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Robust Optimisation based Energy Storage
Operation for System Congestion Management

Xiaohe Yan, Student Member, Chenghong Gu, Member, IEEE, Xin Zhang, IEEE, Furong Li, Senior
Member, IEEE

Abstract—Power system operation faces an increasing level of
uncertainties from renewable generation and demand, which may
cause large-scale congestion under ineffective operation.

This paper applies energy storage (ES) to reduce system peak
and congestion by robust optimisation, considering the
uncertainties from ES State of Charge (SoC), flexible load, and
renewable energy. First, a deterministic operation model for ES,
as a benchmark, is designed to reduce the variance of branch
power flow based on the least-square concept. Then, a robust
model is built to optimise ES operation with the uncertainties in
the severest case from load, renewable and ES SoC that are
converted into branch flow budgeted uncertainty sets by the
cumulant and Gram-Charlier expansion method. The ES SoC
uncertainty is modelled as an interval uncertainty set in the robust
model, solved by duality theory. These models are demonstrated
on a grid supply point (GSP) to illustrate the effectiveness of
congestion management technique. Results illustrate that the
proposed ES operation significantly improves system performance
in reducing system congestion. This robust optimisation based ES
operation can further increase system flexibility to facilitate more
renewable energy and flexible demand without triggering large-
scale network investment.

Index Terms— System congestion, load uncertainty, energy
storage, robust optimisation

I. INTRODUCTION

UE to the ageing infrastructure and limited capacity of
existing energy systems, a huge amount of renewable
energy is wasted worldwide. In 2015, the cost of wind
curtailment exceeded £90 million from 1.3GWh energy waste
in the UK [1]. Energy storage (ES) is able to address system
congestion by temporally shifting power to relieve the pressure
on system constraints, facilitating renewable energy
penetration. Paper [2] uses ES to shave demand peak and
regulate frequency, but not accurately addresses system
overloading issues. Paper [3] uses economic signals to guide ES
operation, but this approach is less efficient when the price
peaks do not match power peaks.
There are many commercial and technical barriers that
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obstacle the utilisation of ES in the power system, including 1)
the pricing signals for ES should be clear and incentive.
Currently, ES does not receive sufficient incentives, where the
main profit is from energy arbitrage. For example, the benefits
from reducing system congestion and peak power flow could be
rewarded to ES if they provide the services; 2) the uncertainties
in power systems should be considered in ES operation. With
uncertain generation and demand, it is more complexed to
design ES operating strategies. The inaccuracy in ES operation
would even exacerbate system congestions and energy
balancing. ESs are normally operated by deterministic optimal
models [4-7], without considering uncertainties from flexible
load and renewable generation. Although some research work
considers renewable power uncertainties [8], the impact of ES
operation on network congestion is not properly considered.

The uncertainties of active load and renewable energy
generation lead to unexpected system peak and uncontrollable
network congestions, which increases system risks and
associated operation cost. It would bring forward network
reinforcement time and increases operation cost in the long run.
Thus, it is important to consider uncertainties in utilising ES to
reduce system congestion. The uncertainties are mainly from
three sources: ES, and flexible load and renewable generation.
To model power flows considering uncertainties flexible load
and renewable generation, there are two key methods: Monte-
Carlo simulation and probability theory. Papers [9-11] use
Monte-Carlo simulation to determine the probabilistic power
flows, but they are not applicable to large-scale systems. The
probability methods are based on a various combination of
expansion approximations, cumulant and moment to determine
the optimal probabilistic power flow in [12-14].

In terms of optimisation with uncertainties, generally, there
are two approaches, which are the stochastic programming [15]
and robust optimisation [16, 17]. Robust optimisation methods
consider uncertain parameters by taking values within known
confidence bounds, which are generally easy to obtain. Because
network reinforcement is determined by peak branch power
flow, robust optimisation can minimise system peak under high
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uncertainties to reduce system congestion, deferring network
reinforcement horizon. There are several papers applying
robust optimisation to system operation considering
uncertainties from the load, renewable output and energy
prices. Paper [18, 19] propose a second-order cone
programming robust optimisation under uncertainties to reduce
the uncertainty and uses a two-stage robust centralised-optimal
dispatch model under uncertain PV output. For the uncertainty
sets in robust optimisation, box and budgeted uncertainty sets
are widely used. Papers [20, 21] consider budgeted uncertainty
sets in modelling. The correlation between load and wind
uncertainties are considered by budget constraints [20]. Paper
[21] converts the max-min problem to a Mixed Integer
Programming (MIP) problem using Binary Expansion,
accommodating uncertain renewable in the Security-Constraint
Unit Commitment (SCUC). With robust models, the problem is
solved by Benders Decomposition [20] and column-and-
constraint generation algorithm [18, 22, 23]. However, these
methods are not for operating ES, whose uncertainty in State of
Charge (SoC) significantly impact operation.

