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 

Abstract—Power system operation faces an increasing level of 

uncertainties from renewable generation and demand, which may 

cause large-scale congestion under ineffective operation.   

This paper applies energy storage (ES) to reduce system peak 

and congestion by robust optimisation, considering the 

uncertainties from ES State of Charge (SoC), flexible load, and 

renewable energy. First, a deterministic operation model for ES, 

as a benchmark, is designed to reduce the variance of branch 

power flow based on the least-square concept. Then, a robust 

model is built to optimise ES operation with the uncertainties in 

the severest case from load, renewable and ES SoC that are 

converted into branch flow budgeted uncertainty sets by the 

cumulant and Gram-Charlier expansion method. The ES SoC 

uncertainty is modelled as an interval uncertainty set in the robust 

model, solved by duality theory. These models are demonstrated 

on a grid supply point (GSP) to illustrate the effectiveness of 

congestion management technique. Results illustrate that the 

proposed ES operation significantly improves system performance 

in reducing system congestion. This robust optimisation based ES 

operation can further increase system flexibility to facilitate more 

renewable energy and flexible demand without triggering large-

scale network investment. 

 

Index Terms— System congestion, load uncertainty, energy 

storage, robust optimisation  

 

I.  INTRODUCTION  

UE to the ageing infrastructure and limited capacity of 

existing energy systems, a huge amount of renewable 

energy is wasted worldwide. In 2015, the cost of wind 

curtailment exceeded £90 million from 1.3GWh energy waste 

in the UK [1]. Energy storage (ES) is able to address system 

congestion by temporally shifting power to relieve the pressure 

on system constraints, facilitating renewable energy 

penetration. Paper [2] uses ES to shave demand peak and 

regulate frequency, but not accurately addresses system 

overloading issues. Paper [3] uses economic signals to guide ES 

operation, but this approach is less efficient when the price 

peaks do not match power peaks.  

There are many commercial and technical barriers that 
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obstacle the utilisation of ES in the power system, including 1) 

the pricing signals for ES should be clear and incentive. 

Currently, ES does not receive sufficient incentives, where the 

main profit is from energy arbitrage. For example, the benefits 

from reducing system congestion and peak power flow could be 

rewarded to ES if they provide the services; 2) the uncertainties 

in power systems should be considered in ES operation. With 

uncertain generation and demand, it is more complexed to 

design ES operating strategies. The inaccuracy in ES operation 

would even exacerbate system congestions and energy 

balancing. ESs are normally operated by deterministic optimal 

models [4-7], without considering uncertainties from flexible 

load and renewable generation. Although some research work 

considers renewable power uncertainties [8], the impact of ES 

operation on network congestion is not properly considered.  

The uncertainties of active load and renewable energy 

generation lead to unexpected system peak and uncontrollable 

network congestions, which increases system risks and 

associated operation cost. It would bring forward network 

reinforcement time and increases operation cost in the long run. 

Thus, it is important to consider uncertainties in utilising ES to 

reduce system congestion. The uncertainties are mainly from 

three sources: ES, and flexible load and renewable generation. 

To model power flows considering uncertainties flexible load 

and renewable generation, there are two key methods: Monte-

Carlo simulation and probability theory. Papers [9-11] use 

Monte-Carlo simulation to determine the probabilistic power 

flows, but they are not applicable to large-scale systems. The 

probability methods are based on a various combination of 

expansion approximations, cumulant and moment to determine 

the optimal probabilistic power flow in [12-14].  

In terms of optimisation with uncertainties, generally, there 

are two approaches, which are the stochastic programming [15] 

and robust optimisation [16, 17]. Robust optimisation methods 

consider uncertain parameters by taking values within known 

confidence bounds, which are generally easy to obtain. Because 

network reinforcement is determined by peak branch power 

flow, robust optimisation can minimise system peak under high 
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uncertainties to reduce system congestion, deferring network 

reinforcement horizon. There are several papers applying 

robust optimisation to system operation considering 

uncertainties from the load, renewable output and energy 

prices. Paper [18, 19] propose a second-order cone 

programming robust optimisation under uncertainties to reduce 

the uncertainty and uses a two-stage robust centralised-optimal 

dispatch model under uncertain PV output. For the uncertainty 

sets in robust optimisation, box and budgeted uncertainty sets 

are widely used. Papers [20, 21] consider budgeted uncertainty 

sets in modelling. The correlation between load and wind 

uncertainties are considered by budget constraints [20]. Paper 

[21] converts the max-min problem to a Mixed Integer 

Programming (MIP) problem using Binary Expansion, 

accommodating uncertain renewable in the Security-Constraint 

Unit Commitment (SCUC). With robust models, the problem is 

solved by Benders Decomposition [20] and column-and-

constraint generation algorithm [18, 22, 23]. However, these 

methods are not for operating ES, whose uncertainty in State of 

Charge (SoC) significantly impact operation.  

