(r) (possibly infinite). (So that Î agrees with the unmodified energy
functional on non-cavitating equilibria).

Proof. By the fundamental Theorem of Calculus, it follows that

∫ 1

ǫ

Rn−1Φ(r(R)) dR − κ(n− 1)

n
r(ε)n ln

(

r(ε)

ε

)

=

∫ 1

ε

[

Rn−1Φ(r(R)) +
κ(n− 1)

n

d

dR

(

ln
( r

R

)

rn
)

]

dR − κ(n− 1)

n
λn lnλ.

On noting that

d

dR

(

ln
( r

R

)

rn
)

= nrn−1r′ ln
( r

R

)

+
d

dR

(

rn

n

)

−Rn−1
( r

R

)n

,

9



it follows from (20) and the above that Î is also expressible as

Î(r) = lim
ε→0+

∫ 1

ε

Rn−1

[

κ

n
(r′)

n
+ h (δ(R)) + κ(n− 1)δ(R)

(

1

n
+ ln

( r

R

)

)]

dR

− κ(n− 1)

n
λn lnλ.

By Proposition 2.5 and equation (38) below, the integrand in this expression is integrable on (0, 1) for
a cavitating solution. Thus the limit as ε → 0+ is finite and equal to

Î(r) =

∫ 1

0

Rn−1

[

κ

n
(r′)

n
+ h (δ(R)) + κ(n− 1)δ(R)

(

1

n
+ ln

( r

R

)

)]

dR

− κ(n− 1)

n
λn lnλ. (37)

As r is a solution of (18), it follows from (23) that

∫ 1

ε

Rn−1Φ(r(R)) dR =
1

n
[Φ(r(1)) − r′(1)Φ,1(r(1)) + λnT (r(1))]

− 1

n
[εn (Φ(r(ε)) − r′(ε)Φ,1(r(ε))) + r(ε)nT (r(ε))]

Since Rn−1h(δ(R)) is integrable in (0, 1) and r′ is bounded, it follows that

lim
ε→0+

εnΦ(r(ε)) = lim
ε→0+

κ(n− 1)

n
r(ε)n.

Similarly, this time using (35), we obtain

lim
ε→0+

εnr′(ε)Φ,1(r(ε)) = 0.

The result (36) follows from these limits, definition (34), and Proposition 2.2.

For the second part, let L = limR→0+
r(R)
R and assume that r(R)

R is not constant. If L ∈ [0,∞), is
easy to show that

lim
ε→0+

r(ε)n ln

(

r(ε)

ε

)

= 0.

Thus in this case Î(r) = I(r). Assume now that L = ∞. By Rolle’s theorem and the continuity of r′ in

(0, 1], it follows that L = limj→∞ r′(Rj) for some sequence Rj → 0+. Since r′(R) < r(R)
R in (0, 1], we

have by [1, Proposition 6.2], that T (r(R)) is strictly increasing. But limj→∞
r(Rj)
Rj

= limj→∞ r′(Rj) = ∞
implies that T (r(Rj)) → ∞ as j → ∞ which contradicts that T (r(R)) is strictly increasing. Thus L < ∞
which completes the proof of the second part.

Henceforth we shall employ the representation (37) as that of our modified functional. For later
reference we observe that

∫ 1

0

Rn−1δ(R) ln
( r

R

)

dR =

∫ λ

r(0)

un−1 ln(u) du−
∫ 1

0

Rn−1δ(R) ln(R) dR, (38)

which implies that (37) is bounded below.
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3 Existence of minimizers and the Euler-Lagrange equations

for the modified functional

In this section we show some of the details of the analysis that establishes the existence of minimizers
for the modified functional (37) over (17) and their characterization via the Euler-Lagrange equations.
The analysis is very similar to that in [1, Section 7] and thus we just highlight the details concerning the
extra or new terms in (37). In this respect, we mention that the stored energy function corresponding
to the modified functional (37) is given by (39) and does not correspond to an isotropic material. Thus,
the results in [1] do not necessarily apply immediately.

