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Abstract—The long-term uncertainty of multi-energy demand 

poses significant challenges to the coordinated pricing of multiple 
energy systems (MES). This paper proposes an integrated network 
pricing methodology for MES based on the long-run-incremental 
cost (LRIC) to recover network investment costs, affecting the 
siting and sizing of future distributed energy resources (DERs) 
and incentivizing the efficient utilization of MES. The stochasticity 
of multi-energy demand growth is captured by the Geometric 
Brownian Motion (GBM)-based model. Then, it is integrated with 
a system operation model to minimize operation costs, considering 
low-carbon targets and flexible demand. Thereafter, the kernel 
density estimation (KDE) method is used to perform the 
probabilistic optimal energy flow (POEF) to obtain energy flows 
under uncertain load conditions. Based on the probability density 
functions (PDFs) of energy flows, an LRIC-based network pricing 
model is designed, where Tail Value at Risk (TVaR) is used to 
model the risks of loading levels of branches and pipelines. The 
performance of the proposed methodology is validated on a typical 
MES. The proposed pricing method can stimulate cost-effective 
planning and utilization of MES infrastructures under long-term 
uncertainty, thus helping reduce low-carbon transition costs. 
 

Index Terms— Flexible demand, long-run-incremental cost 
pricing, multi-energy system, network pricing, uncertainty. 

NOMENCLATURE 
Abbreviations  
AMISE Approximate Mean Integrated Squared error  
AQ Annual Consumption 
CDF Cumulative Distribution Functions 
CHP Combined Heat and Power 
DER Distributed Energy Resource 
D-LRIC Deterministic Long-Run-Incremental Cost 
EB Electric Boiler 
GBM Geometric Brownian Motion 
LDZ Local Distribution Zone 
LRIC Long-Run-Incremental Cost 
KDE Kernel Density Estimation 
MCS Monte Carlo Simulation 
MES Multiple Energy Systems 
MIP Mixed-Integer Programming 
PDF Probability Density Function 
POEF Probabilistic Optimal Energy Flow 
PV Photovoltaic 
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TVaR Tail Value at Risk 
 

Indices and Sets  
𝑖	 Index of electricity generation units 
𝑡 Index of time periods during the investment horizon 
𝑏, Ω! Index and set of electrical buses 
𝑐, Ω" Index of network component 
ℎ, Ω#$ Index and set of time periods in a day 
𝑗, Ω%&' Index and set of CHP 
𝑙, Ω()*+ Index and set of electrical branches 
𝑜, Ω, Index and set of gas nodes 
𝑝, Ω' Index and set of gas pipelines 
𝑞, Ω-! Index and set of EB 
𝑠, Ω,. Index and set of gas wells 
Ω/(+0 Set of flexible load nodes 
Ω$1, Ω,1 Sets of non-gas-fired and gas-fired generating units 
Λ Set of compressors 

 
Parameters 
𝛼 Solar panel efficiency 
𝑑 Discount rate 
𝑚̇" Mass flow rate of pipelines connected from load 

node 𝑐 to the source node. 
𝑟 Annuity factor 
𝑣 Gas price  
𝜇 The drift in GBM 
𝜎 The volatility in GBM 
𝜔 Compressor factor 
𝜂 Efficiency of the energy device  
𝜌 Energy flow 
𝜑, , 𝜎, Simulation parameters of PV production 
𝜌2,𝐴2 Air density and area swept by WT blades 
𝜀$ , 𝜀3, 𝜀% Carbon emission coefficients of thermal units, gas 

units and CHP 
𝛾& , 𝛾' Coefficients of power and heat generation of CHP 
𝛿 Price of scheduling flexible demand 
𝑟3) Ramp rate limit of the generating unit 
𝜙 Gas flow constant of the gas pipeline 
𝜂3+ , 𝜂34 Efficiency of CHP from gas to electricity and from 

gas to heat. 
𝜃 Voltage angle 
𝐴5 Array surface area in square meters 
𝐴, 𝐺 Bus-branch and bus-generator incidence matrix 
𝐵,𝑀,𝑁 CHP-bus, CHP-gas node and CHP-heating source 

incidence matrix 
𝐶𝑎 Capacity of the network component 
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𝐶' Power coefficient of WT 
𝐶, 𝐼 Node-gas source and node-gas pipeline incidence 

matrix 
𝐹 Maximum supply of gas well 
𝐻,𝐾 EB-bus and EB-heating source incidence matrix 
𝐺6,𝐺3 Extra-terrestrial and global horizontal radiation 
𝑃780, ,	𝑃9*):,   Maximum and minimum power output of generating 

units 
𝑅 Gas-fired unit-gas node incidence matrix 
𝑇7)*;* , 𝑇7)*

;<< Minimum start-up and shutdown time of generating 
units 

𝑉=: Wind speed 
𝑉%&', 𝑉-! Maximum gas input of CHP and electricity input of 

EB 
𝑍( Impedance of electricity line 

 
Variables 
𝐸-(+ , 𝐸,85 Electricity input of EB and gas input of CHP 
𝐹,. Gas supply of gas source 
𝐹 Energy flow 
𝑓()*+ , 𝑓385 Power flow and gas flow  
𝑔 Gas production from the gas well  
𝐻%&' Heat power generated by CHP 
ℎ5  Bandwidth of the kernel estimator  
𝐾 Kernel function 
𝐿-#, 𝐿,#, 𝐿&# Electricity, gas and heat demand 
𝐿-(+ Electricity production of CHP 
𝑛 Sample capacity of the kernel estimator 
𝑃, Electricity outputs of unit 𝑖 
𝑃/(+0 Scheduled power of flexible demand 
𝑥 AKDE independent variable 
𝑥(𝑡) Peak demand growth rate at time 𝑡 
𝜋 Nodal gas pressure 
𝜋>, 𝜋> Lower and upper limits of the nodal gas pressure 

I. INTRODUCTION 
ULTI-energy systems have been recognized as a cost-
effective way to create a sustainable and low-carbon 

future. Although significant research has been conducted to 
unlock the potential of MES, the uncertainty of the siting and 
sizing of future energy demand and DERs makes it difficult to 
plan MES [1]. The uncertainty can also lead to a high likelihood 
of overinvestment and inefficient utilization of infrastructure 
[2]. For example, as reported by National Grid UK [3], peak 
electricity demand could rise by between 5 and 8.1 GWs by 
2030 to meet its 2050 carbon reduction target. 

Many factors can cause long-term uncertainty in MES 
planning, e.g., load growth, generation expansion, market rules, 
etc. Load growth uncertainty has been regarded as one of the 
most crucial determinants [4], which can cause great risks for 
MES planners and investors. It is extensively investigated in 
this paper. Some references have investigated MES load 
uncertainty modelling approaches. Reference [5] simulates the 
dynamics of uncertain customers through a Markov decision 
process (MDP) method. The proposed method enables system 
operators to parameterize and model multi-energy dynamics in 
MES dispatching. However, this paper is focused on short-term 
uncertainty rather than long-term demand growth. Reference 
[6] models the uncertainties of energy carrier demand response 
and various load types in MES by a 2m+1 point estimate 

strategy. It simulates the random behaviors of multi-energy 
demand but also ignores long-term load growth uncertainty. 
Paper [7] resolves the uncertainties of electricity and thermal 
load through a scenario-based multistage adaptive stochastic 
optimization approach. It can enable networks to accommodate 
more uncertain load in the short term. Most papers focus on the 
uncertainty of load shifting between multiple energy carriers, 
but to the best of the authors’ knowledge, the multi-energy load 
growth uncertainty has not been well investigated in MES 
planning and pricing. 