This paper designs a novel operation method for ES dispatch
by the system operator to reduce the variances of branch flows.
The branches with high asset cost have the priority to use the
ES to reduce their power flow variances because their high
power flow levels lead to nearer reinforcement horizon and high
investment cost. By considering the uncertainties of flexible
load, renewable energy, and ES SoC, robust optimisation is
applied to operate ES to shift the peak power flow to valley
periods. Load and generation uncertainties are converted into
branch flow uncertainties as budgeted sets by applying the
cumulant and Gram-Charlier expansion method. The ES SoC
uncertainty is modelled as an interval set in the robust
optimisation. The constraints of power flow, SoC, and
Charing/Discharging (C/D) rate are applied in robust
optimisation. The proposed method is demonstrated on a

practical Grid Supply Point (GSP) from UK distribution system.

The main contributions of this paper are: i) it proposes a new
C/D model based on least-square to reduce branch flow
variances from uncertainties of flexible load and renewable
energy; ii) it designs a robust optimisation model to operate ES
by considering all uncertainties of flexible load, renewable
energy, and ES SoC; and iii) it compares the performance of
deterministic and robust models under different uncertainty
levels in terms of system peak and congestion reduction.

The rest of the paper is organised as follows: Section Il
describes the process to determine probabilistic power flow
based on demand and renewable generation uncertainty.
Section 11l proposes a deterministic model and robust
optimisation models for ES operation. Section IV demonstrates
and compares the proposed deterministic and robust models on
a local GSP distribution network. Section V draws conclusions.

1. PROBABILISTIC POWER FLOW WITH DEMAND AND
GENERATION UNCERTAINTY

Probabilistic power flow is proposed to capture the
uncertainties from flexible load and renewable for robust
optimisation. Based on the DistFlow model, the uncertainties

are transferred to power flow by using the combined cumulant
and Gram-Charlier expansion method.

A. Power Flow Linearisation

In the cumulant method for probabilistic power flow
analysis, the linear combination of independent variables is
considered. In the distribution network, especially radial ones,
the DistFlow model [24, 25] is widely used to simplify the
relationship between branch power flow and nodal power
change, which is modelled as:
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where P; and @, are active and reactive power flows in branch
[; the branch impedance is presented as z; = 1, + jx;.

To comply with the system operating standard, the nodal
voltage in the distribution network should be within a certain
range, set as V; < [0.95, 1.05]. Because the nonlinear parts of
the nodal voltage are much smaller than the linear parts, and
thus (P,% + Q) (2 + x,2)/V;® can be ignored [25, 26]. By
assuming nodal voltage at the nominal level is 1p.u.,
V,—=1D?=V2-2V,+1=0, then V> =2V, +1. It can
yield V., =V, — (nP, + x,Q;) from 2V, —1=2V; -1 —
2(r P, + x;Q;) based on (3).

Therefore, the DistFlow model can be simplified as:

Py =P —pny 4)
Q41 = Q1 — Gy )
Vier = Vi — (nXP + x,XQ,) (6)

where p,, ; and gq,,, represent the active and reactive power
injection at the node n along branch L.

Based on linearised DistFlow, it is easy to determine branch
flow change due to nodal power changes. An index matrix,
inspired by the power transfer distribution factor, is determined
by the sensitivity of an injected nodal power on the changing
branch power flow in (7). This index (M,,;) is used to measure
the imapct of the ES located at node n on branch I’s flow.
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B. Cumulant Method

Cumulants and moments can effectively characterise a
probability density function (PDF). For example, for the normal
distribution, the first order cumulant is its mean and the second
order cumulant is the variance. For a random variable x, such
as B,, the load demand at node n, the moment generating
function @, (s) is:



p,(s) = E[e™] = [ e fy, (B,) dP, ®)
where fp_(B,) is the PDF of P,.

Based on the moment generating function, the cumulant
generating function ¥p,_(s) is:

¥, (s) = Indp, (s) ©)

By taking the n-th derivative of the moment and cumulant
generating function, the n-th order raw moment m, and
cumulant 4,, can be determined at s=0.

