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Abstract—Grid-connected electric vehicles (GEVs) and Energy-
Transportation Nexus bring a bright prospect to improve the
penetration of renewable energy and the economy of microgrids.
However, it is challenging to determine optimal vehicle-to-grid
(V2G) strategies due to the complex battery aging mechanism and
volatile microgrid states. This paper develops a novel online
battery anti-aging energy management method for Energy-
Transportation Nexus by using a novel deep reinforcement
learning framework. Based on battery aging characteristic
analysis and rain-flow cycle counting technology, the
quantification of aging cost in V2G strategies is realized by
modelling the impact of number of cycles, depth of discharge, and
charge and discharge rate. The established life loss model is used
to evaluate battery anti-aging effectiveness of agent actions. The
coordination of GEVs charging is modelled as multi-objective
learning by using a deep reinforcement learning algorithm. The
training objective is to maximize renewable penetration while
reducing microgrid power fluctuations and vehicle battery aging
costs. The developed Energy-Transportation Nexus energy
management method is verified to be effective in optimal power
balancing and battery anti-aging control on a microgrid in the UK.
This research provides an efficient and economical tool for
microgrid power balancing by optimally coordinating GEVs
charging and renewable energy, thus helping promote a low-cost
decarbonization transition.

Index Terms—Transportation electrification, electric vehicle,
microgrid, deep reinforcement learning, renewable energy,
battery aging mitigation, vehicle to grid.

ABBREVIATIONS
GEVs Grid-connected EVs.
V2G Vehicle-to-grid.
MG Microgrids.
C-rate Charging and discharging rate.
DoD Depth of discharge.
SoC State of charge.
NoC Number of cycles.
DRL Deep reinforcement learning.
CTF Cycle-to-failure.
CTA Cycle-to-aging.
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DRLVM  Deep reinforcement learning V2G management.
PSOS Peak-shaving-oriented scheduling.
REC Renewable energy consumption.
VCC Vehicle charging completion.
NOMENCLATURE
VPS Battery SoC and discharging power matrix.
SoC, Battery SoC state at i .
P V2G power at i [W].
RF DoDs and C-rates matrix.
Crate, Battery C-rate in cycle i.
DoDb; Battery DoD in cycle i.
U; Terminal voltage of the battery [V].
E Rated capacity of the battery [Ah].
CTF Battery equivalent cycle life calculation function.
CTA Battery equivalent life loss calculation function

Battery life loss calculation function.
Reinforcement learning system state value.
Reinforcement learning system action value.
Reinforcement learning system reward value.
Q-value of the action.

Reward discount factor.

Reinforcement learning strategy

24-hour ahead V2G power sequence.
24-hour ahead battery SoC states sequence.
Power balancing requirement of the MG.
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Poad Power consumption state [W].

Peotar Solar power generation state [W].

Puind Wind power generation state [W].

Pl Maximum discharging power of GEVs [W].
) X Maximum charging power of GEVs [W].

D Quantified battery life loss of GEVs.

G Unbalanced power of the microgrid [W].

m Number of GEVs.

XSt Training input of Q-network.

YQt Training output of Q-network.

C Loss value of Q-network.

n Size of the mini-batch for Q-network.
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w! Weight matrix of neuron in network layer | .
b! Bias matrix of neuron in network layer | .
a Learning rate of Q-network.

I. INTRODUCTION

HE adoption of renewable energy brings a bright prospect

to resolve environmental concerns, but its high penetration
also brings great challenges for power systems. Microgrids
(MG) have a relatively low power transmission voltage and can
enhance the active interactions between renewable energy and
load demand [1]. Nevertheless, due to the intermittence of
renewable energy and variability of demand, the power balance
of MG is difficult to maintain, and the mismatch could cause
abrupt short-term power fluctuation issues. Conventional MG
power balancing solutions, including adding additional reserve
power generation, energy storage devices, and advanced power
management strategies, to some extent fail in the economy,
stability, or reliability [2, 3].

