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Generating electricity from low frequency mechanical agitations produced by ocean waves, plants, 

or human motion is emerging as a key, environmentally-friendly technology in combating harmful 

emissions caused by burning fossil fuels. The generated electric pulses by the appropriate 

transducers, such as triboelectric or piezoelectric generators, need to be rectified and stored in a 

sustainable external circuit. The bottleneck, however, is the harvesting circuitry, which mostly 

relies on rather expensive up-conversion oscillation technologies. Such circuits are primarily 
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designed and optimized for frequencies well-above the kHz range, much higher than the 

aforementioned mechanical stimuli, and are therefore energy demanding. Here, we have developed 

a sustainable energy harvester that alleviates the need for using up-conversion and allows for 

efficient harvesting of the energy from low-frequency voltage pulses, as the ones typically 

generated by triboelectric or piezoelectric generators. Our resonant circuit has been designed to 

match the overall response originating from such low-frequency oscillating energy sources. Our 

design enables the harvester to be operable at frequencies as low as 1 Hz. We demonstrate CAD 

simulations, a miniaturized harvester on a printed-circuit-board using low-cost components, and 

discuss the scalability of the proposed design, which paves the way to affordable, efficient and 

sustainable low-cost energy solutions. 

 

1. Introduction 

Alternative renewable energy sources seek to scavenge various forms of energy from the 

environment.
[1]

 Established renewable-based energy technologies driven by natural energy, such as 

wind
[2]

 and solar
[3]

, are key approaches towards decarbonizing our energy system.
[4]

 However, the 

intermittent output of these sources is incompatible with energy consumers’ needs. Even when 

state-of-the-art energy storage solutions become available, the energy system would still require 

substantial fossil-based generation as a back-up.
[5]

 Hence, to overcome the limitation of 

intermittency and the overwhelming dependence on fossil-based energy generation, new sources, 

such as triboelectric and piezoelectric generators, are emerging, as discussed extensively in the 

seminal work of Wang.
[6]

 These environmentally-friendly generators convert the low-frequency 

mechanical agitations from ocean waves
[2e, 7]

 or human motion
[8]

 into low-frequency alternating 

electric signals for energy harvesters.
[9]

 Although the average signal frequency feeding the harvester 

is about 1 Hz, the wave’s unpredictable and non-periodic nature can lead to intervals ranging from 

0.3 Hz to 300 Hz.
[7a, 7b, 10]

 The low output power varies from 700 μW to 20 mW.
[7a, 7b, 10a, 10b]
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Scalable and efficient circuits to interface with low-frequency generators and increase output power 

are therefore needed.
[11]

 

 

Furthermore, plants have also been reported to produce oscillating and low-frequency electrical 

signals. The electric double layer formed by an insulating plant leaf cuticle (from a Rhododendron) 

and the adjacent conductive cellular tissue has been shown to possess triboelectric properties, where 

the low-frequency and alternating output power on a single leaf, upon a given force (0.9 N) reached 

about 15 μW cm
-2

. Lab-scale set-ups in whole plants are producing an output power between 200 

mW m
-2

 and 500 mW m
-2

.
[12]

 The alternating output power in plants has been reported to oscillate 

between 0.01 Hz and 10 Hz.
[13]

 In fact, microscopically, the existence of electrically excitable 

plants associated with environmental stress and stimuli has been investigated, even when no 

external force is applied. Plants such as Mimosa pudica, Helianthus annuus or Dionaea muscipula 

make use of ion channels to transmit information over long distances.
[14]

 Plants, themselves, 

translate external stimuli into electrical signals,
[13-14]

 as a survival mechanism
[15]

 and 

communication strategy.
[16]

 In resemblance to an electrical conducting cable, ion gradients across 

the plant tissue rapidly convey signals over long distances.
[16a, 17]

 Hence, plants communicate 

electrically,
[18]

 via alternating, long lasting and low-frequency signals. 

 

Harvesting energy from low-frequency sources, particularly in the Hz regime, is technically 

challenging. State-of-the-art solutions to harvest low-frequency signals mostly rely on mechanical 

structure designs,
[8b, 8i, 19]

 where up-conversion oscillation technologies play an important role. 