This paper designs a novel operation method for ES dispatch 

by the system operator to reduce the variances of branch flows. 

The branches with high asset cost have the priority to use the 

ES to reduce their power flow variances because their high 

power flow levels lead to nearer reinforcement horizon and high 

investment cost. By considering the uncertainties of flexible 

load, renewable energy, and ES SoC, robust optimisation is 

applied to operate ES to shift the peak power flow to valley 

periods. Load and generation uncertainties are converted into 

branch flow uncertainties as budgeted sets by applying the 

cumulant and Gram-Charlier expansion method. The ES SoC 

uncertainty is modelled as an interval set in the robust 

optimisation. The constraints of power flow, SoC, and 

Charing/Discharging (C/D) rate are applied in robust 

optimisation. The proposed method is demonstrated on a 

practical Grid Supply Point (GSP) from UK distribution system. 

The main contributions of this paper are: i) it proposes a new 

C/D model based on least-square to reduce branch flow 

variances from uncertainties of flexible load and renewable 

energy; ii) it designs a robust optimisation model to operate ES 

by considering all uncertainties of flexible load, renewable 

energy, and ES SoC; and iii) it compares the performance of 

deterministic and robust models under different uncertainty 

levels in terms of system peak and congestion reduction. 

The rest of the paper is organised as follows: Section II 

describes the process to determine probabilistic power flow 

based on demand and renewable generation uncertainty. 

Section III proposes a deterministic model and robust 

optimisation models for ES operation. Section IV demonstrates 

and compares the proposed deterministic and robust models on 

a local GSP distribution network. Section V draws conclusions. 

II.   PROBABILISTIC POWER FLOW WITH DEMAND AND 

GENERATION UNCERTAINTY 

Probabilistic power flow is proposed to capture the 

uncertainties from flexible load and renewable for robust 

optimisation. Based on the DistFlow model, the uncertainties 

are transferred to power flow by using the combined cumulant 

and Gram-Charlier expansion method.  

A. Power Flow Linearisation 

In the cumulant method for probabilistic power flow 

analysis, the linear combination of independent variables is 

considered. In the distribution network, especially radial ones, 

the DistFlow model [24, 25] is widely used to simplify the 

relationship between branch power flow and nodal power 

change, which is modelled as: 

𝑃𝑙+1 = 𝑃𝑙 −
𝑟𝑙×(𝑃𝑙

2+𝑄𝑙
2)

𝑉𝑙
2 − 𝑝𝑖,𝑙                       (1) 

𝑄𝑙+1 = 𝑄𝑙 −
𝑥𝑙×(𝑃𝑙

2+𝑄𝑙
2)

𝑉𝑙
2 − 𝑞𝑖,𝑙                    (2) 

𝑉𝑙+1
2 = 𝑉𝑙

2 − 2(𝑟𝑙 × 𝑃𝑙 + 𝑥𝑙 × 𝑄𝑙) +
(𝑃𝑙

2+𝑄𝑙
2)(𝑟𝑙

2+𝑥𝑙
2)

𝑉𝑙
2  (3) 

where 𝑃𝑙  and 𝑄𝑙  are active and reactive power flows in branch 

𝑙; the branch impedance is presented as 𝑧𝑙 = 𝑟𝑙 + 𝑗𝑥𝑙 . 

To comply with the system operating standard, the nodal 

voltage in the distribution network should be within a certain 

range, set as 𝑉𝑙 ⊂ [0.95, 1.05]. Because the nonlinear parts of 

the nodal voltage are much smaller than the linear parts, and 

thus (𝑃𝑙
2 + 𝑄𝑙

2)(𝑟𝑙
2 + 𝑥𝑙

2)/𝑉𝑙
2  can be ignored [25, 26]. By 

assuming nodal voltage at the nominal level is 1 p. u. , 

(𝑉𝑙 − 1)2 = 𝑉𝑙
2 − 2𝑉𝑙 + 1 ≈ 0 , then 𝑉𝑙

2 ≈ 2𝑉𝑙 + 1 . It can 

yield 𝑉𝑙+1 = 𝑉𝑙 − (𝑟𝑙𝑃𝑙 + 𝑥𝑙𝑄𝑙)  from 2𝑉𝑙+1 − 1 = 2𝑉𝑙 − 1 −
2(𝑟𝑙𝑃𝑙 + 𝑥𝑙𝑄𝑙) based on  (3). 

Therefore, the DistFlow model can be simplified as: 

𝑃𝑙+1 = 𝑃𝑙 − 𝑝𝑛,𝑙                                 (4) 

𝑄𝑙+1 = 𝑄𝑙 − 𝑞𝑛,𝑙                               (5) 

𝑉𝑙+1 = 𝑉𝑙 − (𝑟𝑙×𝑃𝑙 + 𝑥𝑙×𝑄𝑙)                 (6) 

where 𝑝𝑛,𝑙 and 𝑞𝑛,𝑙 represent the active and reactive power 

injection at the node 𝑛 along branch 𝑙.  
Based on linearised DistFlow, it is easy to determine branch 

flow change due to nodal power changes. An index matrix, 

inspired by the power transfer distribution factor, is determined 

by the sensitivity of an injected nodal power on the changing 

branch power flow in (7). This index (𝑀𝑛,𝑙) is used to measure 

the imapct of the ES located at node 𝑛 on branch 𝑙’s flow.  

