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ABSTRACT

An indicative appraisal has been undertaken of a combined Anaerobic Digestion and Steam
Methane Reforming process to produce sustainable hydrogen from organic waste. The
anaerobic digestion plant was based on the plant in Tilburg (The Netherlands), and was
modelled from the kerbside organic waste collections through to methane production. Data on
biogenic waste was obtained from a collection trial in a municipal area in the UK. This was
scaled-up to match that of a Tilburg-like anaerobic digestion plant. The waste collection trials
enabled the catchment area for an anaerobic digestion plant on a commercial scale to be
estimated. A thermodynamic evaluation of the combined process included energy and exergy
analysis in order to determine the efficiency of each process, as well as to identify the areas
that lead to inefficiencies. The overall energy efficiency is 75% and the overall exergy
efficiency is 60%. The main energy losses were associated with compressor inefficiencies. In
contrast, the main exergy consumption was found to be due to the fermentation in the
digestion tanks. Other hydrogen process efficiencies vary from 21% to 86%, with the higher
efficiencies belonging to non-renewable processes. However, the sustainable hydrogen
produced comes from entirely renewable sources (biogenic waste) and has the benefit of near-
zero carbon emissions in contrast to fossil fuels. Finally, the case study included an indicative
financial assessment of the collection to processing chain. A discounted payback period of
less than 20 years was estimated with a modest annual charge for householders.
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NOMENCLATURE

Abbreviations

AD Anaerobic Digestion

Bathnes Bath and North East Somerset unitary authority (in the South West of England)
BEIS (the UK) Department for Business, Energy and Industrial Strategy
CCC (the UK) Committee on Climate Change

CCS carbon capture and storage

CO carbon monoxide

CO2 carbon dioxide

CHas methane

DCF discounted cash flow

DECC (the former UK) Department of Energy and Climate Change
DOE (the US) Department of Energy

EERE (the US) Office of Energy Efficiency & Renewable Energy
EFA ecological or environmental footprint analysis

EfW energy from waste

EU European Union

Fe203 hydrated iron oxide

GHG ‘greenhouse’ gas

hh household

HMT (the UK Government or) Her Majesty’s Treasury

H2 hydrogen

H20 water vapour

H2S hydrogen sulphide

IEA International Energy Agency

IPCC Intergovernmental Panel on Climate Change

LNG liquefied natural gas



MEA monoethanolamine

MSW municipal solid waste

NG natural gas

NPV net present value

OECD Organisation of Economic Co-operation and Development
OPEX operating expenditure

O2 oxygen

pH a quantitative measure of the acidity of aqueous or other liquid solutions
SMR Steam Methane Reforming

TDR test discount rate

UK United Kingdom of Great Britain and Northern Ireland
UNESCO United Nations Educational, Scientific and Cultural Organization
WACC weighted average cost of capital

WMO World Meteorological Office

Symbols

o Financial Appraisal

I capital investment

N number of years (or physical plant life)

R annual return on investment

r discount rate

o Thermodynamic Analysis

E exergy

H enthalpy

h specific enthalpy

I irreversibility (always >0)

m mass flow across the system inlet or outlet

N number of moles of species

Q heat transfer

S entropy

T ‘absolute’ or thermodynamic temperature

w work transfer

Greek letters
A

€

n

change in a property (typically between inlet and outlet of the system)
specific exergy

First Law or energy efficiency



©] thermodynamic quality

w chemical potential
U} ‘exergy’ efficiency
Subscripts

g gas (or vapour)

i chemical species

in inlet boundary

lost property loss

0 reference environmental state (or ‘dead state’)
out process or system outlet boundary

P process or device

1. INTRODUCTION

1.1 The Challenge of Anthropogenic Climate Change

The threat of anthropogenic (i.e., human-induced) climate change is the dominant challenge to
the energy sector globally. The most recent (2013) scientific assessment by the
Intergovernmental Panel on Climate Change (IPCC) asserts [1] that it is ‘extremely likely’
that humans are the dominant influence on the observed global warming since the mid-20™
Century. Carbon dioxide (CO.) emissions, the principal ‘greenhouse gas’ (GHG) having an
atmospheric residence time of about 100 years, mainly arises from the use of fossil-fuelled
[coal, natural gas and oil (petroleum)] power stations and road vehicles, as well as for heating
in buildings and industrial processes. Changes in atmospheric concentrations of GHGs affect
the energy balance of the global climate system. Human activities have led to dramatic
increases since 1950 in atmospheric CO2; concentrations have risen from 330 ppm in 1975 [1]
to about 408 ppm in 2018 [2]. The 2015 Paris Agreement on climate change aims to keep
global temperatures “well below 2°C above pre-industrial levels and to pursue efforts to limit
the temperature increase to 1.5°C above pre-industrial levels” [3]. Indeed, the IPCC in their
subsequent ‘special report’ on the implications of keeping temperatures down to 1.5°C [4]
argued that humanity has just 12 years to respond to the climate change challenge (i.e., by
about 2030 rather than 2050 presently incorporated in international agreements), if it wishes
to keep global warming to 1.5°C above pre-industrial levels. However, bottom-up national
pledges received in connection with the Paris Conference for GHG mitigation efforts are
expected to result in a warming of around 2.7°C, even if fully implemented [3]. So the world
still faces a significant test of reducing GHG emissions further in order to bring global
warming into line with the aspirations in the Paris Agreement.

Concern over the impacts of global warming (more recently termed ‘global heating’ by some

climate scientists) led the British Government to introduce a legally binding aim of reducing

the nation’s ‘targeted GHG emissions’ overall by 80% by 2050 in comparison to a 1990

baseline [5] in their 2008 Climate Change Act [6]. This initiative led the way globally, and

subsequent pathways for achieving such levels of GHG savings are now known as “deep
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decarbonisation” in much of the industrialised world (see, for example, Spencer et al. [7]).
[The upper end, 2°C global warming target agreed at the Paris Agreement [3] is broadly
consistent with the 2050 UK GHG emissions target.] It led the British Government’s
independent Committee on Climate Change (CCC), established under the 2008 Climate
Change Act, to monitor a series of ‘carbon budgets’ stretching out to 2050 [8]. They require a
rapid transition (reduction) in GHG emissions towards an energy system that delivers high
quality energy services through low-carbon technologies and processes, that are also secure
and at competitive prices. Nevertheless, in 2018, the UK Government asked the CCC to give
it advice on the possible tightening of the 2050 target in light of the Paris Agreement [3]. Its
subsequent report [9] advocated a new emissions target for the UK: net-zero GHGs by 2050,
I.e., balancing emissions with CO2 removal. The CCC argued that this target is “achievable
with known technologies, alongside improvements in people’s lives, and within the expected
economic cost that Parliament accepted when it legislated the existing 2050 target for an 80%
reduction from 1990” [9]. They also advised that the steepest reductions in GHG emissions
must occur before 2030. But the CCC viewed current UK climate change policy as being
insufficient to meet even the existing 2050 targets [9], i.e., an 80% reduction against the 1990
baseline. The Climate Change Act was subsequently amended by the UK Government in June
2019 in order to target a reduction of all GHG emissions to net zero by 2050. A few other
countries in Europe have adopted even more stringent net-zero target timescales: 2030
(Norway), 2035 (Finland), 2040 (Iceland) and 2045 (Sweden). However, these Nordic nations
are relatively well placed in terms of low carbon energy resources (various combinations of
biomass, hydroelectric and geothermal schemes, as well as nuclear power plants in the cases
of Finland and Sweden) that makes rapidly securing a net-zero target rather easier than in
other countries within northern, central and southern (Mediterranean) Europe. The larger
European nations, such as France, Germany, Italy, Spain and The Netherlands, have recently
followed the UK example of setting a 2050 target date or supporting its introduction across
the European Union (EU).

1.2 Hydrogen Energy Options on the Transition Pathway to a Low Carbon Future

Hydrogen (H>) is potentially a low or zero-carbon energy carrier; depending on its means of
production. The notion of the so-called ‘hydrogen economy’ (see, for example, Hoffman
[10]), whereby H> is produced on a large scale (typically by the electrolysis of water) and then
used as an energy carrier or intermediary, was popular in the aftermath of the oil crises of the
1970s. Member states of the Organisation of Economic Co-operation and Development
(OECD) became anxious about the security of fuel supplies, and began to examine what
might substitute for oil in the transport sector. These worries largely evaporated in the 1980s
and 1990s with the collapse in the spot price of oil to effectively pre-1973 levels in real terms.
In any case, H> was perceived to have a number of technical and safety (flammability and
steel embrittlement) problems when contrasted with the alternatives. In recent years, its
attraction as a climate change mitigation option has become apparent.

