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Abstract—Imbalance-induced energy loss accounts for a 

significant part of energy loss in low-voltage distribution networks. 
However, due to the prohibitive cost of full monitoring, high-
resolution time-series data of low-voltage feeder currents are 
usually absent for accurate energy loss computation. This letter 
presents a novel method to estimate the probability distribution of 
imbalance-induced energy loss. In the proposed method, only the 
line resistance and statistical data (mean and covariance) of the 
phase currents are required to estimate imbalanced networks’ 
energy loss. Furthermore, a Bayesian statistics-based data-driven 
method is also proposed to get the mean and covariance value of 
phase current with minimal measurements. Numerical tests on a 
real three-phase imbalanced circuit show the proposed approach 
obtains the probability distribution of imbalance-induced energy 
loss with a low estimating error and low field measurement 
frequency. 

Index Terms—Energy losses, distribution system, phase 
residual current, probability. 
 

I. INTRODUCTION 
MBALANCE-induced energy loss accounts for a significant 
part of energy loss in low-voltage distribution networks [1, 
2]. Considering the rapid development of intermittent load 

and distributed power generations (e.g., electric vehicles and 
roof-top photovoltaic), the future distribution networks will see 
an explosive growth of imbalance-induced energy loss. 
Nevertheless, due to the prohibitive cost of equipping automatic 
monitoring (such as Micro-PMU) on all low-voltage feeders, 
most of the phase current data are measured manually by 
engineers in the field. Without a proper manner that reveals 
imbalance-induced energy loss with minimal data requirement, 
distribution network companies may be kept in the dark from 
actual energy loss. 

To this end, this letter extends our work in [3] to three-phase 
imbalance networks and proposes an analytical formula for the 
moment generating function (MGF) of imbalance-induced 
energy loss with minimum information. Then, a moment 
matching method is developed to estimate the probability 

 
 

distribution. To make sure the proposed method is robust under 
a small sample set, we also give a Bayesian method to estimate 
the statistical parameter of phase currents. Compared with the 
work in [4], this paper aims to give an exact MGF formula for 
each distribution network with minimal data, which gives a 
better estimation of imbalance-induced energy loss. 

II. METHODOLOGY 

A. Expectation for the Imbalance-Induced Energy Loss 
The relation between phase current and phase residual 

current is shown in Fig. 1, where the phase residual current is 
the vector sum of the phase currents [4]: 

prc a b cI I I I= + +
   

                            (1) 

where 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝  denotes the phase residual current; 𝐼𝐼𝑎𝑎 , 𝐼𝐼𝑏𝑏  and 𝐼𝐼𝑐𝑐 
denote the phase currents. 

Take phase A as reference, equation (1) can be expended as, 
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where Ia, Ib and Ic are the magnitudes of phase currents; ϕb and 
ϕc are the phase angle of phase B and phase C, respectively. 

For simplicity’s sake, assume the resistance and reactance of 
three-phase are the same, that is, the phase angles of three-
phases are the same. We have ϕb=120°, ϕc=240°. Then equation 
(2) can be rewritten as, 

1 1 3 3+
2 2 2 2prc a a c c bI I I I j I I

  = − − −       

          (3) 
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Fig. 1. A schematic diagram of the three-phase imbalanced current. 

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on March 15,2021 at 11:00:33 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2021.3062217, IEEE
Transactions on Power Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

( )

22

2 2 2

1 1 3 3sqrt +
2 2 2 2

= sqrt +

prc a b c c b

a b c a b b c a c

I I I I I I

I I I I I I I I I

    = − − −         

+ − − −



     (4) 

Note, if the phase angles are not the same, we can also get a 
similar equation through mathematical derivation. 

Equation (4) suggests the phase residual current is a square 
root of a combination of product terms. Since we only focus on 
the energy loss of the phase residual current, the symbol of 
square root is omitted, as shown in equation (5). 

2 2 2 2+prc a b c a b b c a cI I I I I I I I I I= + − − −                (5) 

The expectation of the phase residual current is easy to 
achieve by the definition of variance as,  
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where μa, μb, μc are the mean value of phase currents; σ2 
a , σ2 

b , σ2 
c  

denote the variance of each phase; covab, covbc, covac denote the 
covariance value, respectively. 

Then, the estimated imbalance-induced energy loss is 
computed by equation (6), 

2( ) ( )prc prc
rTE W E I

t
= ⋅

∆
                              (7) 

where r denotes the line resistance, T denotes the total 
measurement time, Δt denotes the time interval. 

Through equation (6) and (7), one can quickly and accurately 
derive the expected imbalance-induced energy loss. However, 
only the knowledge of the expectation is usually not enough to 
estimate the energy loss and its economic risks. Some further 
information, like the probability distribution of the phase 
residual current is required to make rational decisions. 