Variable P;, the active power flow on branch [, can be
aggregated by the linear combination of independent load at
different nodes (P,,, B, - Py,,)- Thus, the moment generating

function @,(s) can be determined as:

Pl = Ml,an1 + MZ,anZ + Mm,anm (10)
®p (s) = E[esP] = E[eS(Ml,an1+M2,an2+"'Mm,lpnm)]
1
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where M,, ; is the linerised power flow index between nodal
load and branches, determined by (7).
Therefore, the cumulant for variable B, is:

Wp,(s) = In(®p,(5)) @)

=Wp, (a15) + ¥p, (azs) + - ¥p, (ans)

The nth-order cumulant of P, can be computed by taking the
nth derivative of ¥p, (s) respective to s at s = 0.
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C. Gram-Charlier Expansion Method

With the moment of load PDF generated in the previous
section, Gram-Charlier expansion method is implemented,
which allows the PDF to be expressed as a series composed of
a standard normal distribution and derivatives. By applying
Edgeworth form, the Gram-Charlier form can be determined by
moments and cumulants, considering the additive property of
cumulants. With the cumulants of distribution in the standard
form, the exponential representation of the PDF is

F(B) = IS gy (14)
B(Py) = ﬁe‘mﬁ) (15)

where D™ is the n-th order derivative of the unit normal
distribution, 4,, is the n-th order cumulant, g(P,,) is the normal
distribution function with mean (u) and variance (§). In the

normal distribution, the 1%t order cumulant is u and the 2" order
cumulant is 2.
Therefore, the exponential series is:
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By expanding each term and grouping by the power of D,
the PDF can be expressed as:

F(B) = B(B) —ZD3B(R) +2D*B(R) — ED3B(R,) +
(e 2 opte - (5 E22) g0+
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D. PV Output Modelling

The uncertainty in the probabilistic power flow is mainly
from flexible load and renewable, where the renewable is
considered as PV in this paper. The PV output uncertainty
comes from the irradiance, which highly depends on the
weather. The PV output is considered as +5% of the predicted
value. The hourly predicted power output of PV generation
(P,y) model [27] is introduced as:

an

By = ¥ X As X Go X [ (G /Go; 95 06) (18)
where y is the PV efficiency; A is the array surface area; G is
the global horizontal irradiance; Gydenotes the corresponding
extra-terrestrial irradiance; ¢, and g, can be estimated through
fitting Beta distribution into the historical hourly solar
irradiance data.

I1l. OPERATION MODEL FOR ENERGY STORAGE

This section designs the ES C/D method to reduce power
flow variances of all branches to lower investment and
congestion cost.

——»| A, Deterministic operation |—

(D Robust model with load |
B. Robust’—’ and generation Uncertainty |

model (@Robust model with SoC |!
Uncertainty |

(3)Robust model with both I
(D and(@Uncertainties JI

End Results comparison |<—

Fig.1. The flowchart of the ES operation model

The flowchart in Fig.1 shows the whole process of the ES
operation by using different methods. There are two strategies:
the deterministic model and the robust model. The deterministic
model is solved by mixed integer quadratic programming
(MIQP), which schedules the ES without considering
uncertainties. In the robust model, there are three types of



detailed robust models, listed in ()~(®3).

=  Model (1) applies robust optimisation, only considering
uncertainty from load and renewable energy.

= Model (2 only considers ES SoC uncertainty.

* Model 3 integrates load, renewable and ES SoC
uncertainties.

The uncertainties from the flexible load and renewable
energy are converted into power flow uncertainties by using the
probabilistic power flow. Then, a comparison of these four
models and ES status are analysed.

A. Deterministic Model

The objective function is to minimise system congestion
using the least-square concept, achieved by reducing the
variance of branch power flows, which is determined by the
difference between the power flow at each time and its daily
average. Because the reinforcement cost of each branch is
different, a penalty factor is introduced to ensure ES operation
to reduce the congestion according to the priority of branch
costs. The problem is modelled as a mixed integer quadratic
optimisation, which has three advantages: 1) to perform
efficient peak shaving, which can obtain the lowest peak branch
power flow after ES operation; 2) to give the priority to the
branches that have high asset reinforcement costs to trigger ES
discharging; and 3) to determine valley periods of the lowest
load to charge the ES.

Obj:
Min: BN, Asset; X [SL; 7 (e — APR)?] (19)
s.t.:
Pleae) = Phoe + Mue X G2 = Pay X4 (20)
SoC, = SoC,_; + % (21)
0<7n,<1 (22)
0<mg <1 (23)
S0C;, < S0Cpqyx (24)
—=S0C, < —SoCpyin (25)
Pc,t < Orate (26)
Pyt < Orate (27)
Pt <B X Cy B € (0,1) (28)
Pie<(1-B)xC, Be(01) (29)

where, (20-21) are equality constraints of branch power flow,
(21) describes the ES SoC based on the previous state, (22-27)

are inequality constraints of efficiency, SoC, and storage C/D,
and (28-29) are the constraints for the integer definition.