Theorem 3.1. Assume that the function h(·) is a nonnegative convex function satisfying (21). Then
the functional (37) has a minimizer over the set (17).

Proof. Since the homogeneous deformation rh(R) = λR belongs to (17) and Î(rh) < ∞, this together
with Î bounded below shows that

inf
r∈Aλ

Î(r) ∈ R.

Let (rk) be an infimizing sequence. As in [1], we use the change of variables ρ = Rn, and set uk(ρ) =
rnk (ρ

1/n). It follows now that

u̇k(ρ) =
duk

dρ
(ρ) = δk(ρ

1/n), δk(R) = r′k(R)

(

rk(R)

R

)n−1

.

From the boundedness of (Î(rk)) we get that the sequence

(
∫ 1

0

h(u̇k(ρ)) dρ

)

,

is bounded. It follows now from (21b) and De La Vallée-Poussin Criterion that for some subsequence
(not relabeld) (u̇k), we have u̇k ⇀ w in L1(0, 1) for some w ∈ L1(0, 1) with w > 0 a.e. Letting

u(ρ) = λn −
∫ 1

ρ

w(s) ds,

and r(R) = u(Rn)1/n, we get now that rk ⇀ r in W 1,1(ε, 1) and that δk ⇀ δ = r′(r/R)n−1 in L1(ε, 1)
for any ε ∈ (0, 1). Using (38) we get that

∫ 1

ε

Rn−1δk(R) ln
(rk
R

)

dR =

∫ λ

rk(ε)

un−1 ln(u) du−
∫ 1

ε

Rn−1δk(R) ln(R) dR.

Now using that rk(ε) → r(ε), δk ⇀ δ in L1(ε, 1), and that Rn−1 ln(R) is bounded on (ε, 1), we have that

lim
k→∞

∫ 1

ε

Rn−1δk(R) ln
(rk
R

)

dR =

∫ λ

r(ε)

un−1 ln(u) du−
∫ 1

ε

Rn−1δ(R) ln(R) dR,

=

∫ 1

ε

Rn−1δ(R) ln
( r

R

)

dR.

This together with the convergence of (rk) and (δk) already established, and a weak lower semi–continuity
argument shows that

Îε(r) ≤ lim inf
k

Îε(rk) ≤ lim inf
k

Î(rk) = inf
r∈Aλ

Î(r),

11



where Îε is as in (37) but integrating over (ε, 1). By the Monotone Convergence Theorem and the
arbitrariness of ε it follows that

Î(r) ≤ lim inf
k

Î(rk) = inf
r∈Aλ

Î(r).

Since λ = rk(1) → r(1), we get that r ∈ Aλ and is therefore a minimizer of Î.

If we define

Φ̂(v1, . . . , vn) =
κ

n
vn1 + h(v1 · · · vn) + κv1 · · · vn

(

n− 1

n
+ ln(v2 · · · vn)

)

, (39)

then (cf. (37))

Î(r) =

∫ 1

0

Rn−1Φ̂

(

r′(R),
r(R)

R
, . . . ,

r(R)

R

)

dR− κ(n− 1)

n
λn lnλ.

Note that Φ̂ does not correspond to an isotropic material as it is not symmetric in its arguments. However,
we still have that Φ̂,k(q, t, . . . , t) = Φ̂,j(q, t, . . . , t) for 2 ≤ k, j ≤ n, and that Φ̂ satisfy (H1)–(H4).

