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Efficiency∗
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SHAY KUTTEN, Technion - Israel Institute of Technology, Israel
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In a generalized network design (GND) problem, a set of resources are assigned (non-exclusively) to multiple

requests. Each request contributes its weight to the resources it uses and the total load on a resource is then

translated to the cost it incurs via a resource specific cost function. Motivated by energy efficiency applications,

recently, there is a growing interest in GND using cost functions that exhibit (dis)economies of scale ((D)oS),
namely, cost functions that appear subadditive for small loads and superadditive for larger loads.

The current paper advances the existing literature on approximation algorithms for GND problems with

(D)oS cost functions in various aspects: (1) while the existing results are restricted to routing requests in

undirected graphs, identifying the resources with the graph’s edges, the current paper presents a generic

approximation framework that yields approximation results for a much wider family of requests (including

various types of Steiner tree and Steiner forest requests) in both directed and undirected graphs, where the

resources can be identified with either the edges or the vertices; (2) while the existing results assume that

a request contributes the same weight to each resource it uses, our approximation framework allows for

unrelated weights, thus providing the first non-trivial approximation for the problem of scheduling unrelated
parallel machines with (D)oS cost functions; (3) while most of the existing approximation algorithms are based

on convex programming, our approximation framework is fully combinatorial and runs in strongly polynomial

time; (4) the family of (D)oS cost functions considered in the current paper is more general than the one

considered in the existing literature, providing a more accurate abstraction for practical energy conservation

scenarios; and (5) we obtain the first approximation ratio for GND with (D)oS cost functions that depends only

on the parameters of the resources’ technology and does not grow with the number of resources, the number

of requests, or their weights. The design of our approximation framework relies heavily on Roughgarden’s

smoothness toolbox (JACM 2015), thus demonstrating the possible usefulness of this toolbox in the area of

approximation algorithms.

CCS Concepts: • Theory of computation→ Approximation algorithms analysis;Mathematical opti-
mization; Algorithm design techniques;
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1 INTRODUCTION
Generalized Network Design. An instance I of a generalized network design (GND) problem
is defined over a finite set E of resources and N abstract requests. Each request i ∈ [N ] is served
by choosing some reply pi ⊆ E from request i’s reply collection Pi ⊆ 2

E
. Serving request i with

reply pi contributes wi (e) units to the load le on resource e for each e ∈ pi , where wi ∈ Z
E
≥1

is

the weight vector associated with request i (specified in I). We emphasize that our GND setting

supports unrelated weights, that is, request i may contribute different weights to the load on

different resources in pi .
One should serve all the requests of the instance I with replies p = {pi }i ∈[N ], satisfying pi ∈

Pi for every i ∈ [N ], under the objective of minimizing the total cost C(p). This is defined as

C(p) =
∑

e ∈E Fe (le ), where Fe : Z≥0 → R≥0 is a resource cost function that maps the load le = l
p
e =∑

i ∈[N ]:e ∈pi wi (e) induced by p on resource e to the cost incurred by that resource.

We restrict our attention to GND problems with succinctly represented requests, namely, requests

whose reply collections Pi can be specified using poly(|E |) bits. These requests are often defined

by identifying the resource set E with the edge set of a (directed or undirected) graph G = (V , E),
giving rise to, e.g., the following request types.

• Routing requests. This type of requests is concerned with connecting a given source-target

pair. Formally, in a directed or undirected graph, each routing request i is specified by a pair

(si , ti ) ∈ V ×V of terminals, and the reply collection Pi is defined to consist of all (si , ti )-paths
in G.
• Multi-routing requests. Formally, in a directed or undirected graph, each multi-routing request

i is specified by a collection Di ⊆ V × V of terminal pairs, and the reply collection Pi is
defined to consist of all edge subsets F ⊆ E such that the subgraph (V , F ) admits an (s, t)-path
for every (s, t) ∈ Di (useful for designing a multicast scheme).

1

• Set connectivity (resp., set strong connectivity) requests. This type of requests is concerned
with connecting a given set of terminals. Formally, in an undirected (resp., directed) graph,

each set connectivity (resp,. set strong connectivity) request i is specified by a set Ti ⊆ V of

terminals, and the reply collection Pi is defined to consist of all edge subsets that induce on

G a connected (resp., strongly connected) subgraph that spans Ti (useful for designing an

overlay network).
Alternatively, one can identify the resource set E with the vertex set of a graph, obtaining the vertex

variants of the aforementioned request types, or with any other combinatorial structure as long as

it fits into the aforementioned setting.

(Dis)economies of Scale. The classic network design literature addresses scenarios where the

higher the load on a resource is, the lower is the cost per unit load, thus making it advisable to share

network resources among requests, commonly known as buy-at-bulk network design [4, 10, 18, 20].

More formally, the cost functions Fe (·) in buy-at-bulk network design are assumed to be subadditive,
1
Notice that the multi-routing request given by Di cannot be (trivially) reduced to |Di | (single-)routing requests since a

reply F for the former contributes wi (e) units to the load on edge e ∈ F “only once”, even if this edge is used to connect

multiple terminal pairs in Di .
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i.e., they exhibit economies of scale. Recently, there is a growing interest in investigating network

design problems with superadditive cost functions (i.e., cost functions exhibiting diseconomies of
scale) [5, 37] or even cost functions that may appear subadditive for small loads and superadditive

for larger loads [5, 6, 9], referred to as cost functions exhibiting (dis)economies of scale ((D)oS) [6].
The (D)oS cost functions studied so far in the context of network design capture the energy

consumption of network devices employing the popular speed scaling technique [3, 6, 7, 15, 22, 29,

38, 47] that allows the device to adapt its power level to its actual load. Given a global constant

parameter α ∈ R>1 (a.k.a. the load exponent), an energy consumption cost function for resource

e ∈ E is defined by setting

Fe (le ) =

{
0 , le = 0

σe + ξe · l
α
e , le > 0

, (1)

where σe ∈ R≥0 (the startup cost) and ξe ∈ R>0 (the speed scaling factor) are parameters of e .
This paper improves the existing results on approximation algorithms for GND with energy

consumption cost functions in various aspects (see Section 1.1). In fact, our results apply to a more

general class of resource cost functions exhibiting (D)oS, referred to as real exponent polynomial
(REP) cost functions. Given global constant parameters q ∈ Z≥1 and α1, . . . ,αq ∈ R>1, a REP cost

function for resource e ∈ E is defined by setting

Fe (le ) =

{
0 , le = 0

σe +
∑

j ∈[q] ξe , j · l
α j
e , le > 0

, (2)

where σe ∈ R≥0 and ξe ,1, . . . , ξe ,q ∈ R≥0 are parameters of e , constrained by requiring that ξe , j > 0

for at least one j ∈ [q].2

On top of the theoretical interest in studying more general cost functions, there is also a practical

motivation behind their investigation. While some of the theoretical literature on energy efficient

network design considers the special case of (1) where σe = 0 (see Section 1.1), it has been

claimed [6, 9] that the startup cost component is crucial for better capturing practical energy

consumption structures. In fact, in realistic communication networks, even the energy consumption

cost functions of (1) may not be general enough since a link often consists of several different

devices (e.g., transmitter/receiver, amplifier, adapter), all of which are operating when the link is

in use. As their energy consumption may vary in terms of the load exponents and speed scaling

factors, the functions presented in (1) do not provide a suitable abstraction for the link’s energy

consumption and the more general REP cost functions (2) should be employed.

Approximation Framework. Ourmain contribution is a novel approximation framework for GND
problems with REP resource cost functions. This framework yields an approximation algorithm

when provided access to an appropriate oracle that we now turn to define. A reply ϱ-oracle, ϱ ≥ 1,

for a family Q of succinctly represented requests is an efficient procedure that gets as input a

resource set E, the reply collection R ⊆ 2
E
(specified succinctly) of a request in Q, and a function

τ : E → R>0, referred to as a toll function, that maps every resource e ∈ E to a positive real

number τ (e). The output of the reply ϱ-oracle is some reply r ∈ R that minimizes the total toll

τ (r ) =
∑

e ∈r τ (e) up to factor ϱ, i.e., it satisfies τ (r ) ≤ ϱ · τ (r ′) for every r ′ ∈ R. An exact reply oracle
is a reply ϱ-oracle with ϱ = 1.

Notice that the optimization problem behind the reply oracle is not a GND problem: it deals

with a single request (rather than multiple requests) and the role of the resource cost functions

(combined with the weight vectors) is now taken by the (single) toll function. In particular, while

2
The scenario where ξe , j = 0 for every j ∈ [q] is beyond the scope of this paper and left open. See Section 5 for more

details.
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all the (specific) GND problems mentioned in this paper are intractable (to various extents of

inapproximability [5, 14, 42]), the request classes corresponding to some of them admit exact reply

oracles.

For example, routing requests (in directed and undirected graphs) admit an exact reply oracle

implemented using, e.g., Dijkstra’s shortest path algorithm [24, 25]. In contrast, set connectivity

requests in undirected graphs, set strong connectivity requests in directed graphs, and multi-routing

requests in undirected and directed graphs do not admit exact reply oracles unless P = NP as these

would imply exact (efficient) algorithms for the Steiner tree, strongly connected Steiner subgraph,
Steiner forest, and directed Steiner forest problems, respectively. However, employing known approx-

imation algorithms for the latter (Steiner) problems, one concludes that: set connectivity requests

in undirected graphs admit a reply ϱ-oracle for ϱ ≤ 1.39 [16]; set strong connectivity requests in

directed graphs admit a reply tϵ -oracle, where t = |T | is the number of terminals [17]; multi-routing

requests in undirected graphs admit a reply 2-oracle [2]; and multi-routing requests in directed

graphs admit a reply k1/2+ϵ
-oracle, where k = |D | is the number of terminal pairs [19]. This means,

in particular, that set connectivity replies and multi-routing replies in undirected graphs always

admit a reply ϱ-oracle with a constant approximation ratio ϱ, whereas set strong connectivity

replies and multi-routing replies in directed graphs admit such an oracle whenever |T | and |D | are
fixed. The guarantees of our approximation framework are cast in the following theorem.

Theorem 1. Consider some GND problem P with succinctly represented requests using REP resource
cost functions as defined in (2). Suppose that the requests of P admit a reply ϱ-oracle OP . When
provided with black-box access to OP , our approximation framework yields a randomized efficient
approximation algorithm AP for P whose approximation ratio is

O

(
ϱmaxj α j + ϱ ·maxe minj

(
σe
ξe , j

)
1/α j

)
with high probability. Moreover, our approximation framework runs in strongly polynomial time, so if
OP is implemented to run in strongly polynomial time, then AP also runs in strongly polynomial
time.

Notice that our approximation framework is fully combinatorial and does not rely on solving con-

vex programs. We emphasize that when ϱ = O(1), the approximation ratio promised in Theorem 1

becomes

O

(
1 +maxe minj

(
σe
ξe , j

)
1/α j

)
which is free of any dependence on the number |E | of resources, the number N of requests, and

the weight vectors {wi }i ∈[N ]; rather, it depends only on the parameters (σe , ξe , j ) of the network
resources’ technology (speed scaling in case q = 1). Notice that the hidden expressions in our O
notations may depend on the parameters q and α1, . . . ,αq assumed to be constants throughout this

paper.

1.1 Comparison to Existing Results
GND with Routing Requests. The existing literature on (generalized) network design beyond

subadditive resource cost functions [5, 6, 9, 37] focuses on routing requests, identifying the resources

with the edges of a graph, and with the exception of [37], it is restricted to undirected graphs and

related weights, i.e., wi (e) = wi for every e ∈ E. In contrast, the current paper handles a wider

class of request types over much more general combinatorial structures (including both directed

and undirected graphs) and our approximation framework supports unrelated weights. Moreover,
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Table 1. Comparison of the approximation algorithms for GND with routing requests (identifying the
resources with the graph edges) under the energy consumption cost functions (1) and restrictions thereof.

paper graphs weights algorithm restrictions approx. ratio

[5] undir. related math. prog. none

O

(
1 +

(
maxe

σe
ξe

) 1

α
log

α−1wmax

)
O

(
N + log

α−1wmax

)
[6] undir. related math. prog.

σe
ξe
=

σe′
ξe′

polylog(N ) ·O
(
log

α−1wmax

)
[9] undir. wi = 1 combin. ξe = 1 O (log

α N )

[5] undir. related math. prog. σe = 0 O
(
log

α−1wmax

)
[37] un/dir. unrel. math. prog. σe = 0 (1 + ϵ)Bα

current un/dir. unrel. combin. none O

(
1 +

(
maxe

σe
ξe

) 1

α
)

the current paper addresses the general REP cost functions (2), whereas as stated beforehand, the

existing literature addresses only the energy consumption cost functions (1) and special cases

thereof (Table 1 summarizes the relevant approximation upper bounds).