* pfeur is the power flow on branch [ at time t after ES
operation and Apf; is the average power flow during
period T on branch I.

e (., isthe storage capacity; SoC; is the SoC of the storage;
P.. and P, . are the charging and discharging amount of
energy at time t.

e M,,, is branch flow sensitivity factor derived from
DistFlow model.

e pf;. is the original power flow without ES operation; 7,
and 7, are the efficiency of ES during C/D.

o 0,4 isthe ES operation rete limitation.

e Bisa0,1 integer, which ensures there is no conflict for
the C/D process of the ES system.

B. The Robust Model

The ES operation has uncertainties from four dimensions,
which are 1) C/D length, 2) C/D time, 3) C/D amount, 4) SoC.
The uncertainties of 1)~3) mainly come from the power flow
uncertainties due to flexible load and renewable energy
generation. These uncertainties are formed as the uncertainty
sets in robust optimisation to minimise system peak and
congestion. The severe case is the case where the uncertainty
sets realise at the maximum magnitude of branch power flows,
which leads to high system peak and large system congestions.
In this paper, the severe case is the system condition with the
highest branch flow resulted from the uncertainties of
renewable generation, load and energy storage SOC, which lead
to the largest system congestion. The upper boundary of the
power flow is taken as the severe case in the study. The severe
case under SoC uncertainty is that the SoC reaches 0.25 at the
start of the day, which causes less capacity for charging during
peak PV output periods.

The robust model is formulated as a min-max problem from
a deterministic model. There are four typical uncertainty sets in
robust optimisation, which are the interval uncertainty,
ellipsoidal uncertainty, budgeted uncertainty, and norm
uncertainty. The uncertainties in branch flows can be derived
from load and renewable uncertainties based on the combined
cumulant and Gram-Charlier expansion (8)~(18). With the
same constraints in (20)~(29), the robust objectives and
uncertainty sets can be derived. The robust optimisation is
solved by using duality theory, which can convert the min-max
robust problem into a MIQP problem.

¢ Robust model with load and renewable uncertainty

The uncertainty set only considering the uncertainty of
branch power flow can be described in (31), which is formed as
a budgeted uncertainty set. It also reduces the conservativity of
robust optimisation. The objective function and the uncertainty
set are:



Min . Max
Pfeqp, S0Cy, Pey, Pdy”  pfye

TiLi Asset; X (X 7 (Pfon — APA)?]  (30)
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where pf, . is the forecasted value of power flow derived from
predicted load and renewable, pf,, is the power flow deviation
resulting from uncertainty on branch 1 attime t. &, and I; show
the conservation level of the ES operator.

¢ Robust model with ES SoC Uncertainty

With only SoC uncertainty, the objective function
determines the minimum variance of daily branch power flow
under the maximal impact of uncertainty in starting SoC.
Because the starting SoC is decided by the end SoC on the
previous day, it is impractical to define it as a constant value.
Thus, the uncertainty set of the starting SoC is described as an
interval uncertainty set. For example, if the starting SoC is high,
the available capacity is lower, which means the ES has less
capability to reduce the uncertainties by absorbing PV energy.

Thus, the objective function is formed as:

Min . Max
Pfeqy, S0Cy24, Per, Pd;” SoCy

2I, Asset; X [T~ (feqe) — APSD?] (32)

UZ = {SOCI | SOCI € [SOCI - El,Socl + El]} (33)
where the SoC; is the forecast value of the start SoC, &, is the
deviation at this time.

¢ Robust model with ES SoC Uncertainty, load and renewable
uncertainties

The objective function is to minimise the variance of daily
power flow from each branch under the maximal impact of
uncertainties from starting SoC status, load and renewable
output.

Thus, the objective function can be formed as:

Min . Max
Pfet), S0C2:24, Pcy, PAy™  S0Cy,pf:

SN, Asset; X [B1_y = (0feqy — APFDY] (34)

Us = {pfir,SoCy | Uy + Uy} (35)
The uncertainty sets of power flow and initial SoC are
described in (31, 33).

IV. CASE STUDY
The proposed models are demonstrated on a practical GSP
connected the UK distribution network in Fig.2 [28]. It is
assumed that the ES is located at busbar 1007 with capacity
6MWh according to the peak output of PV at bus 1005. The
generation on busbar 1005 (G1) is a PV farm, which supports

demand during the daytime. Based on (18), the daily output of
PV is depicted in Fig.3, with a peak of 25WM. G2 is at
connected at busbar 1003 and the upstream system at the slack
busbar 1008 is treated as G1008. The flexible load and
renewable energy at each time point are assumed as uncertainty
sets with +5% boundary of the predicted value.