With Φ̂,i(r(R)) = Φ̂,i

(

r′(R), r(R)
R , . . . , r(R)

R

)

, i = 1, 2, we have that

Φ̂,1(r(R)) = κr′(R)n−1

+

[

r(R)

R

]n−1 [

h′(δ(R)) + (n− 1)κ

(

1

n
+ ln

[

r(R)

R

])]

, (40a)

Φ̂,2(r(R)) = r′(R)

[

r(R)

R

]n−2 [

h′(δ(R)) + κ+ κ(n− 1)

(

1

n
+ ln

[

r(R)

R

])]

, (40b)

and we define

T̂ (r(R)) =

[

r(R)

R

]1−n

Φ̂1(r(R)),

= κRn−1

[

r′(R)

r(R)

]n−1

+ h′(δ(R)) + (n− 1)κ

(

1

n
+ ln

[

r(R)

R

])

. (41)

We call T̂ (r(·)) the modified radial Cauchy stress. The techniques in [1] can now be adapted to show the
following result.

Theorem 3.2. Let r be any minimizer of Î over (17). Assume that the function h(·) satisfies (35).
Then r ∈ C1(0, 1], r′(R) > 0 for all R ∈ (0, 1], Rn−1Φ̂1(r(R)) is C1(0, 1], and

d

dR

[

Rn−1Φ̂1(r(R))
]

= (n− 1)Rn−2Φ̂2(r(R)). (42)

Moreover, if r(0) > 0, then
lim

R→0+
T̂ (r(R)) = 0. (43)

The next two results are rather straightforward to verify but they will be quite important for the
rest of our development, especially for the phase plane analysis of (42).

Theorem 3.3. Let r be any minimizer of Î over (17) and assume that (35) holds. Then r is a solution
of (18), where Φ is as in (20).

12



Proof. We know r ∈ C1(0, 1]. Thus we can expand the following term in (42):

d

dR

[

Rn−1

[

r(R)

R

]n−1

ln

[

r(R)

R

]

]

= r(R)n−2r′(R)

[

1 + (n− 1) ln

[

r(R)

R

]]

−Rn−2

[

r(R)

R

]n−1

.

Substituting this into (42) and collecting terms, we get that (18) holds for r.

Proposition 3.4. Let r ∈ C2(0, 1] be a solution of (42). Then T̂ (r(·)) ∈ C1(0, 1] and

d

dR
T̂ (r(R)) = (n− 1)κ

r′

r

(

1− (r′)n−1

(r/R)n−1

)

. (44)

In particular, for a cavitating solution r, the function T̂ (r(·)) is monotone increasing in (0, 1]. Moreover,
if r(0) = 0, then r(R) = λR for R ∈ [0, 1].

Proof. It follows from (24) and (41) that

T̂ (r(R)) = T (r(R)) + (n− 1)κ

(

1

n
+ ln(r/R)

)

.

Moreover, from [1, Eq. 6.8] we have that for (20):

d

dR
T (r(R)) = (n− 1)κ

Rn−1

rn

(( r

R

)n

− (r′)n
)

.

Hence

d

dR
T̂ (r(R)) =

d

dR
T (r(R)) + (n− 1)κ

d

dR
ln(r/R),

= (n− 1)κ

[

Rn−1

rn

(( r

R

)n

− (r′)n
)

+
1

r

(

r′ − r

R

)

]

,

= (n− 1)κ
r′

r

(

1− (r′)n−1

(r/R)n−1

)

,

from which (44) follows.
The statement for the case in which r(0) = 0 follows from r being a solution of (18), assumption H2,

and arguing as in [1, Thm. 6.6].

Corresponding to the function (39) we define

T̂ (ν, v) = v1−nΦ̂,1(ν, v, . . . , v) = κ
(ν

v

)n−1

+ h′(νvn−1) + (n− 1)κ

(

1

n
+ ln(v)

)

. (45)

For fixed v > 0, we have that T̂ (ν, v) ց −∞ as ν ց 0 and T̂ (ν, v) ր ∞ as ν ր ∞. These together with
T̂ν(ν, v) > 0 implies that the equation T̂ (ν, v) = C has a unique solution ν̂(C, v) > 0 for any C ∈ R. Let

g(v) = T̂ (v, v) = κ+ h′(vn) + (n− 1)κ

(

1

n
+ ln(v)

)

.