The Royal Society (of London) recently published a policy briefing that evaluated the
prospects for generating sustainable hydrogen (H:) at scale [11]. The Royal Society was
founded in 1660 as an ‘invisible college’ of natural philosophers and physicians. It is now the
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UK’s national academy of science, and has adopted a mission to “recognise, promote, and
support excellence in science and to encourage the development and use of science for the
benefit of humanity”. Over recent years it has produced a number of ‘policy briefs’ on
critically important issues related to the development of science and technology, as well as
their implications for the wider world. These have provided government, business and
community decision-makers with the necessary background on which they can formulate
policy based on independent scientific evidence. In their hydrogen policy brief [11] the Royal
Society identified a number of processes for obtaining low carbon H» for tackling climate
change and poor (mainly urban) air quality. The document itself was developed via
discussions at a specialist workshop and a number of subsequent expert contributions of best
available evidence. Options for producing low carbon H: included ‘thermochemical routes’
[such as Steam Methane Reforming (SMR) and Coal/Biomass Gasification]; biological routes
[such as Anaerobic Digestion (AD), Photo Fermentation, and Bioelectrochemical Systems];
‘electrolytic routes’ (such as those utilising an Alkaline Electrolyser, Solid Oxide Electrolyser,
and Polymer Electrolyte Membrane Electrolyser); and finally a suite of innovative
technologies under the umbrella title of ‘solar to fuels’ (or ‘artificial photosynthesis’). In the
context of the present study, the two relevant technologies are:-

o Steam Methane Reforming (SMR): The process conventionally uses natural gas and
steam to generate H, and the UK currently produces around 26.9 TeraWatt-Hours (TWh)
annually. SMR plant vary between 150 and 440 MegaWatts (MW) with a typical energy
efficiency of about 70%. However, this process continues to emit CO2 emissions unless used
together with Carbon Capture & Storage (CCS) [11-15]. Some 71-92% of carbon can be
captured in this way, although the higher rates will be required for SMR to be a long-term
prospect. Upstream CO> emissions tend to limit the capture rate depending on the origin of
the natural gas resources. Pipelines from the Russian Federation, for example, have been
shown to be particularly leaky [16].

o Anaerobic Digestion (AD): The process utilises microbes to convert biomass to H> at
lower temperatures and with relatively simple technology. The Royal Society [11] suggest that
this route is presently feasible at a laboratory and small pilot scale. It may have other
difficulties, such as the range of biomass or biogenic wastes that can be utilised and their
biochemical accessibility. Improved microbial processes and biorefineries [17,18] are being
developed that are likely to yield greater H> output.

The Royal Society policy briefing [11] challenges the idea that conventional SMR is the only
solution for producing H> at scale over the next 30 years. Each of the technology routes was
reviewed in terms of their best available evidence and the prevailing uncertainties. It goes on
to outline the technological readiness of each route and the challenges that have to be faced in
bringing them to commercial realisation.

1.3 The Issues Considered

Sustainable development is desirable and, hopefully, attainable on a global scale. However, it
is less obviously applicable on a city scale [19], where the term 'sustainable cities' is
sometimes used synonymously with concepts such as urban autonomy, self-reliance or self-
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sufficiency. Thus, Doughty and Hammond [19] used environmental footprint analysis (EFA)
to study the sustainability of cities by placing them in their broader geographic context. They
examined the 18" Century (‘Georgian’) city of Bath as a sustainability case study. It was
found to exhibit an environmental footprint that is greater than its surrounding hinterland or
‘bioregion’, and some twenty times larger than its own land area. Bioregional thinking
attempts to emphasise the interdependence of cities and their natural surroundings. Berg [20]
(1990) argued that in order for cities to become more sustainable, they should secure a
reciprocal dependence between their urban settlement and the surrounding bioregion.
However, at current rates of consumption, the footprint of cities far exceeds their natural
catchment [19-21]. The least restrictive interpretation of a sustainable community would be
one that is both resource efficient and relied only on products of sustainable production. Thus,
cities only survive because they are linked by human, material and communications networks
to their hinterlands or bioregions [19].

Commercial H> production is almost entirely via the steam reforming of natural gas at the
present time. Sustainable production of H> may follow either a direct biological route,
biological production of methane (CHa4) followed by reforming, or gasification of biomass.
Other possible sustainable sources are electrolysis using electricity from wind (e.g., Dutton et
al. [22] and Hoffman [10]) or solar sources and photocatalytic splitting of water. However,
the main priority of the present study is the biological routes. The aim here was to provide an
indicative appraisal of a Hz production plant using thermodynamic and other methods of
analysis of the biochemical process. Thermodynamic (energy and exergy) analysis gives rise
to differing insights into the relative performance of various process chains. The
thermodynamic property known as ‘exergy’, for example, reflects the ability of undertake
‘useful work’, but does not represent well heating processes within an energy sector. Methods
of analysis employed in the present study are similar to those set out in detail within a related
work by Hammond [23], Hammond [24] and Hammond & Mansell [25]. This was followed
by a financial appraisal of the technology on a discounted cash flow (DCF) basis, and a brief
qualitative review of its likely environmental burdens. The facility appraised used
synthetically produced CHs as a feedstock, generated via Anaerobic Digestion (AD) of
organic municipal solid waste (MSW), followed by its Steam Methane Reforming (SMR); see
Fig. 1. The novelty of the study is in the synthesis of the H; production and the municipal
sourcing of biogenic waste on a community-scale. Here the ‘Unitary Authority’ of Bath &
North East Somerset (Bathnes) in the South West of England (UK) is adopted as a typical
source of MSW. This was scaled-up to match that of a VValorga-type AD plant, based on that
constructed in Tilburg (The Netherlands). The Bathnes area consists principally of the
UNESCO World Heritage City of Bath and its surrounding bioregion. It was selected because
the Bathnes Council had previously carried out a novel trial to evaluate waste collection. This
study is ‘indicative’ in the sense of being a simplified evaluation and illustration of the
performance of the combined AD-SMR hydrogen processing system from biogenic MSW in
the light of imperfect information. Such assessments provide a valuable evidence base for
developers, policy makers, and other stakeholders across the developed world. Thus, lessons
learned can be drawn for other industrialised nations attempting to decarbonise their energy
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systems, although local circumstances will determine potential country- and region-specific
applications

Pretreatment »| Digester | — . _.
Waste /— " B|ogTs
Biomass I

k“fff, C’D“;_. Scrub e Sr[?{l:nge Water Trap
Met}wa ne
iy

Steam High Temperature Low Temperature
Reformer Shift Shift

+—1 Cooling Methanator CO, Scrub

Hydrogen

Fig. 1. A schematic representation of a combined AD-SMR processing system utilising biogenic
municipal waste as a feedstock. (Upper section: anaerobic digestion (AD) stage; Lower
section: steam methane reforming (SMR) stage).

2. THE BIOREGIONAL CASE STUDY: BATH & NORTH EAST SOMERSET
(UK)

2.1  Historical Development

Doughty and Hammond [19] described the historical development of the city of Bath from
pre-Roman times to the present day. They observed that its origins lay in its development as a
Roman spa [26,27]. A quarter of a million gallons of hot spring water erupts from the ground
in Bath, and was utilised by the Romans both for bathing and for the central heating of their
dwellings. Davies and Bonsall [26] noted that “the economy of Bath was closely associated
with the rural hinterland”. In the aftermath of this Romano-British era, Bath became
successively a Saxon monastic town and then a Norman cathedral city. The local economy
depended mainly on the wool trade until the end of the 15" Century [19,26]. Its hot baths
were largely disused after the withdrawal of the Romans in the 5" Century, until their
supposed medicinal properties became more widely recognised in the 16" Century as a cure
for illnesses, such as leprosy, smallpox and infertility; leading to the growth of the city in
medieval times.

