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Abstract—Grid-connected electric vehicles (GEVs) and Energy-

Transportation Nexus bring a bright prospect to improve the 
penetration of renewable energy and the economy of microgrids. 
However, it is challenging to determine optimal vehicle-to-grid 
(V2G) strategies due to the complex battery aging mechanism and 
volatile microgrid states. This paper develops a novel online 
battery anti-aging energy management method for Energy-
Transportation Nexus by using a novel deep reinforcement 
learning framework. Based on battery aging characteristic 
analysis and rain-flow cycle counting technology, the 
quantification of aging cost in V2G strategies is realized by 
modelling the impact of number of cycles, depth of discharge, and 
charge and discharge rate. The established life loss model is used 
to evaluate battery anti-aging effectiveness of agent actions. The 
coordination of GEVs charging is modelled as multi-objective 
learning by using a deep reinforcement learning algorithm. The 
training objective is to maximize renewable penetration while 
reducing microgrid power fluctuations and vehicle battery aging 
costs. The developed Energy-Transportation Nexus energy 
management method is verified to be effective in optimal power 
balancing and battery anti-aging control on a microgrid in the UK. 
This research provides an efficient and economical tool for 
microgrid power balancing by optimally coordinating GEVs 
charging and renewable energy, thus helping promote a low-cost 
decarbonization transition. 
 

Index Terms—Transportation electrification, electric vehicle, 
microgrid, deep reinforcement learning, renewable energy, 
battery aging mitigation, vehicle to grid. 

ABBREVIATIONS 
GEVs   Grid-connected EVs. 
V2G    Vehicle-to-grid. 
MG    Microgrids. 
C-rate   Charging and discharging rate. 
DoD    Depth of discharge. 
SoC    State of charge. 
NoC    Number of cycles. 
DRL    Deep reinforcement learning. 
CTF    Cycle-to-failure. 
CTA    Cycle-to-aging. 
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VCC   Vehicle charging completion. 

NOMENCLATURE 
VPS    Battery SoC and discharging power matrix. 

iSoC    Battery SoC state at i  . 
iP     V2G power at i  [W]. 

RF     DoDs and C-rates matrix. 
iCrate    Battery C-rate in cycle i . 

iDoD    Battery DoD in cycle i . 
iU     Terminal voltage of the battery [V].  

E     Rated capacity of the battery [Ah].  
CTF    Battery equivalent cycle life calculation function. 
CTA    Battery equivalent life loss calculation function 
η      Battery life loss calculation function. 
s      Reinforcement learning system state value. 
a      Reinforcement learning system action value. 
r      Reinforcement learning system reward value. 

( , )Q s aπ   Q-value of the action. 
tγ     Reward discount factor. 

π      Reinforcement learning strategy 
2v g

tP    24-hour ahead V2G power sequence. 
2v g

tS    24-hour ahead battery SoC states sequence. 
tB     Power balancing requirement of the MG. 
loadP    Power consumption state [W]. 
solarP    Solar power generation state [W]. 
windP    Wind power generation state [W]. 
max

disP    Maximum discharging power of GEVs [W]. 
max

ch P    Maximum charging power of GEVs [W]. 
D     Quantified battery life loss of GEVs. 
G     Unbalanced power of the microgrid [W]. 
m     Number of GEVs. 

tsX     Training input of Q-network. 
tQY     Training output of Q-network. 

C     Loss value of Q-network. 
n      Size of the mini-batch for Q-network. 
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lw     Weight matrix of neuron in network layer l . 
lb     Bias matrix of neuron in network layer l . 

α     Learning rate of Q-network. 

I. INTRODUCTION 
HE  adoption of renewable energy brings a bright prospect 
to resolve environmental concerns, but its high penetration 

also brings great challenges for power systems. Microgrids 
(MG) have a relatively low power transmission voltage and can 
enhance the active interactions between renewable energy and 
load demand [1]. Nevertheless, due to the intermittence of 
renewable energy and variability of demand, the power balance 
of MG is difficult to maintain, and the mismatch could cause 
abrupt short-term power fluctuation issues. Conventional MG 
power balancing solutions, including adding additional reserve 
power generation, energy storage devices, and advanced power 
management strategies, to some extent fail in the economy, 
stability, or reliability [2, 3]. 