𝑀𝑛,𝑙 =
𝜕𝑃𝑙

𝜕𝑝𝑛,𝑙
                                     (7) 

B. Cumulant Method  

Cumulants and moments can effectively characterise a 

probability density function (PDF). For example, for the normal 

distribution, the first order cumulant is its mean and the second 

order cumulant is the variance. For a random variable 𝑥, such 

as 𝑃𝑛 , the load demand at node 𝑛 , the moment generating 

function 𝛷𝑃𝑛
(𝑠) is:  
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𝛷𝑃𝑛
(𝑠) = 𝐸[𝑒𝑠𝑃𝑛] = ∫ 𝑒𝑠𝑃𝑛

∞

−∞
𝑓𝑃𝑛 (𝑃𝑛) 𝑑𝑃𝑛                (8) 

where 𝑓𝑃𝑛
(𝑃𝑛) is the PDF of 𝑃𝑛. 

Based on the moment generating function, the cumulant 

generating function 𝛹𝑃𝑛
(𝑠) is: 

𝛹𝑃𝑛
(𝑠) = 𝑙𝑛 𝛷𝑃𝑛

(𝑠)                               (9) 

By taking the n-th derivative of the moment and cumulant 

generating function, the n-th order raw moment 𝑚𝑛  and 

cumulant 𝜆𝑛 can be determined at s=0.  

Variable 𝑃𝑙 ,  the active power flow on branch 𝑙 , can be 

aggregated by the linear combination of independent load at 

different nodes (𝑃𝑛1
, 𝑃𝑛2

… 𝑃𝑛𝑚
). Thus, the moment generating 

function 𝛷𝑍(𝑠) can be determined as: 

             𝑃𝑙 =  𝑀1,𝑙𝑃𝑛1
+ 𝑀2,𝑙𝑃𝑛2

+ ⋯ 𝑀𝑚,𝑙𝑃𝑛𝑚
               (10) 

 

𝛷𝑃𝑙
(𝑠) = 𝐸[𝑒𝑠𝑃𝑙] = 𝐸[𝑒

𝑠(𝑀1,𝑙𝑃𝑛1+𝑀2,𝑙𝑃𝑛2+⋯𝑀𝑚,𝑙𝑃𝑛𝑚)]             

= 𝐸[𝑒
𝑠(𝑀1,𝑙𝑃𝑛1)𝑠(𝑀2,𝑙𝑃𝑛2)+⋯𝑠(𝑀𝑚,𝑙𝑃𝑛𝑚)]           

= 𝛷𝑃𝑛1(𝑀1,𝑙𝑠)𝛷𝑃𝑛2(𝑀2,𝑙𝑠) … 𝛷𝑃𝑛𝑚(𝑀𝑚,𝑙𝑠)

(11) 

where 𝑀𝑛,𝑙 is the linerised power flow index between nodal 

load and branches, determined by (7). 

Therefore, the cumulant for variable 𝑃𝑛 is: 

 
𝛹𝑃𝑙

(𝑠) = 𝑙𝑛(𝛷𝑃𝑙
(𝑠)) 

= 𝛹𝑃𝑛1
(𝑎1𝑠) + 𝛹𝑃𝑛2

(𝑎2𝑠) + ⋯ 𝛹𝑃𝑛𝑚
(𝑎𝑚𝑠)

           (12) 

The nth-order cumulant of 𝑃𝑙  can be computed by taking the 

nth derivative of 𝛹𝑃𝑙
(𝑠) respective to 𝑠 at 𝑠 = 0. 

𝜆𝑛 = 𝛹𝑃𝑙

(𝑛)(0)

𝑀1
𝑛𝛹𝑃𝑛1

(𝑛)(0) + 𝑀2
𝑛𝛹𝑃𝑛2

(𝑛)(0) + ⋯ 𝑀𝑚
𝑛 𝛹𝑃𝑛𝑚

(𝑛) (0)
        (13) 

C. Gram-Charlier Expansion Method 

With the moment of load PDF generated in the previous 

section, Gram-Charlier expansion method is implemented, 

which allows the PDF to be expressed as a series composed of 

a standard normal distribution and derivatives. By applying 

Edgeworth form, the Gram-Charlier form can be determined by 

moments and cumulants, considering the additive property of 

cumulants. With the cumulants of distribution in the standard 

form, the exponential representation of the PDF is 

𝑓(𝑃𝑛) = 𝑒(−
𝜆3
3!

𝐷3+
𝜆4
4!

𝐷4−
𝜆5
5!