The city of Bath expanded dramatically from the original medieval core to meet the needs of
visitors, with new public spaces linked by terraced houses in the Palladian style (named after
the Italian architect, Andria Palladio). These were built mainly in the period 1714-1830 when
a succession of King Georges (I to 1V) reigned over the United Kingdom, and the era is
consequently known as 'Georgian' [19,26,28]. The characteristic soft, mellow (Oolitic)
limestone was extracted from quarries on nearby Combe Down. Building in Bath really took
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off from 1726 when the river between Bath and nearby city of Bristol (now the 8th-largest
urban area in the UK in terms of population) was made navigable, and building materials
could be imported into the city by water from Bristol. Construction of a canal network, and
then the Great Western Railway (1840) linking the city directly with Bristol and London,
facilitated trade with the Capital and other parts of the UK. Local government reorganisation
in 1994 meant that the city became part of the unitary local authority of Bath & North East
Somerset: the Bathnes Council. This brought together the City of Bath and the former rural
district of Wansdyke [19]. The architectural heritage of the city was officially recognised by
UNESCO in 1987, when it became one of some ten ‘“World Heritage Sites’ in Britain at that
time. Bath has a population estimated to be about 100,230 (in 2015), and the residents have an
income that is generally higher than the UK average.

2.2 Human and Physical Geography

Bathnes covers an area of ~35,200 hectares (ha), and extends some 36 km east to west and 17
km north to south (see the geographic location illustrated in Fig. 2). Two thirds is so-called
‘green belt’ land that lies between the Cotswold and Mendip Hills; giving it a diverse and
complex character. It represents an example of development on an urban scale, coupled with
its surrounding ‘bioregion’. The UNESCO World Heritage City of Bath is the principal
settlement in the district with a population estimated to be about 100,230 (in 2015), and the
residents have an income that is generally higher than the UK average. It is complemented by
a number of smaller urban communities scattered amongst its surrounding area (‘hinterland’
or bioregion). The local authority covers an area roughly equal to the old County of Avon (that
existed over the period 1974-1996; see again Fig. 2), and has a varied geography including a
number of river valleys and rolling hills. The population of the area has been slowly, but
steadily, growing during recent decades, and stood at about 192,100 in 2018. Just over half
the population live in the historic City of Bath with the other main centres of population being
the towns of Keynsham, Midsomer Norton, and Radstock. The local authority seeks to
develop a systems approach to achieve a ‘virtuous circle’ in terms of sustainability: balancing
economic and social development with environmental protection [19]. It’s latest corporate
strategy aims to address the challenge of the “climate and nature emergency”, whilst
“improving people’s lives” in the community. The Bathnes Council therefore intends to
improve public infrastructure, including the environmental performance of its buildings,
transport and local renewable energy generation over the coming decades.

3. METHODS AND MATERIALS
3.1 Biochemical Processing
3.1.1 Anaerobic Digestion (AD)

Anaerobic digestion is a biological process that takes place in the absence of oxygen [29,30].
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Fig. 2. The Bioregion of Bath & North East Somerset (Bathnes).
Source: Doughty & Hammond [19].

Bacteria are cultivated in a controlled atmosphere and feeds on organic material, breaking it
down and releasing a synthetic gas, commonly known as biogas. It is used in many parts of
the world to generate biogas, and is technically well developed. The process is employed
widely in so-called developing countries where the biogas is either used for cooking, or
refined and sold as synthetic natural gas (NG) to provide an income for a local community
[30]. The process is also quite widely employed in Europe to help combat the growing
problem of waste generation from landfill sites [29]. The organic fraction of biogenic waste is
digested in tanks that are vastly reduced in volume compared to the waste that enters landfill
sites. The methane content of biogas is high, although it has a significant proportion of CO>
and trace amounts of contaminants, such as hydrogen sulphide (H2S) [29,30]. Removal of the
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dilutant CO, and contaminants yields a synthetic gas of very similar composition to NG, i.e.,
principally methane (CH4). NG is a naturally occurring gas mixture with a lower carbon
content than other fossil fuels, such as coal or oil. The biogas created during AD, if refined to
remove any contaminating substances, can be used as a substitute for NG and hence as a
feedstock for the SMR process. If energy from waste (EfW) were used to create this synthetic
gas, and then the net CO- release into the atmosphere would be reduced in comparison to NG
usage.

There are many different types of digesters available, but all follow essentially the same
stages [29-31]:

. Hydrolysis/Liquefaction
. Acetogenesis
. Methanogenesis

During the first stage fermentative bacteria convert the complex organic matter, such as
cellulose, into soluble molecules like sugar, amino acids and fatty acids. The second stage
uses acetogenic bacteria (acid formers) to convert the products of the first stage to simple
organic acids, such as acetic acid and propionic acid, CO2 and Ha. In the third stage bacteria
called methanogens produce methane. This is done either by splitting acetic acid into CO2 and
CHjs or by reducing CO2 with Hy. Limited concentrations of hydrogen in the digestion tank
restricts the second method and so splitting acetic acid produces the bulk of the CHa4. There
are two types of bacteria that create methane, thermophilic and mesophilic, and each have
optimum environmental conditions in which they thrive. The bacteria chosen for the digestion
process is dependent on the climate and digester type.

There are many different types of digesters, each of which can be classified in terms of the
total solids contents of the slurry fed into the tanks. Low solids systems typically contain less
than 10% solids, medium solids contain between approximately 15-20%, and high solids
range from about 20-40% [32]. Furthermore, digesters can be classified into single-stage and
multi-stage reactors, as well as batch and continuous flow reactors. Single-stage reactors
make use of a single tank where the three stages of digestion all take place, whereas multi-
stage reactors separate the acetogenesis and methanogenesis stages via the use of two tanks.
Batch reactors are used when the tank is loaded with slurry and unloaded at the end of the
retention time. In continuous flow systems feed is constantly fed in and digestate is
continually discharged. The digestion products differ depending upon various factors such as
the temperature, pH level, composition of the feedstock, carbon/nitrogen ratio, organic load
rate, retention time and mixing [32]. These need to be optimised according to the time of year
to account for climate changes and variations in organic composition in order to produce the
highest yield of methane.

The Valorga digestion system analysed in the present study was a high solids, single stage,

continuous flow system that uses mesophilic bacteria, and is illustrated schematically in Fig. 3

[33]. It was based on a commercial-scale AD plant in Tilburg (The Netherlands). Municipal

solid waste (MSW) from five surrounding municipalities was sent to the digestion plant at

Tilburg, which separated the organic matter and recyclable waste. The pre-sorting section of
11



the AD plant sorts the organic fraction of the waste from other materials, which were sent to
be recycled or to landfill sites. Waste was hand sorted to remove large non-organic particles,
passed through a rotating drum sifter and ferrous materials were removed with a magnet. A
conveyor belt transported the waste to the pre-treatment unit. Electrically driven rotary sheers
in the pre-treatment unit reduced the organic waste particle size to a maximum of 10 cm

Bafttle |

Raw waste !

Biogas Sparging

Digested \\’as’[e<

Fig. 3. A schematic representation of a Valorga AD processing tank.
Source: Elsharkawy et al. [33].

across. The conveyor belt moved the organic matter to the mixer, where it was dissolved with
process water, fermented matter, and the micro-organisms responsible for fermentation. A
solids piston pump transferred the mixture into the digestion tanks. The digestion process was
carried out in two tanks, each with a volume of 3,300 m®, under mesophilic conditions at
38°C. At Tilburg the digestion tanks had the capacity to process 52,000 tonnes of organic
matter per year, but operated at 80%, processing 40,000 tonnes of waste annually. The
Tilburg Valorga-type plant digested the organic matter in vertical cylindrical vessels with a
partition across two-thirds of their diameter [31-35]. Digestate was extracted from the tanks
by gravity after a retention time of approximately three weeks, and then dehydrated with the
aid of electrically-driven screw presses before being transported on a conveyor belt to a
composting hall. The separated liquid was passed through a centrifuge to remove the
suspended solids, before the bulk was stored in a process water tank to be heated with steam
and mixed with the incoming organic waste. Residual waste water was passed through a belt
filter press where any remaining solid matter was removed, before being pumped to a
sewerage treatment plant. The filter cake was transported to the compost hall with the rest of
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the digested solids. Finally, the digested matter was stored for four weeks under aerobic
conditions to stabilize. The remaining material was considered to be a high quality compost.