We note that g(v) ց −∞ as v ց 0, g(v) ր ∞ as v ր ∞, and g′(v) > 0. Thus, the equation g(v) = C
has a unique solution v̄(C) for any C ∈ R.

We now show that for “small” λ the minimizers of (37) are homogeneous, i.e., equal to λR, and for
λ sufficiently large they must be cavitating, i.e., with r(0) > 0. The proof of the following proposition is
an adaptation of the one in [1], to the stored energy function (39).

13



Proposition 3.5. Let r be any minimizer of Î over (17) and assume that (21) and (35) hold. Then

1. for λ < λ̄ we must have that r(R) = λR where λ̄ is the solution of T̂ (λ̄, λ̄) = 0.

2. For λ sufficiently large we must have that r(0) > 0.

Proof. That λ̄ exists and is unique follows from our previous comments. Let λ < λ̄ and r be the
corresponding minimizer of (37) over Aλ. Assume that r(0) > 0. Then since r(1) = λ and r(R)/R → ∞
as R ց 0, we have that r(R0)/R0 = λ̄ for some R0 ∈ (0, 1). Since T̂ν > 0 and r′(R0) < r(R0)/R0 = λ̄,
we have that

0 = T̂ (λ̄, λ̄) > T̂ (r′(R0), λ̄) = T̂ (r(R0)).

But from (44) we have that T̂ (r(·)) is increasing and since limR→0 T̂ (r(R)) = 0 we must have T̂ (r(R)) ≥ 0
for R ∈ (0, 1], which contradicts the above inequality. Hence, r(0) = 0 and from the last part of
Proposition 3.4 we get that r(R) = λR.

For the second part of the proof, we define r̂(R) = n
√
dRn + 1− d, where d ∈ (0, 1). It is easy to

check that r̂′(r̂/R)n−1 = d. If we let u(R) = λr̂(R), then u ∈ Aλ. It follows now that

Î(u)− Î(λR)

λn
=

∫ 1

0

Rn−1
[κ

n
((r̂′)n − 1) + (n− 1)κ(d− 1) ln(λ)

+
n− 1

n
κ(d− 1) + (n− 1)κd ln(r̂/R) + (h(dλn)− h(λn))/λn

]

dR.

Since h(·) is convex, we get that h(λn) ≥ h(dλn) + (1− d)λnh′(dλn) which implies

h(dλn)− h(λn)

λn
≤ (d− 1)h′(dλn).

Thus

Î(u)− Î(λR)

λn
≤

∫ 1

0

Rn−1
[κ

n
((r̂′)n − 1) + (n− 1)κ(d− 1) ln(λ)

+
n− 1

n
κ(d− 1) + (n− 1)κd ln(r̂/R) + (d− 1)h′(dλn)

]

dR.

Since d ∈ (0, 1), the right hand side of this inequality is negative for λ large enough. Thus Î(u) < Î(λR)
for λ large enough. Hence, the minimizer r must have r(0) > 0.

If we let ω = R/r(R), then
dω

dR
=

1− ωr′

r
.

We now express the modified Cauchy stress T̂ (r(R)) as a function of ω. In reference to (45) we have
that the equation T̂ (r′, ω−1) = T has a unique solution r′ = ν̂(T, ω−1). Moreover, the function ν̂, as a
function of (T, ω), can be extended to a bounded function for (T, ω) ∈ [0, T0] × [0, ω0] for some T0 > 0
and ω0 > 0. Also

∂ν̂

∂T
=

ωn−1

(n− 1)κν̂n−1ω2(n−1) + h′′(ν̂ω−(n−1))
,

which can also be extended to a bounded function in [0, T0]× [0, ω0]. Using Proposition 3.4 we now get
that T̂ (ω) is a solution of the initial value problem















dT̂

dω
(ω) = (n− 1)κ

∑n−2
k=0 ω

kν̂(T̂ (ω), ω−1)k+1,

T̂ (0) = 0.