The electrification of road vehicles and the concept of 
Energy-Transportation Nexus brings a bright prospect to solve 
the power balancing problems of MG [4]. GEV onboard 
batteries can offer the means to enhance MG flexibility, 
achieving uninterrupted operation by deferring their demand in 
time and space, acting as moving storage devices. In [5], [6], 
and [7], GEV batteries are used to provide peak-shaving, 
voltage regulation, and frequency regulation services through 
V2G regulation. Simulation and experiment results indicate that 
with effective charging management strategies, energy quality 
and system stability can be significantly improved by utilizing 
the moving energy storage capacity provided by GEVs. In [8] 
and [9], V2G services are further used to support the operation 
of wind and solar power generation. GEV batteries can be used 
to provide power balancing services and improve the economy 
and stability of the MG with renewable energy penetration. 
However, there is still a gap that constrains the use of vehicle 
batteries, i.e., the cost of GEVs battery life loss due to providing 
V2G service. The situation is worse when battery energy 
storage is used in MG with renewable energy because battery 
may undergo excessive short-term cycles [10]. 

The establishment of the life loss analysis model is of great 
significance to battery energy management in electric vehicles 
[11], hybrid powertrains [12], and grid energy storage systems 
[13]. The quantified battery aging cost can be used as a 
benchmark of degradation-oriented mode of operation for 
guiding battery energy management and providing a life-cycle 
cost analysis tool in Energy-Transportation Nexus. Many 
studies have been conducted to quantify battery aging costs in 
energy management. The single-factor bucket model [14] is one 
of the most commonly used methods in the existing literature to 
protect vehicle batteries. In [15], optimal GEV charging 
management is built as an event-based scheduling model. 
Battery anti-aging is realized by limiting the charging and 
discharging rate (C-rate) in V2G management. It was shown 
that the established event-based model could achieve quasi-
instantaneous system responsiveness and protect vehicle 
battery from high Crate working condition. Nevertheless, 
battery life is still impaired by number of cycles (NoC) and 

depth of discharging (DoD). In [16], the DoD is selected as the 
aging observation variable to protect vehicle batteries when 
providing V2G services. The bucket model can be used in 
online V2G scheduling because of remarkable real-time 
performance and hardware applicability. However, batteries are 
complex electrochemical systems and multi factors influence 
their aging. The single-factor bucket model cannot 
systematically analyze the impact of these cycles on battery life, 
impairing the anti-aging and power balancing performance of 
V2G management. 

Complex battery aging models have been proved to be 
effective and necessary for mitigating GEVs aging in V2G 
services [14]. A battery aging model that integrates the impact 
of temperature, C-rate, state of charge (SoC), and DoD is built 
in [17] to minimize the expected customer's charging cost when 
providing V2G services. Stochastic optimization is used to 
derive optimal strategies, and simulation results validate its 
satisfactory battery anti-aging performance. Nevertheless, the 
deployment of complex aging models and large-scale 
optimization algorithms makes the V2G model complex, which 
further weakens scheduling system's real-time performance 
[18]. In [19] and [20], the mitigation of aging costs in V2G 
services is realized by using comprehensive battery aging 
models and heuristic algorithms. Simulation results indicate 
that the battery degradation costs can be effectively reduced.  
However, the optimization-based V2G scheduling interval can 
hardly be shortened to 5 minutes even with the most advanced 
computing equipment, making it impossible to suppress 
transient MG demand and renewable energy fluctuations.  

Deep reinforcement learning (DRL) has attracted much 
research attention in recent years for its high calculation 
efficiency and satisfactory real-time performance. The DRL 
algorithm-based energy management model and the derived 
battery anti-aging strategy can be used to define the optimal 
battery utilization strategy in Energy-Transportation Nexus, 
such as hybrid electric vehicle [21], rail transportation system 
[22], and GEVs charging scheduling [23]. In [24], DRL 
algorithm is used to realize online energy management for plug-
in hybrid electric buses. The improvement of vehicle fuel 
economy and the mitigation of battery degradation costs are the 
learning target. Simulation results validate the effectiveness of 
the DRL method in reducing overall vehicle driving costs in 
real-time energy management. DRL provides a new solution to 
improve both real-time power balancing and battery anti-aging 
performance of V2G scheduling. However, to the authors' best 
knowledge, there is no published work reporting the realization 
of optimal battery anti-aging V2G scheduling based on a DRL 
framework. 

This paper develops a novel online battery protective energy 
management method for Energy-Transportation Nexus under a 
DRL framework. Firstly, based on the battery degradation 
characteristic analysis and rain-flow cycle counting technology, 
the quantification of degradation cost in V2G scheduling is 
designed as a function of battery NoC, DoD, and C-rate. The 
established aging cost model is used to evaluate the battery anti-
aging effectiveness of V2G strategies in DRL. Then, the 
coordination of GEVs charging is modeled as multi-objective 

T 
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learning under DRL framework. The training target of the DRL 
model is to maximize renewable penetration while reducing 
vehicle battery aging costs. Historical MG power balance and 
GEVs battery states are used to construct an experience pool, 
and the charging/discharging strategies are online scheduled 
based on the trained DRL model. GEVs energy storage capacity 
can be scheduled online with the developed method to absorb 
renewable energy while mitigating vehicle battery aging 
phenomenon in V2G service. 