Specifically, Makarychev and Sviridenko [37] consider purely superadditive cost functions by

restricting (1) to σe = 0 for all e ∈ E, obtaining an approximation ratio of (1 + ϵ)Bα , where Bα
is the fractional Bell number with parameter α . This improves the prior O

(
log

α−1wmax

)
upper

bound of Andrews et al. [5], wherewmax = maxi ∈[N ]wi . The case where the startup cost σe may

be positive is addressed by Antoniadis et al. [9], obtaining an approximation ratio of O (log
α N ),

but this result is limited to the uniform case wherewi = 1 for all i ∈ [N ].
As stated in [6, 9], for a more accurate abstraction of practical energy conservation scenarios,

the cost function definition of (1) with positive startup costs and arbitrary (related) weights is

unavoidable. In this setting, three different approximation ratios have been devised by Andrews et

al.:O

((
1 +maxe

σe
ξe

)
1/α

log
α−1wmax

)
andO

(
N + log

α−1wmax

)
in [5]; and polylog(N )·log

α−1wmax

in [6].
3

We emphasize that these three approximation ratios grow with the number N of traffic requests

and/or the maximum weight wmax, whereas the approximation ratio established in the current

paper depends only on the parameters of the network resources’ technology. Furthermore, the

algorithms behind these approximation ratios are based on linear/convex programming and their

(currently known) implementations do not run in strongly polynomial time (this is true also for the

algorithm of [37]). In contrast, the approximation framework developed in the present paper is

purely combinatorial with a strongly polynomial run-time.

SchedulingUnrelated ParallelMachines. While GNDwith routing requests and relatedweights

is a classic problem by its own right, generalizing it to unrelated weights not also makes this

abstraction suitable for a wider class of GND scenarios, but also captures the extensively studied

problem of scheduling unrelated parallel machines. This problem can be represented as GND with

routing requests over a graph consisting of two vertices and multiple parallel edges (referred to as

3
Actually, in [6], the startup cost term in the cost function is somewhat restricted.
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machines) between them. The earlier algorithmic treatment of this problem considers the objective

of minimizing the ℓ∞ norm (a.k.a.makespan) of the machines’ load [34, 45].
4
Later on, the focus has

shifted to minimizing the ℓp norm of the machines’ load for p ∈ (1,∞) [12–14, 33, 37]. The state of
the art approximation algorithm in this regard is the one developed by Kumar et al. [33] with a < 2

approximation ratio for all p ∈ (1,∞). Makarychev and Sviridenko [37] studied this problem for

small values of p and designed a
p
√
Bp -approximation, improving upon the upper bound of [33] for

the p ∈ (1, 2] regime.

The ℓp norm optimization criterion corresponds to the energy consumption cost function (1)

restricted to zero startup costs σe = 0 (energy efficiency is also the main motivation of [37]). In

practice, however, machines’ energy consumption typically incurs a positive startup cost [6, 9]. This

motivated Khuller et al. [31, 35] to study a variant of unrelated parallel machine scheduling in which

the (sub)set of activated machines should satisfy some budget constraint on the startup costs. To

the best of our knowledge, the current paper presents the first non-trivial approximation algorithm

for scheduling unrelated parallel machines that takes into account the (positive) machines’ startup

costs σe > 0 as part of the objective function.

1.2 Paper Organization.
The rest of the paper is organized as follows. Section 2 introduces the concepts and notations used

in the design and analysis of the proposed approximation framework. Following that, a technical

overview of the approximation framework’s design and analysis is provided in Section 3. The actual

approximation framework is presented in Section 4 and analyzed in Section 5– 8. Two variants of

the proposed approximation framework, which are more feasible for a decentralized environment,

are presented in Section 9. In Section 10, we establish additional bounds that demonstrate the

tightness of certain components in the analysis. Finally, alternative approaches for designing GND

approximation algorithms are discussed in Section 11. In particular, Section 11.2 discusses an

alternative algorithm for the GND problem with routing requests using convex optimization and

randomized rounding.

2 PRELIMINARIES
Throughout, we consider some GND problem P with succinctly represented requests using REP

resource cost functions (2). Let

I =
〈
E, {Pi , {wi (e)}e ∈E }i ∈[N ] ,

{
α j

}
j ∈[q] ,

{
σe ,

{
ξe , j

}
j ∈[q]

}
e ∈E

〉
be some P instance. Let p∗ be an optimal solution for I and C∗ = C(p∗) be its total cost.

GNDGames and Cost SharingMechanisms. A key ingredient of the approximation framework

designed in this paper is a GND game derived from instance I. In this game, each request i ∈ [N ] is
associated with a strategic player i that decides on the reply pi ∈ Pi serving the request. In the scope

of this GND game, the reply pi ∈ Pi is referred to as the strategy of player i and the reply collection

Pi is referred to as her strategy space. We let P = P1 × · · · × PN and refer to p = (p1, . . . ,pN ) ∈ P as

the (players’) strategy profile. Although the strategy profile p is a vector of replies, we may slightly

abuse the notation and write e ∈ p when we mean that e ∈
⋃

i ∈[N ] pi .
The cost Fe (le ) of each resource e ∈ E is divided among the players based on a cost sharing

mechanism (CSM) M =
{
fi ,e (·)

}
i ∈[N ],e ∈E , where fi ,e : P → R≥0 is a cost sharing function that

determines the cost share fi ,e (p) incurred by player i ∈ [N ] for resource e under strategy profile

4
This objective does not fit into the formulation of minimizing the sum of the resource cost functions considered in our

paper.
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p. Player i chooses her strategy pi with the objective of minimizing her individual cost Ci (p) =∑
e ∈E fi ,e (p), irrespective of the total cost C(p) =

∑
i ∈[N ]Ci (p) (a.k.a. the social cost).

CSM M =
{
fi ,e (·)

}
i ∈[N ],e ∈E is said to be budget-balanced (cf. [21, 46]) if

∑
i ∈[N ] fi ,e (p) = Fe (l

p
e )

for every resource e ∈ E. It is said to be separable and uniform (cf. [21, 46]) if the cost share of

player i ∈ [N ] in resource e ∈ E satisfies (1) if e < pi , then fi ,e (p) = 0; and (2) fi ,e (p) is fully
determined bywi (e) and by the multiset of weights of the (other) players using resource e . Notice
that ifM is separable and uniform, then fi ,e (p) is independent of the identities and weights of the

players using any resource e ′ , e . It may be convenient to write fi ,e (Se ) instead of fi ,e (p), where
Se = {j ∈ [N ] | e ∈ pj }, although, strictly speaking, fi ,e (p) is also independent of the identities

(rather than weights) of the players in Se − {i}. Unless stated otherwise, all CSMs considered in

this paper are budget-balanced and separable and uniform.

Best Response. Following the convention in the game theoretic literature, given some i ∈ [N ]
and a strategy profile p = (p1, . . . ,pN ), let p−i = (p1, . . . ,pi−1,pi+1, . . . ,pN ); likewise, let P−i =
P1 × · · · × Pi−1 × Pi+1 × · · · × PN . Given some approximation parameter χ ≥ 1, strategy pi ∈ Pi is
an approximate best response (ABR) of player i to p−i ∈ P−i if Ci (pi ,p−i ) ≤ χ ·Ci (p

′
i ,p−i ) for every

p ′i ∈ Pi . A best response (BR) is an ABR with approximation parameter χ = 1.
5

A best response dynamic (BRD) (resp., approximate best response dynamic (ABRD)) is an iterative

procedure that given an initial strategy profile p0 ∈ P , generates a sequence p1,p2, . . . of strategy
profiles adhering to the rule that for every t = 1, 2, . . . , there exists some i ∈ [N ] such that (1)

pt
−i = p

t−1

−i ; and (2) pti is a BR (resp., ABR) of player i to pt−1

−i .

Strategy profile p ∈ P is a (pure) Nash equilibrium (NE) of the GND game if pi is a BR to p−i for
every i ∈ [N ]. The (pure) price of anarchy (PoA) of the GND game is defined to be the ratioC(p)/C∗,
where p ∈ P is a NE strategy profile that maximizes the social cost C(p).

Smoothness. The following definition of Roughgarden [43] plays a key role in our analysis: Given

parameters λ > 0 and 0 < µ < 1, we say that the GND game is (λ, µ)-smooth if∑
i

Ci (p
′
i ,p−i ) ≤ λC(p ′) + µC(p) (3)

for any two strategy profiles p,p ′ ∈ P .6 The game is said to be smooth if it is (λ, µ)-smooth for some

λ > 0 and 0 < µ < 1.
7

Potential Functions. Function Φ : P → R+ is said to be a potential function if for every i ∈ [N ]
and for any two strategy profiles p and p ′ with p−i = p

′
−i , it holds that

Φ(p ′) − Φ(p) = Ci (p
′) −Ci (p) .

A game admitting a potential function is said to be a potential game. The potential function Φ(p) is
said to be (A,B)-bounded for some parameters A ≥ 1 and B ≥ 1 if

Φ(p)/A ≤ C(p) ≤ B · Φ(p)

for any strategy profile p ∈ P .

Additional Notation and Terminology. Throughout, we think of ϵ > 0 as a sufficiently small

(positive) constant and fix ϵ1 =
1+ϵ
1−ϵ . A probabilistic event A is said to occur with high probability

(w.h.p.) if P(A) ≥ 1 − 1/(|E | + N )b , where b is an arbitrarily large constant.

5
See [39] for a more detailed description of the BR notion.

6
The original definition of Roughgarden [43], that applies for all cost minimization games, also requires that C(p) =∑
i∈[N ]Ci (p), but this property is assumed to hold for all CSMs considered in the current paper, so we do not mention it

explicitly.

7
Examples of smooth games are given in [43, Section 2.3].
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3 TECHNICAL OVERVIEW
The key concept in the design of our generic approximation framework is to decouple the combi-

natorial structure of the specific GND problem P, captured by the request types (and encoded in

the reply collections), from the (D)oS cost functions of the individual resources. Informally, the

former is handled by the reply oracle OP (specifically tailored for P), whereas for the latter, we

harness the power of Roughgarden’s smoothness toolbox [43]. Since this toolbox was originally
introduced in the context of game theory rather than algorithm design, we first transform the given

P instance into a GND game by carefully choosing the CSM (more on that soon). The algorithm

then progresses via a sequence of player individual improvements in the form of a BRD, where each

BRD step is implemented by invoking OP with a toll function constructed based on the current

strategy profile p ∈ P , the choice of player i ∈ [N ], and her cost sharing functions fi ,e (·), e ∈ E
(Section 4).

8

In order to establish the promised upper bound on the approximation ratio, we first analyze

the smoothness parameters of the aforementioned GND game (Section 6) which allows us to

bound its PoA, thus ensuring that the total cost C(p) of any NE strategy profile p ∈ P provides the

desired approximation for the (global) optimumC∗. This part of the proof relies on introducing and

analyzing a new class of REP-expanded CSMs (Section 6), interesting in its own right.

One may hope that a BRD of the GND game converges to a NE strategy profile p ∈ P , but
unfortunately, the BRD need not necessarily converge, and even if it does converge, it need not

necessarily be in polynomially many steps. Inspired by another component of the smoothness

toolbox [43] (which is in turn inspired by [11]), we show (in Section 5) that if the game admits

a bounded potential function, then after simulating the BRD for polynomially many steps, one

necessarily encounters a strategy profile p ∈ P that yields the promised approximation guarantee

(although it is not necessarily a NE).

Does our GND game admit the desired bounded potential function? The answer to this question

depends, once again, on the choice of a CSM. We therefore look for a CSM with three (possibly

conflicting) considerations in mind: the game that it induces must admit a bounded potential

function; it must be REP-expanded; and it must be efficiently computable. We prove that the

Shapley CSM satisfies the first two conditions (Section 7 and 6, respectively) and although its exact

computation is #P-hard, we manage to adapt the approximation scheme of [36], originally designed

for superadditive cost functions, to accommodate the REP cost functions (2) with positive startup

costs σe > 0 (Section 8). This presents another obstacle though since the original technique of

[43] assumes (implicitly) that each step in the BRD is (as the definition implies) an exact BR. To

overcome this obstacle, we show that an ABRD is still good enough for our needs (Section 5).

We believe that the construction described here demonstrates the usefulness of algorithmic

game theory tools for algorithm design even for optimization problems that on the face of it, are

not at all concerned with game theory. A similar concept is demonstrated by Cole et al. [23] who

obtained an improved combinatorial algorithm for job scheduling on unrelated machines, with

the objective of minimizing the weighted sum of completion times, based on the game theoretic

tools developed in [11]. In comparison, we employ the smoothness toolbox [43] for the design and

analysis of our approximation framework. It is the robustness of this toolbox that plays the key

role in the generality of our framework that can be applied to a wide family of GND problems.