(46)
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By the boundedness properties quoted above, the solution of this initial value problem exists and is
unique. Using this, the existence of a critical boundary displacement λc can be established and the
uniqueness of solutions for λ > λc follows from a rescaling argument. The details of the previous
argument leading to the initial value problem (46), as well as the proof of the following proposition, are
as in [1].

Proposition 3.6. Let rc be a cavitating solution of (42) satisfying (43), and assume that Φ̂,1(1, 1, . . . , 1) =
0. Then rc can be extended as a solution of (42) to (0,∞) with

r′c(R) <
rc(R)

R
, R ∈ (0,∞).

Moreover, the function rc so extended is unique (does not depend on r(1)) and there exists λc > 1 such
that

λc = lim
R→∞

r′c(R) = lim
R→∞

rc(R)

R
.

If rλ is a solution of (42) satisfying (43) and r(1) = λ with λ > λc, then rλ(R) = rc(αR)/α where α is
the unique solution of rc(α)/α = λ.

It follows now that
lim

R→∞
T̂ (rc(R)) = λ1−n

c Φ̂,1(λc, λc, . . . , λc).

Combining this with Proposition 3.4 we get that

λ1−n
c Φ̂,1(λc, λc, . . . , λc) = (n− 1)κ

∫ ∞

0

r′c(R)

rc(R)

(

1− (r′c(R))n−1

(rc(R)/R)n−1

)

dR. (47)

4 Approximation by punctured balls

We now consider the problem over the punctured ball:

Bε = {x ∈ R
n : ε < |x| < 1} ,

with ε ∈ (0, 1). Thus we look at the problem of minimizing

Îε(r) =

∫ 1

ε

Rn−1Φ̂

(

r′(R),
r(R)

R
, . . . ,

r(R)

R

)

dR− κ(n− 1)

n
λn lnλ, (48)

over the set

Aε
λ =

{

r ∈ W 1,1(ε, 1) : r(1) = λ, r′(R) > 0 a.e. for R ∈ (ε, 1), r(ε) ≥ 0
}

. (49)

To state our next result we shall need the following lemma.

Lemma 4.1. Let λ̄ = 1 be the unique solution of Φ̂,1(λ̄, λ̄, . . . , λ̄) = 0. Then

Φ̂(v1, v2, . . . , vn) > Φ̂(1, 1, . . . , 1),

whenever vi 6= 1 for some i.

Proof. From (39) we have that

Φ̂(v1, v2, . . . , vn) = g(v1, v2 · · · vn),

where
g(x, y) =

κ

n
xn + h(xy) + κxy((n− 1)/n+ ln(y)), x > 0, y > 0.
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The critical points of g are given by the solutions of the system
{

κxn−1 + yh′(xy) + κy((n− 1)/n+ ln(y)) = 0,
xh′(xy) + κx(1 + (n− 1)/n+ ln(y)) = 0.

This system has a unique solution given by the equations

y = xn−1, h′(xy) = −κ(1 + (n− 1)/n+ ln(y)).

The condition λ̄ = 1 is the only solution of Φ̂,1(λ̄, λ̄, . . . , λ̄) = 0 implies that the only solution of these
equations is x = y = 1. Moreover since gxx(x, y) > 0 and

gxx(1, 1)gyy(1, 1)− gxy(1, 1)
2 > 0,

we have that (1, 1) is a strict local minimum for g. Since g(x, y) → ∞ as any of its arguments tend to
zero or infinity, this minimum is global. Thus whenever vi 6= 1 for some i, we have

Φ̂(v1, v2, . . . , vn) = g(v1, v2 · · · vn) > g(1, 1) = Φ̂(1, 1, . . . , 1).

With slight modifications of the proofs of Theorems 3.1 and 3.2, we obtain the following result for
minimizers of (48) over (49). (See also [18].)