The electrification of road vehicles and the concept of
Energy-Transportation Nexus brings a bright prospect to solve
the power balancing problems of MG [4]. GEV onboard
batteries can offer the means to enhance MG flexibility,
achieving uninterrupted operation by deferring their demand in
time and space, acting as moving storage devices. In [5], [6],
and [7], GEV batteries are used to provide peak-shaving,
voltage regulation, and frequency regulation services through
V2G regulation. Simulation and experiment results indicate that
with effective charging management strategies, energy quality
and system stability can be significantly improved by utilizing
the moving energy storage capacity provided by GEVs. In [8]
and [9], V2G services are further used to support the operation
of wind and solar power generation. GEV batteries can be used
to provide power balancing services and improve the economy
and stability of the MG with renewable energy penetration.
However, there is still a gap that constrains the use of vehicle
batteries, i.e., the cost of GEVs battery life loss due to providing
V2G service. The situation is worse when battery energy
storage is used in MG with renewable energy because battery
may undergo excessive short-term cycles [10].

The establishment of the life loss analysis model is of great
significance to battery energy management in electric vehicles
[11], hybrid powertrains [12], and grid energy storage systems
[13]. The quantified battery aging cost can be used as a
benchmark of degradation-oriented mode of operation for
guiding battery energy management and providing a life-cycle
cost analysis tool in Energy-Transportation Nexus. Many
studies have been conducted to quantify battery aging costs in
energy management. The single-factor bucket model [14] is one
of the most commonly used methods in the existing literature to
protect vehicle batteries. In [15], optimal GEV charging
management is built as an event-based scheduling model.
Battery anti-aging is realized by limiting the charging and
discharging rate (C-rate) in V2G management. It was shown
that the established event-based model could achieve quasi-
instantaneous system responsiveness and protect vehicle
battery from high Crate working condition. Nevertheless,
battery life is still impaired by number of cycles (NoC) and

depth of discharging (DoD). In [16], the DoD is selected as the
aging observation variable to protect vehicle batteries when
providing V2G services. The bucket model can be used in
online V2G scheduling because of remarkable real-time
performance and hardware applicability. However, batteries are
complex electrochemical systems and multi factors influence
their aging. The single-factor bucket model cannot
systematically analyze the impact of these cycles on battery life,
impairing the anti-aging and power balancing performance of
V2G management.

Complex battery aging models have been proved to be
effective and necessary for mitigating GEVs aging in V2G
services [14]. A battery aging model that integrates the impact
of temperature, C-rate, state of charge (SoC), and DoD is built
in [17] to minimize the expected customer's charging cost when
providing V2G services. Stochastic optimization is used to
derive optimal strategies, and simulation results validate its
satisfactory battery anti-aging performance. Nevertheless, the
deployment of complex aging models and large-scale
optimization algorithms makes the V2G model complex, which
further weakens scheduling system’s real-time performance
[18]. In [19] and [20], the mitigation of aging costs in V2G
services is realized by using comprehensive battery aging
models and heuristic algorithms. Simulation results indicate
that the battery degradation costs can be effectively reduced.
However, the optimization-based V2G scheduling interval can
hardly be shortened to 5 minutes even with the most advanced
computing equipment, making it impossible to suppress
transient MG demand and renewable energy fluctuations.

Deep reinforcement learning (DRL) has attracted much
research attention in recent years for its high calculation
efficiency and satisfactory real-time performance. The DRL
algorithm-based energy management model and the derived
battery anti-aging strategy can be used to define the optimal
battery utilization strategy in Energy-Transportation Nexus,
such as hybrid electric vehicle [21], rail transportation system
[22], and GEVs charging scheduling [23]. In [24], DRL
algorithm is used to realize online energy management for plug-
in hybrid electric buses. The improvement of vehicle fuel
economy and the mitigation of battery degradation costs are the
learning target. Simulation results validate the effectiveness of
the DRL method in reducing overall vehicle driving costs in
real-time energy management. DRL provides a new solution to
improve both real-time power balancing and battery anti-aging
performance of V2G scheduling. However, to the authors' best
knowledge, there is no published work reporting the realization
of optimal battery anti-aging V2G scheduling based on a DRL
framework.

This paper develops a novel online battery protective energy
management method for Energy-Transportation Nexus under a
DRL framework. Firstly, based on the battery degradation
characteristic analysis and rain-flow cycle counting technology,
the quantification of degradation cost in V2G scheduling is
designed as a function of battery NoC, DoD, and C-rate. The
established aging cost model is used to evaluate the battery anti-
aging effectiveness of V2G strategies in DRL. Then, the
coordination of GEVs charging is modeled as multi-objective
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learning under DRL framework. The training target of the DRL
model is to maximize renewable penetration while reducing
vehicle battery aging costs. Historical MG power balance and
GEVs battery states are used to construct an experience pool,
and the charging/discharging strategies are online scheduled
based on the trained DRL model. GEVs energy storage capacity
can be scheduled online with the developed method to absorb
renewable energy while mitigating vehicle battery aging
phenomenon in V2G service.