This is in contrast to most of the existing approximation algorithms for such problems that rely on

linear/convex programming and are therefore heavily tailored to one specific GND problem and

much less generic.

8
In this section (only), we assume for simplicity that OP is an exact reply oracle.
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4 ALGORITHM DESCRIPTION
Let OP be a reply ϱ-oracle for the requests of the GND problem P. Our goal is to design an

approximation algorithm with black-box access to OP as promised in Theorem 1. We shall refer to

this approximation algorithm as Alg-ABRD.

Given an instance I =
〈
E, {Pi , {wi (e)}e ∈E }i ∈[N ] ,

{
α j

}
j ∈[q] ,

{
σe ,

{
ξe , j

}
j ∈[q]

}
e ∈E

〉
of P, we

first construct (conceptually) the GND game induced by I and a carefully chosen CSM M ={
fi ,e (·)

}
i ∈[N ],e ∈E . On top of the other properties ofM that will be discussed in the next sections,

we require thatM is poly-time ϵ-computable, namely, that given I, p ∈ P , and i ∈ [N ], it is possible

to compute in time poly(|E |,N ) some ϵ-cost shares f̃i ,e (p), e ∈ E, that satisfy

(1 − ϵ)fi ,e (p) ≤ f̃i ,e (p) ≤ (1 + ϵ)fi ,e (p)

w.h.p. Define the ϵ-individual cost C̃i (p) to be the sum C̃i (p) =
∑

e ∈E f̃i ,e (p), which means that

(1 − ϵ)Ci (p) ≤ C̃i (p) ≤ (1 + ϵ)Ci (p)

w.h.p. As we shall perform the computations of the ϵ-cost shares (and the ϵ-individual costs)
poly(|E |,N ) times, all of them succeed w.h.p.; condition hereafter on this event.

To simplify the presentation, we assume that the values of the ϵ-cost shares f̃i ,e (p), e ∈ E, and the

ϵ-individual costs C̃i (p) have already been fixed before the algorithm’s execution for all i ∈ [N ] and
p ∈ P in an (arbitrary) manner that satisfies the aforementioned ϵ-approximation inequalities; the

algorithm then merely “exposes” some (poly(|E |,N ) many) of these values. The following lemma

plays a key role in the design of Alg-ABRD.

Lemma 4.1. IfM is a poly-time ϵ-computable CSM, then there exists a randomized procedure that
given i ∈ [N ] and p−i ∈ P−i , runs in time poly(|E |,N ) and computes a strategy pi ∈ Pi and the
corresponding ϵ-individual cost C̃i (pi ,p−i ) such that C̃i (pi ,p−i ) ≤ ϱ · C̃i (p

′
i ,p−i ) for any p

′
i ∈ Pi . This

means in particular that pi is an ABR of player i to p−i with approximation parameter ϱϵ1.9

Proof. Construct the toll function τi ,p−i : E → R≥0 by setting τi ,p−i (e) to be the ϵ-cost share

f̃i ,e (Se ∪ {i}), where Se = {j ∈ [N ] − {i} | e ∈ pj }. This can be done in time poly(|E |,N ) sinceM is

poly-time ϵ-computable. The assumption thatM is separable and uniform guarantees that a reply

pi ∈ Pi that minimizes the total toll

∑
e ∈pi τi ,p−i (e) up to factor ϱ satisfies C̃i (pi ,p−i ) ≤ ϱ · C̃i (p

′
i ,p−i )

for any p ′i ∈ Pi and that the sum

∑
e ∈pi τi ,p−i (e) is the desired ϵ-individual cost. Such a reply pi can

be computed using the reply ϱ-oracle OP . □

Employing the procedure promised by Lemma 4.1, Alg-ABRD simulates an ABRD p0,p1, . . . of
the GND game induced by I andM that includes at most T iterations for some T = poly(|E |,N )
whose exact value will be determined later. This is done as follows (see also Pseudocode 1).

Set p0
by taking p0

i , i ∈ [N ], to be the strategy generated by OP for the toll function τ 0

i defined

by setting τ 0

i (e) = Fe (wi (e)). Assuming that pt−1
, 1 ≤ t ≤ T , was already constructed, we construct

pt as follows. For i ∈ [N ], employ the procedure promised by Lemma 4.1 to compute an ABR p ′i of

player i to pt−1

−i and let δ ti = C̃i (p
t−1)−ϵ1 ·C̃i (p

′
i ,p

t−1

−i ). If δ
t
i ≤ 0 for all i ∈ [N ], then the ABRD stops,

and we set pt = pt−1
; in this case, we say that the ABRD converges. Otherwise, fix ∆t =

∑
i ∈[N ] δ

t
i

and choose some player i ′ ∈ [N ] so that

δ ti′ > 0 and δ ti′ ≥
1

N
∆t

(4)

9
All subsequent occurrences of the term ABR (and ABRD) share the same approximation parameter ϱϵ1, hence we may

refrain from mentioning this parameter explicitly.
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ALGORITHM 1: Alg-ABRD

Input: A GND instance I =
〈
E, {Pi , {wi (e)}e ∈E }i ∈[N ] ,

{
α j

}
j ∈[q] ,

{
σe ,

{
ξe , j

}
j ∈[q]

}
e ∈E

〉
.

Output: A profile p ∈ P that is feasible for the given instance I.

for i ∈ [N ] do
set τ 0

i to be the toll function defined by setting τ 0

i (e) = Fe (wi (e)) for every e ∈ E;

set p0

i to be the output of oracle OP on E, Pi , and τ
0

i ;

end
t ← 0;

while t < T do
t ← t + 1;

for i ∈ [N ] do
set p′i to be an ABR of player i to pt−1

−i with approximation parameter ϱϵ1;

δ ti ← C̃i (p
t−1) − ϵ1 · C̃i (p

′
i ,p

t−1

−i );

end
if δ ti ≤ 0 for all i ∈ [N ] then

pt ← pt−1
;

break;
end
∆t ←

∑
i ∈[N ] δ

t
i ;

pick some j ∈ [N ] such that δ ti > 0 and δ ti ≥ ∆t /N ;

pt ← (p′j ,p
t−1

−j );

end
t∗ = argmint C(p

t );

return pt
∗

;

to update her strategy, setting pt = (p ′i′,p
t−1

−i′ ) (the existence of such a player is guaranteed by the

pigeonhole principle).

When the ABRD terminates (either because it has reached iteration t = T or because it converged),

Alg-ABRD chooses an iteration t∗ such that the corresponding strategy profile pt
∗

has a minimum

total cost C(pt
∗

) and outputs pt
∗

. (Recall that in contrast to the player individual costs, the social

cost can always be computed efficiently.)

5 ANALYZING ALG-ABRD

In this section, we begin our journey towards bounding the approximation ratio and run-time

of Alg-ABRD as promised by Theorem 1. The analysis relies on a careful choice of the CSMM ={
fi ,e (·)

}
i ∈[N ],e ∈E . In particular, we are looking for a CSM whose induced GND game is smooth and

admits a bounded potential function with the right choice of parameters.
10
The reason for that will

be made clear in Theorem 5.3 whose proof relies on Lemma 5.1 and 5.2; the former provides an

upper bound on the approximation ratio when the ABRD converges, whereas the latter is used

to bound the number T of steps in the ABRD (and is the key to ensuring strongly polynomial

run-time).

Lemma 5.1. Suppose that the CSMM is chosen so that the induced GND game is (λ, µ)-smooth with
µ < 1/(ϱϵ2

1
). If the ABRD simulated in Alg-ABRD converges at step t for any t ∈ [T ], then the last

10
It is an open question whether there exists a CSM that induces a smooth game when ξe , j = 0 for every j ∈ [q].
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strategy profile pt satisfies

C(pt ) ≤
ϱϵ2

1
λ

1 − ϱϵ2

1
µ
·C∗ .

Proof. Recalling that we use p ′i to represent the ABR of player i to pt , we observe that

C(pt ) =
∑
i

Ci (p
t )

≤
1

1 − ϵ

∑
i

C̃i (p
t )

≤
1

1 − ϵ
ϵ1

∑
i

C̃i (p
′
i ,p

t
−i )

≤
1

1 − ϵ
ϵ1 · ϱ

∑
i

C̃i (p
∗
i ,p

t
−i )

≤ ϱϵ2

1
·
∑
i

Ci (p
∗
i ,p

t
−i )

≤ ϱϵ2

1
(λ ·C∗ + µ ·C(pt )) ,

where the second and fifth transitions follow from the definition of ϵ-individual cost, the third
transition holds since the algorithm converges at step t , the fourth transition holds following

Lemma 4.1, and the sixth transition follows from the definition of (λ, µ)-smoothness. □

Lemma 5.2. The initial strategy profile p0 of Alg-ABRD satisfies C(p0) ≤ ϱ · Nmaxj α j ·C∗.

Proof. The construction of p0
guarantees that∑

e ∈p0

i

[
σe +

∑
j ∈[q]

ξe , j (wi (e))
α j

]
≤ ϱ ·

∑
e ∈p∗i

[
σe +

∑
j ∈[q]

ξe , j (wi (e))
α j

]
.

Therefore,∑
i ∈[N ]

∑
e ∈p0

i

[
σe +

∑
j ∈[q]

ξe , j (wi (e))
α j

]
≤ ϱ ·

∑
i ∈[N ]

∑
e ∈p∗i

[
σe +

∑
j ∈[q]

ξe , j (wi (e))
α j

]
≤ ϱ ·

∑
e ∈p∗

[
N · σe +

∑
j ∈[q]

ξe , j ·
∑
i :e ∈p∗i

(wi (e))
α j

]
≤ ϱ ·

∑
e ∈p∗

[
N · σe +

∑
j ∈[q]

ξe , j ·
( ∑
i :e ∈p∗i

wi (e)
)α j ]

≤ ϱ · N
∑
e ∈p∗

[
σe +

∑
j ∈[q]

ξe , j ·
( ∑
i :e ∈p∗i

wi (e)
)α j ]

= ϱN ·C∗ ,
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where the third transition follows from the superadditivity and the last transition holds since

l
p∗
e > 0 for every e ∈ p∗. Then,

C(p0) =
∑
e ∈p0

[
σe +

∑
j ∈[q]

ξe , j
( ∑
i :e ∈p0

i

wi (e)
)α j ]

≤
∑
e ∈p0

[
σe +

∑
j ∈[q]

ξe , j · N
α j−1

∑
i :e ∈p0

i

(wi (e))
α j

]
≤

∑
e ∈p0

[ ∑
i :e ∈p0

i

σe +
∑
j ∈[q]

ξe , j · N
α j−1

∑
i :e ∈p0

i

(wi (e))
α j

]
≤ Nmaxj α j−1

∑
e ∈p0

∑
i :e ∈p0

i

[
σe +

∑
j

ξe , j (wi (e))
α j

]
=Nmaxj α j−1

∑
i ∈[N ]

∑
e ∈p0

i

[
σe +

∑
j

ξe , j (wi (e))
α j

]
≤ ϱNmaxj α j ·C∗ ,

where the second transition holds because the convexity indicates that(∑
i :e ∈p0

i
wi (e)

|S
p0

e |

)α j
≤

1

|S
p0

e |

∑
i :e ∈p0

i

(wi (e))
α j ,

which means that( ∑
i :e ∈p0

i

wi (e)
)α j
≤ |S

p0

e |
α j−1

∑
i :e ∈p0

i

(wi (e))
α j ≤ N α j−1

∑
i :e ∈p0

i

(wi (e))
α j .

The assertion follows. □

Theorem 5.3. Suppose that the CSM M is chosen so that the induced GND game admits an
(A,B)-bounded potential function Φ and is (λ, µ)-smooth with µ < 1/(ϱϵ2

1
). Let Q = 2ϵ1NA

1−ϱϵ 2

1
µ . If

T = ⌈Q · ln (ABNmaxj α j )⌉, then the output pt
∗

of Alg-ABRD satisfies

C(pt
∗

) ≤
2ϱϵ2

1
λ

1 − ϱϵ2

1
µ
·C∗ .

Proof. Lemma 5.1 ensures that the assertion holds if our ABRD converges at any step t ≤ T ,
so it is left to analyze the case where the ABRD does not converge. We say that profile pt of the
ABRD is bad if

C(pt ) >
2ϱϵ2

1
λ

1 − ϱϵ2

1
µ
·C∗ .

Claim 5.4. For any t < T , if pt is bad, then Φ(pt+1) < (1 − 1/Q) · Φ(pt ).