3.1.2 Steam Methane Reforming (SMR)

Steam methane reforming is one of the most important hydrogen generation processes,
because it is associated with low emissions [36,37]. The feedstock is typically desulfurized
natural gas; a fossil fuel (although potential other sources include biogenic waste, liquefied
petroleum gas, naphtha and refinery offgas). Consequently, the H> produced using this fuel is
not a renewable or low carbon energy carrier. However, adopting CHs4 from renewable
sources of energy could enable this process to contribute towards the attainment of a
sustainable energy economy. Rosen [36] undertook a classic study of the thermodynamic
performance of the process in which he examined the energy and exergy flows through the
system. His aim was to identify potential areas for improving the effectiveness of the SMR
process. The analysis was evaluated in order to understand the energy and exergy calculation
procedure so that it could then also be applied appropriately to the AD process described
above. The six main steps involved in the SMR process (see again Fig. 1) are summarised
[37] as:

. Reforming. Methane is first purified before being reacted with water vapour to
produced a synthesis gas containing hydrogen and carbon monoxide according to the
following endothermic reaction:

CHs + H20(g) = CO + 3H>

Methane fuel is combusted in air to produce the heat required for this process and also steam
for compression and carbon dioxide scrubbing:

CHa + 202 & CO; + 2H,0(g)

. High-Temperature Shift. 94% of the carbon monoxide (CO) from the raw synthesis
gas is reacted with water over a high temperature catalyst according to the following
exothermic reaction:

CO + H20¢) = CO2 + H>

The high temperature gas exiting this reaction is used to pre-heat the methanator and
boiler feeds.

. Low-Temperature Shift. 83% of the remaining carbon monoxide is reacted with water
according to the same reaction used in the high-temperature shift block, over a low-
temperature catalyst.

. Carbon Dioxide Scrub. The synthesis gas is compressed to 3.5 MPa before the carbon
dioxide is removed. The scrubbing unit uses monoethanolamine (MEA) as a solvent to
absorb the carbon dioxide leaving 0.1% by volume in the resulting gas.

. Methanation. The methanation reaction uses some of the hydrogen produced in the
reforming reaction to convert the remaining carbon monoxide into methane and water:

CO +3H2 = CHs + H20(g)
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. Cooling. Cooling water reduces the temperature of the gas and it is dried to result in a
gas consisting of 97% hydrogen by weight.

The datum for the enthalpy and entropy values were set to coincide with the dead state of the
process, which was set by Rosen [36] as 298 K and 1 bar. The SMR process enables flexible
use of different feedstocks, designs that may be optimized for the highest efficiency, yield the
lowest operating expenditure (OPEX), or lowest total life-cycle cost. Different degrees of
modularization and standardization can be applied to meet specific project requirements.

3.1.3 The Combined AD-SMR System

AD is primarily a waste treatment method, widely used on mainland Europe and in America
to reduce the volume of waste sent to landfill sites. It is a fermentation process which breaks
down biodegradable organic matter into compost. The bacteria responsible for the
fermentation give off a synthetic gas (i.e., biogas), which consists primarily of CHs and CO..
In contrast, SMR is a process that has been used for several years to generate H, from NG
(CHa). The combined AD-SMR process that was appraised is illustrated schematically in Fig
1. Here the AD plant studied was modelled on a full-scale facility operating in Tilburg (The
Netherlands). The analysis performed on the SMR processing plant implies that 3.92 kmol of
hydrogen is produced from 1 kmol of methane. The analysis performed on the AD plant that
produces methane from municipal solid waste indicated that an average of 11.5 kmols of
methane is produced per day. This suggests that if this quantity of methane were processed
each day in the SMR plant, then 45 kmols of H> would be generated. One mol of H> is
equivalent to 2.016 grams, and therefore 91 kg of hydrogen would be produced per day, or
33,171 kg of Ha per year.

3.2 Biogenic Municipal Waste in a UK Context

In the present study, the ‘Unitary Authority’ of Bath & North East Somerset (Bathnes) in the
South West of England (UK) is adopted as a typical source of MSW. It was selected because
the Bathnes Council had carried out a novel trial to evaluate waste collection. Their intention
was to determine the best method for collecting waste, and the type of response from differing
household (hh) types and areas. ‘Bin lorries” — special-purpose vehicles for the collection of
domestic (and commercial) waste — were weighed in the trials to determine the amount of
waste that was collected. These waste collection trucks (or ‘dust carts’) have a six tonne (t)
dry weight, and during the trials increased up to 16 t when loaded; hence they collect up to 10
t of waste. However, this is not the maximum capacity as research from other trials in the
country report trucks collecting up to 16 t of waste. If the lorries were to be used to collect
waste for a commercial-scale project, then they would need to be carried out five days a week;
accounting for public holidays that equates to 250 days per year. Therefore one truck would
be able to collect 4000 t of compostable waste per year, assuming that they only collect one
load per day.

Details of Bathnes household waste obtained from the collection trial are presented in Fig. 4.
These results could be used to estimate the catchment area for an anaerobic digester on a
commercial scale. The bulk of the waste consists of material that can be recycled or
composted. If fine quality, sorted biogenic waste could be extracted, then an AD plant could
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produce both a good yield of biogas and high-grade compost. This compost would be a
potentially valuable product from the AD plant that could compliment high plant efficiency.
The current UK Government strategy for waste management is to reduce the amount of waste
produced, reuse anything that can be used again, and then recycle as much waste as possible.
Landfill use has declined over the past few years, but it still remains an important waste
disposal technique in Britain. Waste recycling is rising with the backing of the central
government, as well as targets and standards set by the EU. Thus, research into composting
schemes to recycle the organic element of municipal solid waste is necessary to improve the
current recycling rates of the UK.

Other
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3.5% 34.0%
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Fig. 4. Dustbin waste composition for Bath & North East Somerset (Bathnes).

3.3 Thermodynamic Analysis
3.3.1 Energy Analysis

In order to determine the primary energy inputs into a system, it is necessary to trace all the
flows of energy across the ‘value chain’: a set of industrial activities that are performed in
order to deliver a valuable product or service for the market. This is based on the First Law of
Thermodynamics; representing the principle of conservation of energy, or the notion of an
energy balance applied to the system [38,39]. The First Law is typically viewed in terms of a
steady-state process for which the energy balance may be represented by [23-25]:

> (h+ke+pe),m, = (h+ke+pe), My, +> Q-W=0 (1)

where mi, and moyut denote the mass flow across the system inlet and outlet respectively, Q
represents the heat transfer across the system boundary, W is the work (including shaft work,
electricity, and so on) transferred out of the system, and h, ke, and pe denote the specific
values of enthalpy, kinetic energy, and potential energy respectively.

The First Law energy efficiency becomes:
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n-= (Hout)useful /Hin<1 (2)

where Hin represents the enthalpies of the various incoming flow streams for the system, and
Hout the different enthalpies of the output.

3.3.2 Exergy Analysis

The traditional approach to energy analysis takes no account of the energy source quality in a
thermodynamic sense. Electricity may be regarded as a high-grade source having a higher
quality, or exergy, because it can undertake work. In contrast, low temperature hot water,
although also an energy source, can only be used for heating purposes [23]. Consequently,
Hammond and Stapleton [38] proposed to employ exergy analysis alongside traditional
energy analysis in order to illuminate such issues. In the case of biogenic waste, the
significance of energy quality depends on (i) whether the system output is in terms of fuel,
heat, or electricity, and on (ii) the energy end-use.

Exergy is lost or degraded in every irreversible process or system. Consequently an exergy
budget on a control volume can be formulated in an analogous manner to the First Law
energy balance, Equation 1, as [38,40]:

zginmin _Zgoutmout +Z(EQ _EW)_I :O (3)

where E? and EY denote the exergy transfer associated with Q and W respectively, | is the
system exergy consumption or ‘irreversibility’, and € represents the specific exergy. Thus, the
exergy loss or irreversibility rate [41] of the system is given by:

| = AEiost = Ein— Eout >0 (4)

The exergy function itself is an ‘extensive’ property that is dependent on the mass or size of
the system [25], which is defined by reference to a “dead” or equilibrium state (in terms of
temperature To, pressure Po, and species component pio):

E = (H — Ho) = To(S — So) + 2 Ni(1; — 1) ©)

where S denotes the Clausius entropy and Ni is the number of moles of species i. Variations in
species, or matter, concentration are reflected in the last term on the right hand side. An
exergy efficiency, vy, can be defined in an analogous manner to its energy counterpart,
Equation 2, as [38]:

Y= Eout/Ein =1- I/Ein <1 (6)

Comparison with the practical First Law or energy efficiency (defined by Equation 2)
suggests that, in any real world system (which is irreversible) exergy is degraded and
therefore the exergy efficiency is consequently less than unity. Van Gool [40,41] has noted
that the maximum improvement in the exergy efficiency for a process or system is obviously
achieved when AE|qst is minimised; see Equation 4.