The major contributions of this paper are:

1) It establishes a novel battery life loss analysis model to
quantify GEVs energy storage system aging costs during
daily operation. Compared to the existing single-factor
aging model, it can comprehensively reflect the influence
of NoC, C-rate, and DoD on battery life and thus provide
a more precise battery life loss evaluation result.

2) It designs a new DRL-based battery protective V2G
behavior management framework, which provides a
model-free solution for GEVs charging schedule.
Compared to most existing methods, the developed DRL
framework enables the online deployment of battery anti-
aging V2G regulator by combining offline learning and
the online strategy deployment process.

3) A multi-objective learning method is proposed to train the
DRL model. Optimal strategies that comprehensively
consider the MG power balancing requirement, GEVs
charging requirement, and the mitigation of battery aging
can be thus derived.

The rest of the paper is organized as follows. The vehicle
battery life loss quantification model is established in Section
Il. A DRL-based V2G behavior management framework and
multi-objective learning model are proposed in Sections 111 and
IV, respectively. In Section V, simulation environment and
numeric analysis are presented to verify the developed methods.
Section VI concludes the whole paper.

Il. BATTERY ENERGY STORAGE SYSTEM LIFE LOSS
QUANTIFICATION MODEL

Related literature identifies many factors influencing battery
health, which can be broadly classified into calendar and cycle
aging [25]. Calendar aging comprises all aging processes that
lead to the degradation of a battery cell independent of charge-
discharge cycling [26]. Literature [13] validates that calendar
aging is unavoidable and shows a limited impact on battery life
in energy management. Instead, cycle aging, which is caused
by battery cycles, is the main factor that results in life loss of
GEVs [27]. Therefore, only the cycle aging is considered in this
study. According to battery degradation modes analysis results
derived in [28], cycles with different C-rates and DoDs impact
battery life from different aspects to different degrees. Based on
the above discussion, this part develops a battery aging
quantification model to quantify battery life loss in V2G
strategies by analyzing battery NoC, DoD, and Crate
information in SoC and discharging power profiles of GEVs.

To further extract battery aging features, the following time
series are constructed as the input of the life loss model:

SoC, SoC SoC; -+ SoC
VPS{O1 02 o ° m} ()

P PR, - P Py

The rain-flow cycle-counting method, which has been
proven effective in extracting industry material aging cycles
[29], is used here to extract the battery aging features. Battery
C-rate [30] is calculated by the following equation based on the

discharging power of GEVs in (1):
P_
Crate, = —'— 2
SO E )

-
Where: U; and E are the terminal voltage and rated capacity

of the battery. The calculated battery DoDs and C-rates in
VPS time series are further extracted and arranged in a feature
matrix RF for quantifying aging cost:
{Cratel Crate, Cratg, Craten} @)
DOD, DOD, DOD, DOD,

[}
Where: Crate; and DOD; are the extracted battery discharging
rate and depth of discharge information in cycle i.

The battery pack in vehicle energy storage systems contains
hundreds of independent cells that own different aging states
and characteristics. To simplify the life loss quantification
process, the cycle-to-failure (CTF) characteristic profile
provided by the manufacture [31], which describes battery pack
aging characteristics by using cell aging experiment results, is
employed in this study to quantify battery life loss in V2G
services. Based on the extracted aging features data in (2), the
following equation is used to describe battery nonlinear aging
characteristics under different DoD states:

_ DOD-o? _DOD-¢?

A(DOD)=a-e ¢ +pB-e *# 4)
Where: ¢ , B, o, ¢, €, and u are curve fitting
parameters, which can be calculated from battery CTF data
derived in our previous work [32]. CTF profile reflects the
influence of DoD and NoC on battery degradation. However,
battery aging is also affected by the C-rate. In order to better
quantify the impact of C-rate on life loss in V2G service,
empirical models established in [33] is used here to correct the
life loss map:

@0.05+25
h(Crate) =— >
e x((0.507-Crate” +0.2906) x 2 + 25)
Based on the above analysis, battery equivalent cycle life
under different DoD and C-rate working conditions can be
calculated by multiplying & and 7, which can be represented
by the following equation:
CTF(DOD, Crate) = (DOD) - 7i(Crate) (6)
Where: CTF is a function to calculate battery equivalent cycle
life under the given working conditions (DoD and C-rate). The
constructed CTF responding profile is shown in Fig. 1, where
battery cycle life decreases with the increase of battery C-rate
and DoD.