The major contributions of this paper are: 
1) It establishes a novel battery life loss analysis model to 

quantify GEVs energy storage system aging costs during 
daily operation. Compared to the existing single-factor 
aging model, it can comprehensively reflect the influence 
of NoC, C-rate, and DoD on battery life and thus provide 
a more precise battery life loss evaluation result. 

2) It designs a new DRL-based battery protective V2G 
behavior management framework, which provides a 
model-free solution for GEVs charging schedule. 
Compared to most existing methods, the developed DRL 
framework enables the online deployment of battery anti-
aging V2G regulator by combining offline learning and 
the online strategy deployment process. 

3) A multi-objective learning method is proposed to train the 
DRL model. Optimal strategies that comprehensively 
consider the MG power balancing requirement, GEVs 
charging requirement, and the mitigation of battery aging 
can be thus derived. 

The rest of the paper is organized as follows. The vehicle 
battery life loss quantification model is established in Section 
II. A DRL-based V2G behavior management framework and 
multi-objective learning model are proposed in Sections III and 
IV, respectively. In Section V, simulation environment and 
numeric analysis are presented to verify the developed methods. 
Section VI concludes the whole paper. 

II. BATTERY ENERGY STORAGE SYSTEM LIFE LOSS 
QUANTIFICATION MODEL 

Related literature identifies many factors influencing battery 
health, which can be broadly classified into calendar and cycle 
aging [25]. Calendar aging comprises all aging processes that 
lead to the degradation of a battery cell independent of charge-
discharge cycling [26]. Literature [13] validates that calendar 
aging is unavoidable and shows a limited impact on battery life 
in energy management. Instead, cycle aging, which is caused 
by battery cycles, is the main factor that results in life loss of 
GEVs [27]. Therefore, only the cycle aging is considered in this 
study. According to battery degradation modes analysis results 
derived in [28], cycles with different C-rates and DoDs impact 
battery life from different aspects to different degrees. Based on 
the above discussion, this part develops a battery aging 
quantification model to quantify battery life loss in V2G 
strategies by analyzing battery NoC, DoD, and Crate 
information in SoC and discharging power profiles of GEVs. 

 To further extract battery aging features, the following time 
series are constructed as the input of the life loss model: 

1 2

1 2

i m

i m

SoC SoC SoC SoC
P P P P

 
=  

 
VPS

 

 

         (1) 

The rain-flow cycle-counting method, which has been 
proven effective in extracting industry material aging cycles 
[29], is used here to extract the battery aging features. Battery 
C-rate [30] is calculated by the following equation based on the 
discharging power of GEVs in (1): 

i
i

i

P
Crate

U E
=

⋅
                               (2) 

Where: iU  and E  are the terminal voltage and rated capacity 
of the battery. The calculated battery DoDs and C-rates in 
VPS  time series are further extracted and arranged in a feature 
matrix RF  for quantifying aging cost: 

1 2

1 2

i n

i n

Crate Crate Crate Crate
DOD DOD DOD DOD

 
=  

 
RF

 

 

      (3) 

Where: iCrate  and iDOD  are the extracted battery discharging 
rate and depth of discharge information in  cycle i .  

The battery pack in vehicle energy storage systems contains 
hundreds of independent cells that own different aging states 
and characteristics. To simplify the life loss quantification 
process, the cycle-to-failure (CTF) characteristic profile 
provided by the manufacture [31], which describes battery pack 
aging characteristics by using cell aging experiment results, is 
employed in this study to quantify battery life loss in V2G 
services. Based on the extracted aging features data in (2), the 
following equation is used to describe battery nonlinear aging 
characteristics under different DoD states: 

22

( )
DODDOD

DOD e e
ςσ

µεα β
−− −−

⋅= + ⋅
            (4) 

Where: α , β , σ , ς , ε , and µ  are curve fitting 
parameters, which can be calculated from battery CTF data 
derived in our previous work [32]. CTF profile reflects the 
influence of DoD and NoC on battery degradation. However, 
battery aging is also affected by the C-rate. In order to better 
quantify the impact of C-rate on life loss in V2G service, 
empirical models established in [33] is used here to correct the 
life loss map: 

0.05 25

0.05 2(Crate)
((0.507 0.2906) 2 25)

e
e Crate

×

=
× ⋅ + × +

     (5) 

Based on the above analysis, battery equivalent cycle life 
under different DoD and C-rate working conditions can be 
calculated by multiplying   and  , which can be represented 
by the following equation:  

( , ) (Crate( ))DODCTF DOD Crate = ⋅             (6) 
Where: CTF  is a function to calculate battery equivalent cycle 
life under the given working conditions (DoD and C-rate). The 
constructed CTF responding profile is shown in Fig. 1, where 
battery cycle life decreases with the increase of battery C-rate 
and DoD.  
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Fig. 1. The constructed battery CTF responding profile. 