Some papers incorporate uncertainties in optimal MES 
planning. Reference [8] proposes an expansion planning model 
to minimize the total costs of investment, operation, potential 
risks under uncertainty and unserved energy. Nevertheless, only 
the uncertainty of wind power generation is modelled. Paper [9] 
addresses MES optimal planning by considering the uncertainty 
of net load demand. Reference [10] proposes a unified 
operation and planning method to quantify the flexibility value 
under long-term price uncertainties. However, these papers 
passively design the planning methodology with stochastic 
models instead of proactively guiding the system development 
and increasing the utilization of network infrastructures.  

To efficiently utilize MES, economic incentives [11] can be 
used to guide the sizing and siting of future demand and DERs. 
Reference [12] formulates a forward-looking clearing and 
pricing framework for day-ahead markets to integrate gas and 
electricity systems. Reference [13] investigates dynamic 
pricing by developing a two-leader multi-follower bi-level 
model. However, these models aim to allocate resources and 
ensure energy balance efficiently in the wholesale market. 
Infrastructure investment is not considered in the short-term 
pricing mechanisms. In terms of long-term pricing approaches 
in the gas system, Local Distribution Zone (LDZ) customer 
charges [14] are adopted in natural gas systems through a 
consumption-relevant three-tier pricing method. The method 
can be divided into three categories based on the capacity 
charge for supply points and the fixed charge depending on the 
meter reading. However, the charging method is simplified by 
ignoring the impact of nodal incremental demand on the 
utilization of the gas network since it assumes that the system 
is fully utilized. Regarding heating networks, there is no 
nationally regulated heating pricing method [15]. In most cases, 
a dual tariff scheme is applied to district heating based on fixed 
investment costs and variable fees (e.g., fuel purchase).  

Use-of-system (UoS) charge is one such economic signal to 
recover network investment costs and affect network use by 
customers [16]. Forward cost pricing (FCP) [17] calculates the 
zonal network prices by dividing the distribution network into 
isolated groups, using zonal charges to recover the expected 
costs of network reinforcement. The LRIC method is a forward-
looking system charging method for electricity systems to 
quantify the discounted future reinforcement cost due to 
incremental nodal energy demand and allocate investment costs 
[18]. It reflects both the capacity-related cost and the degree to 
which the network is utilized. However, its accuracy and 
efficacy are challenged with more volatile load growth. To 
accommodate uncertain load growth, reference [19] develops a 

M 
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novel network pricing method based on the fuzzy model. Paper 
[20] proposes a probabilistic model to quantify the demand-side 
uncertainty and incorporate it into the network pricing model to 
incentivize uncertainty reduction. Adopting LRIC in MES 
pricing can provide coordinative forward-looking price signals. 

It is challenging to represent the effects of uncertainty [21] in 
LRIC. Traditional LRIC ignores uncertainties and regards 
electricity demand as deterministic, which misleads MES 
planning due to inaccurate cost-reflective signals. Therefore, 
the unbalanced distribution of DERs and demand [22] not only 
encourages excessive investment but also impedes 
decarbonization. 

Considering power flows with and without nodal energy 
increments are key factors in the traditional LRIC method, 
stochastic energy flows are required to address MES network 
pricing under long-term uncertainty. Probabilistic energy flow 
is one of the most powerful tools to analyze MES with volatile 
generation and demand. Generally, there are three methods to 
solve probabilistic energy flow problems [23]: Monte Carlo 
simulation (MCS), analytical methods, and estimation methods 
[24]. Based on numerous iterations, MCS has high 
computational costs. In terms of analytical methods, the strict 
assumptions that the system states and output variables have 
normal density functions inhibit their applications to 
complicated energy systems [25]. Even though point estimation 
methods solve the computational problem, they cannot provide 
PDFs of the estimated random variables [26]. In comparison, 
the KDE method can generate nonparametric PDFs for complex 
systems in an easy manner. However, the fixed KDE has [27] 
low accuracy to capture long-tailed distributions. Adaptive 
KDE methods with variable bandwidth are more efficient to 
capture the long-tails and thus provide a satisfactory estimation. 

In summary, the drawbacks of existing literature are: 1) Most 
literature emphasizes the uncertainty of multi-energy load 
shifting and short-term demand uncertainty in MES. The 
uncertainty of long-term load growth has not been investigated 
in MES planning and pricing. 2) In terms of probabilistic energy 
flow modelling, the computation burden of MCS, strict 
assumptions of analytical methods and long-tailed distribution 
problems of fixed KDE methods cannot provide satisfactory 
results. 3) Most research focuses on MES optimal planning 
under uncertainty, which passively react to future 
generation/demand. There are no long-term MES pricing 
models to proactively plan networks through economic signals. 

To fill the gap in network pricing and probabilistic energy 
flow calculation for MES, this paper develops an LRIC oriented 
pricing method for MES. The proposed methodology aims at 
filling these gaps by modelling GBM-based demand 
uncertainty in long run, estimating probabilistic optimal energy 
flows through adaptive KDE, and integrating LRIC in MES 
network planning. Firstly, a stochastic model based on GBM 
[28] is designed to model uncertainties of energy demand 
growth. The GBM approximation can capture the load growth 
uncertainty, considering the time value of deferring investment. 
The GBM simulation presents that the demand uncertainty 
would increase as time elapses, which is aligned with the 
current situation that, due to the emergence of new 

technologies, the accuracy of load forecast reduces over time. 
The variables are parameterized to incorporate the impacts of 
the paradigm shift in energy system load based on the Future 
Energy Scenarios in [3].  

This paper develops a POEF model, based on the PDF of load 
growth. PDFs of energy load growth are input to the system 
operation model to minimize the total costs of energy supply, 
scheduling flexible demand and carbon emissions. The POEF 
model adopts a non-parametric method, i.e., adaptive KDE 
[29], to capture probabilistic energy flows. It can not only 
reduce the computational time but also obtain complete PDFs 
of energy flows. Compared to other models, the adaptive KDE-
based model has the following advantages: 1) It has a better 
fitting effect for datasets with long-tailed distributions; 2) It is 
more effective to provide the PDFs of datasets with non-normal 
distributions; 3) It does not require strict assumptions and thus 
is easy to implement in a complex energy system. 

With probabilistic energy flows, TVaR [30] [31] is adopted 
to derive the expected overloading levels of network 
components under long-term uncertainty. Thereafter, an LRIC-
based network pricing method is designed, derived from the 
present value differences with and without nodal energy 
withdrawal and injection. Different from short-term pricing 
models (e.g., locational marginal pricing) [32] [33], the 
proposed pricing method can produce forward-looking nodal 
UoS charges that not only reflect the utilization of MES but 
affect the sizing and siting of customers. Therefore, it can 
stimulate efficient utilization of MES, thus enabling network 
planners to de-risk investment by strategically managing the 
system capacity. The main contributions of this paper are: 
• It for the first time proposes a new GBM-based stochastic 

model for uncertain multi-energy load growth in the long 
term, considering the changing variances over time. 
Existing uncertainty modelling methods [5] [6] [7] [20] only 
accommodate uncertain load dynamics in the short term. 
The proposed method emphasizes the demand growth 
uncertainty, which has been regarded as one of the most 
crucial determinants in MES planning. Such a model has a 
lognormal probability density function to better capture the 
skewness of load growth uncertainty. Unlike fixed variance 
models [10], the proposed method adopts variable variances 
to reflect the fact that from the point of prediction, as time 
elapses, the accuracy of load forecast would decrease. The 
results demonstrate that the simulated demand growth 
trajectories can better align with and sufficiently disperse 
around their averages to incorporate future scenarios. Thus, 
it can better capture the long-term stochasticity of the multi-
energy demand growth. 

• It designs a novel POEF model by the non-parametric 
estimation method, i.e., adaptive KDE. It can obtain PDFs 
of MES flow variables easily. The high computational costs 
of MCS [34] and strict assumptions of analytical methods 
[25] interfere with their applications in complex MES. 
Although the fixed KDE estimation approach [27] has 
reasonable accuracy and needs low computation, it cannot 
effectively estimate the long-tails of density functions. In 
comparison, the proposed adaptive KDE model uses 
variable bandwidth to achieve a better fitting effect for 
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datasets with long-tailed distributions. Moreover, it is more 
effective to provide PDFs of datasets with a much lower 
deviation for non-normal distributions. 