Several up-conversion methodologies that convert low-frequency ambient vibrations to higher 

frequency oscillations via a piezoelectric beam generator have been developed.
[20]

 Yet, these 

technologies tend to be expensive to manufacture, and unreliable in the long term due to cantilever 
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impact degradation.
[20]

 The up-conversion process itself is prone to energy losses, which are 

detrimental to the output power efficiency.  

 

In this work, we have developed a technology to harvest energy from low-frequency sources, 

eliminating the need for up-conversion techniques.  The resonant circuit frequency of our harvester 

has been modelled and matched to the low-frequency oscillating energy source. We demonstrate an 

energy harvester prototype, based on an optimized LTC3108 on a miniaturized PCB, which 

comprises a step-up transformer and a boost converter, to condition and harvest the alternating 

signals prevenient from a low-frequency pulse train. All considered, this work paves the way for 

efficient energy harvesting circuits from a variety of low-frequency, green energy sources. 

 

2. Experimental 

The energy harvester PCB prototype depicted in Figure 1(a) was designed by using the electronic 

design automation tool Altium Designer 18.1.7. To minimize the PCB size, the surface-mount 

variant of all necessary electronic components was selected. PCB trace dimensions were determined 

using the IPC-2221 standard.
[21]

 PCBs were fabricated using 35 µm copper thickness and 1.6 mm of 

glass re-enforced Fr-4. The PCB was populated with a Coilcraft LPR6235-752SMR transformer, 

with a primary inductance of 7.5 µH, a measured secondary coil inductance of 63.56 mH and an 

inter-winding capacitance of 62.8 pF. The boost converter used was the LTC3108 from Analog 

Devices, with an SSOP16 footprint and buffer with reference MAX9650. The LTC3108 peripheral 

capacitors, namely Cres, Ccp and Cbyp, used SMD 0805 footprints. The capacitance values were 10 

µF, 620 pF and 2.2 µF, respectively. A polarized tantalum SMD capacitor from AVX, with a value 

of 1000 µF, was employed as the storage capacitor, Cstore. The integrated circuit uses a charge pump 

approach to power conversion and has been implemented in a PCB. The schematic of the complete 

circuit is given in Supplementary Figure S1. The miniaturized circuit has a total area of less than 9 
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cm
2
. Inductance and capacitance measurements were performed using a TENMA 72-10465 LCR 

Meter. 

 

All simulations were performed using the LTspice
®

 and Saber
TM

 software suites. Small-signal 

analysis was simulated in Saber
TM

 using a 50 mV peak voltage input.  The output voltage over time 

was simulated using the behavioural model in the time domain, utilizing a 1 Hz pulse train. 

 

The experimental characterization of the PCB prototype was carried out using a 33210A Pulse 

Generator, from Keysight Technologies, with a programmed input stimulus in the form of periodic 

square wave pulses, or pulse train. The schematic of the circuit used to determine the V-I power 

curve is depicted in Figure 1(b). The minimum voltage, current and power required for the harvester 

to operate, was determined by setting the signal generator to output a 1 Hz, 50 % duty cycle square 

wave with a 20 Ohm internal load. Varying the resistance of the potentiometer, Rp, then results in 

the power curve shown in Figure 1(c). The input power was calculated as: 

  
 

 
         

 

Figure 1(c) shows that for the targeted low frequency input of 1 Hz square pulses, the circuit 

requires a minimum input power of 180 µW, which corresponds to a minimum voltage magnitude 

of 36 mV. The optimized harvester topology and circuit parameters leading to the power curve 

depicted in Figure 1(c) are explained in the next sections. 

 

3. Results 

3.1. Resonant Circuit 

The energy harvester comprises a resonant circuit and a state-of-the-art LTC3108 boost converter, 

for harvesting energy from an ultra-low input voltage source, below 50 mV. Typically, resonant 

circuits focus on harvesting high-frequency signals, in the kHz regime. Conventional ranges are 
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essentially between 10 kHz and 100 kHz. The resonant circuit used with the LTC3108 is depicted 

in Figure 2(a). The low-frequency input signal, Vres-in, is fed into the resonant circuit through a load 

impedance stabilizer, constructed by MAX9650. The resonant circuit includes the internal N-

Channel MOSFET switch of the LTC3108, the inductance of the secondary winding of the 

transformer, Lsec, and the input capacitance, Cres. In order to form a close-loop and stabilize the 

circuit, the primary winding of the transformer is connected to the drain of the N-Channel MOSFET, 

namely the SW pin, as suggested by the manufacturer.
[22]