CTF profile describes battery-rated cycle life under different 
working conditions. In this study, the concept of cycle-to-aging 
(CTA) is further defined to quantify the impact of cycles with 
different DoDs and C-rates on battery life loss in V2G 
scheduling. The reciprocal of CTF value, which reflects 
percentage battery life loss, is defined as the CTA value of 
different cycles: 

1( )
( ) (Cra( ) e )

1
ti

i ii
CTA Cycle

CTF Cycle DOD
=

⋅
=
 

   (7) 

Battery percentage life loss in V2G strategies can be derived 
by aggregating the CTA value of different cycles, which can be 
depicted by the following function: 

1
( ( ) 100) %

n
ii

D CTA Cycleη
=

= = ×∑VPS             (8) 

Where: D  is the quantified percentage vehicle battery system 
life loss in n  cycles in V2G power and SoC time series VPS . 

III. DEEP REINFORCEMENT LEARNING-BASED V2G BEHAVIOR 
MANAGEMENT FRAMEWORK 

In this study, dynamic V2G behavior management is solved 
with DRL algorithm to determine the optimal power exchange 
between the MG and GEVs. This section develops a deep 
reinforcement learning V2G management (DRLVM) 
framework to enable model-free GEVs charging scheduling by 
combining offline learning and online strategy deployment 
processes. As shown in Fig. 2, the DRLVM framework consists 
of 4 parts: agent, environment, experience pool, and Deep Q-
network. 

 
Fig. 2. The designed deep-reinforcement learning-based V2G behavior 
management framework. 

The agent in the developed DRLVM framework is selected 
as an individual V2G participant, and the charging behavior of 
GEVs is the decision variable. The coordination of GEV 
charging at different times in the scheduling period is modelled 
as a Markov decision process, described by the following three 
essential elements: (a) state s , (b) action a , and reward r . 
The state variable in the DRLVM framework is designed as the 
historical V2G behavior of GEVs and power balance state of 

the microgrid, which can be represented by the following 
equations: 

{ }2 2v g v g
t t t=S P S B                          (9) 

{ }2 22
1 1
v g v gv g

t tP P−=P                      (10) 

{ }2 22
1 1
v g v gv g

t tSoC SoC −=S                  (11) 

{ }, , ,solart lo t iad dt w n tP P P=B                  (12) 

Where: 2v gP , 2v gSoC , loadP , solarP  and windP  are V2G 
power state, battery energy state, microgrid power consumption 
state, solar power generation state, and wind power generation 
states. Considering GEVs battery power dynamics, its power 
increment value is set as the action variable in the designed 
DRLVM:  

{ }10, 5, 2,0, 2, 5, 10,set0A = + + + − − −             (13) 
Where: the units of all action values are kilowatt. The positive 
value indicates the improvement of V2G power, while the 
negative value represents the improvement of battery charging 
power. After the action is taken, the battery power output at 
each time step is constrained as: 

max max
dis ch 

2v g
tP PP− ≤ ≤                       (14) 

Where: max
disP  and max

ch P  are the maximum discharging and 
charging power of GEV batteries. 

In each iteration, the agent takes actions to schedule the 
charging power of GEVs based on the learned strategies and the 
state of the environment, including power generation and 
consumption states of the MG and SoC states of the vehicle 
battery. Meanwhile, according to the response of the 
environment, including the MG power balancing performance 
and the calculated battery aging cost, the quality of each action 
is evaluated by a reward function, and the state of the agent is 
automatically updated to 's  based on the selected action and 
MG model. 

In the training phase, the agent freely explores the action 
space as much as possible, and system state transfer process 

1( , , , )t t t ta s r s +  is recorded in an experience pool. The Q-value 
of the action, which reflects the quality of the strategy, is 
calculated by the following equation: 

( ){ }0
( , ) , ,t

t t tt tQ s a R s a s s a a
∞π γ
=

= = =∑          (15) 

Where: tγ  is a constant variable within the range of 0 to 1, 
reflecting the discounted impact of future reward value on the 
current iteration step. In this study, the Epsilon-Greedy method 
[34] is employed to perform action selection based on the 
calculated Q-values during the DRLVM model training process. 