𝐷5+⋯ )
𝛽(𝑃𝑛)                  (14) 

𝛽(𝑃𝑛) =
1

√2𝜋𝜎
𝑒

−
(𝑃𝑛−𝜇)

2

2𝜎2                             (15) 

where 𝐷𝑛  is the n-th order derivative of the unit normal 

distribution, 𝜆𝑛 is the n-th order cumulant, 𝛽(𝑃𝑛) is the normal 

distribution function with mean (𝜇) and variance (𝛿). In the 

normal distribution, the 1st order cumulant is 𝜇 and the 2nd order 

cumulant is 𝛿2.  

Therefore, the exponential series is: 

𝑓(𝑃𝑛) = [1 +
(−

𝜆3
3!

𝐷3+
𝜆4
4!

𝐷4−
𝜆5
5!

𝐷5+⋯ )

1!
+

(−
𝜆3
3!

𝐷3+
𝜆4
4!

𝐷4−
𝜆5
5!

𝐷5+⋯ )

2!

2

+

(−
𝜆3
3!

𝐷3+
𝜆4
4!

𝐷4−
𝜆5
5!

𝐷5+⋯ )

3!

3

+ ⋯ ]  𝛽(𝑃𝑛)                      (16) 

By expanding each term and grouping by the power of 𝐷, 

the PDF can be expressed as: 

𝑓(𝑃𝑛) = 𝛽(𝑃𝑛) −
𝜆3

3!
𝐷3𝛽(𝑃𝑛) +

𝜆4

4!
𝐷4𝛽(𝑃𝑛) −

𝜆5

5!
𝐷5𝛽(𝑃𝑛) +

(
𝜆6

6!
+

𝜆3
2

2!3!2) 𝐷6𝛽(𝑃𝑛) − (
𝜆7

7!
+

2𝜆3𝜆4

2!3!4!
) 𝐷7𝛽(𝑃𝑛) + ⋯         (17) 

D. PV Output Modelling 

The uncertainty in the probabilistic power flow is mainly 

from flexible load and renewable, where the renewable is 

considered as PV in this paper. The PV output uncertainty 

comes from the irradiance, which highly depends on the 

weather. The PV output is considered as ±5% of the predicted 

value. The hourly predicted power output of PV generation 

(𝑃𝑝𝑣) model  [27] is introduced as: 

𝑃𝑝𝑣 = 𝛾 × 𝐴𝑠 × 𝐺0 × ∫ 𝑓(𝐺 /𝐺0; 𝜑𝐺 ; 𝜎𝐺)
1

0
             (18) 

where 𝛾 is the PV efficiency; 𝐴𝑠 is the array surface area; 𝐺 is 

the global horizontal irradiance; 𝐺0denotes the corresponding 

extra-terrestrial irradiance; 𝜑𝐺  and 𝜎𝐺 can be estimated through 

fitting Beta distribution into the historical hourly solar 

irradiance data. 

III.  OPERATION MODEL FOR ENERGY STORAGE  

This section designs the ES C/D method to reduce power 

flow variances of all branches to lower investment and 

congestion cost.  

 ① Robust model with load 

and generation Uncertainty

②Robust model with SoC 

Uncertainty

③Robust model with both   

① and②Uncertainties

A. Deterministic operation

Start

Results comparisonEnd

B. Robust 

model

  
Fig.1. The flowchart of the ES operation model 

 

The flowchart in Fig.1 shows the whole process of the ES 

operation by using different methods. There are two strategies: 

the deterministic model and the robust model. The deterministic 

model is solved by mixed integer quadratic programming 

(MIQP), which schedules the ES without considering 

uncertainties. In the robust model, there are three types of 
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detailed robust models, listed in ①~③.  

 Model ① applies robust optimisation, only considering 

uncertainty from load and renewable energy.  

 Model ② only considers ES SoC uncertainty.  

 Model ③ integrates load, renewable and ES SoC 

uncertainties.  

The uncertainties from the flexible load and renewable 

energy are converted into power flow uncertainties by using the 

probabilistic power flow. Then, a comparison of these four 

models and ES status are analysed.  

A. Deterministic Model 

The objective function is to minimise system congestion 

using the least-square concept, achieved by reducing the 

variance of branch power flows, which is determined by the 

difference between the power flow at each time and its daily 

average. Because the reinforcement cost of each branch is 

different, a penalty factor is introduced to ensure ES operation 

to reduce the congestion according to the priority of branch 

costs. The problem is modelled as a mixed integer quadratic 

optimisation, which has three advantages: 1) to perform 

efficient peak shaving, which can obtain the lowest peak branch 

power flow after ES operation; 2) to give the priority to the 

branches that have high asset reinforcement costs to trigger ES 

discharging; and 3) to determine valley periods of the lowest 

load to charge the ES. 