Proof. Fix

dt =
1

1 − ϵ

[ ∑
i ∈[N ]

C̃i (p
t ) − ϱ · ϵ1

∑
i ∈[N ]

C̃i (p
∗
i ,p

t
−i )

]
. (5)
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This means that

C(pt ) =
∑
i ∈[N ]

Ci (p
t ) ≤

1

1 − ϵ

∑
i ∈[N ]

C̃i (p
t )

=
ϱϵ1

1 − ϵ

∑
i ∈[N ]

C̃i (p
∗
i ,p

t
−i ) + d

t

≤ ϱϵ2

1

∑
i ∈[N ]

Ci (p
∗
i ,p

t
−i ) + d

t

≤ ϱϵ2

1
(λ ·C∗ + µC(pt )) + dt .

Therefore, dt ≥
[
1 − ϱϵ2

1
µ
]
C(pt ) − ϱϵ2

1
λ ·C∗, hence, if pt is bad, then dt satisfies

dt >
[
1 − ϱϵ2

1
µ
]
C(pt ) −

1 − ϱϵ2

1
µ

2

C(pt ) =
1 − ϱϵ2

1
µ

2

C(pt ) . (6)

Since the ABRD does not converge at step t , there exists a player it being selected to update its

strategy. Recalling that the ABR of player i to pt is denoted by p ′i , we observe that

Φ(pt ) − Φ(pt+1) = Ci t (p
t ) −Ci t (p

′
i t ,p

t
−i t )

≥
1

1 + ϵ
C̃i t (p

t ) −
1

1 − ϵ
C̃i t (p

′
i t ,p

t
−i t )

=
1

1 + ϵ

[
C̃i t (p

t ) − ϵ1C̃i t (p
′
i t ,p

t
−i t )

]
≥

1

1 + ϵ
·

1

N

∑
i ∈[N ]

[
C̃i (p

t ) − ϵ1C̃i (p
′
i ,p

t
−j )

]
≥

1

1 + ϵ
·

1

N

∑
i ∈[N ]

[
C̃i (p

t ) − ϱ · ϵ1C̃i (p
∗
i ,p

t
−j )

]
=

1 − ϵ

1 + ϵ
·
dt

N

>
1 − ϵ

1 + ϵ
·

1

2N

[
1 − ϱϵ2

1
µ
]
C(pt )

≥
1

ϵ1

·
1

2N

[
1 − ϱϵ2

1
µ
] Φ(pt )

A
,

where the fourth transition follows from Eq. (4), the fifth transition holds since p ′i t is the ABR

promised by Lemma 4.1, which means that C̃i t (p
′
i t ,p

t
−i t ) ≤ ϱ · C̃i t (p

∗
i t ,p

t
−i t ), the sixth and seventh

transitions follow from Eq. (5) and Eq. (6), respectively, and the last transition holds because the

potential function is assumed to be (A,B)-bounded. Therefore,

Φ(pt+1) < Φ(pt )

(
1 −

1 − ϱϵ2

1
µ

2ϵ1NA

)
= (1 − 1/Q) · Φ(pt )

as promised. ■ (Claim 5.4)

Since Alg-ABRD outputs the strategy profile with the minimum total cost among all the generated

strategy profiles, this theorem holds if any of these strategy profiles is not bad.

Claim 5.5. If all the T + 1 strategy profiles in the ABRD are bad, then C(pT ) < ϱ ·C∗.
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Proof. Claim 5.4 implies that if all the T + 1 profiles in the ABRD are bad, then

Φ(pT ) <

(
1 −

1

Q

)T
Φ(p0) =

(
1 −

1

Q

)⌈
Q ·ln

(
ABNmaxj αj

)⌉
Φ(p0) ≤

1

ABNmaxj α j
Φ(p0) .

By the definition of the bounded potential function and by Lemma 5.2, we have

C(pT ) ≤ B · Φ(pT ) <
B

ABNmaxj α j
Φ(p0) ≤

A

ANmaxj α j
C(p0) ≤

ϱNmaxj α jC∗

Nmaxj α j
= ϱ ·C∗

which completes the proof. ■ (Claim 5.5)

Claim 5.6. ϱ <
2ϱϵ 2

1
λ

1−ϱϵ 2

1
µ .

Proof. For any cost minimization (λ, µ)-smooth game that has a (bounded) potential function,

we have
λ

1−µ ≥ 1. This is because the existence of a potential function implies the existence of a

(pure) NE p ∈ P with C(p) ≤ λ
1−µC

∗
[43]. Therefore,

2ϱϵ 2

1
λ

1−ϱϵ 2

1
µ >

2ϱλ
1−µ > ϱ. ■ (Claim 5.6)

By combining Claims 5.5 and 5.6, we conclude that not allT + 1 profiles are bad, thus completing

the proof. □

Remark 5.7. Roughgarden [43] proves that in the BRD of a (λ, µ)-smooth game, the number of
strategy profiles whose cost is larger than λ

(1−υ)(1−µ) ·C
∗ for some constant υ ∈ (0, 1) is bounded by a

polynomial. However, his proof depends on the exact values of the cost shares and exact best responses,
both of which may be intractable in our GND setting.

In the following sections, we search for a CSM whose induced GND game is (λ, µ)-smooth and

admits an (A,B)-bounded potential function for parameters λ, µ, A, and B that when plugged into

Theorem 5.3, yield the desired approximation ratio and run-time bounds.

6 SMOOTHNESS OF THE GND GAME
In this section, a rather wide class of CSMs, the REP-expanded CSMs, is presented and the smoothness

parameters of the induced GND games are analyzed. This class is introduced because it includes

every CSM that we investigate in the scope of this paper and provides a uniform way to study

the smoothness of the GND games induced by these CSMs. The proof that an adequate potential

function exists for (the GND game induced by) one of these CSMs is deferred to Section 7.

A CSM (for GND games) is said to be REP-expanded if the cost share fi ,e (p) satisfies

fi ,e (p) ≤ σe +
∑
j ∈[q]

ξe , j ·

(
z1, j

(
l
p
e −wi (e)

)α j−1

·wi (e) + z2, j (wi (e))
α j

)
, (7)

for any player i ∈ [N ], edge e ∈ E, and strategy profile p ∈ P , where z1, j and z2, j are non-negative

constants that can only depend on α j . For convenience, we also write Eq. (7) as

fi ,e (p) ≤ σe +
∑
j ∈[q]

ξe , j

2∑
k=1

zk , j

(
l
p
e −wi (e)

)xk , j
(wi (e))

yk , j ,

where x1, j = α j−1, y1, j = 1, x2, j = 0, and y2, j = α j . Note that the exponents {x1, j ,y2, j }j ∈[q] and the

coefficients {z1, j , z2, j }j ∈[q] are not necessarily integral.

Theorem 6.1. Consider some REP-expanded CSMM . For any ϱ ≥ 1, the GND game induced byM is

guaranteed to be
(
γα + λα · ϱ

maxj α j−1, 1/(2ϱ)
)
-smooth, where γα = maxe ∈E minj ∈[q]

(
1

α j−1
·
σe
ξe , j

)
1/α j

and λα > 0 is a positive constant that depends only on q and α1, . . . ,αq .
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Proof. Our goal in this proof is to show that (3) holds with λ = γα + λα · ϱ
maxj α j

and µ = 1/(2ϱ).
We begin by observing that∑

i ∈[N ]

Ci (p
′
i ,p−i ) =

∑
i ∈[N ]

∑
e ∈p′i

fi ,e (p
′
i ,p−i )

≤
∑
i ∈[N ]

∑
e ∈p′i

©­«σe +
∑
j ∈[q]

ξe , j
∑

k ∈{1,2}

zk , j (l
p
e )

xk , j (wi (e))
yk , j ª®¬

≤
∑
i ∈[N ]

∑
e ∈p′i

σe +
∑

j ∈[q],k ∈{1,2}

zk , j
∑
e ∈p′

ξe , j (l
p
e )

xk , j
∑
i :e ∈p′i

(wi (e))
yk , j

≤
∑
e ∈p′

σel
p′
e +

∑
j ∈[q],k ∈{1,2}

zk , j
∑
e ∈p′

ξe , j (l
p
e )

xk , j (l
p′
e )

yk , j ,

where the second transition follows by the definition of REP-expanded CSMs because when player

i deviates to p ′i , the load on edge e ∈ p ′i is at most l
p
e +wi (e) and the last transition holds because

(1)wi (e) ≥ 1, hence |{i ∈ [N ] : e ∈ p ′i }| ≤ l
p′
e for any edge e; and (2) (wi (e))

yk , j
is a superadditive

function ofwi (e), hence
∑

i :e ∈p′i
(wi (e))

yk , j ≤ (
∑

i :e ∈p′i
wi (e))

yk , j = (l
p′
e )

yk
. The desired upper bound

on

∑
e ∈p′ σel

p′
e +

∑
j ,k zk , j

∑
e ∈p′ ξe , j (l

p
e )

xk , j (l
p′
e )

yk , j
is established in Claims 6.2 and 6.3.

Claim 6.2.

∑
e ∈p′

σel
p′
e ≤ γα ·C(p

′)

Proof. Define the function д(x) = σx
σ+ξ xα for arbitrary positive numbers σ > 0, ξ > 0 and α > 1.

Since its derivative is

д′(x) =
σ

(σ + ξxα )2
[σ − (α − 1)ξxα ] ,

it attains its maximum for x ≥ 0 at x =
(

σ
ξ (α−1)

)
1/α

. Therefore, for any x ≥ 0, we have

σ · x

σ + ξ · xα
= д(x) ≤ д

(
(σ/ξ (α − 1))1/α

)
=

σ
(

σ
ξ (α−1)

)
1/α

σ + ξ σ
ξ (α−1)

=

(
1

α − 1

·
σ

ξ

)
1/α / (

1 +
1

α − 1

)
.

Let j∗e ∈ argminj ∈[q]

(
1

α j−1
·
σe
ξe , j

)
1/α j

. By the inequality above, we have

σel
p′
e <

(
1

α j∗e − 1

·
σe
ξe , j∗e

)
1/α j∗e

·

[
σe + ξe , j∗e (l

p′
e )

1/α j∗e
]
≤

(
1

α j∗e − 1

·
σe
ξe , j∗e

)
1/α j∗e

· Fe (l
p′
e ) .

The assertion follows since

(
1

α j∗e −1
·

σe
ξe , j∗e

)
1/α j∗e

≤ γα for every e ∈ E. ■ (Claim 6.2)

Fix zmax = ⌈maxj , k zk , j ⌉ and let λα = (2 · zmax)
maxj α j

.

Claim 6.3.

∑q
j=1

∑
2

k=1
zk , j

∑
e ∈p′ ξe , j (l

p
e )

xk , j (l
p′
e )

yk , j ≤
C(p)
2ϱ + λαϱ

maxj α j−1C(p ′).

Proof. Let p and p ′ be any two profiles. First, consider the term

∑q
j=1

∑
e ∈p′ z1, jξe , j (l

p
e )
α j−1 · l

p′
e .

• If l
p
e ≤ 2zmaxϱ · l

p′
e , then since α j − 1 for every j, we have

(l
p
e )
α j−1 · l

p′
e ≤ (2zmaxϱ)

α j−1 · (l
p′
e )

α j .
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• If l
p
e > 2zmaxϱ · l

p′
e , then

(l
p
e )
α j−1 · l

p′
e <

1

2zmaxϱ
(l
p
e )
α j .