• It for the first time proposes a coordinative long-term 
forward-looking pricing model in MES, where TVaR is 
adopted to quantify the average value of expected energy 
flows at risk. It distinguishes price signals based on load 
growth uncertainty and network utilization levels. Different 
from short-term price signals [32] [33] to satisfy allocative 
operational efficiency, the proposed pricing model enables 
rational utilization of existing systems and efficient MES 
planning. Unlike other long-term pricing methods, e.g., the 
zonal pricing method FCP [17], and the three-tier 
consumption-relevant pricing method [14], the LRIC 
approach can reasonably reflect the effect of nodal 
incremental multi-energy demand on the predicted 
investment horizons of branches and pipelines. Thus, it is 
more cost-reflective to incentivize effective sitting and 
sizing of future demand. Compared with the deterministic 
LRIC method, it shows a better performance to address 
demand growth uncertainty.  

The remainder of this paper is organized as follows. Section 
II presents the detailed formulation of MES. Section III 
formulates the LRIC-based pricing model. Section IV 
demonstrates the implementation of the proposed method. 
Section V validates the efficacy of the proposed method. The 
conclusions are drawn in Section VI. 

II. MODELLING OF MES 
This section demonstrates the detailed formulation of MES, 

including the stochastic model and the system operation model. 

A.   Stochastic Modeling of load growth and DERs 
1) Stochastic modelling of load growth 

Considering the risk of future load fluctuations, the GBM 
model [35] is used to capture the long-term stochastic behaviour 
of load growth rates, as shown in (1).  

𝑑𝑥(𝑡) = 𝑥(𝑡)[𝜇𝑑𝑡 + 𝜎𝑑𝐵(𝑡)], 𝑥! = 𝑥(0) (1)  

where the drift 𝜇  denotes the instantaneous conditional 
expected percentage change in 𝑥  per unit time; 𝜎  is the 
instantaneous conditional standard deviation per unit time; 
𝑑𝐵(𝑡)  represents a standard Brownian motion (i.e., Wiener 
process). The energy systems with higher levels of 𝜇 have a 
bigger load growth, while those with higher levels of 𝜎  are 
characterized by greater uncertainty over the whole investment 
horizon. Therefore, by solving the Fokker-Planck equation of 
(1), the PDF of load growth rates can be derived, as shown in 
(2). The corresponding expected value and variance are given 
by (3) and (4). The variable growth rates	𝑥(𝑡) has a lognormal 
distribution with parameters 𝑙𝑛𝑥! + 𝜇̅𝑡 and 𝜎√𝑡.  

𝑓(𝑥, 𝑡) =
1

𝑥𝜎√2𝜋𝑡
𝑒"(

($%&"$%&!"'())"
+,") ), 𝜇̅ = 𝜇 −

𝜎+

2  (2)  

𝐸;𝑥(𝑡)< = 𝑥!𝑒
')-,

")
+  (3)  

𝑉𝑎𝑟;𝑥(𝑡)< = 𝑥!+𝑒+')-,
")(𝑒,") − 1) (4)  

2) DER modelling 
In this paper, photovoltaics (PV) and wind turbines (WTs) 

are considered as DERs. The output power of PV and extracted 
wind power are shown as (5) and (6):  

𝑃𝑉 = 𝛼 × 𝐴. × 𝐺! ×E 𝑓(𝐺//𝐺!; 𝜑0; 𝜎0)
1

!
 (5)  

𝑊𝑇 =
1
2𝐶2𝜌3𝐴3𝑉4)

5  (6)  

where the global horizon radiation 𝐺/  is scaled into [0,1]. 
Parameters 𝜑0  and 𝜎0  are estimated through fitting Beta 
distribution into the historical solar irradiance. The variable of 
the integral part is 0#

0!
, whose probability function is estimated 

from the pre-determined parameters 𝜑0  and 𝜎0 . Since short-
term DER uncertainty is not the main driver of MES network 
reinforcement [36], the parameters of equations (5) and (6) 
remain the same for the time horizon to provide a typical hourly 
renewable output curve. 

B.   System Operation Model 
To investigate the optimal energy flow, this part formulates 

the economic and low-carbon operation model of MES to 
minimize the electricity generation costs, natural gas purchase 
costs and carbon emission costs, as follows: 

𝑚𝑖𝑛∑ 𝐶/ + 𝐶/6. + 𝐶7$8& +9∈;$% 	𝐶<  (7)  

𝐶/ = ∑ P𝑎= + 𝑏=𝑃=,90 + 𝑐=𝑃=,90
+S=∈;%&   (8)  

𝐶/6. = ∑ ;𝑣.𝑔.,9<.∈;'(   (9)  

𝐶7$8& = ∑ ;𝛿3W𝑃3,9?$8&W<3∈;)*+,   (10)  

𝐶< = 𝑘Y∑ ;𝜀@𝑃=,90 <=∈;%& + ∑ ;𝜀/𝑃=,90 <=∈;'&   
+∑ 𝜀A(𝛾2𝑃=,90 + 𝛾B𝐻=,9AB2)=∈;-./ ]. (11)  

Equation (7) aims to minimize the total operating costs. The 
first term (8) is the operation cost of non-gas-fired thermal 
generators, which is a quadratic function. The second term (9) 
is gas production costs from gas wells. The third item (10) 
denotes the total scheduling costs of flexile demand, which is 
the product of scheduling price and scheduled power. The 
fourth term (11) is the total carbon emission costs of non-gas-
fired thermal generators, gas-fired generators and CHP units. 
𝛾2  and 𝛾B  are the coefficients that describe the relationships 
between fuel consumption and power and heat productions of 
CHP, respectively.  

The objective function is subject to the following constraints. 
1) Power system constraints 
𝑃C=%,=0 ≤ 𝑃=,90 ≤ 𝑃C6&,=0 , ℎ ∈ 𝛺D@ , ∀𝑖 ∈ Ω@E ∪ Ω0E (12)  

W𝑃=,90 − 𝑃=,9"10 W ≤ 𝑟/= (13)  

𝑇=,9F% ≥ 𝑇C=%F% , 𝑇=,9
F77 ≥ 𝑇C=%

F77 , ∀ℎ ∈ 𝛺D@ , ∀𝑖
∈ Ω@E ∪ Ω0E 

(14)  

∑ 𝐺3,=𝑃=,90=∈G0
%&∪G0

'& +∑ 𝐵I,3𝐿I,9J$8I∈G0
-./ +

∑ 𝐴3,$𝑓$,9$=%8$∈G*12+ = 𝐿3,9JD − 𝑃3,9?$8& +
∑ 𝐻K,3𝐸K,9J$8K∈;0

34 , ∀𝑏 ∈ ΩL , ∀ℎ ∈ ΩD@  
(15)  

𝑓$,9$=%8 = (𝜃C,9 − 𝜃%,9)/𝑍$ (16)  
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where Ω3@E  Ω30E , Ω3JL  and Ω3AB2  are the set of non-gas-fired 
thermal units, gas-fired thermal units, EB units and CHP units 
at bus 𝑏, respectively. 

Constraint (12) enforces the capacity constraints of 
electricity generation units. Constraints (13) and (14) denote the 
ramp up and ramp down constraints and the minimum start-up 
and shutdown constraints for generating units, respectively. 
Constraint (15) ensure the nodal electricity load balance. The 
direct-current (DC) power flow is used, as shown in (16). It 
defines the power flow through electricity line 𝑙. 𝑓$,9$=%8  is the 
power flow in line 𝑙  at time ℎ. 𝜃C,9  and 𝜃%,9  are the voltage 
angles of the two end nodes of line 𝑙 at time ℎ, respectively. 𝑍$ 
is the impedance in line 𝑙. The line power flow constraints are 
ignored in the operation model but considered in the pricing 
model. To calculate the cost of advancing or deferring future 
investment with nodal demand injection, the expected 
reinforcement year should be derived when the line power 
flows exceed a threshold. This process inherently enforces line 
capacity constraints to the proposed pricing approach and is 
demonstrated in Part B of Section III. 
2) Gas system constraints 

∑ 𝐼F,M𝑓M,9
/6.