To simplify the analysis, the following assumptions are
adopted: i) the efficiency of ES is 90%; ii) the minimum and
maximum SoC levels are 0.2 and 0.8 respectively; iii) the
capacity of the ES is 6MWh and its hourly max input/output
power is 2 MW; iv) the uncertainty set boundary for the starting
SoC is between 0.15 to 0.25.
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Fig.2. A Grid Supply Point (GSP) area test system.
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Fig.3. A daily PV output curve.
TABLE |
The capacity of each branch (MW)

Branch CO’;SEEE) Capacity | Branch As?gnc)ost Capacity
No.1 1.00 20 No.13 0.44 15
No.2 1.85 24 No.14 0.44 16
No.3 1.48 24 No.15 0.44 16
No.4 0.32 10 No.16 0.44 10
No.5 1.01 15 No.17 0.44 10
No.6 1.75 15 No.18 0.44 17
No.7 1.75 10 No.19 0.44 17
No.8 0.45 15 No.20 0.44 20
No.9 0.60 15 No.21 0.44 20

No.10 1.17 15 No.22 0.44 30

No.11 0.32 50 No.23 0.44 6.5

No.12 0.23 15 No.24 0.44 50

Table | shows the power flow capacity of each branch. The
capacity of branches No.11 and No.24 is 50MW to



accommodate renewable farms. Branch No.23 is the
interconnector between two areas, which has the capacity of
6.5MW. The branch No.2 has the highest asset cost, which is
£1.75 million. This branch as the priority to trigger the ES
operation to mitigates its congestions. The branches at low
voltage levels and the transforms have the same cost, which is
£0.44 million.

The power flow change resulting from different model
analysis will be demonstrated from four scenarios, which are:
1) the deterministic model without considering any
uncertainties; 2) the robust model only considering SoC
uncertainty; 3) the robust model only considering the
uncertainty from flexible load and PV; 4) the robust model
considering both load, PV and SoC uncertainties. The impact of
these four scenarios on branch power flows and system
congestions will be analysed and compared.

A. Deterministic Model Operation

Under the deterministic model, the original power flow
which determined before ES operation is compared with the
power flow after ES operation. Fig.4 shows the power flow
change on branch No 2, with the highest asset cost, on which
power flow has the priority to trigger ES operation. The peak
of this branch is reduced from 22.5MW at 20:00 to 22.1MW at
19:00. Simultaneously, the congestion on this branch reduces
from 0.93MWh to 0.11MWh, which removes 88.2% of the
branch congestions. The congestion of the branch can be
evaluated by the difference between the capacity and the power

flow without capacity constraints.
24
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Fig.4. Power flow change on branch No.2
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Fig.5. Power flow change on branch No.23 .

As shown in Fig.5, the original power flow is represented by
the black curve and the power flow scheduled via the
deterministic model is represented by the green curve. The

branch flow peak is 7.0MW at 21:00, which is reduced to
6.7MW with the ES maximum discharging rate of 0.78MW/h.
The congestion on this branch decreases from 0.47MWh to
0.25MWh and the system congestion, aggregating the
congestions from all the branches, is reduced from 0.74MWh to
0.26MWh.

The C/D amount and the SoC of the ES in the deterministic
model are shown in Fig 6. The ES is charging from 09:00 to
17:00 and discharging from 18:00 to 24:00. The maximum
charging rate is 0.6MW/h at 14:00 and the maximum
discharging rate is 0.8MW/h at 20:00. The SoC reaches 0.8 (the
upper ES capacity limit) at 18:00, which is to prepare the
following discharging process.

I C/D amount

C/D amount (MW)

0 4 8 12 16 20 24
Time (h)
Fig.5. C/D and SoC in the deterministic model

B. Robust Optimisation Considering Different Uncertainties

The uncertainties from the load, PV and initial SoC are
considered separately in this section. The power flow after ES
operation in the severe case is analysed respectively
corresponding to each uncertainty set in Fig.6.

8

Power flow (MW)
L &

N

—— Pfe_Rsoc
Pfe_Rt

0

0 4 16 20 24

12
Time (h)
Fig.7. The impact of power flow on branch No.23 with SoC, load and PV
uncertainties

As shown in Fig. 7, the grey area represents the range of the
probabilistic power flow on branch No.23. Under the severe
case, the starting SoC of ES is 0.25 and the power flow in the
peak period reaches the upper boundary of the uncertainty set.
The blue curve represents the power flow scheduled by robust
optimisation under SoC uncertainty (Pfe_RSoC), which is
higher than that under load and PV uncertainty (Pfe_Rt) at the
peak time. From 11:00 to 16:00, the Pfe_RSoC is discharging
which is caused by the SoC constraints. In the severe case, the
power flow after ES operation will be reduced to 7.14MW
under load and PV uncertainty and reduced to 7.36MW under



SoC uncertainty. Respectively, the congestions on branch
No0.23 are 1.56MWh under load and PV uncertainty and
1.61MWh under SoC uncertainty. Therefore, the robust model
considering the load and PV uncertainties performs better than
that considering SoC uncertainty, in terms of reducing more
power flow peak and system congestions in the severe case.