Theorem 4.2. Let λ̄ = 1 be the unique solution of Φ̂,1(λ̄, λ̄, . . . , λ̄) = 0. Then the functional Îε has a
unique global minimizer over the set Aε

λ. Moreover, there exists a δ(ε) > 0 such that if rε is a global
minimizer with λ ∈ (1− δ(ε),∞), then rε ∈ C2([ε, 1]) is a solution of (42) over (ε, 1), and satisfies:

1. r′ε(R) > 0 for R ∈ [ε, 1],

2. rε(ε) > 0,

3. T̂ (rε(ε)) = 0.

We also have (see [18]):

Proposition 4.3. Let rε be the unique global minimizer of Îε over Aε
λ and let λc be as in Proposition

3.6. Then

1. for λ ≤ λc, we have that
lim
ε→0

sup
R∈[ε,1]

|rε(R)− λR| = 0,

2. if λ > λc, then we have that
lim
ε→0

sup
R∈[ε,1]

|rε(R)− rλ(R)| = 0,

where rλ is the cavitating minimizer of Î over Aλ.

We recall (cf. [18]) that the change of variables

es = R, v(s) =
r(R)

R
, (50)

transforms equation (42) into the autonomous equation:

d

ds
Φ̂,1(v̇(s) + v(s), v(s), . . . , v(s)) = (n− 1)

(

Φ̂,2(v̇(s) + v(s), v(s), . . . , v(s))

− Φ̂,1(v̇(s) + v(s), v(s), . . . , v(s))
)

, (51)
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where v̇(s) = dv(s)/ds. Now, a phase plane analysis of this equation in the (v, v̇) plane, based on the
time map [18, Eq. 2.19], the monotonicity of the Cauchy stress T̂ (r(·)) along solutions (cf. Proposition
3.4), and the continuous dependence on initial data for solutions of (51), shows that the following results
concerning the convergence of the strains corresponding to the solutions rε in Proposition 4.3 hold (here
vε is the solution of (51) corresponding to rε):

1. For λ > λc, the strains (v̇ε + vε, vε) converge as ε → 0 to the strains (v̇λ + vλ, vλ) corresponding
to the cavitating solution rλ.

2. For λ̄ < λ < λc, the strains (v̇ε + vε, vε) converge as ε → 0 to the strains corresponding to the
non homogeneous solution (v, v̇) emanating from (λ, λ) and with v̇ < 0. The convergence is such
that (v̇ε, vε) spends most of the time (in the sense of [18, Eq. 2.19]) close to (λ, λ) than to the rest
of the curve corresponding to the boundary condition T̂ (rε(ε)) = 0. Thus the strains (r′ε, rε/R)
develop a sharp boundary layer close to R = ε while away from this point they each tend to λ.

3. For λ < λ̄, we have the same conclusions as in 2) above but with v̇ > 0, i.e., with r′ε > rε/s.

5 Numerical results

In this section we present some numerical results that highlight the convergence results in Section 4
over punctured balls. We employ two numerical schemes: a descent method based on a gradient flow
iteration (cf. [16]) for the minimization of a discrete version of (48); and a shooting method (from R = 1
to R = ε) to solve the boundary value problem for (42) over (ε, 1) with boundary conditions T̂ (rε(ε)) = 0
and rε(1) = λ. The gradient flow iteration works as a predictor for the shooting method which in turn
plays the role of a corrector. The use of adaptive ode solvers in the shooting method allows for a more
precise computation of the equilibrium states, especially near R = ε where the strains corresponding to
the punctured ball solutions tend to develop sharp boundary layers.

Example 5.1. For the stored energy function (39) (or (20)), we take

h(d) = C dγ +Dd−δ,

where C,D ≥ 0 and γ, δ > 0. The reference configuration is stress free, that is Φ̂,1(1, . . . , 1) =

Φ̂,2(1, . . . , 1) = 0, provided:

D =
(1 + n−1

n )κ+ Cγ

δ
.

For the computations we used the following values for the different parameters:

n = 3, κ = 1, C = 1, γ = 2, δ = 2.