M∈;/ +∑ 𝐶F,.𝐹.,90N.∈;'( = 𝐿F,90D +

∑ 𝑀I,F𝐸I,906.∈;-./ + ∑ 𝑅=,F
21,6
'

O1=∈;'& , ∀𝑜 ∈
Ω0 , ∀ℎ ∈ ΩD@ 

(17)  

0 ≤ 𝐹.,90N ≤ 𝐹., ∀𝑠 ∈ Ω0N, ∀ℎ ∈ ΩD@ (18)  

𝑓MC,9
/6. = 𝜙MC𝑠𝑖𝑔𝑛;𝜋M,9, 𝜋C,9<p;𝜋M,9<

+ − 𝜋C,9+ 
∀(𝑝,𝑚) ∈ Ω2, ∀ℎ ∈ ΩD@ 

(19)  

𝜋F ≤ 𝜋F,9 ≤ 𝜋F, ∀ℎ ∈ ΩD@ , ∀𝑜 ∈ Ω0  (20)  

𝜋C,9 ≤ 𝜔𝜋M,9, ∀ℎ ∈ ΩD@ , ∀(𝑝,𝑚) ∈ Λ (21)  
Constraint (17) is the nodal gas load balance. Constraint (18) 

ensures the gas supply limits of gas wells. Constraint (19) is the 
Weymouth equation for pipeline gas flows. Constraint (20) is 
the pressure limits for gas network nodes. For a gas pipeline 
with a compressor, constraint (21) is the pressure relationship 
between inlet and outlet.  
3) Energy coupling constraints 

The power system and natural gas system are coupled 
through gas-fired units and CHP, the relationship of which has 
been formulated in the nodal gas load balance constraint (17). 
In addition, (22) ensures that the electricity production of CHP 
is strictly fulfilled. The heating demand is coupled through CHP 
and EB with the electricity system and gas system, as shown in 
(23)-(25). Constraint (23) represents the coupling relationship 
of heat demand, CHP and EB, i.e., the heating production of 
CHP and EB is equal to the heating demand. Constraints (24) 
and (25) enforce the capacity constraints of CHP and EB, 
respectively. 

𝐿I,9J$8 = 𝜂I
/8𝐸I,906., ∀𝑗 ∈ ΩAB2, ∀ℎ ∈ ΩD@ (22)  

𝐹8,9BN = ∑ 𝜂K𝐸K,9J$8K∈;34 +∑ 𝜂I
/9𝐸K,906.I∈;-./  , ∀𝑒 ∈

ΩJ , ∀ℎ ∈ ΩD@ 
(23)  

0 ≤ 𝐸I,906. ≤ 𝑉AB2, ∀𝑗 ∈ 𝛺AB2, ∀ℎ ∈ ΩD@ (24)  

0 ≤ 𝐸K,9J$8 ≤ 𝑉JL , 𝑞 ∈ ΩJL , , ∀ℎ ∈ ΩD@ (25)  

III. PRICING MODEL FORMULATION 
This section presents the proposed probabilistic optimal 

energy flow model and the LRIC-based system pricing model. 

A.   Probabilistic Energy Flow Model 
Given that the traditional deterministic MES operation model 

cannot incorporate energy system uncertainties, a POEF is 
required to determine the energy flows under specified loading 
conditions. In this section, the adaptive KDE [24] is developed 
to solve the POEF problem.  

With the PDF of the load growth rates modelled in (2), 
samples are produced from historical data. Thereafter, the 
system operation model solves the optimal energy flows for 
each sample path and thus obtain the output variables, i.e., the 
daily optimal energy flows. Given that the maximum power 
flows are the driving factor for network infrastructure 
investment rather than the overall consumption, the maximum 
values are selected from the 24-hour output data to perform the 
KDE-based POEF model. It is assumed that 𝐹1, 𝐹+, …𝐹% is a set 
of maximum energy flows for components 	1,2, …𝑛  with 
unknown PDFs. Thus, the KDE-based PDF model can be 
expressed as (26). 

𝑓x97(𝑥, 𝐹<) =
1
%
∑ 𝐾97(𝑥 − 𝐹<)
%
=P1 =

1
%97

∑ 𝐾 P&"?8
97
S%

=P1   
(26)  

where the bandwidth ℎ.  is the smoothing parameter or 
bandwidth, i.e., a given scale parameter. It presents a strong 
influence on the resulting estimate. The choice of bandwidth ℎ. 
is discussed in detail below. 𝑥  is the non-parametric KDE 
independent variable. The Kernel function 𝐾(∙) determines the 
shape of bumps which are summed up to the kernel estimator, 
while the bandwidth ℎ. determines their width [24]. Selecting 
the Gaussian function as 𝐾(∙), it can be expressed as (27). 

𝐾(𝑥, 𝐹<) =
1
√2𝜋

𝑒
"(&"?8)"
+97	"  (27)  

Therefore, the estimated PDF of energy flows is determined 
by 𝐾(∙) and the bandwidth ℎ.. Particularly, the results are much 
more sensitive to the choice of ℎ.	[37]. To ensure the trade-off 
between bias and variance of the estimator, the Approximate 
Mean Integrated Squared Error (AMISE) method is used to 
select the optimal bandwidth [25], as shown in (28) and (29).  

𝐴𝑀𝐼𝑆𝐸 =
ℎ.	R

4 }E𝑢+𝐾(𝑢)𝑑𝑢�
+
E{𝑓SS(𝑥)}+𝑑𝑥

+
1
𝑛ℎ.	

𝑅(𝐾) 
(28)  

𝑅(𝐾) = E𝐾+(𝑢)𝑑𝑢 (29)  

where 𝑓SS(𝑥)  is the estimated PDF through KDE, 	𝑢 = &"?1
97

. 
𝐴𝑀𝐼𝑆𝐸  is used to quantify the difference between true 
realization and estimated density function. By minimizing 
𝐴𝑀𝐼𝑆𝐸 , the optimal bandwidth can be obtained. The 
Likelihood Cross-Validation method is used to find the optimal 
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ℎ.  index for each output random variable and minimize 
𝐴𝑀𝐼𝑆𝐸. 

B.   LRIC-based System Pricing Model 
The difference in the present value of future investment with 

and without the nodal connection determines network charges. 
Based on this principle, the proposed LRIC charging model is 
demonstrated as follows. 
1) Deriving contingent overloading 

The risk measure, TVaR is used to derive the expected 
overloading levels of a network component 𝑐, i.e., the pipeline 
in the gas system and the branch in the electricity system during 
the whole time horizon. The time horizon 𝑇 represents the time 
range when the system operator expects to recover the 
investment costs from the network users. It is necessary to 
select a sufficient planning horizon (7-10 years) to enable the 
MES operator to earn a reasonable rate of return on the capital 
invested. In this paper, 𝑇 is selected as 10 years. Given that the 
PDFs of energy flows are derived above, they can be expressed 
as 𝑓<,)8(𝜌)  for component 𝑐  in year 𝑡 . Therefore, their 
cumulative distribution functions (CDF) can be expressed as 

𝐹<,)8(𝜌) = E 𝑓<,)8(𝑢)𝑑𝑢
T

"U
, ∀𝑐 ∈ Ω< , ∀𝑡 (30)  

Therefore, the TVaR, i.e., the expected overloading level of 
component 𝑐 in year 𝑡 can be formulated as in (31). 