Van Gool [42] suggested that the thermodynamic quality of a flow stream may be represented
by the ratio of its exergy to enthalpy:
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Thus, for electricity [24]: @ =1

and for process heat [24]: © = [1— %j

p

In contrast to electricity (a high quality energy carrier with ® = 1 as indicated above), low
temperature hot water (® ~ 0.2) can only be used for heating purposes. The variation in van
Gool’s thermodynamic quality (®) with the process temperature ratio (Tp/To) is shown in Fig.
5. This was produced using the environmental datum temperature adopted by Hammond and
Stapleton [38] for their energy analysis of the UK economy: —1°C (or To = 272 K). They
indicated that the exergy efficiency of various domestic heating appliances was quite sensitive
to the choice of this reference temperature, when the process temperature is close to the
selected environmental datum. However, the thermodynamic quality (®) is insensitive to the
choice of this environmental temperature when plotted against the process temperature ratio
[23]; as depicted in Fig. 5. Here a very wide variation in Tp/To is displayed, and various heat
sources are shown for comparison purposes. Their associated process temperatures span the
range from liquefied natural gas (LNG) at about —50°C to the optical temperature of our Sun
at around +5500°C. Thus, exergy reflects the ability of a processing system to produce ‘useful
work’, but does not represent well heating processes [39].
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Fig. 5. Temperature dependence of thermodynamic quality.
Source: Hammond [23]; with a minor correction.
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3.3.3 Thermodynamic Data and System Analysis
. Anaerobic Digestion (AD)

The energy use and exergy consumption in the AD plant (based on the Valorga-type digester
[32-34] located in Tilburg, The Netherlands) are displayed in Tables 1 and 2 respectively.
These are shown in terms of the irreversibility inherent in each of the various sub-processes
and the percentage column in Table 2 indicates which sub-process consumes the most exergy.
Clearly, the fermentation, biogas high pressure storage, and refining process show large
energy and exergy losses. The balances for the biogas high pressure storage block show the
largest energy and exergy losses of approximately 75%. However, this is due to the
assumption that only 20% of the biogas is re-circulated to provide pneumatic mixing. Since
the biogas re-circulates back to the low pressure gas storage tank, this assumption has no
effect on the overall efficiency of the plant. However, there are considerable energy and
exergy losses due to the inefficiencies in the compressor, which are approximately 38%. The
energy and exergy losses in the refining process are also due to the compressor inefficiencies
and amount to approximately 31%. The energy and exergy losses in the fermentation process
of 30% and 39% respectively.

Table 1 Energy balance of each block for the Anaerobic Digestion (AD) process plant (based
on one at Tilburg, The Netherlands).

hin Qin | Win hout Qout | Wout | Sum % Eg:trgy
Sub-processes kw kW | kwW kw kW | kW kw %
\Waste Collection 10273 | 0.0 | 0.0 | 10273 | 0.0 | 0.0 0.0 0.0
Transport 10273 | 0.0 | 49.9 | 10273 | 0.0 | 0.0 49.9 0.5
Reception 10273 | 0.0 | 1.1 | 10273 | 0.0 | 0.0 1.1 0.0
Crushing 10273 | 0.0 | 354 | 10273 | 0.0 | 0.0 35.4 0.3
[Mixing 18218 | 0.0 | 20.8 | 17960 | 0.0 | 0.0 | 279.3 15
Fermentation 17959 | 0.0 | 0.0 | 12585 | 0.0 | 0.0 | 5373.0 29.9
Biogas LP Storage 120 0.0 | 0.0 120 0.0 | 0.0 0.1 0.1
Biogas HP Storage 24 00 | 720 | 234 0.0 | 0.0 72.0 75.0
Refining 120 0.0 | 53.6 120 0.0 | 00 53.7 31.0
Dehydration 12466 | 0.0 | 21.6 | 12438 | 0.0 | 0.0 48.8 0.4
Centrifuge 9756 | 0.0 | 10.7 | 9710 | 0.0 | 0.0 56.3 0.6
Process Water Storage 7639 |3056| 1.0 7945 | 0.0 | 0.0 1.0 0.0
Filter 1255 | 0.0 | 33 1251 | 0.0 | 0.0 7.5 0.6
Compost 3586 | 00 | 1.1 | 3586 | 0.0 | 0.0 1.1 0.0

The overall energy and exergy efficiencies of the AD plant was 34.2% and 27.6%
respectively. Inputs to the system included the internal energy or exergy associated with the
organic element of municipal solid waste, the energy or exergy inputs for transporting the
waste from households to the digester plant, and the electricity inputs. The outputs of the
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Table 2 Exergy balance of each block for the Anaerobic Digestion (AD) process plant (based
on one at Tilburg, The Netherlands).

hn | Qo | Wi | P | Que | Wa | 1| ZoEXerdY

Sub-processes kw kw kW kw kw kw kw %
\Waste Collection 12903.1| 0.0 00 |[12903.1| 0.0 0.0 0.0 0.0
Transport 129031 0.0 | 499 [12903.1| 0.0 00 | 499 0.4
Reception 12903.1| 0.0 11 [129031| 00 | 00 | 11 0.0
Crushing 129031 0.0 | 354 [12903.1| 0.0 00 | 354 03
[Mixing 204589 00 | 208 |20439.8| 0.0 00 | 399 0.2
Fermentation 204389 0.0 | 00 (123963 00 | 0.0 |80426 393
Biogas LP Storage 1196 | 00 00 | 1196 | 0.0 0.0 0.0 0.0
Biogas HP Storage 239 | 00 | 720 | 239 | 00 | 00 | 720 75.1
Refining 1196 | 00 | 536 | 1196 | 0.0 00 | 537 31.0
Dehydration 122921 00 | 21.6 |12291.1| 0.0 00 | 225 0.2
Centrifuge 96086 | 0.0 | 107 |95892| 00 | 00 | 302 0.3
Process Water Storage | 7535.1 | 2292 | 1.0 |75558| 0.0 | 00 | 2095 27
Filter 12380 00 | 33 |12375| 00 | 00 | 38 03
Compost 3586.1 | 0.0 11 [3586.1| 0.0 0.0 11 0.0

system only included the energy or exergy in the refined gas (CH4) and the compost. Waste
process water and the vented gases from the Binax CO2 removal system were assumed to be
lost during processing. Inputs for the dehydration sub-process include the energy/exergy
content of the digestate, and work inputs for the centrifuge, screw press, pumps and belt filter
press. The outputs were the energy/exergy content of the solids from the dehydration,
centrifuge and filter sub-processes, as well as the liquid into the process water storage block.
The water out of the belt filter press is considered to be waste.

The calorific value of the compost in the analysis was assumed to be the same as that from the
Tilburg plant. However, the Tilburg plant collects and sorts all municipal solid waste, and the
resulting compost contains 40% inorganic matter. Source sorted waste may result in a
compost with a different composition and hence a different calorific value. Indeed, sorted
waste can provide good quality feedstock for either composting or AD processing, because
there are less heavy metals and plastic contaminants present. The calorific value of biomass
derived from aerobically digested compost from an individual household is some 17,400
kJ/kg; significantly larger than the figure from the Tilburg plant of 4500 kJ/kg. However, the
calorific value of the compost derived from a commercial anaerobic digester will not
necessarily be as large, since there may be a significant proportion of indigestible matter in
the feed.

o The Combined AD-SMR System
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A comparable and comprehensive thermodynamic evaluation of SMR was previously
undertaken by Rosen [36]. That has therefore not been duplicated here, although the results of
that earlier study have been utilised in the present study. The overall energy and exergy
efficiencies to produce hydrogen from garden and food waste was found to be 74.8% and
60.6% respectively. Outputs included compost from the AD plant and the Hz from the SMR
plant (see again Fig. 1). Likewise, inputs consisted of the organic element of the waste fed to
the Valorga digester, all electricity used, external steam, and transport energy inputs. The
overall energy balance and exergy budget for the AD processing plant are illustrated in Fig. 6
for 10,000 kJ/kg in compost calorific value. The left and right half of the energy balance (Fig.
6) represent the inputs and outputs; thereby depicting the energy losses. The left and right half
of the exergy budget (again Fig. 6) reflect their inputs and outputs, including exergy
consumption in respect to the latter. Sources of energy losses and exergy consumptions, as
well as their differences, can therefore be clearly seen by scrutinising these pie charts.

Inputs | Outputs Inputs  + Outputs
4—‘:—'

Steam (3%) Steam(2%)

Electricity (2%) Bectricity (2%)

Transport (1%) Transport (1%)

Compost (59%)

Food (66%) Compost(77%)

Food (72%)

Refined Gas (1%)

Waste Water (9%)
-Refined Gas (1%)

\-Wa ste Water (11%) Wood (23%) ! Exergy Consurption

Wood (28%)
H \\ (31%)

Energy Losses
(11%)

a) energy balance b) exergy balance

Fig. 6. The energy balance and exergy budget for the AD process
(using a calorific value for compost of 10,000 kJ/kg).