Compared to conventional decision-making, the 
environment state variables in V2G scheduling are all 
continuous variables. Meanwhile, the historical V2G power and 
battery SoC should also be considered to enable battery anti-
aging scheduling, which further complicates the computation 
burden during solving Q value. Therefore, a state continuous 
V2G scheduling algorithm is employed in this study based on 
deep neural network technology. As shown in Fig. 2, a deep 
network is used to estimate Q-values under continuous system 
state change in the decision system. The historical system state 
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transfer processes 1( , , , )t t t ta s r s +  and corresponding Q-values 
are randomly selected from the experience pool to train the 
network. The estimated Q-value can be represented by the 
following equation: 

( , ) ( , ; , )Q s a s a w bψ∗ ≈                           (16) 
Where: ψ  represents the transfer function of the trained deep 
neural network, w  and b  are the weights and biases in it.  

The trained deep Q network is used to coordinate the 
charging of GEVs in the real world. The corresponding V2G 
scheduling strategies are derived by performing the action that 
has the maximum Q-value, expressed as: 

( )arg m ,ax , QQ

a
Q a bs wπ = ∣                     (17) 

IV. MULTI-OBJECTIVE LEARNING MODEL IN V2G BEHAVIOR 
MANAGEMENT  

This section provides the mathematical principle and 
establishes the learning model for DRLVM framework. Firstly, 
the V2G behavior learning is realized by establishing a multi-
objective reward function that can comprehensively reflect the 
MG power balancing and battery anti-aging requirements. Then, 
the structure of the built deep-Q network and model training 
method are detailed. 

A. Design of multi-objective reward function  
The reward function is used to guide agents to make 

appropriate decisions, so its definition should be consistent with 
the objective of V2G scheduling. This part establishes a multi-
objective reward function to minimize MG load fluctuation and 
battery life losses in DRLVM. The mitigation of battery 
degradation is the first target. GEVs charging power and SoC 
trajectory are extracted from the historical V2G strategy base 
and rearranged in a time series, as described in equations (10) 
and (11). Based on the established life loss quantification model 
in Section II, battery life loss in V2G strategies can be 
calculated as: 

2 2( ),v g v g
t tD η= P S                             (18) 

The mitigation of load fluctuation and absorption of 
renewable power generation are also designed as the training 
targets of DRLVM to improve the economy and stability of the 
MG. The unbalanced power of the MG with GEVs penetration 
is selected as the second reward function: 

2 solar windv gloadP m P P PG + ⋅ − −=                 (19) 

Where: m  is the number of GEVs, which is used to reflect the 
aggregation effect in V2G service. It should be noted that all 
GEVs are assumed to contribute the same V2G power to the 
MG when calculating the reward function G . The reason is 
that the control object in DRLVM is the individual participant, 
and it is not permitted to set multi-step reward functions in DRL 
algorithm.  

To comprehensively reflect battery aging mitigation, 
renewable energy fluctuation, and charging requirement of 
GEVs, the following multi-objective reward function are built 
to evaluate action quality:  

1 1

2 2

1 2

3 3

3
ta

(

nh

1 )

D
G
SoC

r
r

r

r
r r r

ω
ω

ω

σ

=
 = =
   =  

 +

−

 +

                       (20) 

Where: 1ω , 2ω , and 3ω weight factors between the three 
different rewards. 3r  is used to reflect the charging requirement 
of participants. The larger the reward r , the worst the power 
balancing and battery anti-aging performance of the derived 
V2G strategies. Thus, minimizing its value in DRL training can 
help DRLVM coordinate the charging behavior of GEVs 
reasonably. σ  is a constant to adjust the range of tangent 
function. 

B. Deep-Q network structure and training method 
In the designed DRLVM, the Q-value of different actions 

should be estimated to direct the charging behavior of GEVs. 
The estimation of Q-value in DRLVM can be regarded as a 
multi-input to multi-output regression problem. The complex 
mapping relationship between the outputs and inputs makes it 
difficult to learn the regularity between the state of the decision 
system and the Q-value of actions.  

The neural network is one of the most commonly used 
artificial intelligence algorithms, which simulates the working 
mode of human brain neurons with abstract mathematical 
models and many nodes. Neural network composes different 
layers, and neurons in different layers perform operations 
according to different functions, transfer values, and finally 
merge into a complex network for curve fitting purposes. As 
long as the reasonable network structure and network 
parameters are properly designed, the neural network can 
theoretically map any relationships. This study uses a multi-
layers deep neural network to fit the calculated Q-value for 
improving the generalization ability of the learning process, 
better dealing with continuous grid and GEVs state variables, 
and improving optimization effect of the established V2G 
coordinator. The network is trained by following loss function: 

8
2

1
,

1
,

ˆ1 ( ( ) ( ))
2 t t t tQ

n

i x
i s Q i sC

n
Y Y

= =

= −∑∑ X X             (21) 

Where: 
tsX  is the training input of the Q-network, which 

consists of system state variable at t . 
tQY  is the Q value of 

different actions, which can be calculated based on equation 
(20). ˆ

tQY  is the output of the Q-network. n  is the size of the 
selected mini-batch. 