Therefore, we have∑
j ∈[q]

∑
e ∈p′

z1, jξe , j (l
p
e )
α j−1 · l

p
e =

∑
j ∈[q]

∑
e ∈p′

⋂
p

z1, j · ξe , j (l
p
e )
α j−1 · l

p
e

≤ zmax

∑
j ∈[q]

∑
e ∈p

⋂
p′
ξe , j

[
(2zmaxϱ)

α j−1 · (l
p′
e )

α j +
1

2zmaxϱ
(l
p
e )
α j

]
≤ (2ϱ)maxj∈[q] α j−1(zmax)

maxj∈[q] α jϑ (p ′) +
1

2ϱ
ϑ (p) ,

where ϑ (p) =
∑

j ∈[q]
∑

e ∈p ξe , j (l
p
e )
α j
, and ϑ (p ′) =

∑
j ∈[q]

∑
e ∈p′ ξe , j (l

p′
e )

α j
. The first transition above

holds because for any e ∈ p − p ′, the load l
p
e = 0. Since

∑
j ∈[q]

∑
e ∈p′ z2, jξe , j (l

p′
e )

α j ≤ zmax · ϑ (p
′),

we have

q∑
j=1

2∑
k=1

zk , j
∑
e ∈p′

ξe , j (l
p
e )

xk , j (l
p′
e )

yk , j ≤ (2ϱ)maxj α j−1(zmax)
maxj α jϑ (p ′) +

1

2ϱ
ϑ (p) + zmaxϑ (p

′)

≤ λα · ϱ
maxj α j−1ϑ (p ′) +

1

2ϱ
ϑ (p) ,

where the second transition holds because ϱ ≥ 1 and maxj α j > 1. Notice that

ϑ (p) ≤
∑
e ∈p

σe +
∑
j ∈[q]

ξe , j
(
l
p
e

)α j  = C(p) , and ϑ (p ′) ≤
∑
e ∈p′

σe +
∑
j ∈[q]

ξe , j
(
l
p′
e

)α j  = C(p ′) ,
which establishes the assertion. ■ (Claim 6.3)

Together, Claims 6.2 and 6.3 imply that∑
i ∈[N ]

Ci (p
′
i ,p−i ) ≤

(
γα + λαϱ

maxj α j−1
)
C(p ′) +C(p)/(2ϱ) ,

so (3) indeed holds with λ = γα + λαϱ
maxj α j−1

and µ = 1/(2ϱ). □

Since 1/(2ϱ) < 1/(ϱϵ2

1
) for sufficiently small ϵ > 0, it follows that we can employ Theorem 5.3

with the smoothness parameters λ = γα +λα · ϱ
maxj α j−1

and µ = 1/(2ϱ) guaranteed by Theorem 6.1

to obtain the following corollary.

Corollary 6.4. If M is an REP-expanded CSM, then the approximation ratio of Alg-ABRD is

O

(
ϱmaxj α j + ϱ ·maxe minj

(
σe
ξe , j

) 1

αj

)
.

We now turn to show that some natural and extensively studied CSMs are REP-expanded. Under

the proportional fair CSM (see, e.g., [26, 32]), the cost share of player i ∈ [N ] in edge e ∈ pi is
defined to be her share of the cost incurred by load l

p
e on edge e , proportional to her weightwi (e),

namely fi ,e (p) =
wi (e)
lpe

Fe (l
p
e ).

Lemma 6.5. The proportional fair CSM is REP-expanded.
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Proof. Under the proportional fair CSM, the cost share of player i in edge e satisfies

wi (e)

l
p
e

[
σe +

q∑
j=1

ξe , j (l
p
e )
α j

]
≤ σe +

q∑
j=1

ξe , jwi (e) · (l
p
e )
α j−1

= σe +

q∑
j=1

ξe , jwi (e) ·
[
(l
p
e −wi (e)) +wi (e)

]α j−1

,

where the inequality holds because l
p
e =

∑
i′:e ∈pi′ wi′,e ≥ wi (e). Consider the following two cases.

• 0 ≤ l
p
e −wi (e) ≤ wi (e): Since α j − 1 > 0, it follows that

σe +
∑
j

ξe , jwi (e) ·
[
(l
p
e −wi (e)) +wi (e)

]α j−1

≤ σe +
∑
j

ξe , jwi (e) · (2 ·wi (e))
α j−1

= σe +
∑
j

ξe , j2
α j−1(wi (e))

α j .

• l
p
e −wi (e) > wi (e): In this case,

σe +
∑
j

ξe , jwi (e) ·
[
(l
p
e −wi (e)) +wi (e)

]α j−1

< σe +
∑
j

ξe , j2
α j−1wi (e)(l

p
e −wi (e))

α j−1 .

The assertion follows by taking z1, j = 2
α j−1

, and z2, j = 2
α j−1

for every j ∈ [q]. □

Let Se = {i ∈ [N ] | e ∈ pi } and let πe be a random permutation of Se drawn from the

uniform distribution. Under the Shapley CSM (see, e.g., [26, 32]), the cost share of player i ∈ [N ]
in edge e ∈ pi is defined to be its expected marginal contribution if the players are added to

e one-by-one in πe order. More formally, taking S ie (πe ) ⊆ Se to denote the set of players that

precede player i in πe , the cost share of i in edge e under the Shapley CSM is defined to be

fi ,e (p) = E
[
Fe

(∑
i′∈S ie (πe )wi′,e +wi (e)

)
− Fe

(∑
i′∈S ie (πe )wi′,e

)]
if e ∈ pi , otherwise fi ,e (p) = 0.

Before proving that the Shaply CSM is REP-expanded, we first define a function he : 2
[N ] → R≥0

by setting

he (X ) =
∑
j ∈[q]

ξe , j ·

(∑
i ∈X

wi (e)

)α j
. (8)

Lemma 6.6. The function he (X ) is supermodular.

Proof. By definition, he (X ) is supermodular if for any X1 ⊂ X2 ⊂ X and i ′ ∈ X\X2,

q∑
j=1

ξe , j
[( ∑

i ∈X1∪{i′ }

wi (e)
)α j
−

( ∑
i ∈X1

wi (e)
)α j ]

≤

q∑
j=1

ξe , j
[( ∑

i ∈X2∪{i′ }

wi (e)
)α j
−

( ∑
i ∈X2

wi (e)
)α j ]
.

Therefore, it suffices to prove that for any three non-negative numbers x1, x2 and y, (x1 + y)
α j −

(x1)
α j ≤ (x1+x2+y)

α j −(x1+x2)
α j

holds for any α j > 1. Letv(x1, x2,y) = (x1+x2+y)
α j −(x1+x2)

α j
.

Then we have

∂v

∂x2

= α j
[
(x1 + x2 + y)

α j−1 − (x1 + x2)
α j−1

]
.

Since α j > 1,
∂v
∂x2

> 0 when x2 > 0. Therefore, v(x1, x2,y) ≥ v(x1, 0,y) = (x1 + y)
α j − (x1)

α j
. □

Lemma 6.7. The Shapley CSM is REP-expanded.
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Proof. Under the Shapley CSM, the cost share of player i ∈ [N ] in edge e ∈ pi is

fi ,e (p) ≤ E

σe +
∑
j

ξe , j
©­«

∑
i′∈S ie (πe )

wi′,e +wi (e)
ª®¬
α j

−
∑
j

ξe , j
©­«

∑
i′∈S ie (πe )

wi′,e
ª®¬
α j 

≤ σe +
∑
j

ξe , j
©­«

∑
i′∈(Se−{i })

wi′,e +wi (e)
ª®¬
α j

−
∑
j

ξe , j
©­«

∑
i′∈(Se−{i })

wi′,e
ª®¬
α j

= σe +
∑
j

ξe , j (l
p
e )
α j −

∑
j

ξe , j (l
p
e −wi (e))

α j ,

where the first transition holds since

∑
j ξe , jl

α j ≤ Fe (l) ≤ σe +
∑

j ξe , jl
α j

for any l ≥ 0 and the

second transition follows from Lemma 6.6. Consider the following two cases.

• l
p
e ≤ 3 ·wi (e): In this case,

σe +
∑
j

ξe , j (l
p
e )
α j −

∑
j

ξe , j (l
p
e −wi (e))

α j ≤ σe +
∑
j

ξe , j · 3
α j (wi (e))

α j .

• l
p
e > 3 ·wi (e): By Newton’s generalized binomial theorem, we have

σe +
∑
j

ξe , j (l
p
e )
α j −

∑
j

ξe , j (l
p
e −wi (e))

α j

≤ σe +
∑
j

ξe , j

∞∑
k=0

(
α j
k

)
(l
p
e −wi (e))

α j−k (wi (e))
k −

∑
j

ξe , j (l
p
e −wi (e))

α j

= σe +
∑
j

ξe , j

∞∑
k=1

(
α j
k

)
(l
p
e −wi (e))

α j−k (wi (e))
k

< σe +
∑
j

ξe , j

( α j⌊
α j+1

2

⌋)wi (e)(l
p
e −wi (e))

α j−1

∞∑
k=1

(
wi (e)

l
p
e −wi (e)

)k−1

< σe +
∑
j

ξe , j

( α j⌊
α j+1

2

⌋)wi (e)(l
p
e −wi (e))

α j−1

∞∑
k=1

(
1

2

)k−1

< σe + 2

∑
j

ξe , j

( α j⌊
α j+1

2

⌋)wi (e)(l
p
e −wi (e))

α j−1 ,

where the third transition holds because for any α > 1 and k ∈ Z+, the absolute value of
(α
k

)
is at most

( α
⌊ α+1

2
⌋

)
.

The assertion follows by taking z1, j = 3
α j
, and z2, j = 2

( α j⌊ αj +1

2

⌋)
for every j ∈ [q]. □

7 THE POTENTIAL FUNCTION OF THE SHAPLEY COST SHARING MECHANISM
The next step is to prove that among the REP-expanded CSMs, there exists one that induces a

GND game with an (A,B)-bounded potential function for sufficiently small A,B ≥ 1. (Recall that

by Theorem 5.3, this would provide an upper bound on the number of steps in the ABRD.) While

we could not accomplish this task for the proportional fair CSM, the Shapley CSM turned out to be

more successful.
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It can be inferred from [44, Proposition 2.1] (see also [28, 32]) that the GND game induced by

the Shapley CSM admits the potential function

Φ(p) =
∑
e ∈p

∑
i ∈Se

fi ,e (S
i
e (ψe ) ∪ {i}) , (9)

where Se = {j ∈ [N ] | e ∈ pj },ψe is an arbitrary permutation of Se , and S
i
e (ψe ) is the set of players

that precede i in ψe . Note that in contrast to the random permutation πe used in the definition

of the Shapley CSM, the permutation ψe is an (arbitrary) deterministic permutation. The rest of

this section is dedicated to proving that this potential function is (HN , ⌈maxj α j ⌉)-bounded, where

HN is the N -th harmonic number. The following result is based on the function he : 2
[N ] → R≥0

defined in Eq. (8).

Lemma 7.1. For any edge e and any permutationψe , we have∑
i ∈Se

fi ,e (S
i
e (ψe ) ∪ {i}) =

|Se |∑
k=1

©­«σek +
∑

T ⊆Se , |T |=k

he (T )( |Se |
k

)
· k

ª®¬ .
Proof. By the definition of the Shapley CSM, the cost share of player i who uses edge e is

fi ,e (Se ) = E

Fe ©­«
∑

i′∈S ie (πe )

wi′,e +wi (e)
ª®¬ − Fe ©­«

∑
i′∈S ie (πe )

wi′,e
ª®¬
 ,

where πe is a random permutation on Se . For a fixed πe and a fixed player i using edge e ,

Fe
©­«

∑
i′∈S ie (πe )

wi′,e +wi (e)
ª®¬ − Fe ©­«

∑
i′∈S ie (πe )

wi′,e
ª®¬ =

{
σe + he ({i}) − he (∅) , if S ie (πe ) = ∅

he (S
i
e (πe ) ∪ {i}) − he (S

i
e (πe )) , otherwise

=1(S ie (πe ) = ∅)σe + he (S
i
e (πe ) ∪ {i}) − he (S

i
e (πe )) ,

where 1(S ie (πe ) = ∅) denotes the indicator of the event S
i
e (πe ) = ∅. Since πe is taken from the

uniform distribution, it follows that P(S ie (πe ) = ∅) =
1

|Se |
for any player i using edge e , thus

E

Fe ©­«
∑

i′∈S ie (πe )

wi′,e +wi (e)
ª®¬ − Fe ©­«

∑
i′∈S ie (πe )

wi′,e
ª®¬
 =

σe
|Se |
+ E

[
he (S

i
e (πe ) ∪ {i}) − he (S

i
e (πe ))

]
.

(10)

Let Hi ,e (Se ) = E[he (S
i
e (πe ) ∪ {i}) − he (S

i
e (πe ))]. Then, it can be inferred from Eq. (10) that for

any player i using e ,

fi ,e (S
i
e (ψe ) ∪ {i}) =

σe

|S ie (ψe ) ∪ {i}|
+ Hi ,e

(
S ie (ψe ) ∪ {i}

)
.

Since

∑
i ∈Se

σe
|S ie (ψe )∪{i } |

=
∑ |Se |

k=1

σe
k , it follows that

∑
i ∈Se

fi ,e (S
i
e (ψe ) ∪ {i}) =

|Se |∑
k=1

σe
k
+

∑
i ∈Se

Hi ,e
(
S ie (ψe ) ∪ {i}

)
.

Notice that Hi ,e (Se ) can be viewed as the Shapley cost share of a player i who uses edge e in a

network game where the cost of each edge e is he (Se ). Since for every j, α j is assumed to be larger
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than 1, the ratio
h(Se )
le
=

∑
j ξe , j (le )

αj

le
is non-decreasing with le . Kollias and Roughgarden [32, Proof

of Proposition 3.2] prove that in such case, for anyψe ,∑
i ∈Se

Hi ,e
(
S ie (ψe ) ∪ {i}

)
=

∑
T ⊆Se , |T |=k

he (T )( |Se |
k

)
· k
,

thus establishing the assertion. □

We are now ready to prove that the potential function Φ(p) of (9) is (⌈maxj α j ⌉,HN )-bounded.