®)
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Fig. 1. The constructed battery CTF responding profile.

CTF profile describes battery-rated cycle life under different
working conditions. In this study, the concept of cycle-to-aging
(CTA) is further defined to quantify the impact of cycles with
different DoDs and C-rates on battery life loss in V2G
scheduling. The reciprocal of CTF value, which reflects
percentage battery life loss, is defined as the CTA value of
different cycles:

CTA(Cycley) = L = ! @)
CTF(Cycle;)) A(DOD;)-n(Crate;)

Battery percentage life loss in V2G strategies can be derived
by aggregating the CTA value of different cycles, which can be
depicted by the following function:

D =5(VPS) = Zin:lCTA(Cyclei )x100% )

Where: D is the quantified percentage vehicle battery system
life loss in n cycles in V2G power and SoC time series VPS.

I1l. DEEP REINFORCEMENT LEARNING-BASED V2G BEHAVIOR
MANAGEMENT FRAMEWORK

In this study, dynamic V2G behavior management is solved
with DRL algorithm to determine the optimal power exchange
between the MG and GEVs. This section develops a deep
reinforcement learning V2G management (DRLVM)

framework to enable model-free GEVs charging scheduling by
combining offline learning and online strategy deployment
processes. As shown in Fig. 2, the DRLVM framework consists
of 4 parts: agent, environment, experience pool, and Deep Q-
network.

Fig. 2. The designed deep-reinforcement learning-based V2G behavior
management framework.

The agent in the developed DRLVM framework is selected
as an individual VV2G participant, and the charging behavior of
GEVs is the decision variable. The coordination of GEV
charging at different times in the scheduling period is modelled
as a Markov decision process, described by the following three
essential elements: (a) state s, (b) action a, and reward T .
The state variable in the DRLVM framework is designed as the
historical V2G behavior of GEVs and power balance state of

the microgrid, which can be represented by the following
equations:

S= {Ptvzg Syzg Bt} )
Pes = (R0 R (10)
529 = {SoC}?® s0C%?} (11)
B = {Pload t Polart  PFuind t} (12)

Where: PY29 | S0C"?9, P,y » Pyoar @nd Pying are V2G
power state, battery energy state, microgrid power consumption
state, solar power generation state, and wind power generation
states. Considering GEVs battery power dynamics, its power
increment value is set as the action variable in the designed

DRLVM:
= {+10,+5,+2,0,-2,-5,-10,5et0} (13)

Where: the units of all action values are kilowatt. The positive
value indicates the improvement of V2G power, while the
negative value represents the improvement of battery charging
power. After the action is taken, the battery power output at
each time step is constrained as:

dIS < Png < Pmax (14)
Where: P and PJ™ are the maximum discharging and
charging power of GEV batteries.

In each iteration, the agent takes actions to schedule the
charging power of GEVs based on the learned strategies and the
state of the environment, including power generation and
consumption states of the MG and SoC states of the vehicle
battery. Meanwhile, according to the response of the
environment, including the MG power balancing performance
and the calculated battery aging cost, the quality of each action
is evaluated by a reward function, and the state of the agent is
automatically updated to s based on the selected action and
MG model.

In the training phase, the agent freely explores the action
space as much as possible, and system state transfer process
(8,5, 1,St,1) is recorded in an experience pool. The Q-value
of the action, which reflects the quality of the strategy, is
calculated by the following equation:

Q" (s,a) = Z {tR (s..a)lls; =s,a = a} (15)

Where: 7/ is a constant variable within the range of 0 to 1,
reflecting the discounted impact of future reward value on the
current iteration step. In this study, the Epsilon-Greedy method
[34] is employed to perform action selection based on the
calculated Q-values during the DRLVM model training process.