The overall efficiencies of the combined processes lie in-between the figures for the overall
efficiencies of the individual processes, but are closer to those of the AD plant. This is
because the majority of the output from the combined process is the compost from the
digester tanks and the calorific value of this has as much of an effect on the overall
efficiencies for the combined AD-SMR system as it does for the AD process alone.

o Comparison with Alternative Hydrogen Processes

Rosen [43] investigated the energy and exergy efficiencies of various hydrogen production
processes, using the SMR process and the same definition of efficiency. These processes can
therefore be readily compared to the combined AD-SMR process analysed here. Rosen [43]
described and compared the following processes:
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(1) Hydrocarbon-based processes
o Steam methane reforming
o Coal gasification

(if) Non-hydrocarbon based processes

o Current technology water electrolysis
o Advanced technology water electrolysis
o Thermochemical water decomposition

(iii) Integrated processes

o Steam methane reforming combined with current technology water electrolysis
o Steam methane reforming combined with advanced technology water electrolysis
o Steam methane reforming combined with thermochemical water decomposition

The overall energy and exergy efficiencies of these processes are summarised in Table 3 [43].
For each of the process chains the input energy and exergy are associated with the main feeds,
hydrocarbons for the hydrocarbon based processes, high temperature heat for the non-
hydrocarbon based processes and a mixture of both for the integrated processes. The output
energy is associated with the waste cooling water, stack gas and hydrogen for the
hydrocarbon based and integrated processes, as well as waste cooling water and hydrogen for
the non-hydrocarbon based processes. The output exergy is mainly associated with the
hydrogen produced for all of the processes, although the proportions vary from 86% for SMR
to 19% for thermochemical water decomposition (ignoring exergy consumptions). This is
reflected by the efficiencies given in Table 3.

Table 3 Overall energy and exergy efficiencies for alternative hydrogen production processes.
Source: Rosen [43].

Process _E_nergy _E_xergy
Efficiency (%) | Efficiency (%)
Steam methane reforming (SMR) 86 78
Coal Gasification 59 49
Current technology water electrolysis 30 26
Advanced technology water electrolysis 49 41
Thermochemical water decomposition 21 19
SMR/Current technology water electrolysis 55 48
SMR/Advanced technology water electrolysis 70 62
SMR/thermochemical water decomposition 45 40

21



Nearly all of the inputs to the combined AD-SMR process are connected with the organic
waste. The bulk of the energy outputs stem from the compost. The majority of the exergy
outputs are associated with the compost and exergy consumptions. This is similar to the AD
plant, but differs from all the alternative processes described by Rosen [43]; see again Table
3. This is because the processes described by latter [43] only yield hydrogen, whereas the
combined AD-SMR system produces both H> and compost. The compost produced in the
combined system dominates the efficiency of the plant, and the percentage of H; is small in
comparison to other outputs.

3.4 Financial Appraisal

The present study employed discounted cash flow (DCF) accounting methods in order to
evaluate the financial viability of the combined AD-SMR system. Financial appraisal uses the
market rate of interest (net of inflation) as a lower bound on the discount rate, and therefore
indicates the real return that would be earned on a private sector investment. This approach
takes account of the ‘time value of money’ and discounting in order to obtain the appropriate
investment appraisal criteria [44,45]. The net present value (NPV) of the sum of the capital
cost, maintenance and operational costs, as well as (potentially) decommissioning, is
calculated over the life of the project, along with the NPV of the hydrogen processing.
Discounted cash flow (DCF) analysis has been used to determine the payback period of the
combined AD-SMR plant via:

NPV =1 + R{ﬂ} )

where NPV is the net present value, | is the capital investment, R is the annual return on
investment, N is the number of years (or plant life), and r is the discount rate. The DCF
payback period is achieved when the NPV is zero. In the case of public sector investments a
so-called Test Discount Rate (TDR) is often utilised. It is typically derived from a comparison
with private sector discount rates [or Weighted Average Cost of Capital (WACC)]. In the UK,
HM Treasury [46] recommends that the TDR for projects with durations of less than 30 years
should be taken as 3.5%, then falling in line with the profile indicated in Table 4 below. A
discount rate of 7% was selected in the current case as representing towards the upper end of
the private sector WACC in the UK.

Table 4 The declining long-term UK ‘Test Discount Rate’. Source: HM Treasury [46].

Period of Years 0-30 31-75 76-125
Discount Rate 3.5% 3.0% 2.5%

Capital investment for the AD plant in Tilburg was £11 million (M) [47], and this figure was
used for the present appraisal. The practical differences between the Tilburg plant and that
studied here was considered negligible, because the investment cost of the pre-sorting unit in
the Tilburg plant is comparable to that for gas refining plant used in the AD-SMR system.

The capital investment for a SMR plant that produces 91 kg of H; a day was £391,050. The
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potential revenue from the sale of hydrogen gas, given that the combined process could
produce 33,171 kg of hydrogen annually, was £98,015 per year. This is based on £35 per 50
litre bottle, which is filled at 200 bar [6]. The return from the compost, based on a price of
£10.66 per t, is £225,524 per year. Assuming a workforce of 12 at an average wage and
benefits cost of £30,000 per annum, implies a labour cost of ~£360,000. Costs for running,
maintenance, health and safety, decommissioning, etc. were assumed to be equal to the labour
cost. The projected annual yield of organic waste per household, based on the Bathnes trials
that charge for waste collections (see the composition depicted in Fig. 3). This implies that
just over 1.4 million households would be needed to collect the 40,000 t of waste per year. In
order for the plant to break-even each year a charge of £0.28 per household per year would
need to be made. However, to attain a DCF payback period of less than 20 years, then an
annual charge of at least £1.04 per household is needed. There is not presently a carbon credit
scheme for the conversion of CHa into Hz within the UK. Obviously, such a scheme would be
desirable on climate change mitigation grounds, and could provide an incentive for the
adoption of a combined AD-SMR facility.

3.4 Environmental Burdens of Hydrogen Processing

An indicative energy technology assessment would typically include an evaluation (even in
just qualitative terms) of the likely environmental impact of the hydrogen generation process.
Hydrocarbon production processes [43] vary in terms of their by-products, and hence each
exhibits different environmental burdens. Coal-based processes give rise to serious problems
due to high levels of sulphur content, possible hydrogen cyanide and heavy metals, which
need removing from the raw gas, as well as the ash and slag that need disposal. Natural gas
used in conventional SMR plants is the cleanest hydrocarbon-based fuel, producing only
sulphur products that can be stripped from the raw gas (essentially CHs). Steam methane
reforming was considered by Kirk-Othmer [48] to be the most environmentally acceptable
method of producing Hz, although conventional SMR with natural gas is not a sustainable
over the longer-term due to the fact that it is a finite, fossil fuel, carbon emitter (albeit at a
considerably lower level than with coal).

The AD process emits small amounts of sulphur in the biogas (CHa4) that needs to be
removed. The quantity of sulphur and any other contaminants present in the biogas and
compost are dependent on the composition of the organic waste used. The AD plant is
beneficial to the environment in that it is an EfW option, which re-routes waste that would
otherwise be sent to landfill sites. In addition, the near-pure methane that is produced has
practically no contaminants, and therefore the by-products from the AD-SMR system would
be minimal.

4. CONCLUDING REMARKS
4.1 Summary of the Findings from the Present Study

An indicative appraisal has been undertaken of a combined anaerobic digestion - steam
methane reforming process (see Fig. 1) to produce H> from organic waste. The anaerobic
digestion plant was based on the plant in Tilburg (The Netherlands), and was modelled from
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the kerbside organic waste collections through to methane production. It is envisaged that a
variety of local authorities would provide biogenic waste as a feedstock to a large, Valorga-
type anaerobic digestion plant (again modelled on that in Tilburg plant) coupled to a suitably-
sized SMR facility or several smaller ones in a cluster. However, in practice it is likely that
the anaerobic digestion plant would be supplied by a variety of MSW feedstock types. The
technical feasibility of this hydrogen production chain was assessed based on biogenic waste
collected in a local authority area and its bioregion: that governed by the Bathnes Council (in
the South West of England, UK). This was scaled-up to match that of a Tilburg-like
anaerobic digestion plant. The overall efficiency of the combined anaerobic digestion - steam
methane reforming system is high only if the plant delivers two co-products: compost, as well
as Hz. An important benefit of the Hz produced from this process is that it is near-zero carbon
and renewable. Widespread adoption of such facilities would reduce local waste disposal
problems in the UK, and contribute to reducing the greenhouse gas emissions (since the
reliance on fossil fuels would lessen). The results from the organic municipal solid waste
collection trials could be used to identify areas that might provide ‘good quality’ sorted waste,
and estimate the geographic area that could most benefit from biogenic municipal waste
collection.