The experience replay method [35] is used to update 
parameters of the Q network to boost training efficiency and 
accuracy. Neural network parameters can be updated by the 
following equation: 

( , )l
l l

W C
n
α∇← −w w W b                      (22) 

( , )l
l l

b C
n
α∇← −b b W b                       (23) 

Where: lw  and lb  are the weight and bias of neuron in layer 
l ; α  is learning rate of Q-network. 
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V. CASE STUDY 
This section illustrates the performance of the developed 

DRLVM method. The topology and parameters of the studied 
MG system are firstly presented, followed by the power 
balancing and vehicle battery anti-aging performances are 
evaluated. 

A. The test microgrid system 
The configuration of the test MG system with household load 

demand, GEVs, and renewable energy penetrations is shown in 
Fig. 3. Real grid demand and solar power generation data are 
provided by Western Power Distribution, an electricity 
distribution company in the UK.  The demand data comes from 
the Stentaway Primary substation near Plymouth, and the 
corresponding solar generation data is from a 5MW solar near 
the studied community (longitude, latitude = 50.33, -4.034), UK. 
Wind power generation data is calculated based on the local 
wind speed and the stochastic simulation model in [36]. All the 
data used in this paper has been open-access provided on [37]. 
The steady-state MG simulation model in [38] is used to model 
the power conversion between different sectors to verify the 
effectiveness of the developed V2G behaviour management 
method. To facilitate the hardware deployment of the 
established coordinator, all developed methods are 
programmed with the deep reinforcement learning toolbox in 
Simulink. 

 
Fig. 3. The configuration of the studied MG system with renewable energy 
penetration. 

In this study, the charging behaviors of 350 GEVs are 
simulated to provide power balancing services to the MG. The 
detailed battery characteristic parameter of the studied GEVs 
are illustrated in Table I. The rated capacity of the battery pack 
in each GEVs is 53 kWh, which consists of 10 modules 
connected with a 2p5s configuration. The battery module 
consists of 444 Lithium Ion cells with 3400mAh rated capacity 
and 3.8 V nominal voltage, and the rated discharging current 
reaches 500 A. The charging and discharging voltage cut-off of 
the battery cell is 4.2 V and 3.3 V, respectively. 
TABLE I. BATTERY CHARACTERISTIC PARAMETERS OF THE SIMULATED GEVS 

FLEET 

Parameters Value 
Battery cell type Lithium-Ion 18650 
Number of cells 444 

Battery Module capacity   232Ah, 5.3 kWh 
Voltage nominal 3.8V/Cell, 22.8V/Module 

Charging voltage cut-off 4.2V/Cell, 25.2V/Module 
Discharging voltage cut-off 3.3V/Cell, 19.8/Module 
Rated discharging current 500 A 
Battery pack configuration 2p5s 

Battery pack capacity 53 kWh 

B. Power balancing performance evaluation 
The demand, solar power generation, and wind power 

generation profiles of the studied MG within one year are given 
in Fig. 4. The power consumption in winter and autumn is 
generally higher than that in spring and summer because of the 
use of heating installations, as shown in (a). Meanwhile, two 
peaks generally appear in grid demand profiles in the period of 
08:00 to 10:00 and 17:00 to 20:00 because of the boom of 
commercial and household electricity consumption. Different 
from demand profiles, solar generations generally peak in the 
period of 10:00 to 16:00, while no PV output power can be 
provided after 19:00 until the morning. Compared to PV output 
profiles, the regularity of wind profile is not remarkable due to 
the uncertain wind speed, but the wind power generation in the 
evening is generally higher than daytime. The corresponding 
wind power generation states distribution is shown in (c), the 
average value is 1.95MW while the standard deviation (SD) 
reaches 1.874. Above demand and renewable generation 
profiles are used to train the established DRLVM model. The 
training targets are set to stabilize MG power balance state by 
using V2G services while mitigating vehicle battery aging costs. 

 
Fig. 4. DRL model training data. (a) MG demand profiles; (b) solar power 
generation profiles; (c) wind power generation states distribution. 
 