Compared to conventional decision-making, the
environment state variables in V2G scheduling are all
continuous variables. Meanwhile, the historical V2G power and
battery SoC should also be considered to enable battery anti-
aging scheduling, which further complicates the computation
burden during solving Q value. Therefore, a state continuous
V2G scheduling algorithm is employed in this study based on
deep neural network technology. As shown in Fig. 2, a deep
network is used to estimate Q-values under continuous system
state change in the decision system. The historical system state
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transfer processes (a;,S;,,S.1) and corresponding Q-values
are randomly selected from the experience pool to train the
network. The estimated Q-value can be represented by the
following equation:

Q’(s,a) = w(s,a;w,b) (16)
Where: s represents the transfer function of the trained deep
neural network, w and b are the weights and biases in it.
The trained deep Q network is used to coordinate the
charging of GEVs in the real world. The corresponding V2G
scheduling strategies are derived by performing the action that
has the maximum Q-value, expressed as:

7 =arg maxQ(s, a we, bQ) 17)
a

IV. MULTI-OBJECTIVE LEARNING MODEL IN V2G BEHAVIOR
MANAGEMENT

This section provides the mathematical principle and
establishes the learning model for DRLVM framework. Firstly,
the V2G behavior learning is realized by establishing a multi-
objective reward function that can comprehensively reflect the
MG power balancing and battery anti-aging requirements. Then,
the structure of the built deep-Q network and model training
method are detailed.

A. Design of multi-objective reward function

The reward function is used to guide agents to make
appropriate decisions, so its definition should be consistent with
the objective of V2G scheduling. This part establishes a multi-
objective reward function to minimize MG load fluctuation and
battery life losses in DRLVM. The mitigation of battery
degradation is the first target. GEVs charging power and SoC
trajectory are extracted from the historical V2G strategy base
and rearranged in a time series, as described in equations (10)
and (11). Based on the established life loss quantification model
in Section 1l, battery life loss in V2G strategies can be
calculated as:

D=7(P*¢,5*) (18)

The mitigation of load fluctuation and absorption of
renewable power generation are also designed as the training
targets of DRLVM to improve the economy and stability of the
MG. The unbalanced power of the MG with GEVs penetration
is selected as the second reward function:

(19)

Where: m is the number of GEVs, which is used to reflect the
aggregation effect in V2G service. It should be noted that all
GEVs are assumed to contribute the same V2G power to the
MG when calculating the reward function G . The reason is
that the control object in DRLVM is the individual participant,
and it is not permitted to set multi-step reward functions in DRL
algorithm.

To comprehensively reflect battery aging mitigation,
renewable energy fluctuation, and charging requirement of
GEVs, the following multi-objective reward function are built
to evaluate action quality:

G =Rgaq +M- v2g — Peotar — Puind

5
n=wDb
r2 = a)zG
I, = w5 (1— S0C) (20)

(e
r =tanh| —
L+ +0

Where: @, o, , and @; weight factors between the three
different rewards. 1y is used to reflect the charging requirement
of participants. The larger the reward r, the worst the power
balancing and battery anti-aging performance of the derived
V2G strategies. Thus, minimizing its value in DRL training can
help DRLVM coordinate the charging behavior of GEVs
reasonably. o is a constant to adjust the range of tangent
function.

B. Deep-Q network structure and training method

In the designed DRLVM, the Q-value of different actions
should be estimated to direct the charging behavior of GEVs.
The estimation of Q-value in DRLVM can be regarded as a
multi-input to multi-output regression problem. The complex
mapping relationship between the outputs and inputs makes it
difficult to learn the regularity between the state of the decision
system and the Q-value of actions.

The neural network is one of the most commonly used
artificial intelligence algorithms, which simulates the working
mode of human brain neurons with abstract mathematical
models and many nodes. Neural network composes different
layers, and neurons in different layers perform operations
according to different functions, transfer values, and finally
merge into a complex network for curve fitting purposes. As
long as the reasonable network structure and network
parameters are properly designed, the neural network can
theoretically map any relationships. This study uses a multi-
layers deep neural network to fit the calculated Q-value for
improving the generalization ability of the learning process,
better dealing with continuous grid and GEVs state variables,
and improving optimization effect of the established V2G
coordinator. The network is trained by following loss function:

1 n 8 .
C= 22 0 (%) -V (X))
i=1 x=1

Where: XSl is the training input of the Q-network, which
consists of system state variable at t. YQl is the Q value of
different actions, which can be calculated based on equation
(20). \?Q‘ is the output of the Q-network. n is the size of the
selected mini-batch.

The experience replay method [35] is used to update
parameters of the Q network to boost training efficiency and
accuracy. Neural network parameters can be updated by the
following equation:

(21)

w w27, C(W,b) (22)
n

b' b —%Vb.C(W,b) (23)

Where: w' and b' are the weight and bias of neuron in layer
I'; « is learning rate of Q-network.
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V. CASE STUDY

This section illustrates the performance of the developed
DRLVM method. The topology and parameters of the studied
MG system are firstly presented, followed by the power
balancing and vehicle battery anti-aging performances are
evaluated.