The majority of the energy that is lost in the combined anaerobic digestion - steam methane
reforming plant (see again Fig 1) is due to waste water and mechanical inefficiencies. In
contrast, the bulk of the exergy losses were due to internal processes, such as the fermentation
process, the combustion process in the boiler, and reforming of the methane into H,. The
products from the combined process are 3% by weight of Hz and 97% by weight of compost.
The overall energy efficiency is 74.6% and the overall exergy efficiency is 60.4%. Other H»
process efficiencies vary from 21% to 86%, the higher efficiencies belonging to non-
renewable processes. If the compost were considered as just ‘waste’ product, then the overall
efficiencies fall to approximately 1% in terms of both the energy and exergy analysis, which
are obviously low in comparison to other hydrogen production processes. This is because the
high proportion of compost produced dominates the efficiency of the plant and the percentage
of hydrogen is small in comparison to other outputs.

Discounted cash flow accounting indicated that in order to attain a payback period of less than
20 years, then an annual charge of at least £1.04 per household is needed. Due to economies
of scale it may be beneficial to investigate the installation of a centralised, large-scale steam
methane reforming plant, which could buy in synthetically produced methane from anaerobic
digesters dispersed throughout the UK. Installing anaerobic digesters throughout the country
would help with the waste disposal problem and would also provide the steam methane
reforming plant with a sustainable, renewable feedstock. Such a scheme would contribute to
reducing the current rate of global climate change since the reliance on fossil fuels would
decrease and could be a key step in the direction of providing the UK with a more sustainable,
renewable energy market.

4.2 Technological Bottlenecks and Recommendations for Further Research

A focus of the Royal Society (RoySoc) H> expert study [11] of options for producing low-
carbon hydrogen at scale [11] was on a range of alternative technologies. These comprised
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‘thermochemical routes’ (embracing steam methane reforming]; biological routes [including
anaerobic digestion); ‘electrolytic routes’; and a suite of innovative technologies under the
umbrella title of ‘solar to fuels’. In the present context, there are a number of technological
bottlenecks associated with anaerobic digestion and steam methane reforming plants. They
concluded that anaerobic digestion plants are feasible now at a laboratory or small scale [11];
notwithstanding the fact that the Tilburg facility demonstrates the practicality on a much
larger scale [48]. The RoySoc experts argued that anaerobic digestion plants might have
greatest impact if used to produce high value chemicals in conjunction with a biorefinery
[11,18]. Achinas et al. [49] suggested that there were important technical, economical, and
ecological barriers. Costs are particularly prohibitive when utilising multi-stage reactors.
Optimising key elements (such as micro-organism species, pretreatment methods, purification
technologies, and substrate properties) are the main challenge to cost-effective methane
production according to Achinas et al. [49]. The US Office of Energy Efficiency & Renewable
Energy [50] recently noted that gas-liquid mass transfer also provides a bottleneck, due to the
low solubility of CH4 and results in cost challenges to gas phase fermentation systems. In
terms of the steam methane reforming technology, the RoySoc suggested that it was already a
commercial route, but was not low carbon. They therefore recommended that it would have to
be coupled with carbon capture technologies [11,13-16]. However, this H> expert group [11]
did not consider the option of a combined anaerobic digestion - steam methane reforming
facility of the type studied here that potentially delivers low carbon, renewable Ho.

Future anaerobic digestion research is required in order to fill the gap between engineering
and biology/biotechnology identified above [11,49,50]. In the present context, further
research would be useful in terms of verifying the quantities of hydrogen that could be
practically produced via a combined anaerobic digestion - steam methane reforming facility
from the total organic fraction of UK waste. This would need to highlight whether the
distributed production of H. from the municipal solid waste would be beneficial overall to the
UK (or elsewhere) in terms of the production of an affordable, sustainable energy market. The
calorific value of compost derived from an anaerobic digester should be carefully determined
to enable an accurate efficiency of the plant to be obtained. On a local scale, it would be
valuable to optimise the environmental conditions inside an anaerobic digestion tank suitable
for installation in Bathnes, or a local authority area of comparable size, and to establish the
feasibility of installing such a plant on the basis of community collection trials (outlined in
Section 3.2 above). Finally, the practical feasibility of a centralised steam methane reforming
plant to produce methane from large anaerobic digesters dispersed across the UK or in similar
industrialised countries.
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APPENDIX A. KEY ASSUMPTIONS AND OPERATIONAL PARAMETERS
ASSOCIATED WITH THE ANAEROBIC DIGESTION SYSTEM
A.1 Organic Waste Collection

The organic waste input was assumed to be sorted at source. It amounted to a total waste input
to the AD system of 40,000 t (see Section 3.2 above). The waste was assumed to be only
collected over 250 days per year, because of weekends and ‘bank’ (i.e., public) holidays. This
implying that 160 t of waste was collected per day within the Bathnes geographic area (of the
South West of England). This was averaged over a period of one year to obtain a constant
flow of 110 t per day. The proportions of different materials that make-up municipal solid
waste in the Bathnes area is depicted in Fig. 4. The organic element of municipal solid waste
was made up from the kitchen, garden and paper and card sections. It can be seen from Fig. 4
that the organic fraction of waste arisings is 55%, although only garden and food waste were
assumed to be used in an anaerobic digester (because paper and card can be recycled). Thus,
the proportion of food waste to garden waste presented in Fig. 4 can be seen to be about 17%
wood and 83% food. The calorific values of wood and food waste was taken to be 14.5 GJ/t
and 6.8 GJ/t respectively, were used for the energy input to the system and as a means for
calculating the chemical exergy [51].

A2. Transport

The data for transport was obtained from conversations with the project supervisor of the
Bathnes Council waste collection trials (Peter Francis, private communication). The ‘bin
lorries’ (relatively large, heavy motor vehicles used for refuse collection in the UK) that were
used for the trials were weighed to determine the amount of waste that was collected. These
lorries or ‘dust carts’ have a six tonne (dry weight) and during the trials their weight increased
up to 16 t when loaded (see also Section 3.2 above), hence they collect up to 10 t of waste.
However, this is not the maximum capacity as research from other trials in the UK reported
lorries collecting up to 16 t. If the lorries were to be used to collect waste for a commercial
scale project, then collections would be carried out five days per week, accounting for bank
holidays that equates to 250 days per year. Consequently, one lorry would be able to collect
4000 t of compostable waste per year, assuming that the lorries only collect one load every
day. The Valorga digester in Tilburg typically operates at 80% capacity, which enables it to
process 40,000 t of waste per year. Assuming that the lorries are available for use 250 days
per year, this implies that 10 lorries would be required to collect the waste. A sample round
from the trials collected waste from 180 households, taking approximately one hour to
complete and resulted in approximately 2 t of organic waste. The lorries would therefore need
to complete about 8 rounds per day of a similar size to collect the 16 t of waste needed. These
round trips currently range from 1.5 miles (2.41 km) to about 20 miles (32.2 km). Taking an
average of 10 miles (16.1 km) and 8 round trips per day, the lorries would travel about 80
miles (128.7 km) per day, thus 800 miles (1287.5 km) per day in total for all 10 vehicles. The
distance travelled assumed that the Valorga (Tilburg-like) digester plant would be in a similar
location relative to the collection rounds for the Bath recycling depot. The dust carts have a
fuel consumption of 25 miles per gallon (mpg) (10.63 kilometres per litre (km/l)) during
normal running, but they spend the majority of the time stopping and starting, which reduces
the fuel consumption. Therefore a fuel consumption of 20 mpg (5.80 km/I) has been used. 800
miles (1287.5 km) at 20 mpg (5.80 km/l) indicates 40 gallons diesel (181 I) was used per day.
The calorific value of diesel is 35 MJ/I, and hence 6.3 GJ per day was required for the
transport of waste from households to the digester site. This was based on the lorries running
for 250 days per year, therefore this has been averaged to obtain a daily value of 4.3 GJ.
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A.3 Reception

The reception for the digester site (in Tilburg) contained of a conveyor belt was modelled to
transport the waste from the reception to the crushing unit. The power requirement was
assumed to be a third of that for the total conveyor belt power for the Tilburg facility, i.e., 5
kW. Assuming that the conveyor belts only run for 2000 hours per year, then the average
power would be 1 KW. The plant in Tilburg has a unit that collects all MSW and sorts it into
organic, non-organic and metal parts before it was sent to the crusher unit [34]. However, the
present analysis assumed that the waste collected was sorted at source, and therefore there
was no need for mechanical sorting.