𝑇𝑉𝑎𝑅<,)8 =
∫ 𝑢 ∙ 𝑓<,)8(𝑢)𝑑𝑢
U
A6
1 − 𝐹<,)8(𝐶𝑎)

, ∀𝑐 ∈ Ω< , ∀𝑡 (31)  

where 𝐶𝑎  is the capacity of 𝑐 . 1 − 𝐹<,)8(𝐶𝑎)  represents the 
probability of overloading, i.e, when the energy flow in a 
network component exceeds its capacity. 
2) Deriving network costs to support existing customers 

As shown in Fig. 1, the shadow area is the value of 1 −
𝐹<,)8(𝐶𝑎). With the known PDF 𝑓<,)(𝑢) and the pre-set capacity 
𝐶𝑎, the value of ∫ 𝑢 ∙ 𝑓<,)8(𝑢)𝑑𝑢

∞

A6  can be calculated. Therefore, 
𝑇𝑉𝑎𝑅<,)8  can be derived from (31). With increasing power 
flows, 𝑇𝑉𝑎𝑅<,)8 also increases until reaches the threshold 𝐶𝑎 in 
year 𝑡< when the reinforcement is required.  

 
Fig. 1.  Demonstration of TVaR based on known PDF. 

The reinforcement of component 𝑐 will be triggered when it 
reaches its capacity due to energy load growth. Thus, based on 
TVaR and the capacity 𝐶𝑎, the expected reinforcement time 𝑡< 
can be derived by equating TVaR and the capacity of 
component 𝑐, as shown in (32), which can be solved through 

the Newton-Raphson method. 
𝑇𝑉𝑎𝑅<,)8 = 𝐶𝑎 (32)  

Thereafter, the discount rate 𝑑 is used to discount the future 
reinforcement cost 𝑅𝐶𝑜𝑠𝑡<  to the present value as shown in 
(33). Notably, generation capacity investment is not considered 
in the proposed MES pricing model because: i) Generation 
investment is managed by power plants. Network distribution 
companies do not have the permission to invest in generation; 
ii) Network prices for demand are annually calculated on a 
rolling base, where the capacity of generation is assumed to be 
constant [38].  

𝑃𝑉< =
𝑅𝐶𝑜𝑠𝑡<
(1 + 𝑑))8  (33)  

3) Deriving network costs of incremental injection or 
withdrawal 

With additional energy withdrawal ∆𝐸  at a node, the 
probabilistic energy flows in the system will change, as well as 
the TVaR. Therefore, the reinforcement time will be deferred 
or advanced. The TVaR along with component 𝑐  due to 
additional energy demand or generation is  

𝑇𝑉𝑎𝑅<,)8
%84 =

∫ 𝑢 ∙ 𝑓<,)8
%84(𝑢)𝑑𝑢U

A6
1 − 𝐹<,)8

%84(𝐶𝑎) , ∀𝑐 ∈ Ω< , ∀𝑡 (34)  

where the PDF and CDF of energy flows are updated with 
incremental energy withdrawal. Therefore, the present value of 
the future reinforcement cost is  

𝑃𝑉<%84 =
𝑅𝐶𝑜𝑠𝑡<

(1 + 𝑑))82+9
 (35)  

where 𝑡<%84  is the updated reinforcement time, which can be 
derived by (32) and (34).  
4) Deriving LRIC charges 

The change in the present value due to incremental 
withdrawal at node 𝑏 is shown in (36), derived by (33) and (35). 

∆𝑃𝑉<(𝑏) = 𝑃𝑉<%84(𝑏) − 𝑃𝑉<(𝑏) 
, ∀𝑏 ∈ ΩL ∪ Ω0 ∪ ΩJ  (36)  

Thereafter, the annuity factor 𝑟 is applied to the annualized 
incremental costs of all components in the system, which is the 
LRIC charge of the node, as shown in (37). 

𝐿𝑅𝐼𝐶(𝑏) =
∑ 𝑟 ∙ ∆𝑃𝑉<(𝑏)<∈;8

∆𝐸	  
, ∀𝑏 ∈ ΩL ∪ Ω0 ∪ ΩJ 

(37)  

where ∆𝐸 is the nodal incremental withdrawal. 

IV. IMPLEMENTATION 
This section illustrates the implementation of the proposed 

method. The stochastic model, the MES operation model, the 
POEF model and the LRIC-based pricing model are integrated 
as shown in Fig. 2. Based on the framework, Fig. 3 presents 
how the proposed method can be implemented. The procedures 
are clarified as follows: 
1) Initialize the expected reinforcement time. The expected 
reinforcement time 𝑡< for all network components is initialized 
as 0.  
2) Calculate probabilistic energy flows in year 𝑡<. The PDF of 
uncertain load growth and system parameters are input to the 
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system operation model and the POEF model to calculate the 
PDF of the maximum energy flow in year 𝑡<. 
3) Calculate the expected loading level in year 𝑡< . The 
expected loading level of component	𝑐, i.e., TVaR is calculated 
for the base case and nodal incremental case. As shown in Fig. 
3, the judging criteria is the same for these two cases: If the 
value is smaller than the capacity and 𝑡<  is within the time 
horizon 𝑇, increase 𝑡< by 1 and go back to step (2). Otherwise, 
go to step (4). 
4) Calculate the incremental present value of future 
reinforcement cost. With the expected reinforcement time with 
the base case and the incremental case, their present values of 
future reinforcement costs are calculated. Thus, the changes in 
these present values, i.e., the incremental costs are obtained. 
5) Calculate the nodal LRIC charge. The incremental costs for 
all network components are annualized and summed up to 
calculate the nodal LRIC charges. 

 
Fig. 2.  Framework of the model formulation. 

 
Fig. 3.  Implementation of the proposed method. 

V. CASE STUDY 
A modified 39-bus power system and a 20-node natural gas 

system [39] are used to validate the effectiveness of the 

proposed method. The IEEE 39-bus system is scaled down to 
kW to represent the district-level MES. Fig. 4. shows the 
topology of the system. The power system has 11 generating 
units, including two micro gas turbines G4 and G8 on buses 33 
and 37, respectively. They are supplied by nodes N6 and N19, 
respectively in the gas system. Generators G4 and G8 are PV 
and WT, respectively. The others are diesel generating units. 
The cost functions of gas-fired and diesel generators are 
quadratic. The total generation capacity of the power system is 
7367kW. Buses 3, 4, 5, 6, 7, 8, 9 have flexible demands, the 
capacity of which are shown in Table I. The upper limits denote 
the maximum volumes of load increasing, while the lower 
limits denote the maximum volumes of load shedding. 

 
Fig. 4.  Topology of the system. 

TABLE I 
PARAMETERS OF FLEXIBLE DEMAND 

Bus Upper limits of controllable 
demand/kW 

|Lower limits of controllable 
demands/kW 

3 150 -100 
4 150 -100 
7 150 -100 
8 100 -60 
9 350 -200 

The 20-node gas system has 6 gas wells and 18 pipelines. 
There are 9 gas loads, with nodes N3, N6, and N19 supplying 
the CHP, the gas-fired generator G4 and G8, respectively. The 
CHP and EB are connected with the heating load H1. The EB 
is connected with Bus 24 in the power system. The capacity 
parameters of the gas wells are shown in Table II. The 
parameters of the stochastic model and the network charging 
model are shown in Table III. Considering the MES operation 
model is a complicated and constrained nonlinear optimization 
problem, it is solved by Gurobi 9.1.0. The mixed-integer 
programming (MIP) optimality gap is set as 10"V . All case 
studies are implemented by MATLAB 2019 on a PC with Intel 
Core i7/2.2-GHz-based processor and 16 GB of RAM. 

TABLE II 
PARAMETERS OF GAS WELLS 

Gas well Production 
costs	

/£ ∙ 𝑀𝑚!" 