For these values, the critical boundary displacement is λc ≈ 1.0258 (cf. [15]). For ε = 0.3, 0.2, 10−4 and
λ = 1.05 (case λ > λc) we show in Figure 1 the computed solutions rε and the modified Cauchy stress
functions T̂ (rε(·)), the former converging very nicely to a cavitating solution while the latter converge
to a well defined increasing function vanishing at R = 0. The cavity size for the computed solution with
ε = 10−4 is approximately 0.44184 with modified energy of 1.2774. The affine deformation in this case
has energy of 1.2888.

For λ = 1.01 which corresponds to the case λ̄ < λ < λc, as λ̄ = 1, we show in Figure 2 the computed
rε and T̂ (rε(·)). The convergence is now to the affine deformation rh(R) = 1.01R with energy of 1.2733.
The corresponding Cauchy stress functions show sharp boundary layers at R = ε while converging
pointwise to a positive constant function.

The other calculation we show is for λ = 0.95 (case λ < λ̄ = 1) with the same values of ε. The results
are presented in Figure 3 where we can clearly see the convergence of the rε to the affine deformation
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rh(R) = 0.95R with energy of 1.3625 (Figure 3a). The functions rε in this figure are concave, corre-
sponding to the case where v̇ > 0 in (51). On the other hand, in Figure 3b we see the corresponding
Cauchy stress functions converging pointwise, with a sharp boundary layer at R = ε, to a negative
constant function.

Example 5.2. In this example we study the so called incompressible limit by considering a sequence of
compressible problems formally approaching an incompressible one. In particular, we consider functions
h(·) in (39) given by

h(d) = C

(

d− 1− 1

C

)2

+Dd−δ,

where C,D ≥ 0 and δ > 0. As C → ∞ we formally approach the incompressible modified stored energy
function given by:

Φ̂inc(v1, . . . , vn) =
κ

n
vn1 +D + κ

(

n− 1

n
+ ln(v2 · · · vn)

)

,

where v1v2 · · · vn = 1. For the computations we used the following:

n = 3, κ = 3, D = 1.5, δ = 2,

with λ = 1.05. In Figure 4 we show in solid the solution of the incompressible problem which is given by
rinc(R) = 3

√
R3 + λ3 − 1, together with the computed minimizers of the modified compressible problems

(48) with ε = 0.005 and C = 20, 40 (dashed and dotted respectively), which are clearly seen getting close
to rinc. We also computed solutions of the modified compressible problems for additional values of C,
together with their modified energies. The results are shown in Table 1. The energy of rinc, computed
using Φ̂inc above, is given approximately by 1.53013. Thus, we see as well a nice convergence of the
energies of the modified compressible problems in the incompressible limit.

Table 1: Energies for the modified compressible problems in the incompressible limit case.

C Îε(rε) C Îε(rε)

20 1.52298 160 1.52864
40 1.52532 320 1.52936
80 1.52735 640 1.52974

6 Concluding Remarks

It is not difficult to check that the results of this paper can be generalized to stored energy functions of
the form

W (F) =
κ

n
‖F‖n + h(detF) =

κ

n
(v21 + · · ·+ v2n)

n
2 + h(v1 · · · vn). (52)

In fact, an analysis for this stored energy function similar to the one leading to Proposition 2.2, shows
that T (v) is now asymptotic to −κ(n − 1)n/2 ln(v) as v → ∞. Thus, we are led to consider a modified
functional of the form

Î(r) =

∫ 1

0

Rn−1

[

κ

n

(

[

r′(R)2 + (n− 1)
( r

R

)2
]

n
2

− (n− 1)
n
2

( r

R

)n
)

+h (δ(R)) + κ(n− 1)
n
2 δ(R)

(

1

n
+ ln

( r

R

)

)

]

dR − κ(n− 1)
n
2

n
λn lnλ.
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As this functional can be characterised in terms of the original one plus suitable null Lagrangians, its
Euler–Lagrange equation coincides with that of the original functional. The rest of the analysis in this
paper should now follow through.