Obj: 

Min:     ∑ Assetl × [∑
1

T
(pfe(l,t) − Apfl)

2T
t=1 ]N

l=1          (19) 

s.t.: 

𝑝𝑓𝑒(𝑙,𝑡) = 𝑝𝑓𝑙,𝑡 + 𝑀𝑛,𝑙,𝑡 × (
𝑃𝑐,𝑡

𝜂𝑐,𝑡
− 𝑃𝑑,𝑡 × 𝜂𝑑,𝑡)         (20) 

SoCt = SoCt−1 +
Pc,t−1−Pd,t−1

Ces
                   (21) 

0 ≤ 𝜂𝑐,𝑡 ≤ 1                                       (22) 

0 ≤ 𝜂𝑑,𝑡 ≤ 1                                       (23) 

𝑆𝑜𝐶𝑡 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥                                    (24) 

−𝑆𝑜𝐶𝑡 ≤ −𝑆𝑜𝐶𝑚𝑖𝑛                                   (25) 

𝑃𝑐,𝑡 ≤ 𝑂𝑟𝑎𝑡𝑒                                          (26) 

𝑃𝑑,𝑡 ≤ 𝑂𝑟𝑎𝑡𝑒                                          (27) 

𝑃𝑐,𝑡 ≤ 𝐵 × 𝐶𝑒𝑠             𝐵 ∈ (0,1)          (28) 

𝑃𝑑,𝑡 ≤ (1 − 𝐵) × 𝐶𝑒𝑠       𝐵 ∈ (0,1)          (29) 

where, (20-21) are equality constraints of branch power flow, 

(21) describes the ES SoC based on the previous state, (22-27) 

are inequality constraints of efficiency, SoC, and storage C/D, 

and (28-29) are the constraints for the integer definition. 

 𝑝𝑓𝑒(𝑙,𝑡)  is the power flow on branch 𝑙 at time 𝑡 after ES 

operation and 𝐴𝑝𝑓𝑙  is the average power flow during 

period 𝑇 on branch 𝑙. 

 𝐶𝑒𝑠 is the storage capacity; 𝑆𝑜𝐶𝑡 is the SoC of the storage; 

𝑃𝑐,𝑡 and 𝑃𝑑,𝑡 are the charging and discharging amount of 

energy at time 𝑡. 

 𝑀𝑛,𝑙,𝑡  is branch flow sensitivity factor derived from 

DistFlow model. 

 𝑝𝑓𝑙,𝑡  is the original power flow without ES operation; 𝜂𝑐 

and 𝜂𝑑 are the efficiency of ES during C/D.  

 𝑂𝑟𝑎𝑡𝑒  is the ES operation rete limitation. 

 𝐵 is a 0,1 integer, which ensures there is no conflict for 

the C/D process of the ES system. 

B. The Robust Model 

The ES operation has uncertainties from four dimensions, 

which are 1) C/D length, 2) C/D time, 3) C/D amount, 4) SoC. 

The uncertainties of 1)~3) mainly come from the power flow 

uncertainties due to flexible load and renewable energy 

generation. These uncertainties are formed as the uncertainty 

sets in robust optimisation to minimise system peak and 

congestion. The severe case is the case where the uncertainty 

sets realise at the maximum magnitude of branch power flows, 

which leads to high system peak and large system congestions. 

In this paper, the severe case is the system condition with the 

highest branch flow resulted from the uncertainties of 

renewable generation, load and energy storage SOC, which lead 

to the largest system congestion. The upper boundary of the 

power flow is taken as the severe case in the study. The severe 

case under SoC uncertainty is that the SoC reaches 0.25 at the 

start of the day, which causes less capacity for charging during 

peak PV output periods.  

The robust model is formulated as a min-max problem from 

a deterministic model. There are four typical uncertainty sets in 

robust optimisation, which are the interval uncertainty, 

ellipsoidal uncertainty, budgeted uncertainty, and norm 

uncertainty. The uncertainties in branch flows can be derived 

from load and renewable uncertainties based on the combined 

cumulant and Gram-Charlier expansion (8)~(18). With the 

same constraints in (20)~(29), the robust objectives and 

uncertainty sets can be derived. The robust optimisation is 

solved by using duality theory, which can convert the min-max 

robust problem into a MIQP problem. 

 Robust model with load and renewable uncertainty 

The uncertainty set only considering the uncertainty of 

branch power flow can be described in (31), which is formed as 

a budgeted uncertainty set. It also reduces the conservativity of 

robust optimisation. The objective function and the uncertainty 

set are: 
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𝑀𝑖𝑛
pfe(l,t), 𝑆𝑜𝐶𝑡, 𝑃𝑐𝑡, 𝑃𝑑𝑡

:    
𝑀𝑎𝑥
𝑝𝑓𝑙,𝑡

∶      

∑ 𝐴𝑠𝑠𝑒𝑡𝑙 × [∑
1

𝑇
(𝑝𝑓𝑒(𝑙,𝑡) − 𝐴𝑝𝑓𝑙)

2𝑇
𝑡=1 ]𝑁

𝑙=1        (30) 

𝑈1 = {𝑝𝑓l,t | 𝑝𝑓l,t = 𝑝𝑓l,t
̅̅ ̅̅ ̅ + ξl,t, 𝑝𝑓l,t  ̂, −1 ≤ ξl,t ≤ 1, ∑ ξl,t = Γl

24
t=1 }    (31) 

where 𝑝𝑓𝑙,𝑡
̅̅ ̅̅ ̅ is the forecasted value of power flow derived from 

predicted load and renewable, 𝑝𝑓𝑙,𝑡  ̂ is the power flow deviation 

resulting from uncertainty on branch l at time t. 𝜉𝑙,𝑡 and 𝛤𝑙  show 

the conservation level of the ES operator. 