Upper limits  
/10#𝑀𝑚" 

Lower limits 
/10#𝑀𝑚" 

W1 0.085 1.7391 0.9 
W2 0.085 1.26 0 
W3 0.085 0.72 0 
W4 0.062 2.3018 1 
W5 0.062 0.27 0 
W6 0.062 1.44 0 

TABLE III 
SIMULATION PARAMETERS  
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Parameter Value 
Initial electricity load growth rate 0.2 
The percentage drift 𝜇 for electricity load  0.07 
The percentage volatility 𝜎 for electricity load  0.05 
Initial gas load growth rate 0.03 
The percentage drift 𝜇 for gas load 0.08 
The percentage volatility 𝜎 for gas load  0.07 
Investment cost of electricity branches 70,964 £ ∙ k𝑊!$ 
Investment cost of pipelines 1,750,000 £ 
Discount rate 6.9% 
According to the predicted demand growth in National 

Grid’s annual future energy scenarios report [3], the total 
electricity peak demand is simulated through the GBM model 
as an example. The simulated sample paths and PDFs are 
illustrated in Fig. 5 (a) and (b), respectively. It can be found that 
load uncertainty has a positive correlation with the time 
horizon. With the accuracy of load predicting declining over 
time, the variance of electricity peak demands becomes greater, 
illustrating the characteristics of long-term uncertainty. The gas 
demand growth rates are modelled using the same model but 
with different parameters, as shown in Table III. The values of 
the drift and the volatility are determined by referring to the 
report [3]. Remarkably, as predicted by National Grid in [3], the 
peak gas demand is quite likely to show a downward trend. 
Thus, the parameters of the gas demand growth are chosen to 
capture the potential negative growth scenarios. 

 
(a) Realizations of GBM-based overall electricity peak demand in 10 years. 
Simulated sample paths are 2000. 

 
(b) Probability density distribution of overall electricity peak demand  

Fig. 5.  Overall electricity peak demand based on the proposed stochastic model. 
𝜇 = 0.07. 𝜎 = 0.05. 𝑥% = 0.2. The original demand in year 0 is 100 kW. 

As shown in Fig. 5 (a), the red line represents the expected 
load growth. The black, blue, yellow, and green lines represent 
the peak demand growth in four scenarios (i.e., steady 
progression, system transformation, consumer transformation, 
and leading the way, respectively) predicted in [3]. The drift is 
set as 0.07 so that the simulated average growth rate trajectories 
align with the predicted demand growth. The volatility is set as 
0.05. This value is such that simulated growth rate trajectories 
are sufficiently dispersed around their averages so that they 
represent a wide range of possible future scenarios. 

In comparison, the traditional stochastic model assumes that 
demand growth is subject to the normal distribution with a 
constant variance. This model’s PDFs with the same parameters 
are presented in Fig. 6. As seen, the average value of demand 
growth increases at a fixed rate, while the variance remains 
constant. Since the model ignores the increasing variance of 
demand growth as time elapses, it implicitly assumes that the 
accuracy of load forecast remains the same over the time 
horizon. This assumption would incredibly lead to incorrect 
impacts of demand uncertainty on the network reinforcement 
deferral or advancement. Since the focus of this paper is to 
provide investment cost-reflective signals under long-term 
demand uncertainty, the proposed stochastic model can better 
capture its stochasticity. 

 
Fig. 6.  Probability density distribution of overall electricity peak demand under 
the normal distribution with constant variance in 10 years. 𝜇 = 0.07. 𝜎 = 0.05. 
𝑥% = 0.2. The original peak demand in year 0 is 100 kW. 

A.   Base case  
The utilization levels of branches in the power system and 

pipelines in the gas system in year 0 are shown in Fig. 7. With 
multi-energy demand varying, the distributions of energy flow 
inevitably change and thus, the utilization levels of networks 
change accordingly. The reinforcement is triggered when the 
utilization level of a network component reaches 100%. The 
network charges aim to incentivize the efficient utilization of 
the whole system.  

As shown in Fig. 7, branch 20 has the highest utilization rate 
with 96% in the power system, while branches 33 and 41 have 
the lowest rate below 1%. In the natural gas system, Pipeline 8 
is the most utilized component in the natural gas system. 
Therefore, if the energy withdrawal of a node has greater 
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sensitivity to the highly utilized branches or pipelines, its 
network charges are also high, and vice versa. Because when 
the utilization is high, the reinforcement becomes imminent and 
thus leads to a high charge. In comparison, the energy injection 
that can reduce the loading levels of highly utilized branches 
contributes to larger negative charges. 

 
(a) Power system components 

 
(b) Gas system components 

Fig. 7.  Original utilization rates of network components in the power system 
and the gas system in year 0. 

The simulation results of the POEF model are probabilistic 
energy flows through each network component. Fig. 8 is taken 
as an example to depict the PDF and CDF of power flows 
through branch 17 and gas flows through pipeline 1 in the 1st, 
7th, and 9th years. It can be seen from Fig. 8 (a) that the 
probability of the power flow falling within 5.25 kW to 5.4 kW 
in the first year is 100%. Therefore, there are small uncertainties 
of power flows in the first year. By contrast, in the 7th year, the 
probable range of energy flows falls within 4.9 kW to 6kW, 
with a larger variance. In the 9th year, the probable power flow 
of branch 17 reaches 6.5 kW, with a minimum possible value 
of 4.75 kW. The figure demonstrates that both the uncertainty 
and the highest probable power flow of branch 17 rise with time. 

Fig. 8 (b) shows the probabilistic gas flow rates through 
pipeline 1. Similarly, it can be seen from the figure that in the 
first year, the gas flow rates are between 1.413	 × 10W𝑚5/ℎ 
and 1.417	 × 10W𝑚5/ℎ , while the variance increases to 
1.408 − 1.417	 × 10W𝑚5/ℎ  in year 7. In the ninth year, the 
probabilistic gas flow rate falls within 1.406 − 1.418	 ×
10W𝑚5/ℎ. Because the long-term uncertainty of energy load 
growth increases over time, the variance of the probabilistic gas 
flow function also increases. 

Fig. 9 shows the expected loading levels at risk, i.e., TVaRs 

of all branches from the first year to the 9th year. It can be found 
in the figure that the uncertainty of demand growth has a very 
small impact on the utilization of branches 7, 21, 22, 33, 36, 41, 
and 46. By contrast, branches 10, 14, 19, 23, 26, 28, 35 have a 
significant variation in the expected loading levels over time. 
Therefore, the nodal energy demand which imposes more loads 
on these branches may be charged more because they can 
advance the future investment of highly utilized components, 
vice versa.  

 
(a) Power flows through branch 17          (b) Gas flows through pipeline 1 

Fig. 8.  PDF and CDF of energy flows through example branches and pipelines. 

 
Fig. 9  Expected loading levels for all branches in the power system. 

Fig. 10 illustrates the expected gas flow rates for all pipelines 
in the gas system from the first year to the 9th year. Compared 
to other pipelines, L5 and L6 have higher risks of overloading, 
which are much more sensitive to stochastic demand growth 
over time. Based on TVaRs, the expected loading level, 
reinforcement horizons and the discounted future investment 
costs can be calculated. In the base case, the future costs in the 
power system and gas system due to stochastic energy demand 
growth are £6.8669m and £0.982m, respectively. 

 
Fig. 10  Expected gas flow rates for all pipelines in the gas system. 

B.   Incremental case 
The incremental cases demonstrate the impact of nodal 

energy demand withdrawal or injection on the probabilistic 
energy flows and the future investment costs, which are used to 
calculate the annualized network charges. Because Fig. 8. 
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shows the energy flows of branch L17 and pipeline L1 in the 
base case as an example, this part selects the same components 
but in different incremental cases (i.e., incremental energy 
demand withdrawal on different nodes). 