Theorem 7.2. The potential function Φ(p) of the GND game induced by the Shapley CSM satisfies
1

⌈maxj α j ⌉
·C(p) ≤ Φ(p) ≤ HN ·C(p) for any strategy profile p.

Proof. Let us first prove the lower bound on Φ(p). Since e ∈ p implies that |Se | ≥ 1, we get

Φ(p) =
∑
e ∈p

|Se |∑
k=1

©­«σek +
∑

T ⊆Se , |T |=k

he (T )( |Se |
k

)
· k

ª®¬ ≥
∑
e ∈p

©­«σe +
|Se |∑
k=1

∑
T ⊆Se , |T |=k

he (T )( |Se |
k

)
· k

ª®¬ .
By the convexity of ξe , j · x

α j
, we conclude that

Φ(p) ≥
∑
e ∈p

[
σe +

q∑
j=1

ξe , j

|Se |∑
k=1

1( |Se |
k

)
· k

(
|Se |

k

) (∑
T ⊆Se , |T |=k

∑
i ∈T wi (e)( |Se |

k

) )α j ]
.

Since every player i is included in exactly

( |Se |−1

k−1

)
subsets of Se with k elements, it follows that

Φ(p) ≥
∑
e ∈p

[
σe +

q∑
j=1

ξe , j

|Se |∑
k=1

1

k

( ( |Se |−1

k−1

)
l
p
e( |Se |

k

) )α j ]
≥

∑
e ∈p

[
σe +

q∑
j=1

ξe , j

(
l
p
e

|Se |

)α j |Se |∑
k=1

kα j−1

]
≥

∑
e ∈p

[
σe +

q∑
j=1

ξe , j

(
l
p
e

|Se |

)α j (
1

|Se |

) ⌈α j ⌉−α j |Se |∑
k=1

k ⌈α j ⌉−1

]
.

Then, we can derive from [8, Corollary 3.2] that

Φ(p) ≥
∑
e ∈p

[
σe +

q∑
j=1

ξe , j

(
l
p
e

|Se |

)α j (
1

|Se |

) ⌈α j ⌉−α j |Se | ⌈α j ⌉
⌈α j ⌉

]
≥

1

⌈maxj α j ⌉

∑
e ∈p

[σe +
∑
j

ξe , j (l
p
e )
α j ] .

For the upper bound on Φ(p), by Lemma 7.1 and since he (T ) is a (set-wise) increasing function of

T and T ⊆ Se , we get

Φ(p) =
∑
e ∈p

|Se |∑
k=1

©­«σek +
∑

T ⊆Se , |T |=k

he (T )( |Se |
k

)
· k

ª®¬ ≤
∑
e ∈p

©­«H |Se | · σe +
|Se |∑
k=1

∑
T ⊆Se , |T |=k

he (Se )( |Se |
k

)
· k

ª®¬ .
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As there are exactly

( |Se |
k

)
subsets of Se with k elements, it follows that

Φ(p) ≤
∑
e ∈p

(
H |Se | · σe +

|Se |∑
k=1

he (Se )

k

)
=

∑
e ∈p

(
H |Se | · σe +H |Se | · he (Se )

)
=

∑
e ∈p

H |Se | ·

σe +
∑
j ∈[q]

ξe , j

(∑
i ∈Se

wi (e)

)α j  .
Since e ∈ p means that l

p
e > 0, we conclude that

Φ(p) ≤
∑
e ∈p

H |Se |Fe (l
p
e ) ≤ HN ·C(p)

which establishes the assertion. □

8 POLYNOMIAL-TIME ϵ-APPROXIMATION OF SHAPLEY COST SHARING
So far, we have proved that the Shapley CSM can satisfy the requirements on the smoothness and

the potential function. It remains to show how to compute the ϵ-cost shares subject to the Shapley

CSM in polynomial time for a sufficiently small ϵ > 0. For the problem of computing the cost shares

specified by the Shapley CSM, Liben-Nowell et al. [36] establish the following lemma.

Lemma 8.1 ([36]). There exists an FPRAS (i.e., a randomized FPTAS), referred to as SV-Sample, for
computing the ε-cost shares in any game subject to the Shapley CSM and supermodularmonotone cost
functions. In particular, given any ε ∈ (0, 1), SV-Sample generates an ε-cost share with probability at
least 1 − 1

2(T N |E |)2 in O
(

log(TN |E |) ·
[
N 3

ε2
+ log(log(TN |E |))

] )
-time.

Note that owing to the existence of the term σe , the cost function Fe (l) is not supermodular. Now

Lemma 6.6 comes to our help. Combining Lemma 8.1 and Lemma 6.6 with Eq. (10), we obtain an

efficient procedure, named Shapley-APX, for computing the ϵ-cost share of any given player i on
any resource e with respect to the Shapley CSM and the REP cost function.

More specifically, if i < Se , then this procedure returns 0 as the cost share. Otherwise, Shapley-APX
uses algorithm SV-Sample to obtain an ϵ-cost share θi ,e for player i on resource e with respect to

the Shapley CSM and the cost function he (Se ). Finally,
σe
|Se |
+ θi ,e is returned as the desired ϵ-cost

share. By Eq. (10), Lemma 8.1 and Lemma 6.6, the following lemma trivially holds.

Lemma 8.2. Procedure Shapley-APX computes an ϵ-cost share of a player i on resource e with
probability at least 1 − 1

2(T N |E |)2 in O
(

log(TN |E |) ·
[
N 3

ϵ 2
+ log(log(TN |E |))

] )
-time.

Theorem 8.3. If Shapley-APX is employed to generate all the ϵ-cost shares used in Alg-ABRD,
then w.h.p., every ϵ-cost share f̃i ,e (Se ) is an ϵ-approximation of the exact cost share fi ,e (Se ).

Proof. Recall that the ABRD contains at most T steps. In each step t , every player i needs to

calculate f̃i ,e (S
t
e ∪ {i}) for every resource e to find her ABR. Therefore, procedure Shapley-APX

is invoked at most TN |E | times. The probability that this function generates a result that is not

the ϵ-approximation of the exact cost share is at most TN |E | ·
[
1 −

(
1 −

1

2(TN |E |)2

)]
=

1

2TN |E |
.

Therefore, this theorem follows. □
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Using the facts that ϵ , λα (from Theorem 6.1), and ϱϵ2

1
/2 are all constants, andHN can be bounded

by O(logN ), the main result is established as summed up in the following theorem.

Theorem 8.4. By plugging the Shapley CSM into Alg-ABRD, the total cost of the output profile is an

O

(
ϱ ·maxe minj

(
σe
ξe , j

) 1

αj
+ ϱmaxj α j

)
-approximation of the optimal result with probability at least

1 −O

(
1

N 2 |E | log
2 N

)
.

The time complexity of the algorithm is

O

(
N 5

log
2 N · |E | log

2(N |E |)

)
.

9 IMPLEMENTATION IN A DECENTRALIZED ENVIRONMENT
The approximation algorithm Alg-ABRD that was developed up to now is centralized, and in

particular two main aspects of the algorithm are incompatible with some common settings in game

theory. The first aspect is that Alg-ABRD deterministically chooses a specific player for strategy

update. Instead, if traffic requests were separate uncoordinated entities, it would make more sense

that they decide to update their strategies in an uncoordinated way. The second aspect is that

Alg-ABRD chooses the best profile it has seen during the ABRD. However, it is inappropriate in

game theory to ask uncoordinated individual entities to “roll back” to a previous profile that might

be more costly for some of them.

This section tackles these issues by providing two techniques for adapting algorithm Alg-ABRD
to the game-theoretic settings. First, instead of choosing a specific player for updating the strategy,

we now select the player uniformly at random. We believe that this better simulates the behaviors

of uncoordinated players. Subsection 9.1 shows that this modification will still yield the same

approximation ratio, with only a polynomial loss in the number of steps. Second, instead of

choosing the best configuration in the sequence, subsection 9.2 analyzes the case where the last

configuration is chosen. It is shown that the approximation ratio loses another O(logN ) factor.
Thus, while certainly inferior to the centralized algorithm, the game-theoretic version of Alg-ABRD
still admits an approximately optimal outcome.

9.1 Randomized Selection and Decentralized Implementation
This subsection develops a random procedure, called randomized player choosing (RPC), for deciding
the player to update her strategy in an uncoordinated way, using some techniques in the leader
election protocol proposed in [1, 43].

Consider an arbitrary step t ≥ 1 in the ABRD. We assume that all the players have the same

view of pt−1
. Notice that this assumption trivially holds when t = 1, because p0

is generated in a

deterministic way, which means that every player i can easily simulate the computation for p0

−i
without any communication between players. Given the strategy profile pt−1

, each player i first
finds her ABR p ′i to p

t−1

−i by the procedure promised in Lemma 4.1, and computes the value of δ ti
(recall that δ ti = C̃i (p

t−1) − ϵ1 · C̃i (p
′
i ,p

t−1

−i )).

Then, every player i generates an integer Y t
i ∈ [N ] randomly and uniformly, and sends Y t

i to

all the other players. After receiving all the N − 1 integers {Y t
i′}i′∈N∧i′,i , every player i calculates

Y t =

(( ∑
i ∈[N ]

Y t
i

)
mod N

)
+ 1, where mod refers to the modulo operator. It is easy to see that Y t
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follows the uniform distribution over [N ]. If the player with index Y t
satisfies

δ ti > 0 , (11)

then this player deviates to her ABR p ′Y t , and send p ′Y t to all the other players. Otherwise, player

Y t
simply sends her current strategy pt−1

Y t to the other players. After receiving the strategy from

the chosen player Y t
, all the other players update pt−1

to pt with the received strategy. In this way,

it is guaranteed that in step t + 1, all the players have the same view of pt .

Lemma 9.1. For any step t ≥ 1, if the player selected for strategy update satisfies Eq. (11), we have
Φ(pt−1) − Φ(pt ) > 0.

Proof. By the definition of the potential function,

Φ(pt−1) − Φ(pt ) = Cj (p
t−1) −Cj (p

t
j ,p

t−1

−j )

≥
1

1 + ϵ
C̃j (p

t−1) −
1

1 − ϵ
C̃j (p

t
j ,p

t−1

−j )

>
1

1 + ϵ
ϵ1C̃j (p

t
j ,p

t−1

−j ) −
1

1 − ϵ
C̃j (p

t
j ,p

t−1

−j )

= 0 .

The second transition holds by the definition of the ϵ-individual cost. The third one follows from

Eq. (11). □

Let RPC-ABRD be a variation of Alg-ABRD that uses RPC to decide the player for updating the

strategy, and runs in T ′ = N ·T 2
steps. Then we have the following result.

Theorem 9.2. The output pt
∗

of RPC-ABRD satisfies

C(pt
∗

) ≤
2ϱϵ2

1
λ

1 − ϱϵ2

1
µ
·C∗

with probability at least 1

2
,

Proof. According to Lemma 5.1, we only need to consider the case where the ABRD does not

converge. Partition theT ′ steps in ABRD intoT stages, each of which contains N ·T steps. We say a

player i is appropriate for step t if δ tj satisfies Eq. (4). A step t is said to be appropriate if in this step

an appropriate player is selected, and a stage is appropriate if it contains at least one appropriate

step.

Claim 9.3. With probability at least 1

2
, all the T stages are appropriate.

Proof. If the ABRD does not converge, then the Pigeonhole Principle implies that there exists

at least one appropriate player in each step. Procedure RPC ensures that each step is appropriate

with probability at least
1

N . Therefore, the probability that there exists no appropriate step in a

stage should be at most (
1 −

1

N

)NT
≤

(
1

exp(1)

)T
.

Hence, the probability that all the stages are appropriate is(
1 −

(
1 −

1

N

)NT
)T
≥

(
1 −

(
1

exp(1)

)T )T
>

(
1 −

(
1

2

)T )T
>

1

2

. (12)

The last transition holds because

(
1

2

)T
+

(
1

2

)
1/T

decreases with T when T > 1. ■ (Claim 9.3)
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Recall that a strategy profile pt is said to be bad if C(pt ) >
2ϱϵ 2

1
λ

1−ϱϵ 2

1
µ · C

∗
. Then we have the

following proposition.

Claim 9.4. For any appropriate stage k, if all the profiles generated in this stage are bad, then

Φ(pt
1

k ) <
(
1 −

1

Q

)
Φ(pt

0

k
−1), where t0

k
an t1

k
respectively represent the first and the last steps in stage k.