The radial incompressible case can be treated similarly to the compressible case studied in this paper.
However, the incompressible case is more straightforward since a radial incompressible deformation of
the form (12) which also satisfies (5) is necessarily given by

r(R) = (Rn + (λn − 1))
1
n ,

for λ > 1. On using this form, [1, Prop. 5.1] shows that

−
∫ b

λ
1

vn−1
d
dvΦ(v

1−n, v, . . . , v) dv + n
∫ b

λ
vn−1

(vn−1)2Φ(v
1−n, v, . . . , v) dv

= 1
λn−1Φ(λ

1−n, λ, . . . , λ),

for2 any b > λ. As b → ∞ (corresponding to the puncture closing up), the first term on the left of
this equation is, up to a constant, the radial Cauchy stress (on the deformed puncture surface) whilst
the second term is n times the energy of the deformed punctured ball. Taking the form of Φ in this
incompressible case as (κ/n)

∑n
i=1 v

n
i plus some constant, it is easy to obtain from the expression above

that the growth in the radial Cauchy stress is once again asymptotically proportional to ln(b) as b → ∞.
In generalising the techniques in this paper from radially symmetric deformations to none radial ones,

one approach (cf. [22]) is to restrict attention to deformations for which the distributional determinant
Det(∇u) of the deformation satisfies:

Det(∇u) = (det∇u)Ln + Vuδ0,

where δ0 is the Dirac measure supported at the origin and Vu is the volume of the cavity formed by the
deformation u at the origin. From [21, Proposition 3.6] we get that in the case n = 3,

∫

Bε

‖∇u‖3 dx ≥
∫

Bε

∥

∥

∥
∇urad

∥

∥

∥

3

dx ≥ −2
3
2 ω3 r̃

3(ε) ln(ε), (53)

where ω3 = 4π. Here urad is the radial symmetrization of u and is given by (12) where r is replaced by
r̃ which in turn is given by

4π

3
r̃3(R) =

4π

3
λ3 −

∫

BR

det(∇u) dx.

(The inequality (53) holds provided r̃′(R) ≤ r̃(R)/R for all R ∈ [ε, 1]. If this condition is not satisfied,
then the symmetrisation r̃ has to be modified as in [22] in order for (53) to hold.) Thus, it should follow
from (53) that the total energy due to the deformation u blows up at least like − ln(ε) as ε → 0+ if
Vu > 0. Thus, in generalizing our results to the non–radial case with the stored energy function (52),
we are led to consider a modified energy functional given by

Ê(u) = lim
ε→0

[
∫

Bε

W (∇u) dx+ 2
3
2κVu ln(ε)

]

.

It may now follow from the approach in [21] that, for each ε > 0, the minimizer of the functional
in brackets above (over Bε) must be radial. Under suitable hypotheses, it may then follow that the
minimizer of Ê is radial and so the results of the current paper would then be applicable. We shall
pursue these ideas elsewhere.

2The case b finite corresponds to integrating over a punctured ball in the reference configuration of internal radius
(

λ
n
−1

bn−1

) 1
n
.
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Figure 1: Computed minimizers rε and modified Cauchy stress functions T̂ (rε(·)) for Îε when λ = 1.05
and ε = 0.3, 0.2, 10−4.
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Figure 2: Computed minimizers rε and modified Cauchy stress functions T̂ (rε(·)) for Îε when λ = 1.01
and ε = 0.2, 0.1, 0.05, 10−4.
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Figure 3: Computed minimizers rε and modified Cauchy stress functions T̂ (rε(·)) for Îε when λ = 0.95
and ε = 0.2, 0.1, 0.05, 10−4.
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Figure 4: Minimizers of modified compressible problems approaching the incompressible deformation in
the incompressible limit (C → ∞) for C = 20, 40.
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