 Robust model with ES SoC Uncertainty 

With only SoC uncertainty, the objective function 

determines the minimum variance of daily branch power flow 

under the maximal impact of uncertainty in starting SoC. 

Because the starting SoC is decided by the end SoC on the 

previous day, it is impractical to define it as a constant value. 

Thus, the uncertainty set of the starting SoC is described as an 

interval uncertainty set. For example, if the starting SoC is high, 

the available capacity is lower, which means the ES has less 

capability to reduce the uncertainties by absorbing PV energy. 

Thus, the objective function is formed as: 

𝑀𝑖𝑛
pfe(l,t), 𝑆𝑜𝐶2:24, 𝑃𝑐𝑡, 𝑃𝑑𝑡

:    
𝑀𝑎𝑥
𝑆𝑜𝐶1

∶      

∑ 𝐴𝑠𝑠𝑒𝑡𝑙 × [∑
1

𝑇
(𝑝𝑓𝑒(𝑙,𝑡) − 𝐴𝑝𝑓𝑙)

2𝑇
𝑡=1 ]𝑁

𝑙=1     (32) 

𝑈2 = {𝑆𝑜𝐶1 | 𝑆𝑜𝐶1 ∈ [𝑆𝑜𝐶1
̅̅ ̅̅ ̅̅ − ξ1, 𝑆𝑜𝐶1

̅̅ ̅̅ ̅̅ + ξ1]}           (33) 

where the SoC1
̅̅ ̅̅ ̅̅  is the forecast value of the start SoC, 𝜉1 is the 

deviation at this time.  

 Robust model with  ES SoC Uncertainty, load and renewable 

uncertainties 

The objective function is to minimise the variance of daily 

power flow from each branch under the maximal impact of 

uncertainties from starting SoC status, load and renewable 

output. 

Thus, the objective function can be formed as: 

𝑀𝑖𝑛
pfe(l,t), 𝑆𝑜𝐶2:24, 𝑃𝑐𝑡, 𝑃𝑑𝑡

:    
𝑀𝑎𝑥

𝑆𝑜𝐶1, 𝑝𝑓𝑙,𝑡
∶      

∑ 𝐴𝑠𝑠𝑒𝑡𝑙 × [∑
1

𝑇
(𝑝𝑓𝑒(𝑙,𝑡) − 𝐴𝑝𝑓𝑙)

2𝑇
𝑡=1 ]N

l=1     (34) 

𝑈3 = {𝑝𝑓l,t , 𝑆𝑜𝐶1 | 𝑈1 + 𝑈2}                     (35) 

The uncertainty sets of power flow and initial SoC are 

described in (31, 33). 

IV.  CASE STUDY  

The proposed models are demonstrated on a practical GSP 

connected the UK distribution network in Fig.2 [28]. It is 

assumed that the ES is located at busbar 1007 with capacity 

6MWh according to the peak output of PV at bus 1005. The 

generation on busbar 1005 (G1) is a PV farm, which supports 

demand during the daytime. Based on (18), the daily output of 

PV is depicted in Fig.3, with a peak of 25WM. G2 is at 

connected at busbar 1003 and the upstream system at the slack 

busbar 1008 is treated as G1008. The flexible load and 

renewable energy at each time point are assumed as uncertainty 

sets with ±5% boundary of the predicted value. 

To simplify the analysis, the following assumptions are 

adopted: i) the efficiency of ES is 90%; ii) the minimum and 

maximum SoC levels are 0.2 and 0.8 respectively; iii) the 

capacity of the ES is 6MWh and its hourly max input/output 

power is 2 MW; iv) the uncertainty set boundary for the starting 

SoC is between 0.15 to 0.25. 
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Fig.2. A Grid Supply Point (GSP) area test system. 

 

  

Fig.3. A daily PV output curve.  