Based on the above power system configuration, 
performances of four different V2G scheduling algorithms, 
including conventional fuzzy logic method [39] (Case 1), peak-
shaving-oriented scheduling (PSOS) method [40] (Case 2), Q-
learning method [41] (Case 3), and the DRLVM method (Case 
4), are quantitatively compared in this section. The power 
balancing performance of different V2G scheduling methods 
within 250 working days is analyzed in Fig. 5. In terms of 
algorithm computation speed, the average simulation time of 
the PSOS method is as long as 265.4 s due to the complex 
optimization mechanism. Compared to the PSOS method, 
GEVs charging behavior can be directly scheduled based on the 
rules but free of optimization process in fuzzy logic method. As 
a result, the simulation time in Case 2 can be reduced to 0.13s. 
Owing to the offline training mechanism, the Q-learning and 
DRLVM methods achieve a similar calculation speed with the 
fuzzy logic method, and the simulation time can be limited to 
0.25 s and 0.27 s. Therefore, online scheduling methods can 
better deal with variant renewable power generation and 
demand fluctuation compared to the optimization-based PSOS 
method. In this study, to guarantee system stability, the 
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scheduling interval in Case 1 to 4 are set as 1 s, 300 s, 1 s, and 
1 s, respectively.  

The power balancing performance of four cases is compared 
in Fig. 5 (b) and (c). In V2G scheduling, GEV batteries are used 
to absorb renewable power generation as much as possible. The 
renewable energy consumption (REC) in different V2G 
schemes is shown in (b). V2G system with the fuzzy logic 
algorithm is not able to manage the charging behavior of GEVs 
synergistically, and thus the provided energy storage capacity 
is limited. As a result, only around 62.3% of renewable power 
generation can be consumed. Compared with the fuzzy logic 
method, the REC rate in PSOS method can be improved to 87.5% 
by better optimizing the charging behavior of GEVs. The 
variant renewable power generation and demand fluctuation 
can be better dealt with reinforcement learning method because 
of the shorter scheduling interval. Compared to the PSOS 
method, the REC rate can be further improved by 9.4% and 6.3% 
after the Q-learning and DRLVM methods are deployed.  

The unbalanced power, which reflects the required power 
exchange between the MG and main grid, is further used here 
to evaluate the power balancing performance of V2G 
scheduling methods. As shown in Fig. 5 (c), in fuzzy logic, Q-
learning, and DRLVM methods, the unbalanced power can be 
generally limited to 100 kW, which validates the gratifying 
power balancing performance of online methods. It should be 
figured out that the unbalanced power of the DRLVM method 
is around 25.2% higher than the Q-learning method. The reason 
is that the consideration of GEVs battery anti-aging 
requirement inevitably limits the potential utilization degree of 
GEV batteries in providing power balancing service. 
Furthermore, compared to conventional fuzzy logic and the Q-
learning method, the developed DRLVM method can strictly 
satisfy the charging requirement of participants. As shown in 
(d), the vehicle charging completion (VCC) rate can be 
improved from 91.2% to 100% after deploying the DRLVM 
method. 

 
Fig. 5. Power balancing performance comparison of different cases. (a) 
simulation time; (b) V2G renewable energy consumption rate; (c) system 
unbalanced power; (d) vehicle charging completion rate;  

The sensitivity analysis is carried out in this study to validate 
the power balancing performance of DRLVM method under the 
variation of vehicle battery capacity, fleet scale, and wind 
power generation fluctuation. Here, the fluctuation of wind 
energy is evaluated by the standard deviation (STD) of power 
generation data. The rate of change of wind power fluctuation 

in iDay  is calculated as: 

1
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i i
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∑
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Where: iSTD  is the standard deviation of wind power 
generation data in iDay , n  is the length of the simulation 
period. The corresponding sensitivity analysis result is shown 
in Fig. 6. System unbalanced grid power increases with the 
reduction of vehicle battery capacity and fleet scale in the 
DRLVM method. When battery capacity and fleet scale 
decrease by 30%, unbalanced grid power can still be limited 
within 121.4 kW and 153.8 kW, which indicates that the 
scheduling algorithm can keep stable operation under the 
variation of GEVs energy storage capacity. It should be figured 
out that the impact of fleet scale on system power balancing 
performance is higher than battery capacity. The reason is that 
the reduction of GEVs fleet can dramatically impair scheduling 
algorithm flexibility. Compared with the change of energy 
storage capacity, the renewable power generation fluctuation 
shows a limited influence on V2G scheduling. The unbalanced 
power can be limited to 107.6 kW even the rate of change of 
wind power fluctuation reaches 30%, which validates the 
robustness of the developed DRLVM method. 

 
Fig. 6. DRLVM method power balancing performance sensitivity analysis. 