C. Comparison of the Robust and Deterministic Model at the
Severe Condition

Fig.8 compares the power flow reduction by ES C/D
operation methods determined from the deterministic model
and robust model, considering the uncertainties of load, PV and
SoC. Pfe_Rall represents the power flow after ES operation
considering all of SoC, load and PV uncertainty. Pfe wD
represents the power flow after ES operation by the
deterministic model. The peak of the branch power flow can be
reduced to 7.19MW and 7.44MW in Pfe_Rall and Pfe_wD
respectively. The remained congestion after ES operation is
1.56MWh in the robust model which is lower than that in
Pfe_wD (1.86MWh).

Therefore, based on observed power flow reduction from
these two models, the deterministic model performs severer
than the robust model considering uncertainties.

8

Power flow (MW)
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Fig.8. The power flow impact from the robust and deterministic model

D. Comparison of C/D Method and SoC Change in Different
Scenarios
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Fig.9. C/D amount at different scenarios
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The C/D methods for the four scenarios are summarised and
compared in Fig.9. Compared with the deterministic model
determined C/D method (C/D_D in purple), the C/D methods

determined by robust models are more fluctuated, especially the
one determined by robust model only with SoC uncertainty
(C/D_Rsoc in blue). The robust models determined C/D
methods are more likely to charge at the beginning of the day.
Only with SoC uncertainty, the maximum charging rate is
1.81MW/h at 13:00, which is proposed for the discharging and
ensures the SoC not exceed its constraints. The maximum
charging rate under load and PV uncertainty is 1.03MW/h at
17:00 and the maximum discharging rate is 1.67MW/h at 21:00.
The maximum C/D rate of the robust model under all of the
uncertainties (C/D_Rall in yellow) is 1.19MW/h at the start of
the day and 1.52MW/h at 21:00 respectively. In the robust
models, the maximum C/D rate is reduced from the model
considering only ES SoC to the model considering all of the ES
SoC, load and PV uncertainties. Although this means that the
conservation of the robust models is increased, the robust
models in high uncertainty cases reduce more system peak and
congestions.

Fig.10 depicts the SoC change under these four scenarios.
The SoC in the deterministic model (SoC-D) and the robust
model considering SoC uncertainty (SoC-Rsoc) have a flat top.
This is because they violent the SoC maximum constraints with
their original C/D method. Thus, their SoC and C/D method is
rescheduled. SoC-D reaches the maximum capacity of 0.8 from
17:00 to 18:00. SoC-Rsoc reaches the maximum capacity at
16:00 and 20:00. The robust model considering, load and PV
uncertainty (SoC-Rt) and the model considering all the
uncertainties (SoC-Rall) have similar profiles, which means the
SoC uncertainty pose a slight impact on the ES operation. The
SoC-Rt and SoC-Rall reach the maximum capacity at 18:00 and
20:00. Under uncertainties, the ES robust operation is
conservative, which means the ES charges at the beginning of
the day, from 00:00 to 06:00. This gives the ES have sufficient
energy reserve to reduce the system congestions during the
system peak periods.
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Fig.10. The SoC at different scenarios

TABLE Il
THE SYSTEM CONGESTION IN DIFFERENT SCENARIOS
Original | Deterministic Robust SoC Robust PV Robust all
Congestion
(MWh) 7.70 3.64 3.06 2.98 2.97

Table Il shows the impacts of ES operation on the system
congestion in the severe case. At this condition, the system
congestion is 3.64MWh with the ES operation scheme
determined by the deterministic model, which removes 52.73%
congestions. This will decrease to 3.06MWh with the robust ES
operation strategy considering SoC uncertainty. The robust



optimisation with load and PV uncertainty set performs better,
which reduces the congestion to 2.98MWh. When considering
all of the SoC, load and PV uncertainties, the system congestion
is reduced to 2.97MWh, which only 0.1% more than the model
with load and PV uncertainty.

Therefore, the robust model considering all the uncertainties
performs better than other models in the severe case.
Considering the load and PV uncertainty, the robust model can
reduce more congestions and branch peak than that considering
SoC uncertainty individually. The congestion amount under the
operation strategy determined by the deterministic model is
22% higher than the robust model with all the uncertainties.