A.4 Crushing

The pretreatment crushing unit (identified schematically in Fig. 1) was assumed to be of
comparable size to the unit at the full-scale Tilburg plant [34]. The waste was moved to the
mixer on a conveyor belt, requiring one third of the total conveyor belt power. Thus, 1 kW
assumed for operational purposes over 2000 hours per year. The power requirement for the
crushing unit itself was 150 kW; as with the Tilburg plant. Assuming that the crushing sheers
operate for 2000 hours per year, then the average power consumed was at a rate of 34 kKW.

A.5 The Mixer

The dilution section of the process was again assumed to be the same as that of the Tilburg
plant. Waste was mixed with process water to an average of 30% total solids [34], and
pumped into the Valorga digester tanks with a solids pump. The power rating of the mixer
and solids pump was 91 kW. Assuming that the solids pump operates for 2000 hours per year,
then the average power usage was at a rate of 21 kW.

A.6 Fermentation

The Valorga-type digester (see again Fig. 3) modelled in the present analysis was assumed to
function in the same way as that of the full-scale Tilburg plant. Two tanks, each of 3300m? in
volume, produce approximately 75 m® of biogas per tonne of organic bio-degradable matter,
which equates to approximately 3.0 Mm? biogas per year. The biogas contains approximately
56% of CHs4 and 100 ppm of H>S [32,34]. 99% of the biogas produced from AD tanks
consists of methane and CO», with the majority of the remaining elements being saturated
water vapour and H2S [32,52]. Thus, the biogas was modelled as containing 6.6% water
vapour (saturated at 38°C) and 37.4% of CO.. Both enthalpy and entropy values of each gas at
38°C [51] were used to calculate the energy and exergy characteristics in the biogas. Digested
matter exiting the Valorga-type digester tanks was estimated to be approximately 50% of the
total mass entering; in line with the Tilburg plant. The water content of the organic matter
used as feed to the digesters was assumed to be partially released during fermentation, and
hence the quantity of liquid exiting the tanks was greater than that entering. The water content
of wood waste was taken to be 16%, and that for food waste as 60% [48]. In terms of the
compost, its calorific value was used to calculate the energy value of the solids exiting the
digester tanks, as well as the suspended solids in the process water. The composition of the
compost was not known directly, and therefore the exergy of the compost and suspended
solids was taken to be the same as the enthalpy of the compost. The enthalpy and entropy
values of water were used to calculate the energy and exergy in the process water.

A.7 Low Pressure Gas Storage

The biogas collected was modelled commensurate with the output from the Tilburg plant. It
was mainly stored in a low-pressure tank.
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A.8 High Pressure Gas Storage

The proportion of biogas used to mix the tanks pneumatically was not known by direct
measurement, but was assumed to be about 20% of the total biogas given off. This biogas was
compressed and stored in a high-pressure gas storage container before being injected into the
digester tanks. The power requirement of the compressors was the same as that of the Tilburg
plant (72 kW), which was assumed to run continuously throughout the year.

A.9 Refining

The biogas produced from the plant in Tilburg was not refined on the site, and hence the
analysis does not follow the procedure adopted in Holland to refine the biogas. This refining
process has one principal aim, to remove as much CO; and H.S from the biogas as possible.
The carbon dioxide dilutes the calorific value of the biogas and H2S is corrosive.
Consequently, both contaminants needed to be removed before the gas could be used in any
other process. There were several processes that could be used to remove each substance from
the gas. CO> can be extracted by scrubbing (dissolving it in solvents, such as ethanolamines,
in an aqueous solution under pressure). H>S can be removed in a similar manner, or reacted
with an ‘iron sponge’ (hydrated iron oxide (Fe2Oz)): see the upper section the schematic
process diagram illustrated in Fig. 1. This produces iron sulphide and water according to the
following reaction:

3H2S + Fe203.H20 = FesSs + 4H20) (A1)

However, it is more expensive to carry out these processes individually, and so a process that
uses pressurised water to remove both substances from the biogas has been modelled. This
technology - known as Binax - was developed by Central Plants Inc. to purify biogas, and it
produces nearly pure methane [53]. In order to purify the biogas, it was compressed and
injected into the base of a pressurised tower. The biogas flows up a CO2-scrubbing tower
(again depicted in the upper section the schematic process diagram illustrated in Fig. 1) and a
counter-flow of water absorbs the contaminants, leaving near pure methane to be collected
from the top. The water was depressurised and piped to a regenerator tower, where the CO-
and H.S were flashed from the water. The regenerated water was then re-circulated through
the gas-scrubbing tower. The quality of the biogas produced from the Binax system contains
2% CO- and 4ppm H>S [53]. Biogas was subsequently transported to the refining plant via
fans, the power requirement being similar to the Tilburg plant, which run continuously
throughout the year.

A.10 Dehydration

The digester material was modelled to exit the Valorga-type digester tanks under gravity in a
manner akin to that employed for the Tilburg plant. It utilised a screw press that was
electrically driven with a power requirement of 90 kW. Assuming that the screw press
operates for 2000 hours per year, then the average power consumption would be 21 kW. The
solids that result were assumed to have a calorific value analogous to that of compost, i.e.,
4500 kJ/kg. The liquids exiting the press were assumed to contain 10% solids. This needed a
power requirement for pumping to the centrifuge of about one fifth of the plant re-circulating
pumping power, 4 KW. Assuming that the re-circulation pumps operate for 2000 hours per
year the average power requirement was around 1 kW.

A.11 The Centrifuge

A centrifuge removed suspended solids from the process water and was modelled as being
comparable to the unit at the Tilburg plant, i.e., it removes 5% of the suspended solids. The
power requirement for this centrifuge was 38 kW. Should it operate for 2000 hours per year,
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then the average power was taken to be 9 kW. The process water required for diluting the
incoming organic waste to 30% total solids was calculated to be approximately 86% of the
total liquid out of the Valorga-type digester. This was pumped into the process water storage
tank, whilst the remaining liquid was supplied to the belt filter press. The pumping power
requirements were assumed to be two fifths of that of the plant re-circulating pump, i.e., 8.8
kKW. Again, if the re-circulating pumps operated over 2000 hours per year, this would result in
an average power requirement of some 2 kW.

A.12 Process Water Storage

The process water storage tank heats the incoming liquid to approximately 60°C by steam
injection, before it was pumped into the mixer. The heat transferred to the system was
calculated from the mass flow rate of the steam flowing into the storage tank multiplied by the
enthalpy of the steam at 100°C and 1 atm. The average heat transferred to the process water
was found to be 306 kW, whereas the power requirement to pump this liquid to the mixer was
assumed to be a fifth of the plant re-circulating pumping power, i.e., 4.4 kW. Again, assuming
that the re-circulating pumps ran for 2000 hours per year, then their average power
requirement was 1 kW.

A.13 Filtration

The remaining liquid from the centrifuge was pumped via a belt filter press, where a further
4% of the dry matter was removed. Waste water was then pumped to a sewerage plant and
was considered lost from the process. The power requirement for the latter operation was
assumed to be about fifth of the plant re-circulating pumping power, i.e., 4.4 kW. This
resulted in an average power requirement of 1 kW, when the re-circulating pumps operated
for 2000 hours per year. Similarly, the power requirement for the belt filter press was 10 kW
and, for operating over 2000 hours per year that gave rise to an average power requirement of
2 kKW.

A.14 Compost

The compost section of the process was presumed to operate in a manner akin to the Tilburg
plant. The solid matter from the screw press, the centrifuge and the belt filter press was
transported on a conveyor belt to an aerobic composting hall. These conveyor belts required
about one third of the power of the overall plant conveyor belt, i.e., 5 kW. Once more, if the
conveyor belts operate for 2000 hours per year, then the average power requirement was 1
kW. The energy content of the compost was assumed to be 4500 kJ/kg, which is the calorific
value of the compost yielded by the Tilburg plant. The chemical composition of the compost
was not directly known, and so the chemical exergy term was assumed to be the same as the
equivalent energy term.
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