Battery SoC profiles of a GEV in a regular working day in 
fuzzy logic and DRLVM methods are shown in Fig. 7. 
Compared to the fuzzy logic method, battery NoC in V2G 
scheme with DRLVM method is significantly reduced. GEVs 
are scheduled to absorb renewable energy as much as possible 
in fuzzy logic method. As a result, battery undergoes a great 
number of shallow cycles when dealing with variant wind 
power generation in the evening, as shown in Zone C. In the 
DRLVM method, instead of inversing battery charging state, 
V2G scheduling system can absorb renewable power 
generation by adjusting the battery working power. Therefore, 
battery cycles in DRLVM method can be significantly reduced, 
which validates the effectiveness of the established battery 
aging quantification model. The developed DRLVM method 
can also protect vehicle batteries from high C-rate working 
conditions that greatly impact their life. As shown in Zone A 
and B, the battery SoC rate of change during discharging and 
charging processes is significantly reduced in (b), which 
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indicates that the developed DRLVM can reach a better trade-
off between the power balancing and the battery lifetime 
protection. 

 
Fig. 7. Battery SoC profiles of a GEV in a regular working day in (a) fuzzy 
logic method and (b) the developed DRLVM method. 

The battery anti-aging performance of different V2G 
scheduling methods in the whole simulation period is 
quantitatively analyzed in Table II. The charging behavior of 
GEVs can be better coordinated in the PSOS method because 
of the cooperative optimization mechanism. The battery 
number of cycles and C-rate in the simulation period can be 
reduced by 23.4% and 17.9% compared to the fuzzy logic 
method. The Q-learning method achieves a very similar 
performance compared to the fuzzy logic method, but the 
battery cycles and C-rate can be further reduced to 1875 and 
1.24 after the developed aging model and multi-objective 
learning method is deployed. Based on the battery aging model 
in Section II, battery life loss within 250 working days under 
different V2G scheduling methods is quantified. Compared to 
fuzzy logic, PSOS, and Q-learning method, the developed 
DRLVM method can reduce battery life loss by 60.2%, 24.4%, 
and 51.2%, respectively. Battery life loss can be limited to 6.27% 
in the simulation period, which validates the effectiveness of 
the developed DRLVM method.  

TABLE II. QUANTITATIVE PERFORMANCE EVALUATION OF DIFFERENT V2G 
SCHEDULING METHODS 

Scenario 
Case 1: 

Fuzzy logic 
method 

Case 2: 
PSOS 

method 

Case 3:  
Q-learning 

method 

Case 4: 
DRLVM 
method 

Number of cycles 2552 1954 2434 1875 
Average C-rate 1.78 1.46 1.74 1.24 

Battery life loss (%) 15.75 8.29 12.85 6.27 

The sensitivity analysis is further carried out to analyze 
battery life loss under the variation of vehicle battery capacity, 
fleet scale, and wind power generation fluctuation. As shown in 
Fig. 8, both the battery capacity and fleet scale show a positive 
effect on the reduction of life loss in V2G services, while the 
renewable fluctuation shows a negative effect. The developed 
DRLVM method can stably work under GEVs energy storage 
capacity variation. When battery capacity and fleet scale 
decrease by 30%, battery life loss in V2G services can still be 
limited within 8.37% and 8.94%, respectively. Similarly, the 

impact of fleet scale is higher than battery capacity on V2G 
system battery protective performance. Renewable power 
generation fluctuation shows a very limited influence on V2G 
scheduling. Battery life loss can be limited to 6.62% even the 
rate of change of wind power fluctuation reaches 30%, which 
validates the robustness of the developed DRLVM method. 

 
Fig. 8. DRLVM method battery protective performance sensitivity analysis. 

VI. CONCLUSION 
A novel battery anti-aging V2G scheduling method that can 

provide power balancing services for the MG by utilizing GEVs 
energy storage capacity is developed in this paper. GEVs aging 
cost in V2G scheduling is quantified by a battery degradation 
model. The optimal GEVs charging coordination is modelled as 
a multi-objective learning problem under DRL framework. 
Through extensive simulations on an MG system built with real 
power generation and consumption data in the UK, the key 
findings are as follows: (1) Compared to the bucket model, the 
established aging cost analysis model can model battery aging 
characteristics more comprehensively. Vehicle battery life loss 
in V2G service can be significantly reduced after the developed 
battery aging quantification model is deployed. (2) Benefiting 
from offline training, the reinforcement learning-based V2G 
scheduling can real-time schedule the charging behavior of 
GEVs to mitigate the volatility of renewable energy. As a result, 
MG unbalanced power and REC rate can be significantly 
reduced and improved.  

Furthermore, the applicability of the methodology developed 
in this paper can be summarized as follows: (1) The established 
battery life loss analysis model can be used as a benchmark of 
degradation-oriented mode of operation for guiding battery 
energy management and providing an effective life-cycle cost 
analysis tool. (2) The established DRL-based V2G scheduling 
model and the simulation results in this study define the optimal 
vehicle battery utilization strategy in smart energy systems 
considering degradation, which can further improve Energy-
Transportation Nexus efficiency. 
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