V. CONCLUSIONS

This paper designs ES operation method using robust
optimisation to mitigate system congestion by reducing the
variance of daily branch power flow. Uncertainties from
flexible demand, renewable energy generation, and ES SoC are
modelled in the ES operation. This method could help network
operators to plan and operate the ES to defer the system
reinforcement and reduce system congestion. The following
key findings are obtained:
= The power flow variance of the branch is reduced based on

the least-square concept, which is able to guide ES operation

to shift peak power flow and fill the demand valley
efficiently;

= The robust optimisation is able to reduce system peak and
system congestion in the severe case, and enable the
network operator to reduce the peak power flow so as to
decrease large-scale system investment;

= The ES SoC uncertainty poses less impact on branch power
flows compared with the uncertainties from the flexible load
and renewable energy generation.

This work is beneficial to the network operator to dispatch
ES for the efficient support of system operation, such as
congestion reduction and system peak management. Thus, the
work can enable the existing system to accommodate increasing
renewable generation and flexible demand with reduced
investment costs.

REFERENCES

[1] E. Mearns, “UK Wind Constraint Payments,” http://euanmearns.com/uk-
wind-constraint-payments/, 2016.

[2] Y. Shi, B. Xu, D. Wang, and B. Zhang, “Using Battery Storage for Peak
Shaving and Frequency Regulation: Joint Optimization for Superlinear
Gains,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 2882-
2894, 2018.

[3] J. Dong, F. Gao, X. Guan, Q. Zhai, and J. Wu, “Storage Sizing With Peak-
Shaving Policy for Wind Farm Based on Cyclic Markov Chain Model,”
IEEE Transactions on Sustainable Energy, vol. 8, no. 3, pp. 978-989, 2017.

[4] N. Li, and K. W. Hedman, “Economic Assessment of Energy Storage in
Systems With High Levels of Renewable Resources,” IEEE Transactions
on Sustainable Energy, vol. 6, no. 3, pp. 1103-1111, 2015.

[5] A. Damiano, G. Gatto, I. Marongiu, M. Porru, and A. Serpi, “Real-Time
Control Strategy of Energy Storage Systems for Renewable Energy
Sources Exploitation,” IEEE Transactions on Sustainable Energy, vol. 5,
no. 2, pp. 567-576, 2014.

[6] Y. Zhang, N. Rahbari-Asr, J. Duan, and M. Y. Chow, “Day-Ahead Smart
Grid Cooperative Distributed Energy Scheduling With Renewable and
Storage Integration,” IEEE Transactions on Sustainable Energy, vol. 7, no.
4, pp. 1739-1748, 2016.

[7]1 G. Yan, D. Liu, J. Li, and G. Mu, “A cost accounting method of the Li-ion
battery energy storage system for frequency regulation considering the
effect of life degradation,” Protection and Control of Modern Power
Systems, vol. 3, no. 1, pp. 4, 2018/02/05, 2018.

[8] J. Yi, P. F. Lyons, P. J. Davison, P. Wang, and P. C. Taylor, “Robust
Scheduling Scheme for Energy Storage to Facilitate High Penetration of
Renewables,” IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp.
797-807, 2016.

[9] M. Hajian, W. D. Rosehart, and H. Zareipour, ‘“Probabilistic power flow
by Monte Carlo simulation with Latin supercube sampling,” |EEE
Transactions on Power Systems, vol. 28, no. 2, pp. 1550-1559, 2013.

[10]Z. Xie, T. Ji, M. Li, and Q. Wu, “Quasi-Monte Carlo based probabilistic
optimal power flow considering the correlation of wind speeds using
copula function,” IEEE Transactions on Power Systems, vol. 33, no. 2, pp.
2239-2247, 2018.

[11]W. Huang, N. Zhang, C. Kang, M. Li, and M. Huo, “From demand
response to integrated demand response: review and prospect of research
and application,” Protection and Control of Modern Power Systems, vol.
4,no. 1, pp. 12, 2019/05/30, 2019.

[12]P. Zhang, and S. T. Lee, “Probabilistic load flow computation using the
method of combined cumulants and Gram-Charlier expansion,” IEEE
transactions on power systems, vol. 19, no. 1, pp. 676-682, 2004.

[13]A. Schellenberg, W. Rosehart, and J. Aguado, “Cumulant-based
probabilistic optimal power flow (P-OPF) with Gaussian and gamma
distributions,” IEEE Transactions on Power Systems, vol. 20, no. 2, pp.
773-781, 2005.

[14]M. Fan, V. Vittal, G. T. Heydt, and R. Ayyanar, “Probabilistic power flow
studies for transmission systems with photovoltaic generation using
cumulants,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2251-
2261, 2012.

[15]A. J. Conejo, M. Carrién, and J. M. Morales, Decision making under
uncertainty in electricity markets: Springer, 2010.

[16]D. Bertsimas, and M. Sim, “The price of robustness,” Operations research,
vol. 52, no. 1, pp. 35-53, 2004.

[17]A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization:
Princeton University Press, 2009.