Proof. Since the player selected in each step does not update its strategy unless Eq. (11) is

satisfied, Lemma 9.1 indicates that the potential function is non-increasing in all the steps. Let t∗
k

be an arbitrary appropriate step in stage k. Then we have

Φ(pt
1

k ) ≤ Φ(pt
∗
k ) <

(
1 −

1

Q

)
Φ(pt

∗
k
−1) ≤

(
1 −

1

Q

)
Φ(pt

0

k
−1) ,

where the second transition follows from Claim 5.4. ■ (Claim 9.4)

Combining Claim 9.4 with the techniques in the proof of Theorem 5.3, it can be proved that if all

the stages are appropriate, then at least one stage generates a profile that is not bad. □

Putting Theorem 9.2, Theorem 6.1, Theorem 7.2 and Theorem 8.3 together, we obtain the following

result.

Corollary 9.5. RPC-ABRD generates an O

(
ϱmaxj α j + ϱ ·max

e
min

j

(
σe
ξe , j

)
1/α j

)
-approximation so-

lution with probability at least
1

2

(
1 −O

(
1

N 2 |E | log
2 N

))
.

The time complexity of the revised algorithm is

O

(
N 7

log
4 N · |E | log

2(N |E |)

)
.

9.2 Output the Last Strategy Profile
Now let us study the approach of directly outputting the last strategy instead of the one with the

minimum overall cost, pt
∗

.

Theorem 9.6. Suppose that the ABRD does not converge at any step t , then the cost corresponding to
the last profile is at most ⌈maxj α j ⌉HN times larger than C(pt

∗

), no matter whether RPC is employed
or not.

Proof. Let tmax be the last step of the ABRD. This theorem trivially holds when t∗ = tmax.

Suppose that t∗ < tmax, then

C(ptmax ) ≤ ⌈max

j
α j ⌉Φ(p

tmax ) < ⌈max

j
α j ⌉Φ(p

t ∗ ) ≤ ⌈max

j
α j ⌉HNC(p

t ∗ ) .

The first transition and the last one hold since the potential function is (HN , ⌈α⌉)-bounded. The
second transition follows from Eq. (4), Eq. (11) and Lemma 9.1, for the deterministic procedure of

deciding the player for strategy update and RPC, respectively. □

Using the fact thatHN is bounded by O(logN ), we get the following result.

Corollary 9.7. Returning the strategy profile generated in the last step of the ABRD instead of pt
∗

as the output will increase the approximation ratio by O(logN ) times.
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Fig. 1. A directed graph G0 for proving the lower bound on the PoA.

10 POA OF THE GND GAME: UPPER BOUND AND LOWER BOUND
A byproduct obtained in this paper is a tight bound on the PoA of the GND games for a class of

CSMs. In [43], it is proved that the PoA of a smooth cost minimization game is

inf

{
λ

1 − µ
: the game is (λ, µ)-smooth

}
.

Such a PoA is said to be robust and can be extended to the mixed Nash equilibrium, correlated

equilibrium, and coarse correlated equilibrium [43]. From Theorem 6.1, it can be inferred that:

Theorem 10.1. For any REP-expanded CSM M , the induced GND game has a robust PoA of

O

(
max

e ∈E
min

j ∈[q]

( σe
ξe , j

) 1

αj

)
.

Recall that our definition of CSMs requires that they are budget-balanced, namely, that∑
i ∈Se

fi ,e (p) = Fe (l
p
e ) (13)

for any edge e . In the following, we prove based on this requirement that the upper bound in

Theorem 10.1 is asymptotically tight. To that end, we restrict our attention to the GND problem

with routing requests.

Definition 10.2 (GND problem with Routing Requests). In the GND problem with routing requests,

the resources are represented by the set E of edges in a graph G = (V , E), where V is the set of

nodes. The feasible reply collection Pi of each request i is composed of the paths which connect

the associated source-target node pair and contain no repeating edges.

Theorem 10.3. For any (budget-balanced) CSM, there exists induced GND games with a PoA of

Ω

(
maxe minj

(
σe
ξe , j

) 1

αj

)
.

Proof. Let I be an instance of a GND problem with routing requests defined on the directed

graphG0 = (V0, E0) in Fig. 1. In particular,V0 contains N +2 nodes

{
s, t∗, {ti }i ∈[N ]

}
. For each i ∈ [N ],

there are a directed edge ei from s to ti , and a directed edge e
′
i from t∗ to ti . For each request i ∈ [N ],

the associated source-target pair is (s, ti ), and the weightwi (e) = 1 for any e ∈ E0. It is easy to see

that the reply collection Pi of each request i contains two paths, {e∗, e ′i } and {ei }.
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Define σ , ξ , and α to be three positive parameters such that

(
σ
ξ

) 1

α
is a large enough integer, and

α > 1. The number of requests N is assumed to be

(
σ
ξ

) 1

α
. For the edges e ∈ E0, the parameters in

the associated REP cost functions are set as follows.

• σe∗ =
N

N+1
· σ , and ξe∗,1 =

N
N+1
· ξ .

• For every i ∈ [N ], σei = σ , and ξei ,1 = ξ .
• For every i ∈ [N ], σe ′i =

1

N+1
· σ , and ξe ′i ,1 =

3

N+1
· ξ .

• α1 = α .

• For every 2 ≤ j ≤ q, 1 < α j < α1, ξe , j <
ξe , 1

qN αj (N+1)
.

With these settings, we have maxe ∈E0
minj ∈[q]

(
σe
ξe , j

) 1

αj
=

(
σ
ξ

) 1

α
.

Consider a GND game induced from I by an arbitrary budget-balanced CSM. Let p be a strategy

profile where every player i chooses the path pi = {ei }. With any budget-balanced CSM, the cost

of each player i must be

fi ,ei (p) = Fi ,ei (1) = σei +

q∑
j=1

ξei , j < σ + ξ ·
N + 2

N + 1

.

The first transition follows from Eq. (13), since Sei only contains player i for every i ∈ [N ]. The last
transition holds since N α j > 1 for every j . If any player i changes her strategy to p ′i = {e

∗, e ′i }, with
any budget-balanced CSM, her individual cost should be

fi ,e∗ (p
′
i , p−i ) + fi ,e ′i (p

′
i , p−i ) = Fi ,e∗ (1) + Fi ,e ′i (1)

> σe∗ + ξe∗, 1 + σe ′i + ξe ′i , 1

=
N

N + 1

σ +
N

N + 1

ξ +
1

N + 1

σ +
3

N + 1

ξ

= σ +
N + 3

N + 1

ξ ,

where the first equality still follows Eq. (13). Therefore, any player i cannot decrease her cost

through a unilateral deviation. By definition, strategy profile p is a pure NE.

The total cost incurred by this NE is N · (σei +
∑

j ξei , j ) > N (σ + ξ ). In contrast, if every player

chooses the path {e∗, e ′i }, the total cost should be

σe∗ +
∑
j

ξe∗, j · N
α j + N · (σe ′i +

∑
j

ξe ′i , j ) <
N

N + 1

c +
N

N + 1

ξ · N α

+ N (
1

N + 1

σ +
3

N + 1

ξ ) +
2

N + 1

ξ

=
N

N + 1

σ +
N

N + 1

σ +
N

N + 1

σ +
3N + 2

N + 1

ξ

< 3(σ + ξ ) .

Thus, the PoA is at least
N (σ+ξ )
3(σ+ξ ) =

N
3
. Since N = (σξ )

1

α , this theorem follows. □

From Lemma 6.5, Lemma 6.7, and Theorem 10.1, it follows that for both the proportional fair

CSM and the Shapley CSM, the induced GND games have a PoA of O
(

maxe minj (σe/ξe , j )
1/α j

)
.

Then from Theorem 10.3, we know that these two natural CSMs are asymptotically optimal in the

class of budget balanced CSMs, since they trivially follow Eq. (13).
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11 ALTERNATIVE APPROACHES
Up to now, a set of game theoretic results, such as the smoothness parameters, have been established

to investigate the performance of Alg-ABRD. Nevertheless, Alg-ABRD is not the only framework

that can generate outputs with a desired approximation ratio. This section is dedicated to two

alternative approaches for approximating the GND problem based on techniques developed in the

existing literature in the context of routing requests.

11.1 Learning Based Algorithm for the GND problem with Routing Requests
In this part, we start to introduce a learning-based technique [43], which also utilizes the smoothness,

and can guarantee a good approximation for the GND problem with routing requests when the

optimal cost C∗ of the input instance has a constant lower bound.

Definition 11.1 (Problem of Online Decision[30]). Consider an online problem where the input

consists of a graph G = (V , E) and a sequence of T ′ cost vectors
{
τ t = {τ t (e)}e ∈E

}
t ∈[T ′]

, where

τ t (e) ∈ [0, 1]. For each t ∈ [T ′], this online problem requires a path r t between a given source-

target node pair without any knowledge of the cost vectors {τ t , τ t+1, · · · , τT
′

}. The objective is to

minimize the REGRET, which is defined as

REGRET =
T ′∑
t=1

∑
e ∈r t

τ t (e) − min

r ′:r ′ connects {s ,t }

T ′∑
t=1

∑
e ∈p′

τ t (e) .

Lemma 11.2 (Follow the Perturbed Leader (FPL) [30]). For the problem of online decision, there
exists a randomized algorithm called FPL [30] that can compute every r t in O(|E | + |V | log |V |)-time
such that the expectation of REGRET is no larger than 2|V |

√
|E |T ′.

Using FPL as a subroutine, a learning based algorithm, referred to as Alg-L, is constructed as

follows for the GND problem with routing requests. The first step is to transform the given problem

instance I to a GND game by employing the proportional fair CSM, and divide every σe and

every ξe , j by a large enough number such that the cost share of any player on any edge is in the

interval [0, 1]. Obviously, such a linear scaling on the cost functions {Fe } does not influence the
approximation ratio. Then, generate T ′ = 4N 2 |V |2 |E | strategy profiles {p̄t }t ∈[T ′]. For every t and

every player i , the path p̄ti is obtained by running FPLwithτ
t ′
i =

{
{τ t

′

i (e) = fi ,e (S
t ′
e ∪{i})}e ∈E

}
t ′∈[t−1]

as the input, where fi ,e (·) refers to the cost share determined by the proportional fair CSM. Note

that with the proportional fair CSM, the exact cost share of each player on each edge can be obtained
in constant time. Finally, choose one strategy profile t∗ from [T ′] randomly and uniformly, and

output p̄t
∗

.

Lemma 11.3. The algorithm Alg-L has a time complexity of O(N 3 |V |2 |E |2 log |V |).

Theorem 11.4. Let C ′∗ be the optimal solution with respect to the linearly scaled cost functions. If
the total cost ofC ′∗ has a constant lower bound LB, then algorithm Alg-L guarantees an approximation

ratio of O
(

maxe ∈E minj ∈[q]

(
σe
ξe , j

) 1

αj

)
for the GND problem with routing requests.

Proof. According to [41, Corollary 3.3], for a (λ, µ)-smooth game, by generating the strategy

profiles {p̄t }t ∈[T ′] through a randomized algorithm for the problem of online decision, the chosen

strategy profile p̄t
∗

guarantees that:

Ep̄t∗ [C
′(p̄t

∗

)] ≤
λ

1 − µ
C ′∗ +

1

1 − µ

∑N
i=1
E{p̄ti }t∈[T ′] [REGRET]

T ′
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where C ′(p̄t
∗

) represents the total cost with respect to the scaled cost functions. By Theorem 6.1,

the values of γα and λα are not influenced by the linear scaling on ce and ξe , j . Thus,

Ep̄t∗ [C
′(p̄t

∗

)] ≤ 2(γα + λα )C
′∗ +

2 ·
∑N

i=1
E{p̄ti }t∈[T ′] [REGRET]

T ′

≤ 2(γα + λα )C
′∗ +

N · 4|V |
√
|E |T ′

T ′

≤ 2

(
γα + λα +

1

LB

)
C ′∗ .

The second transition above follows from Lemma 11.2. The third transition holds because it is

assumed that OPT′ ≥ LB. Since LB is a constant, this theorem holds. □

Lemma 11.3 and Theorem 11.4 indicate that, Alg-L promises the same upper bound on the

approximation ratio as Alg-ABRD for the special input instances withC
′∗ ≥ LB, and when the given

graph has a small size while the number of requests is large, Alg-L has a better time complexity

than Alg-ABRD. However, it remains unknown for us how to generalize Theorem 11.4 to the general

case where there is no guarantee for the lower bound of the optimal solution. The critical issue here

is that even before the linear scaling, the optimal result C∗ can be arbitrarily small. This problem is

left for future research.