A. The test microgrid system

The configuration of the test MG system with household load
demand, GEVs, and renewable energy penetrations is shown in
Fig. 3. Real grid demand and solar power generation data are
provided by Western Power Distribution, an electricity
distribution company in the UK. The demand data comes from
the Stentaway Primary substation near Plymouth, and the
corresponding solar generation data is from a 5MW solar near

the studied community (longitude, latitude = 50.33, -4.034), UK.

Wind power generation data is calculated based on the local
wind speed and the stochastic simulation model in [36]. All the
data used in this paper has been open-access provided on [37].
The steady-state MG simulation model in [38] is used to model
the power conversion between different sectors to verify the
effectiveness of the developed V2G behaviour management
method. To facilitate the hardware deployment of the
established coordinator, all developed methods are
programmed with the deep reinforcement learning toolbox in
Simulink.

Load demand

PP g

SRR —>

Electric vehicle with
smart charger

PVarray PV inverter
on ~
O
\ lLLI‘[F}
fi —> S '—)

off . .

Wind ] Wind Main grid

inverter

generator
Fig. 3. The configuration of the studied MG system with renewable energy
penetration.

In this study, the charging behaviors of 350 GEVs are
simulated to provide power balancing services to the MG. The
detailed battery characteristic parameter of the studied GEVs
are illustrated in Table I. The rated capacity of the battery pack
in each GEVs is 53 kWh, which consists of 10 modules
connected with a 2p5s configuration. The battery module
consists of 444 Lithium lon cells with 3400mAnh rated capacity
and 3.8 V nominal voltage, and the rated discharging current
reaches 500 A. The charging and discharging voltage cut-off of
the battery cell is 4.2 V and 3.3 V, respectively.

TABLE |. BATTERY CHARACTERISTIC PARAMETERS OF THE SIMULATED GEV'S
FLEET

Value

Battery cell type Lithium-lon 18650
Number of cells 444
Battery Module capacity 232Ah, 5.3 kWh
Voltage nominal 3.8VI/Cell, 22.8V/Module
Charging voltage cut-off 4.2VICell, 25.2V/Module
Discharging voltage cut-off 3.3V/Cell, 19.8/Module

Parameters

Rated discharging current 500 A
Battery pack configuration 2p5s
Battery pack capacity 53 kWh

B. Power balancing performance evaluation

The demand, solar power generation, and wind power
generation profiles of the studied MG within one year are given
in Fig. 4. The power consumption in winter and autumn is
generally higher than that in spring and summer because of the
use of heating installations, as shown in (a). Meanwhile, two
peaks generally appear in grid demand profiles in the period of
08:00 to 10:00 and 17:00 to 20:00 because of the boom of
commercial and household electricity consumption. Different
from demand profiles, solar generations generally peak in the
period of 10:00 to 16:00, while no PV output power can be
provided after 19:00 until the morning. Compared to PV output
profiles, the regularity of wind profile is not remarkable due to
the uncertain wind speed, but the wind power generation in the
evening is generally higher than daytime. The corresponding
wind power generation states distribution is shown in (c), the
average value is 1.95MW while the standard deviation (SD)
reaches 1.874. Above demand and renewable generation
profiles are used to train the established DRLVM model. The
training targets are set to stabilize MG power balance state by
using V2G services while mitigating vehicle battery aging costs.
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Fig. 4. DRL model training data. (a) MG demand profiles; (b) solar power
generation profiles; (c) wind power generation states distribution.

Based on the above power system configuration,
performances of four different V2G scheduling algorithms,
including conventional fuzzy logic method [39] (Case 1), peak-
shaving-oriented scheduling (PSOS) method [40] (Case 2), Q-
learning method [41] (Case 3), and the DRLVM method (Case
4), are quantitatively compared in this section. The power
balancing performance of different V2G scheduling methods
within 250 working days is analyzed in Fig. 5. In terms of
algorithm computation speed, the average simulation time of
the PSOS method is as long as 265.4 s due to the complex
optimization mechanism. Compared to the PSOS method,
GEVs charging behavior can be directly scheduled based on the
rules but free of optimization process in fuzzy logic method. As
a result, the simulation time in Case 2 can be reduced to 0.13s.
Owing to the offline training mechanism, the Q-learning and
DRLVM methods achieve a similar calculation speed with the
fuzzy logic method, and the simulation time can be limited to
0.25 s and 0.27 s. Therefore, online scheduling methods can
better deal with variant renewable power generation and
demand fluctuation compared to the optimization-based PSOS
method. In this study, to guarantee system stability, the
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scheduling interval in Case 1 to 4 are setas 1s,300s, 1s, and
1s, respectively.