B. Moment Generating Function of the Imbalance-Induced 
Energy Loss 

For simplicity’s sake, we rewrite equation (5) to a compact 
matrix form as, 

2 T
prcI = φ φI AI                                    (8) 

where A is a positive semidefinite matrix, Iϕ = [Ia, Ib, Ic]T.  
And the corresponding energy loss in equation (7) is, 

therefore, rewritten as, 
2 = T T

prc prc
rT rTW I

t t
= ⋅ ⋅ =

∆ ∆ φ φ φ φI AI I BI            (9) 

Equation (8) and (9) indicate the distribution of phase 
residual current and the corresponding energy loss are linear 
combinations of correlated quadratic terms. Although it is 
difficult to get the exact probability density for these quadratic 
terms, a closed-form formula for the MGF of equation (9) can 
still be derived under a Gaussian assumption. 

For simplicity’s sake, assume the three-phase currents have 
a 3-dimensional Gaussian distribution with mean μ = (μa, μb, 
μc)T and covariance matrix Σ. Let Z = Σ−1/2 (Iϕ – μ), which 
converts the phase current Iϕ to a zero expectation and identity 

variance matrix Z. Thus, the imbalance-induced energy loss 
Wprc is reformulated as, 

1/2 1/2 1/2 1/2( ) ( )T T
prcW ϕ ϕ

− − − −= = + +I BI Z Σ μ Σ BΣ Z Σ μ (10) 

Then, we force the eigen decomposition on the middle term 
of equation (10), which is,  

1/2 1/2 = T− −Σ BΣ P ΛP                            (11) 
where Λ is a diagonal for eigenvalues λ1, λ2, λ3 of 1/2 1/2− −Σ BΣ ; 
P is a 3× 3 orthogonal matrix (PPT = PTP = E, E is an identity 
matrix). Then the energy loss is represented as, 
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Z Σ μ P Λ Z Σ μ P

PZ PΣ μ Λ PZ PΣ μ

(12) 

Define new variables U = PZ and b = PΣ−1/2μ to simplify the 
notations, where U is actually a standard normal distributed 
variable with zero expectation and identity variance matrix, b is 
a constant array. Finally, we get the imbalance-induced energy 
loss as follows, 

3
2

1

( ) ( )

( )

T T
prc

j j j
j

W

U b

ϕ ϕ

λ
=

= = + +

= +∑

I BI U b Λ U b
           (13) 

Equation (13) indicates the imbalance-induced energy loss is 
a sum of weighted noncentral chi-square variables, which has a 
generalized noncentral chi-square distribution. However, exact 
formulas for its probabilistic density function (PDF) and 
cumulative distribution function (CDF) are very complicated [5] 
apart from certain simple cases (the PDF is /3x t rTe− ∆ /3 when 
phase currents are independent standard normal distributions), 
while its MGF is much simpler. Thus, we turn to its moment 
and apply the moment matching method to estimate the shape 
of the PDF. The MGF is given as [6], 

( )
1/22 33

1 1

( ) exp 1 2
1 2prc

j j
j

j jj
W

b
M t t t

t
λ

λ
λ

−

= =

 
= −  − 

∑ ∏       (14) 

Although equation (14) is derivated from the Gaussian 
assumption, the proposed method can easily extend to non-
normal distribution through the Gaussian mixture model 
(GMM), which can be applied on arbitrarily line current 
distributions.  

According to equation (14), the expectation and variance of 
the generalized noncentral chi-square distribution can be 
written as, 

[ ] ( )
prc

T
prW cE W trµ = = +BΣ μ Bμ                  (15) 

2 2

2

[ ] [ ]

2 ( ) 4
prc prc prc

T

W Var W E W

tr

σ = =

= +BΣ μ BΣBμ
                    (16) 

Note, equation (15) is the same as equation (7). For 
simplicity’s sake, we only test equation (15).  

C. Data-Driven Phase Current Distribution Estimation 
Based on Bayesian Inference 

High-resolution phase current data are usually absent in the 
distribution system due to the low penetration of smart meter. 
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Valuable phase current data are usually obtained by field 
measurements, which brings great difficulty to the estimation 
of energy loss. To address the problem with small sample sizes, 
the Bayesian inference is used here to maximize the utility of 
filed measurements.  

Compared with the Frequency inference, Bayesian inference 
is more robust in the small data circumstance. It starts from a 
prior and iteratively updates its parameter using new 
measurements. For the energy loss estimation problem at hand, 
the conjugate prior for the parameter of multivariate Gaussian 
distribution is a normal-inverse-Wishart (NIW) distribution [7]: 

0 0 0 0( , ) NIW( , , , )k vµ λμ Σ                 (17) 
The NIW distribution is actually a product distribution of 

inverse Wishart (IW) distribution and normal distribution as,  

0 0| N( , / )kµμΣ Σ                          (18) 

0 0IW( , )vλΣ                               (19) 
where µ0 is the prior mean for μ; k0 is a scalar presents how 
strongly we believe this prior µ0; λ0 is the prior mean for the 
covariance matrix Σ; v0 denotes the degree of freedom, which 
also represents how strongly we believe the prior λ0. 