Fig. 11. shows the updated PDF and CDF of power flows 
through branch 17 with incremental demand (1kW) growth on 
bus 9 and bus 29 of the power system. The diagrams indicate 
that the nodal demand increase of bus 24 lifts the maximum 
power flows of branch 17 from 5.4 kW to 6.3 kW in the first 
year, from 5.9 kW to 6.3 kW in the 7th year and from 6.45 kW 
to 6.8 kW in the 9th year. By contrast, the increment of bus 29 
has a marginal effect on the loading level of branch 17. 
Therefore, the nodal energy demand growth of bus 9 can 
significantly advance the reinforcement of branch L17, leading 
to a high network charge for the component L17.  

 
                             (a) Bus 9                                            (b) Bus 29  
Fig. 11  PDFs and CDFs of power flows through branch 17 with incremental 
demand at bus 9 and bus 29. 

 
                      (a) Node 1                                              (b) Node 6 
Fig. 12  PDF and CDF of gas flow rates through pipeline 1 with incremental 
demand at node 1 and node 6. 

Fig. 12 depicts the effects of incremental gas injection of 
node 1 and incremental gas demand of node 6 in the gas system 
on the flow rates of pipeline L1. It can be found that the nodal 
gas injection of node 1 (i.e., gas well 1) leads to the fall in gas 
flow rate of pipeline L1 with around 1	 × 10R𝑚5/ℎ, while the 
nodal gas withdrawal of node 6 (i.e., the gas generator G4) leads 
to the rise of around 500𝑚5/ℎ. Therefore, the incremental gas 
injection of node 1 and withdrawal of node 6 will cause 
negative and positive network charges, respectively, in terms of 
the reinforcement cost for pipeline L1. In other words, the 
pricing methodology can reflect the utilization of the system 
infrastructures in serving incremental energy injection or 
withdrawal, which are drivers of the investment of MES. 

To illustrate the effectiveness of the proposed POEF model, 
the PDFs of example branches and pipelines are simulated 
using the Monte-Carlo method, the parametric method and the 
proposed adaptive KDE method, as shown in Fig.13. It can be 
seen that the PDFs generated from the proposed method can 

highly align with the simulated probability density distributions 
under Monte-Carlo simulation, particularly in the tail part. If 
the probabilistic energy flows are close to a normal distribution, 
the parametric method also shows an acceptable fitting effect. 
However, it has a non-ignorable deviation in the tail part, 
especially when the probability density does not conform to the 
normal distribution. The results demonstrate the effectiveness 
of the proposed adaptative KDE-based model in fitting the PDF 
of energy flows. 

 
(a) The PDFs of power flows through branch 1 in the 1st and 10th year, 

respectively 

 
(b) The PDFs of power flows through branch 2 in the 1st and 10th year, 

respectively 

 
(c) The PDFs of gas flow rates through pipeline 1 in the 1st and 10th year, 

respectively 
Fig. 13.  PDFs of power flows and gas flow rates under the Monte-Carlo 
simulation, the parametric method, and the proposed adaptative KDE method. 

C.   Pricing Results 
Table IV shows the breakdown of incremental reinforcement 

costs with and without nodal energy withdrawal increments and 
their annual network charges. The incremental cost of network 
components represents the difference of present values in the 
expected reinforcement due to nodal demand injection. 
Specifically, nodal demand injection will change the system’s 
optimal energy flows under contingency. Nevertheless, the 
impact varies from branch to branch and from pipeline to 
pipeline. Positive incremental costs of a component 𝑐 mean that 
the contingent energy flow of 𝑐  increases and thus the 
reinforcement horizon is advanced due to nodal demand 
injection. Therefore, this nodal demand injection leads to a 
growth of the present value in the reinforcement cost, i.e., 
positive incremental costs. Accordingly, positive and negative 
incremental costs represent investment time advancement and 
deferral, respectively. 

As shown in Table IV, the incremental demand injection at 
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bus 13 changes energy flow distribution.s It defers the 
reinforcement of branch L1 and contributes to the decline of the 
present value in its investment costs by −2.2875	 × 105£/
𝑀𝑊/𝑦𝑟. It also results in increasing utilization levels of other 
network components (e.g., L3, L5, L31) as shown in the table. 
In the base case, the expected present value in future investment 
costs is 6.8669	 × 10R£/𝑀𝑊/𝑦𝑟  in the power system and 
98.2	£/𝑀𝑊/𝑦𝑟 in the gas system. With incremental electricity 
demand at bus 13, the present value in future costs grows to 
1.0157 × 10W£/𝑀𝑊/𝑦𝑟  and 3.11 ×	105£/𝑀𝑊/𝑦𝑟 , 
respectively. Therefore, the annual network charge is 32.898 ×
105£/𝑀𝑊/𝑦𝑟  and to 2.128 × 105£/𝑀𝑊/𝑦𝑟 in the two 
systems, which is 3.2898 × 10R£/𝑀𝑊/𝑦𝑟 in total.  

TABLE IV 
BREAKDOWN OF REINFORCEMENT COSTS AND NODAL ANNUAL NETWORK 

CHARGES 

Bus 
/Node 

Branch/ 
Pipeline 

Incremental 
cost of 

components 
(10"£) 

Total 
base 
cost 

(10"£) 

Total 
increm
ental 
cost 

(10"£) 

Annual 
charge 
(10"£) 

Bus13 

L1 -2.2875 

68.669 101.57
0 

35.026 

L3,L5,L31 0.5419 
L16 0.6998 

L4,L9,L11,L13,
L15,L24,L28,L
29,L30,L42,L45 

2.9873 

P2,P3,P4, 
P5,P6,P7, 

P11,P12,P13,P1
4,P15,P18,P19 

0.1637 0.982 3.110 

Bus29 

L2 1.6386 

68.669 70.825 

4.120 

L3 0.1687 
L12 -0.1928 
L31 0.5419 

P3,P4,P5,P6,P7,
P11,P12,P13,P1
4,P15,P18,P19 

0.1637 0.982 2.947 

Bus 30 

L2 1.6386 

68.669 68.368 

1.663 

L3 0.3491 
L5 -2.4454 

L12 -0.1928 
L31 0.3491 

P3,P4,P5,P6,P7,
P11,P12,P13,P1
4,P15,P18,P19 

0.1637 0.982 2.947 

Node 
N3 

L5 -0.7391 68.669 68.828 

6.443 

L2 0.8980 
P1, P9, P10, 

P16, P17 -0.7391 

0.982 6.695 P2, P5, P6 1.3401 
P3, P7, P12, 

P13, P14, P18 0.8980 

Node 
N6 

L33 1.7517 68.669 70.421 

8.837 
P2 0.0925 

0.982 7.876 P5,P6 -0.1913 
P1,P3,P9,P10,P
12,P13,P16,P17 0.8980 

Node 
N18 

P1,P3,P9,P10,P
11,P12,P13,P16

,P17 
0.89797 

0.982 8.7738 7.7916 
P2 0.09246 

P5, P6 -0.1913 
The annual network charge of bus 29 is 4.120 × 105£/𝑀𝑊/

𝑦𝑟. The demand connected at gas node N6 only decreases the 
utilization levels of pipelines P5 and P6. Thus, it delays the 

reinforcement time of P5 and P6 and advances that of other 
pipelines and branches. The charge of bus 13 is higher than 
charges of buses 29, 30, and node N6 because bus 13 uses the 
network more extensively, i.e., it is served by more highly 
utilized branches and pipelines.  

D. Performance Comparison  
To demonstrate the benefit of the proposed method, the same 

case study is performed using the deterministic LRIC method 
and the traditional method that does not consider the utilization 
level of the MES network. Table V compares the pricing results 
with the three methods. The traditional uniform pricing method 
assumes the existing MES network is fully utilized, i.e., 
incremental demands at any nodes will contribute to the 
reinforcement of all network components by the same value. 
Thus, all nodes are charged at the same amount, i.e., 
1.1086 × 10R£/𝑀𝑊/𝑦𝑟.  