 
TABLE I 

The capacity of each branch (MW) 

Branch 
Asset 

cost (£m) 
Capacity Branch 

Asset cost 

(£m) 
Capacity 

No.1 1.00 20 No.13 0.44 15 

No.2 1.85 24 No.14 0.44 16 

No.3 1.48 24 No.15 0.44 16 

No.4 0.32 10 No.16 0.44 10 

No.5 1.01 15 No.17 0.44 10 

No.6 1.75 15 No.18 0.44 17 

No.7 1.75 10 No.19 0.44 17 

No.8 0.45 15 No.20 0.44 20 

No.9 0.60 15 No.21 0.44 20 

No.10 1.17 15 No.22 0.44 30 

No.11 0.32 50 No.23 0.44 6.5 

No.12 0.23 15 No.24 0.44 50 

 

Table I shows the power flow capacity of each branch. The 

capacity of branches No.11 and No.24 is 50MW to 
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accommodate renewable farms. Branch No.23 is the 

interconnector between two areas, which has the capacity of 

6.5MW. The branch No.2 has the highest asset cost, which is 

£1.75 million. This branch as the priority to trigger the ES 

operation to mitigates its congestions. The branches at low 

voltage levels and the transforms have the same cost, which is 

£0.44 million. 

The power flow change resulting from different model 

analysis will be demonstrated from four scenarios, which are: 

1) the deterministic model without considering any 

uncertainties; 2) the robust model only considering SoC 

uncertainty; 3) the robust model only considering the 

uncertainty from flexible load and PV; 4) the robust model 

considering both load, PV and SoC uncertainties. The impact of 

these four scenarios on branch power flows and system 

congestions will be analysed and compared.  

A. Deterministic Model Operation 

Under the deterministic model, the original power flow 

which determined before ES operation is compared with the 

power flow after ES operation. Fig.4 shows the power flow 

change on branch No 2, with the highest asset cost, on which 

power flow has the priority to trigger ES operation.  The peak 

of this branch is reduced from 22.5MW at 20:00 to 22.1MW at 

19:00. Simultaneously, the congestion on this branch reduces 

from 0.93MWh to 0.11MWh, which removes 88.2% of the 

branch congestions. The congestion of the branch can be 

evaluated by the difference between the capacity and the power 

flow without capacity constraints. 

 
Fig.4. Power flow change on branch No.2 

 

 
Fig.5. Power flow change on branch No.23 .  

 

As shown in Fig.5, the original power flow is represented by 

the black curve and the power flow scheduled via the 

deterministic model is represented by the green curve. The 

branch flow peak is 7.0MW at 21:00, which is reduced to 

6.7MW with the ES maximum discharging rate of 0.78MW/h. 

The congestion on this branch decreases from 0.47MWh to 

0.25MWh and the system congestion, aggregating the 

congestions from all the branches, is reduced from 0.74MWh to 

0.26MWh. 

The C/D amount and the SoC of the ES in the deterministic 

model are shown in Fig 6. The ES is charging from 09:00 to 

17:00 and discharging from 18:00 to 24:00. The maximum 

charging rate is 0.6MW/h at 14:00 and the maximum 

discharging rate is 0.8MW/h at 20:00. The SoC reaches 0.8 (the 

upper ES capacity limit) at 18:00, which is to prepare the 

following discharging process. 

 

 
Fig.5. C/D and SoC in the deterministic model 

B. Robust Optimisation Considering Different Uncertainties  

The uncertainties from the load, PV and initial SoC are 

considered separately in this section. The power flow after ES 

operation in the severe case is analysed respectively 

corresponding to each uncertainty set in Fig.6.  

 

 
Fig.7. The impact of power flow on branch No.23 with SoC, load and PV 

uncertainties  

 

As shown in Fig. 7, the grey area represents the range of the 

probabilistic power flow on branch No.23. Under the severe 

case, the starting SoC of ES is 0.25 and the power flow in the 

peak period reaches the upper boundary of the uncertainty set. 

The blue curve represents the power flow scheduled by robust 

optimisation under SoC uncertainty (Pfe_RSoC), which is 

higher than that under load and PV uncertainty (Pfe_Rt) at the 

peak time. From 11:00 to 16:00, the Pfe_RSoC is discharging 

which is caused by the SoC constraints. In the severe case, the 

power flow after ES operation will be reduced to 7.14MW 

under load and PV uncertainty and reduced to 7.36MW under 

(h) 

(h) 
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SoC uncertainty. Respectively, the congestions on branch 

No.23 are 1.56MWh under load and PV uncertainty and 

1.61MWh under SoC uncertainty. Therefore, the robust model 

considering the load and PV uncertainties performs better than 

that considering SoC uncertainty, in terms of reducing more 

power flow peak and system congestions in the severe case. 

C. Comparison of the Robust and Deterministic Model at the 

Severe Condition 

Fig.8 compares the power flow reduction by ES C/D 

operation methods determined from the deterministic model 

and robust model, considering the uncertainties of load, PV and 

SoC. Pfe_Rall represents the power flow after ES operation 

considering all of SoC, load and PV uncertainty. Pfe_wD 

represents the power flow after ES operation by the 

deterministic model. The peak of the branch power flow can be 

reduced to 7.19MW and 7.44MW in Pfe_Rall and Pfe_wD 

respectively. The remained congestion after ES operation is 

1.56MWh in the robust model which is lower than that in 

Pfe_wD (1.86MWh). 