Since NIW is the conjugate prior for multinormal distribution, 
its parameters: µ0, k0, λ0, and v0 can be upgraded through the 
following equations (20)-(23), when new data from field 
measurement are available [8]. 

0 0
0

0

* nx
n

κ µ
µ

κ
+

=
+

                            (20) 

0 0*k k n= +                                   (21) 

0 0*v v n= +                                   (22) 

0
0 0 0 0

1 0

* ( )( ) ( )( )
n

T T
i i

i

k nx x x x
k n

λ λ µ µ µ µ
=

= + − − + − −
+∑ (23) 

where xi denotes the new measurements; 𝑥̅𝑥  denotes the 
statistical mean of the new measurements; n denotes the number 
of the new measurements; µ0*, v0*, k0* and λ0* are the upgraded 
parameters of NIW distribution.  

In practice, a weakly informative data-dependent prior is 
often employed to start up the Bayesian inference. We follow 
the recommendation in [8] and set µ0 =  𝑥̅𝑥 , k0 = 0.01, λ0 = 
diag(cov(𝑥̅𝑥))/n, and v0 = 5.  Then, the posteriors of the mean 
and covariance for the phase current under the Bayesian 
framework is obtained by iteratively taking field measurements 
into equation (20)-(23). 

III. CASE STUDY 
A three-phase imbalanced circuit from Western Power 

Distribution (a UK distribution network operator) is employed 
to demonstrate the proposed energy loss estimation method. In 
the three-phase imbalanced circuit, phase B burdens the 
“heaviest” load and phase A has the “lightest” load. The neutral 
line resistance is set to 0.1 Ω. The data set given in Fig. 2 (a) 
contains a measurement of line current for 100 days with a time 
interval of 10 min (144 data points per day for each phase). To 
mimic the real phase current measurement scene, we randomly 
choose four sample periods, each period contains 10 successive 

sample points (see grey bars in Fig.2 (a)).  
The case study is organized as follows. Firstly, the 

performance of Bayesian statistics is demonstrated. Then the 
energy loss expectation from equation (7), equation (15) and the 
true energy loss from all measurements are compared. Finally, 
the probability density through moment matching is compared 
with the Monte Carlo method. The whole case study is 
performed on a laptop with Intel Core i7 8650U (1.90 GHz) and 
16 GB RAM, while the program is implemented using 
Mathematica 12.1. The original data and code are available in 
[9] for readers to verify this method. 

The statistics of phase current through Bayesian inference 
and Frequency inference are given in Table I. The estimated 
imbalance-induced energy loss is calculated by equation (15). 
As a comparison, we also calculate the practical imbalance-
induced energy loss based on the line current curves. 
Computing results and related estimating error (abs(A-
B)/A×100, where A denotes practical results, B denotes 
proposed method results) are shown in Table Ⅱ. 

As shown in Table Ⅱ, the proposed analytical energy loss 
formula calculates the exact energy loss with negligible 
estimated error. In the most data-scare distribution networks, 
the proposed energy loss formula with Bayesian inference 
method can get a 2.3% estimated error with only four 
measurements. The estimation result will be more accurate if 
more measurements are taken.  

Fig. 2(b) compares the PDF matching by a Gamma 
distribution and histogram from Monte Carlo simulation. The 
results indicate that the proposed method successfully compute 
the probability distribution for the square of phase residual 

TABLE Ⅱ 
COMPUTING RESULTS OF IMBALANCE-INDUCED ENERGY LOSS 

Cases Energy Loss 
(kWh) 

Estimated Error 
(%) 

True Energy Loss 2085.85 - 
Equation (15) with 

True Parameter 2085.92 3.36×10-3 

Frequency Inference 2292.21 9.89 
Bayesian Inference 2133.91 2.30 

 

TABLE I 
STATISTICS OF THE PHASE CURRENTS 

Phase 
 Mean (A)  Standard Variance 

(A2) 
Bayesian 
Inference 

Frequency 
Inference True Bayesian 

Inference 
Frequency 
Inference True 

A 195.46 225.40 187.05 46.73 70.29 74.16 
B 277.82 301.86 262.92 53.86 68.79 87.63 
C 206.20 222.12 229.56 56.29 62.90 54.64 

 

  
(a) (b) 

Fig. 2.  (a) The testing phase current and samples. (b) The estimated 
probability distribution and the Monte Carlo simulation result. 
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current, and thus gives a good fit of energy loss.  

IV. CONCLUSION 
This letter presents an explicit formula for the expectation 

value and the MGF function of imbalance-induced energy loss 
in distribution network. To address the problem of low smart 
meter penetration, we also proposed a Bayesian framework to 
maximize the utility of filed measurements. In the case study, 
proposed method obtains an exact energy loss result with only 
four times of measurement. Further study can focus on different 
load distributions and the impact of dynamic line resistance. 
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