TABLE V 
RESULT COMPARISON WITH THE PROPOSED METHOD, DETERMINISTIC LRIC 

AND TRADITIONAL METHOD 
Bus/Node Proposed 

method 
(10"£) 

Deterministic 
LRIC method 

(10"£) 

Traditional 
method 
(10"£) 

Bus 1 3.773 11.986 

11.086 

Bus 9 1.965 11.883 
Bus 13 35.026 13.628 
Bus 19 0.683 10.834 
Bus 29 4.120  12.168 
Bus 30 1.663 11.210 
Node N1 8.553 11.660 
Node N6 8.645 11.912 
Node N19 9.543 12.074 

Although the deterministic LRIC (D-LRIC) method 
considers the utilized capacity of MES, it assumes that all nodes 
share the same fixed load growth rates (i.e., 20%), which 
ignores the long-term uncertainty. In terms of the mentioned 
nodes and buses in Table V, the charge at bus 33 is the highest 
with 1.3628 × 10R£/𝑀𝑊/𝑦𝑟 , while bus 19 has the lowest 
charge with 1.0834 × 10R£/𝑀𝑊/𝑦𝑟 . The buses with the 
highest and lowest charges from the proposed method are the 
same with D-LRIC, i.e., bus 13 and bus 19, with 3.5026 ×
10R£/𝑀𝑊/𝑦𝑟  and 683	£/𝑀𝑊/𝑦𝑟 , respectively. That is 
because the network is more extensively utilized in serving 
demands at bus 13. For instance, branches L19, L20, L22, L21, 
L28 may be needed by generating unit G3 to support 
incremental demands at bus 13. Especially, as shown in Fig. 7, 
the existing utilization rate of L20 is the highest with more than 
95%. The branches L19 and L28 are also highly utilized with 
around 70%. By contrast, Bus 19 is served through L33, the 
utilization rate of which is the lowest, i.e., less than 5%. Thus, 
the charge for bus 19 is much lower than the others.  

The charges calculated from D-LRIC are generally higher 
than those from the proposed method with less variation among 
different nodes. It is because D-LRIC presumes a high fixed 
load growth rate. In reality, however, the load growth rate may 
be lower or higher than the predefined value. Under long-term 
uncertainty, the ability to defer reinforcement is more valuable 
than that under deterministic scenarios [40]. Because the defer 
option can provide planning flexibility in response to various 
future conditions [41]. Since bus 13 advances the reinforcement 
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of L19, L20 and L28 significantly, it kills the option to wait for 
new information and productively invest in the future. The 
opportunity cost is ignored in D-LRIC. Therefore, the charge of 
bus 13 from the proposed method is higher than that from D-
LRIC. The charge of bus 19 from the proposed method is lower 
than that from D-LRIC because demand increments at bus 19 
can improve the system’s planning flexibility. 

E. Pricing sensitivity to load uncertainty 
This section investigates the effects of load uncertainty 

variance (i.e., 𝜎 in Fig. 5.) on network pricing results. Fig. 14. 
shows the pricing results of four nodes with different nodal 
peak demand variances. It can be observed that the variances of 
load peak growth increase from 20% to 220%, and the annual 
charges of Bus 30, Bus 9, Bus 29 and Node N1 grow by around 
8 × 10R£, 3.5 × 10R£, 2 × 10R£, and 2 × 105£, respectively. 
The results indicate that with the variance growing, the risks for 
more investment measures also increase, leading to higher 
charges for all buses and nodes. Nevertheless, the pricing 
sensitivity of these components to the variance is different. It 
can be seen that among the four nodes, Bus 30 is the least 
sensitive, while Node N1 has the biggest change during the 
range under study. It is mainly because the incremental demand 
at Bus 30 contributes a small proportion to the network 
reinforcement through energy flow growth, while Node N1 
contributes a large proportion. In other words, Node N1 utilizes 
the network most extensively, which leads to a large annual 
charge at the base variance rate. Therefore, with the variance of 
load growth, nodal demand increments at Node N1 have a 
larger impact on the future network reinforcement. The results 
demonstrate that the investment risks due to load growth 
uncertainty are shared between all network users. The charges 
reflect the degree to which the network can serve more demand 
growth under long-term uncertainty.  

 
Fig. 14.  Incremental charge under different load growth variances 

VI. DISCUSSION 
In the UK [42] [43], The price control scheme sets expense 

(i.e., investment) and revenue (i.e., recovery from consumers) 
allowances for energy network companies. Timely investment 
and cost recovery methods are needed to ensure the ongoing 
reliability and resilience of the gas and electricity transmission 
networks. This paper proposes a long-term network pricing 
method for MES, which for the first time considers long-term 
uncertainty of multi-energy demand in pricing signals. Key 

findings and achievements can be concluded from simulation 
results, as shown below: 
1) The GBM-based model can better capture the stochasticity 

of uncertain multi-energy demands by considering the 
varying variance of demand growth rates. The average 
growth rate trajectory of simulation results aligns with the 
predicted demand growth scenarios by National Grid. The 
simulated growth rate trajectories are also sufficiently 
dispersed around their averages to incorporate a wide range 
of possible future scenarios. The proposed model enables 
system operators to analyse the long-term uncertainty on 
multi-energy system planning and investment.  

2) The proposed adaptive KDE method shows a good fitting 
effect for energy flows with long-tailed and non-normal 
distribution. Results show that the obtained PDFs highly 
align with those from MSC. Compared with the parametric 
estimation method, it has a much lower deviation for non-
normal and long-tailed distributions. The model provides a 
beneficial tool to analyse probabilistic energy flows in a 
complex system with good accuracy. 

3) The proposed LRIC-based pricing method can reasonably 
reflect the effect of nodal incremental loads on the predicted 
investment horizon of branches and pipelines. The final 
locational charges indicate how network users utilize the 
energy network. They reflect where the network can serve 
more demand without requiring investment. Compared with 
the traditional uniform pricing method and the deterministic 
LRIC method, the proposed approach can represent the 
effect of load growth uncertainty on network development. 
Results indicate that long-term uncertainty has a negative 
impact on network utilization and thus leads to higher 
network charges. The final charges enable system operators 
to share the investment risks caused by long-term 
uncertainty with MES customers.  

The obtained price signals can achieve the tradeoff of 
multiple criteria of pricing methods, i.e., cost-reflectivity, 
predictability and forward-looking signals. Nevertheless, it can 
be further improved to facilitate a more efficient and fair 
allocation of network investment costs, allowing for the 
paradigm shift and increasing uncertain technologies. The 
future research directions include: i) Carbon signals should be 
incorporated in the pricing method to incentivize the integration 
of low-carbon technologies. ii) Flexible demand ( e.g., battery 
storage systems and electric vehicles) should be further 
investigated in network pricing to ensure that their flexibility 
values are fairly evaluated and awarded. iii) The proposed 
pricing model can be extended to generation by modelling the 
uncertain development of generation capacity and energy mix. 

VII. CONCLUSION 
This paper proposes an LRIC-based network pricing 

methodology to guide the development of future demand under 
the long-term uncertainty of load growth. Case studies indicate 
that the proposed method has better performance under 
uncertain circumstances, compared with the traditional method 
and D-LRIC. The proposed method can not only use nodal 
charges to reflect the utilized capacity of MES but also provide 
a forward-looking price signal that reflects the expected 
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investment costs on MES to supply uncertain multi-energy 
demand. Moreover, it investigates how different nodal 
increments of energy injection and withdrawal influence the 
planning flexibility under long-term uncertainty. Through price 
signals, the proposed pricing method enables better utilization 
of the MES network by encouraging efficient siting and sizing 
of future multi-energy demand and generation.  

The proposed method provides an analytical tool to network 
operators to collect revenues and recover costs. It also enables 
them to guide better sitting and sizing of demand to minimize 
investment costs and hedge risks from load growth uncertainty. 
In this way, the new pricing approach can help achieve more 
efficient MES planning and cost-effective utilization under 
long-term uncertainty, thus reducing low-carbon transition 
costs. 
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