 

 

The resonant circuit uses an external step-up transformer with a turn’s ratio of 100, in order to 

increase the voltage. The frequency of oscillation, fres, is determined by Lsec and Cres. The oscillation 

frequency
[22]

 and relation between the Lsec and Cres is given by Equation 2: 

     
 

             

       
 

              
     

 

3.2. Boost Converter 

The architecture of the LTC3108 is shown in Figure 2(b) and in more detail in Supplementary 

Figure S1. The output voltage from the resonant circuit stage (Vres-out) can be coupled to the charge-

pump and rectifier circuit inside the LTC3108, using the capacitor Ccp. This enables the output 

voltage to be harvested. The output voltage of the LTC3108 is configured to be 3.1 V by connecting 

pin VS1 to VAUX, VS2 to ground and bypassing the VAUX by a 2.2 µF capacitor Cbyp. An energy 

storage capacitor Cout is used to store the output energy. Another large capacitor, Cstore, is also 

connected from pin Vstore to ground, to power the system in the event the input voltage is lost. This 

capacitor will be charged to the maximum VAUX clamp voltage, which is 3.1 V for this design. We 

note that the energy harvester used in this work was designed to provide an output voltage up to 3.1 

V; the integrated circuit can also be configured to provide a programmable target output of 2.5 V, 

4.1 V or 5.0 V. 
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Considering both the input power level from triboelectric generators and the design requirements of 

the energy harvesting circuit, the value of capacitors Cbyp, Cout and Cstore were chosen as 2.2 µF, 220 

µF and 1000 µF, respectively. 

 

3.3. Low Frequency Matching 

The frequency of the signals generated by triboelectric generators and plants is typically in the 

range of a few Hz. To allow the electronics to decode and efficiently harvest such low-frequency 

signals, the resonant circuit needs to be designed to match the overall response originating from 

these low-frequency oscillating energy sources. 

 

There is a constraint on the circuit resonant component that needs to be taken into account. The 

value of the secondary inductance has an upper limit, due to a practical size limitation of the 

inductor with increasing number of turns. Moreover, the concomitant increase in winding resistance 

would introduce a high level of loss into the circuit. Given this constraint, the value of Lsec was 

chosen and measured to be 63 mH. This value is based on a primary theoretical inductance of 7.5 

µH and a turn’s ratio of 1:100. Note that it is not unusual for tolerances of 10-20 % to occur in 

magnetic components due to the intrinsic variability of the permeability of the magnetic material in 

the core. 

 

The signal frequency generated by triboelectric sources, including plants, varies between 0.3 Hz 

and 300 Hz
[7a, 7b, 10]

.  Assuming a resonant frequency of 200 Hz, Equation 2 leads to a Cres of 10 µF. 

Therefore, this value was used instead of the 330 pF, mentioned in the application example 

described in the LTC3108 datasheet, henceforth referred to as “default”. 

Empirical testing of the energy harvesting circuit established that the capacitance value of the input 

capacitor for the energy harvesting circuit, Ccp, is proportional to the one of the resonant capacitor, 
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Cres. It should therefore be similarly scaled, resulting in a desired value of 680 pF. However, we 

need to consider the parallel inter-winding parasitic capacitance of 62.8 pF, which needs to be 

subtracted from the scaled Ccp. Hence, the final value of Ccp was set to 620 pF, which is the nearest 

standard value to the desired 617.2 pF. 

 

3.4. Simulation and Experimental Validation of the Frequency Matching Effect 

To understand the effect of Cres and Lsec on the resonant frequency, we performed a simulation 

analysis using a small-signal model. Note that we did not use switching electronics to enable small-

signal frequency analysis, instead we used an averaged model of the boost converter that allows 

direct frequency analysis.
[23]

  The small-signal model used is a linearized power switch model of the 

form described by Middlebrook,
[23b]

 which is established as a method for obtaining accurate 

frequency responses of switching power regulators. The model uses an averaged model of the 

power-switching stage to obtain a linear model that reflects the overall frequency domain behaviour 

of the power converter. The model is linear in nature and can, therefore, be used to calculate the 

small-signal frequency response directly, without the need for non-linear algorithms, such as 

Newton-Raphson. It is also common to express the output in decibels (dB), rather than in absolute 

voltage. For unity gain, the resulting output would be 1 V or 0 dB. Therefore, positive gain is larger 

than 0 dB and negative gain is smaller than 0 dB. 