The power balancing performance of four cases is compared
in Fig. 5 (b) and (c). In V2G scheduling, GEV batteries are used
to absorb renewable power generation as much as possible. The
renewable energy consumption (REC) in different V2G
schemes is shown in (b). V2G system with the fuzzy logic
algorithm is not able to manage the charging behavior of GEVs
synergistically, and thus the provided energy storage capacity
is limited. As a result, only around 62.3% of renewable power
generation can be consumed. Compared with the fuzzy logic

method, the REC rate in PSOS method can be improved to 87.5%

by better optimizing the charging behavior of GEVs. The
variant renewable power generation and demand fluctuation
can be better dealt with reinforcement learning method because
of the shorter scheduling interval. Compared to the PSOS

method, the REC rate can be further improved by 9.4% and 6.3%

after the Q-learning and DRLVM methods are deployed.

The unbalanced power, which reflects the required power
exchange between the MG and main grid, is further used here
to evaluate the power balancing performance of V2G
scheduling methods. As shown in Fig. 5 (c), in fuzzy logic, Q-
learning, and DRLVM methods, the unbalanced power can be
generally limited to 100 kW, which validates the gratifying
power balancing performance of online methods. It should be
figured out that the unbalanced power of the DRLVM method
is around 25.2% higher than the Q-learning method. The reason
is that the consideration of GEVs battery anti-aging
requirement inevitably limits the potential utilization degree of
GEV Dbatteries in providing power balancing service.

Furthermore, compared to conventional fuzzy logic and the Q-
learning method, the developed DRLVM method can strictly
satisfy the charging requirement of participants. As shown in
(d), the vehicle charging completion (VCC) rate can be
improved from 91.2% to 100% after deploying the DRLVM
method.
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Fig. 5. Power balancing performance comparison of different cases. (a)
simulation time; (b) V2G renewable energy consumption rate; (c) system
unbalanced power; (d) vehicle charging completion rate;

The sensitivity analysis is carried out in this study to validate
the power balancing performance of DRLVM method under the
variation of vehicle battery capacity, fleet scale, and wind
power generation fluctuation. Here, the fluctuation of wind
energy is evaluated by the standard deviation (STD) of power
generation data. The rate of change of wind power fluctuation

in Day; is calculated as:

n
STD; - ) STD; /n
ROC ing,i = n =L
D sTD;/n
i=1

Where: STD; is the standard deviation of wind power
generation data in Day;, n is the length of the simulation
period. The corresponding sensitivity analysis result is shown
in Fig. 6. System unbalanced grid power increases with the
reduction of vehicle battery capacity and fleet scale in the
DRLVM method. When battery capacity and fleet scale
decrease by 30%, unbalanced grid power can still be limited
within 121.4 kW and 153.8 kW, which indicates that the
scheduling algorithm can keep stable operation under the
variation of GEVs energy storage capacity. It should be figured
out that the impact of fleet scale on system power balancing
performance is higher than battery capacity. The reason is that
the reduction of GEVs fleet can dramatically impair scheduling
algorithm flexibility. Compared with the change of energy
storage capacity, the renewable power generation fluctuation
shows a limited influence on V2G scheduling. The unbalanced
power can be limited to 107.6 kW even the rate of change of
wind power fluctuation reaches 30%, which validates the
robustness of the developed DRLVM method.
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Fig. 6. DRLVM method power balancing performance sensitivity analysis.
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Battery SoC profiles of a GEV in a regular working day in
fuzzy logic and DRLVM methods are shown in Fig. 7.
Compared to the fuzzy logic method, battery NoC in V2G
scheme with DRLVVM method is significantly reduced. GEVs
are scheduled to absorb renewable energy as much as possible
in fuzzy logic method. As a result, battery undergoes a great
number of shallow cycles when dealing with variant wind
power generation in the evening, as shown in Zone C. In the
DRLVM method, instead of inversing battery charging state,
V2G scheduling system can absorb renewable power
generation by adjusting the battery working power. Therefore,
battery cycles in DRLVM method can be significantly reduced,
which validates the effectiveness of the established battery
aging quantification model. The developed DRLVM method
can also protect vehicle batteries from high C-rate working
conditions that greatly impact their life. As shown in Zone A
and B, the battery SoC rate of change during discharging and
charging processes is significantly reduced in (b), which
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indicates that the developed DRLVM can reach a better trade-
off between the power balancing and the battery lifetime
protection.