[18]W. Zheng, W. Wu, B. Zhang, and Y. Wang, “Robust reactive power
optimisation and voltage control method for active distribution networks
via dual time-scale coordination,” IET Generation, Transmission &
Distribution, vol. 11, no. 6, pp. 1461-1471, 2017.

[19]T. Ding, C. Li, Y. Yang, J. Jiang, Z. Bie, and F. Blaabjerg, “A two-stage
robust optimization for centralized-optimal dispatch of photovoltaic
inverters in active distribution networks,” IEEE Transactions on
Sustainable Energy, vol. 8, no. 2, pp. 744-754, 2017.

[20]B. Hu, L. Wu, and M. Marwali, “On the robust solution to SCUC with load
and wind uncertainty correlations,” IEEE Transactions on Power Systems,
vol. 29, no. 6, pp. 2952-2964, 2014.

[21]H. Ye, J. Wang, and Z. Li, “MIP reformulation for max-min problems in
two-stage robust SCUC,” IEEE Transactions on Power Systems, vol. 32,
no. 2, pp. 1237-1247, 2017.

[22]B. Hu, and L. Wu, “Robust SCUC considering continuous/discrete
uncertainties and quick-start units: A two-stage robust optimization with
mixed-integer recourse,” IEEE Transactions on Power Systems, vol. 31,
no. 2, pp. 1407-1419, 2016.

[23]B. Zeng, and L. Zhao, “Solving two-stage robust optimization problems
using a column-and-constraint generation method,” Operations Research
Letters, vol. 41, no. 5, pp. 457-461, 2013.

[24]M. E. Baran, and F. F. Wu, “Network reconfiguration in distribution
systems for loss reduction and load balancing,” IEEE Transactions on
Power delivery, vol. 4, no. 2, pp. 1401-1407, 1989.

[25]L. Bai, J. Wang, C. Wang, C. Chen, and F. F. Li, “Distribution Locational
Marginal Pricing (DLMP) for Congestion Management and Voltage
Support,” IEEE Transactions on Power Systems, 2017.

[26]H.-G. Yeh, D. F. Gayme, and S. H. Low, “Adaptive VAR control for
distribution circuits with photovoltaic generators,” IEEE Transactions on
Power Systems, vol. 27, no. 3, pp. 1656-1663, 2012.

[27]1X. Yan, C. Gu, H. Wyman-Pain, and F. Li, “Optimal Capacity Management
for Multi-Service Energy Storage in Market Participation using Portfolio
Theory,” IEEE Transactions on Industrial Electronics, pp. 1-1, 2018.

[28]X. Yan, C. Gu, F. Li, and Z. Wang, “LMP-Based Pricing for Energy
Storage in Local Market to Facilitate PV Penetration,” IEEE Transactions
on Power Systems, vol. 33, no. 3, pp. 3373-3382, 2018.



Xiaohe Yan (S’16) was born in Shaanxi, China. He
obtained Bachelor degree in electrical engineering from
Xi’an University of Technology, China, in 2013; Master
and Ph.D degree from University of Bath, UK, in 2015
and 2019. He is going to work as a research associate at
the Macaw University. His major research is in energy
storage, power system planning, analysis, and power
system economics.

Chenghong Gu (M’14) was born in Anhui province,
China. He obtained Bachelor degree and Master degree
in electrical engineering from Shanghai University of
Electric Power and Shanghai Jiao Tong University in
China in 2003 and 2007 respectively. In 2010, he
obtained his Ph.D. from University of Bath, U.K. Now,
he is a Lecturer and EPSRC fellow with the Dept. of
Electronic & Electrical Eng., University of Bath, UK.
His major research is in multi-vector energy system,
smart grid and power economics.

Xin Zhang (M’17) received the B.Eng. degree in
automation from Shandong University, China, in
2006; the M.Sc. and Ph.D. degrees in electrical power
engineering from The University of Manchester, U.K.,
in 2007 and 2010 respectively.

He is a Senior Lecturer (Associate Professor) in
energy systems at Cranfield University, U.K. His
recent research activities include sustainable energy
systems for the electrification of airports and aviation.
His research interests include power system planning
and operation, and smart energy networks with the
integration of renewable and multi-vector energy
sources. He is a Chartered Engineer with the U.K.
Engineering Council.

Furong Li (SM'09) received the B.Eng. degree in
electrical engineering from Hohai University, Nanjing,
China, in 1990, and the Ph.D. degree from Liverpool
John Moores University in 1997 with a dissertation on
applications of genetic algorithms in optimal operation
of electrical power systems. She is currently a
Professor and the Director of the Center for Sustainable
Power Distribution, University of Bath, Bath, U.K. Her
major research interest is in the area of power system
planning, analysis, and power system economics.