 

Simulations were carried out to establish a suitable set of circuit parameters, ensuring the optimal 

compromise between circuit efficiency and availability of hardware. As discussed in the low 

frequency matching section, the optimum value for the secondary inductance and capacitance of the 

resonant circuit, are approximately 63 mH  and 10 µF, respectively. 

 

To optimize the energy harvester circuit, we performed a frequency response analysis, while tuning 

the transformer primary inductance, Lp. In Figure 3(a) we show gain as a function of frequency for 
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different values of the inductance, ranging between 75 nH and 7.5 µH, while using the default value, 

330 pF, for Cres. A shift from 10
2
 Hz to 10

0
 Hz, for 0 dB is observed. An improved performance 

over the frequency range from 0.3 Hz to 300 Hz is notable, albeit with a gain still attenuated at low 

frequencies. We can conclude that simply using the default value for the boost converter, viz. Cres= 

330 pF and Lp= 75 nH, does not yield an effective response, as the gain is negative in the low 

frequency regime. We therefore performed, in Figure 3(b), the small-signal simulation as a function 

of the other resonant parameter, Cres. The inductance, Lp, was fixed to 7.5 µH. The resonant 

parameter Cres was varied from the default value of 330 pF to 10 µF. Increasing Cres enabled 

positive gain at low frequencies. In fact, the positive gain or 0 dB mark, shifts 5 orders of 

magnitude, from 10
5
 Hz to 10

0
 Hz, enabling harvesting at low frequency. 

 

Increasing Cres to the calculated optimal value of 10 µF, resulted in a bandwidth improvement at the 

lower frequency end. Yet, increasing Cres has its limits. We experimentally verified that there is a 

practical limit of around 10 µF before the circuit performance begins to degrade, possibly due to 

magnetic saturation of the Ferrite-based transformer and circuit parasitics, such as the stray 

capacitance between the transformer windings and wire resistance in the circuit. 

Hence, we determine that for the energy harvester to operate in the lowest possible regime, the 

resonating capacitor needs to be 10 µF, and the related Ccp needs to be 620 pF. Supplementary 

Figure S2 shows the effect of varying Ccp on the output voltage. 

 

3.5. Low Frequency Characterization of the Energy Harvester 

The charging process of the output capacitor Cout, depicted in Figure 2(b), can be represented as 

output voltage over time, and therefore serves as the performance indicator of the energy harvester. 

Figure 3(c) depicts, in green, the simulated output voltage of the default harvester that is not 

optimized for low frequency. In this case no output voltage is generated. The notable effect of 
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matching the circuit resonant frequency to lower input frequencies can be seen in the simulation 

represented in red, where Cres=10 µF. In less than 1 minute, the output voltage rises from 0 V to 3 V. 

 

Figure 3(c) shows the actual experimental response of a prototype harvester to a low-frequency 

signal of 1 Hz, using the minimum input signal magnitude of 36 mV, as determined from the data in 

Figure 1(c). The measured output voltage is presented by the solid blue line. The output voltage 

reaches a value of 3.1 V within 80 s. The input power scales up to 1 mW, limited by the internal 

storage capacity of the boost converter. 

 

The output was further characterized as a function of the input signal amplitude, duty cycle and 

inter-pulse interval, as shown in Figure 4. Figure 4(a) shows the output voltage over time, for 

different input voltages. For Figure 4(a-c), the first measurement point represents the minimum 

conditions for the harvester to operate and charge the output capacitor Cout. Increasing the 

amplitude from 36 mV to typical voltages recorded in plants, i.e., 100 mV,
[14]

 the harvester is able 

to reach the peak voltage of 3.1 V within less than 10 s, for a 1 Hz square pulse. In addition to 

varying the input magnitude, we also varied the duty cycle. Figure 4(b) shows the output voltage 

over time for different intervals of the input square wave, or pulse train. The duty cycle varies from 