100 T T T T T T T T T T T

(a)

SoC(%)
(4]
o

impact of fleet scale is higher than battery capacity on V2G
system battery protective performance. Renewable power
generation fluctuation shows a very limited influence on V2G
scheduling. Battery life loss can be limited to 6.62% even the
rate of change of wind power fluctuation reaches 30%, which
validates the robustness of the developed DRLVM method.
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Fig. 7. Battery SoC profiles of a GEV in a regular working day in (a) fuzzy
logic method and (b) the developed DRLVM method.

The battery anti-aging performance of different V2G
scheduling methods in the whole simulation period is
quantitatively analyzed in Table Il. The charging behavior of
GEVs can be better coordinated in the PSOS method because
of the cooperative optimization mechanism. The battery
number of cycles and C-rate in the simulation period can be
reduced by 23.4% and 17.9% compared to the fuzzy logic
method. The Q-learning method achieves a very similar
performance compared to the fuzzy logic method, but the
battery cycles and C-rate can be further reduced to 1875 and
1.24 after the developed aging model and multi-objective
learning method is deployed. Based on the battery aging model
in Section 11, battery life loss within 250 working days under
different V2G scheduling methods is quantified. Compared to
fuzzy logic, PSOS, and Q-learning method, the developed
DRLVM method can reduce battery life loss by 60.2%, 24.4%,

and 51.2%, respectively. Battery life loss can be limited to 6.27%

in the simulation period, which validates the effectiveness of
the developed DRLVM method.

TABLE Il. QUANTITATIVE PERFORMANCE EVALUATION OF DIFFERENT V2G
SCHEDULING METHODS

Case 1: Case 2: Case 3: Case 4:

Scenario Fuzzy logic  PSOS  Q-learning DRLVM

method method method method
Number of cycles 2552 1954 2434 1875
Average C-rate 1.78 1.46 1.74 1.24
Battery life loss (%) 15.75 8.29 12.85 6.27

The sensitivity analysis is further carried out to analyze
battery life loss under the variation of vehicle battery capacity,
fleet scale, and wind power generation fluctuation. As shown in
Fig. 8, both the battery capacity and fleet scale show a positive
effect on the reduction of life loss in V2G services, while the
renewable fluctuation shows a negative effect. The developed
DRLVM method can stably work under GEVs energy storage
capacity variation. When battery capacity and fleet scale
decrease by 30%, battery life loss in V2G services can still be
limited within 8.37% and 8.94%, respectively. Similarly, the
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Fig. 8. DRLVM method battery protective performance sensitivity analysis.

VI. CONCLUSION

A novel battery anti-aging V2G scheduling method that can
provide power balancing services for the MG by utilizing GEVs
energy storage capacity is developed in this paper. GEVs aging
cost in V2G scheduling is quantified by a battery degradation
model. The optimal GEVs charging coordination is modelled as
a multi-objective learning problem under DRL framework.
Through extensive simulations on an MG system built with real
power generation and consumption data in the UK, the key
findings are as follows: (1) Compared to the bucket model, the
established aging cost analysis model can model battery aging
characteristics more comprehensively. Vehicle battery life loss
in V2G service can be significantly reduced after the developed
battery aging quantification model is deployed. (2) Benefiting
from offline training, the reinforcement learning-based V2G
scheduling can real-time schedule the charging behavior of
GEVs to mitigate the volatility of renewable energy. As a result,
MG unbalanced power and REC rate can be significantly
reduced and improved.

Furthermore, the applicability of the methodology developed
in this paper can be summarized as follows: (1) The established
battery life loss analysis model can be used as a benchmark of
degradation-oriented mode of operation for guiding battery
energy management and providing an effective life-cycle cost
analysis tool. (2) The established DRL-based VV2G scheduling
model and the simulation results in this study define the optimal
vehicle battery utilization strategy in smart energy systems
considering degradation, which can further improve Energy-
Transportation Nexus efficiency.
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