Therefore, based on observed power flow reduction from 

these two models, the deterministic model performs severer 

than the robust model considering uncertainties.   

 

 
Fig.8. The power flow impact from the robust and deterministic model 

D. Comparison of C/D Method and SoC Change in Different 

Scenarios 

 
Fig.9. C/D amount at different scenarios 

 

The C/D methods for the four scenarios are summarised and 

compared in Fig.9. Compared with the deterministic model 

determined C/D method (C/D_D in purple), the C/D methods 

determined by robust models are more fluctuated, especially the 

one determined by robust model only with SoC uncertainty 

(C/D_Rsoc in blue). The robust models determined C/D 

methods are more likely to charge at the beginning of the day. 

Only with SoC uncertainty, the maximum charging rate is 

1.81MW/h at 13:00, which is proposed for the discharging and 

ensures the SoC not exceed its constraints. The maximum 

charging rate under load and PV uncertainty is 1.03MW/h at 

17:00 and the maximum discharging rate is 1.67MW/h at 21:00. 

The maximum C/D rate of the robust model under all of the 

uncertainties (C/D_Rall in yellow) is 1.19MW/h at the start of 

the day and 1.52MW/h at 21:00 respectively. In the robust 

models, the maximum C/D rate is reduced from the model 

considering only ES SoC to the model considering all of the ES 

SoC, load and PV uncertainties. Although this means that the 

conservation of the robust models is increased, the robust 

models in high uncertainty cases reduce more system peak and 

congestions.  

Fig.10 depicts the SoC change under these four scenarios. 

The SoC in the deterministic model (SoC-D) and the robust 

model considering SoC uncertainty (SoC-Rsoc) have a flat top. 

This is because they violent the SoC maximum constraints with 

their original C/D method. Thus, their SoC and C/D method is 

rescheduled. SoC-D reaches the maximum capacity of 0.8 from 

17:00 to 18:00. SoC-Rsoc reaches the maximum capacity at 

16:00 and 20:00. The robust model considering, load and PV 

uncertainty (SoC-Rt) and the model considering all the 

uncertainties (SoC-Rall) have similar profiles, which means the 

SoC uncertainty pose a slight impact on the ES operation. The 

SoC-Rt and SoC-Rall reach the maximum capacity at 18:00 and 

20:00. Under uncertainties, the ES robust operation is 

conservative, which means the ES charges at the beginning of 

the day, from 00:00 to 06:00. This gives the ES have sufficient 

energy reserve to reduce the system congestions during the 

system peak periods.   
 

 
Fig.10. The SoC at different scenarios 

 
TABLE II 

THE SYSTEM CONGESTION IN DIFFERENT SCENARIOS 
 Original Deterministic Robust SoC Robust PV Robust all 

Congestion  

(MWh) 
7.70 3.64 3.06 2.98 2.97 

 

Table II shows the impacts of ES operation on the system 

congestion in the severe case. At this condition, the system 

congestion is 3.64MWh with the ES operation scheme 

determined by the deterministic model, which removes 52.73% 

congestions. This will decrease to 3.06MWh with the robust ES 

operation strategy considering SoC uncertainty. The robust 
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optimisation with load and PV uncertainty set performs better, 

which reduces the congestion to 2.98MWh. When considering 

all of the SoC, load and PV uncertainties, the system congestion 

is reduced to 2.97MWh, which only 0.1% more than the model 

with load and PV uncertainty. 

Therefore, the robust model considering all the uncertainties 

performs better than other models in the severe case. 

Considering the load and PV uncertainty, the robust model can 

reduce more congestions and branch peak than that considering 

SoC uncertainty individually. The congestion amount under the 

operation strategy determined by the deterministic model is 

22% higher than the robust model with all the uncertainties.  

V.  CONCLUSIONS 

This paper designs ES operation method using robust 

optimisation to mitigate system congestion by reducing the 

variance of daily branch power flow. Uncertainties from 

flexible demand, renewable energy generation, and ES SoC are 

modelled in the ES operation. This method could help network 

operators to plan and operate the ES to defer the system 

reinforcement and reduce system congestion. The following 

key findings are obtained: 

 The power flow variance of the branch is reduced based on 

the least-square concept, which is able to guide ES operation 

to shift peak power flow and fill the demand valley 

efficiently; 

 The robust optimisation is able to reduce system peak and 

system congestion in the severe case, and enable the 

network operator to reduce the peak power flow so as to 

decrease large-scale system investment; 

 The ES SoC uncertainty poses less impact on branch power 

flows compared with the uncertainties from the flexible load 

and renewable energy generation.  

This work is beneficial to the network operator to dispatch 

ES for the efficient support of system operation, such as 

congestion reduction and system peak management. Thus, the 

work can enable the existing system to accommodate increasing 

renewable generation and flexible demand with reduced 

investment costs.  
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