35 % to 80 %. The frequency is fixed at 1 Hz. For a minimum duty cycle of 35 %, the harvester 

charges up Cout, and within 250 s reaches the maximum voltage of 3.1 V. Increasing the duty cycle 

to 80 % enables the harvester to reach 3.1 V in 25 s. Finally, due to the unpredictable nature of 

waves and plants’ electrogenecity, the output voltage over time is characterized as a function of the 

inter-pulse intervals. The inter-pulse interval between two consecutive square wave peaks was 

varied from 1 s to 3 s. The pulse width was fixed at 0.5 s. As shown in Figure 4(c), even for peaks 

at 3 s apart, the harvester is able to output about 2.2 V within 400 s. As the inter-pulse decreases, 

the charging of Cout is faster. At a 1 s inter-pulse interval, the harvester reaches the maximum output 
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of 3.1 V in less than 1 minute. Note that these results are for the minimum input voltage of 36 mV. 

Increasing the input voltage to typical recorded spikes in plants, i.e. 100 mV, increases the inter-

pulse intervals, at which the harvester can realistically be used, to several seconds. As an example, 

an output voltage of 2.5 V is reached within 150 s, even when using a 100 mV low-frequency pulse 

with an inter-pulse interval of 10 s, as shown in Figure 4(d).  Hence, within the aforementioned 

boundary conditions, the circuit can also handle non-periodic input signals. 

 

4. Summary and Conclusion 

We demonstrated an energy harvester optimized to operate in the low-frequency regime. The 

energy harvester consists of a step-up transformer in series with a boost converter, whose input 

resonant frequency has been matched to that of typical triboelectric generators and electrogenic 

plants. Our design is validated both by simulations and by experimentally characterizing a home-

made, miniaturized, prototype PCB. By optimizing the resonant circuit, the positive gain at low 

frequencies shifts 5 orders of magnitude, from 10
5
 Hz to 10

0
 Hz, when compared to a default and 

state-of-the-art boost converter. Our miniaturized prototype enables harvesting of alternating 

electric signals, with frequencies as low as 0.1 Hz. 

 

The topology allows scalability, i.e. multiple harvesting circuits can be cascaded to the specified 

bus voltage of a local energy system such as 400 V, based on a standard PV facility, and ultimately 

connected to the grid. 
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Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. (a) The miniaturized prototype PCB. A ruler and a one-pound sterling coin are shown as 

a scale reference. (b) Schematic of the V-I curve test circuit. (c) Minimum voltage, current and 

power for the harvester prototype to operate with an input square wave with a frequency of 1 Hz 

and a 50% duty cycle. 

 

 

 

 
Figure 2. Overall energy harvester architecture showing (a) the resonant circuit and (b) the 

LTC3108 boost converter. 

 

 
Figure 3. (a) Harvester output amplitude as a function of frequency, while varying the transformer 

primary inductance, Lp, from 75 nH to the optimized 7.5 µH, with the default value of 330pF for the 

resonant capacitor, Cres. (b) Frequency response analysis of the energy harvester circuit while tuning 

the resonant capacitor, Cres, from the default 330 pF to the optimized value of 10 µF. (c) Simulated 

(red) and experimental (blue) output voltage using a 1 Hz input pulse train with 25 mV amplitude 

for the simulations and 36 mV for the experimental validation. The green trace represents the 

default LTC3108 simulation, which yields no output. The values for Ccp and Cres were 620 pF and 

10 µF, respectively. 
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Figure 4. PCB prototype characterization. Output voltage over time: (a) varying the input 

amplitude from 36 mV to 100 mV. The frequency of the input signal was fixed at 1 Hz. The inset 

illustrates the input signal parameter being changed; (b) varying the duty cycle of the input square 

wave from 35 % to 80 %, at a fixed input frequency of 1 Hz; (c) varying the inter-pulse interval 

between two consecutive square wave peaks, from 1 s to 3 s. The pulse width was fixed at 0.5 s and 

the amplitude was fixed at 36 mV; (d) varying the inter-pulse interval between two consecutive 

square wave peaks from 1 s to 10 s. The pulse width was fixed at 0.5 s and the amplitude was fixed 

at 100 mV. 
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 TOC 

We devised a technology to harvest energy from low frequency sources, eliminating the 

need for up-conversion techniques. We accomplish this by modelling and tuning the resonant 

frequency of an energy harvesting system, which comprises a step-up transformer and a boost 

converter on a miniaturized PCB prototype. 
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