11.2 Convex Programming and Rounding for the GND Problem with Routing
Requests

The approach presented in this subsection was suggested to us by an anonymous reviewer for a

special case of the GND problem. Specifically, like the approach presented in Section 11.1, this

approach also addresses the GND problem with routing requests, but restricts the attention to the

more specific case where the given graph G = (V , E) is undirected and the weights of the requests

are related. (Recall that related weights means that the weight of every request i satisfieswi (e) = wi
for every e ∈ E.) Furthermore, in this part, the cost function Fe of each edge e is assumed to be

an energy consumption cost function Eq. (1), a specific (simpler) form of the REP cost functions

Eq. (2) used in the other parts of this paper. We shall refer to this specific GND restriction as energy
efficient routing (EER).

Since this approach is based on convex programming and rounding, we shall refer to the resulting

approximation algorithm as CPR. Throughout the following description of algorithm CPR, the notion

fractional solution is often used. It refers to the solution obtained when the integral constraint is

relaxed. Formally, for each request i in an EER problem, a fractional solution p specifies a finite

set pi = {pi ,k }k ∈[Ki ] of paths pi ,k connecting the source-target pair of request i , where each path

pi ,k is associated with a positive real number yi ,k ∈ (0, 1] satisfying that

∑
k ∈[K] yi ,k = 1. For each

e ∈ E, the load l
p
e incurred by a fractional solution p is defined to be

∑
i ∈[N ]

∑
k ∈[Ki ]

∑
pi ,k :e ∈pi ,k

wi · yi ,k .

The total cost of a fractional solution p is defined to be

∑
e ∈E Fe (l

p
e ).

In algorithm CPR, every request i ∈ [N ] is first partitioned into a set R ′i ofwi sub-requests, where
every sub-request i j is associated with the same source-target node pair as the original request i ,
and has the same weightwi j = 1. Such a partition is feasible since the weights are assumed to be

related. Let R ′ =
⋃

i R
′
i be the set of all the sub-requests, I

′
be the instance obtained by replacing

the set of requests in the given EER instance I with R ′, and Î ′ be a variant instance which replaces

, Vol. 1, No. 1, Article . Publication date: December 2019.



Approximating Generalized Network Design :29

the energy consumption cost function Fe in I
′
with the following variant cost function

F̂e (p
′) =

{
0 l

p′
e = 0

σe + ξe ·
(
(l
p′
e )

α +
∑

i (wi )
α−1 · l

p′
e (i)

)
l
p′
e > 0

, (14)

wherep ′ is an arbitrary feasible path profile for R ′, l
p′
e (i) is the load incurred by routing sub-requests

in R ′i along e . Let p̂∗ be the fractional optimal solution of Î ′. Then the following result can be

proved in a similar way with [13].

Lemma 11.5. Ĉ(p̂∗) < 2 ·C∗, where Ĉ(·) denotes the total cost with respect to Eq. (14).

Proof. The path profile p∗ also induces a feasible solution for Î ′, which routes i j along the path

p∗i for every i ∈ [N ]. Let the total cost incurred by this feasible solution be Ĉ(p∗), then,

Ĉ(p̂∗) ≤ Ĉ(p∗) =
∑
e ∈p∗

[
σe + ξe ·

(
(l
p∗
e )

α +
∑
i

(wi )
α−1 · l

p∗
e (i)

)]
=

∑
e ∈p∗

[
σe + ξe ·

(
(l
p∗
e )

α +
∑
i :e ∈p∗i

(wi )
α
)]

≤
∑
e ∈p∗

[
σe + ξe ·

(
(l
p∗
e )

α + (l
p∗
e )

α
)]

< 2 ·
∑
e ∈p∗

(
σe + ξe · (l

p∗
e )

α
)

= 2 ·C∗ .

The second line holds since p∗ is an integral solution of I [13]. The third line following the

fact

∑
i :e ∈p∗i

wi = l
p∗
e and the superadditivity of the power function. The fourth line holds since

σe > 0. □

The next step of CPR is to utilize the convex programming based technique proposed in [5] to

generate a solution for the instance Î ′. In particular, it converts F̂e (p
′) to a convex cost function

F̄e (p
′) =We (p

′) + ξe
∑

i (wi )
α−1 · l

p′
e (i), where

We (p
′) =


ζe · (l

p′
e ) if l

p′
e ∈

[
0,max

{
1,

(
σe

(α−1)ξe

) 1

α
}]

σe + ξe · (l
p′
e )

α
if l

p′
e > max

{
1,

(
σe

(α−1)ξe

) 1

α
} ,

and

ζe =


σe + ξe if

(
σe

(α−1)ξe

) 1

α
< 1

αξe
(

σe
(α−1)ξe

)
1− 1

α
if

(
σe

(α−1)ξe

) 1

α
≥ 1

.

By employing the convex cost function F̄e (p
′) and relaxing the integral constraint, a solvable

convex program is obtained. Following [5], CPR solves the convex program to obtain a fractional

solution p̂◦ and then rounds it to an integral solution p̂♯ through a random rounding procedure. In

particular, for each sub-request i j , a path p̂i j is chosen from the set p̂◦i j = {p̂
◦
i j ,k
}k ∈[Kij ] by taking

the positive real numbers {yi j ,k }k ∈Kij associated with {p̂◦i j ,k }k ∈[Kij ] as a probability distribution
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[5]. This random rounding procedure guarantees that for every edge e ∈ E,

E

[
ξe

∑
i

(wi )
α−1 · l

p̂♯

e (i)

]
= ξe

∑
i

(wi )
α−1 · l

p̂◦
e (i) and E

[
We (p̂

♯)

]
≤ O

((σe
ξe

) 1

α
)
·We (p̂

◦) . (15)

Then we have ∑
e

E
[
F̄e (p̂

♯)

]
≤ O

((
max

e

σe
ξe

) 1

α
)
·
∑
e

F̄e (p̂
◦) . (16)

Since p̂◦ is the optimal fractional solution of the convex program with respect to the cost function

F̄e (p
′), and F̄e (p

′) ≤ F̂e (p
′) for any edge e and any profile p ′ that is feasible for R ′ [5, Section IV.B]:∑
e

F̄e (p̂
◦) ≤

∑
e

F̄e (p̂
∗) ≤

∑
e

F̂e (p̂
∗) = Ĉ(p̂∗) (17)

Recall that Ĉ(p̂∗) is the optimal fractional solution of Î ′, Eq. (16) and Eq. (17) imply that:

Lemma 11.6. The solution p̂♯ is an O
((

maxe
σe
ξe

) 1

α
)
-approximation solution of the instance Î ′.

The last step of CPR is to convert p̂♯ to an integral solution p♯ that is feasible for the original
instance I, still by randomized rounding. In particular, to generate p♯ , each traffic request i in

instance I should be routed along the path p̂♯i j ∈ p̂
♯
with probability

1

wi
. Then we have

E

[∑
e

Fe (p
♯)

]
≤ E


∑
e ∈p̂♯

(
σe + ξe (l

p♯

e )
α
)

= E


∑
e ∈p̂♯

σe

 + E

∑
e ∈p̂♯

ξe (l
p♯

e )
α


≤ E


∑
e ∈p̂♯

σe

 +O(αα )E

∑
e ∈p̂♯

ξe (l
p̂♯

e )
α +

∑
i

(wi )
α−1l

p̂♯

e (i)


≤ O(αα )E


∑
e ∈p̂♯

F̂e (p̂
♯)

 . (18)

The third transition above follows from [27, Section 5.2]. Combining Lemma 11.5, Lemma 11.6, and

Eq. (18) gives the following result:

Theorem 11.7. The algorithm CPR has an approximation ratio of O
((

maxe
σe
ξe

) 1

α
)
.

Weight-scaling and Loss in Approximation Ratio. Algorithm CPR processes every sub-request
independently, therefore its time complexity depends on the numeric value

∑
i wi which cannot be

bounded by a polynomial of the instance size poly(|I|). A naive idea for overcoming this issue is

to scale down and round the weights so thatwi is bounded by a polynomial of |I |. Although this

weight-scaling technique works well for some classic optimization problems such as the Knapsack

problem, it may incur a significant loss in the approximation ratio for the EER problem.

Generally speaking, the weight-scaling technique can be described as a function WSF that maps

each weight vector w to a weight vector w ′
of the same length. For any N ∈ Z≥1 and κ > 1, let
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1N and κN be two vectors of length N so that every element in 1N (resp. κN ) is 1 (resp. κ). A
weight-scaling function is said to be κ-ambiguous if WSF(1N ) = WSF(κN ) for any N ∈ Z≥1.

For illustration, consider a weight-scaling function WSF which maps each givenw tow ′
so that

for each i ∈ [|w |], the element w ′(i) is set to

⌈
w(i) · |w |

ε ·maxi w(i)

⌉
, where 0 < ε < 1 is a constant. A

similar function is used in [40] to obtain an FPTAS algorithm for the Knapsack problem. It is easy

to see that such a weight-scaling function is κ-ambiguous for any κ > 1.

To analyze the loss in approximation ratio that can be caused by a weight-scaling function, now

construct an undirected graphG0 = (V0, E0) with respect to some positive number κ > 1. There are

two nodes in G0, u and v , which are connected by more than κ
α

2α−1 parallel edges. There exists a

special edge e∗ with cost parameters σe∗ = 1 and ξe∗ = 1, while for any other edge e ∈ E − {e∗},
σe = κ

α
and ξe = 1. Following theorem shows that on this graph, a κ-ambiguous weight-scaling

function leads to an approximation ratio that cannot be bounded byO
(

maxe

(
σe
ξe

) 1

α
)
= O(κ) when

α > 3+
√

5

2
.

Theorem 11.8. By taking any κ-ambiguous weight-scaling function, the approximation ratio of
any deterministic algorithm for the EER problem on the graph G0 has a lower bound of Ω

(
κ

α ·(α−1)

2α−1

)
.

Proof. Consider two input instances, I1 and I2, on the graph G0. Each of these two instances

contains N = κ
α

2α−1 requests with the source-target pair {u,v}. For every i ∈ [N ], the weights of
player i in instance I1 and instance I2 are set to 1 and κ, respectively. Suppose that the vectors
of weights in I1 and I2 are fed to a κ-ambiguous weight-scaling function to generate two new

instances IMST
1

and IMST
2

. By definition, no algorithm can distinguish IMST
1

from IMST
2

. Hence, the

following observation trivially holds.

Claim 11.9. For any deterministic algorithm of the EER problem, the output generated for IMST
1

is
same as the one for IMST

2
.

Let the output generated by a given deterministic algorithm of the EER problem for IMST
1

be p.
Denote the optimal solution of I1 (resp. I2) byC

∗(I1) (resp.C
∗(I2)), and the total cost incurred by p

for I1 (resp. I2) be C(I1,p) (resp. C(I2,p)).

Claim 11.10. The approximation ratio of the given deterministic algorithm is at least
max

{
C(I1,p)
C∗(I1)

,
C(I2,p)
C∗(I2)

}
.

Claim 11.11. For any profile p, max

{
C(I1,p)
C∗(I1)

,
C(I2,p)
C∗(I2)

}
≥ 1

2
κ

α ·(α−1)

2α−1 .

Proof. Suppose that x edges in E − {e∗} are used by p. Then C(I1,p) ≥ x · (κα + 1). Since the

cost of routing all requests through e∗ in the instance I is 1 + κ
α 2

2α−1 ,

C(I1,p)

C∗(I1)
≥

x(κα + 1)

1 + κ
α 2

2α−1

≥
x

2

· κ
α (α−1)

2α−1 .

Noticing that the x + 1 edges used by p have the same value of the parameter ξe , we have:

C(I2,p) ≥ (x + 1)

[( N

x + 1

· κ
)α ]

= κ
α (3α−1)

2α−1 · (x + 1)1−α .

By routing each request along a distinct edge, a solution with total cost 2κ
2α 2

2α−1 can be obtained for

the instance I2. Therefore,
C(I2,p)

C∗(I2)
≥
(x + 1)1−α

2

· κ
α (α−1)

2α−1 .
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Note that x ∈ Z≥0. When x ≥ 1, max

{C(I1,p)
C∗(I1)

,
C(I2,p)

C∗(I2)

}
≥

C(I1,p)

C∗(I1)
≥

1

2

κ
α (α−1)

2α−1 ; while if x = 0,

max

{C(I1,p)
C∗(I1)

,
C(I2,p)

C∗(I2)

}
≥

C(I2,p)

C∗(I2)
≥

1

2

κ
α (α−1)

2α−1 . ■ (Claim 11.11)

This proof is completed by combining the claims above. □

For any randomized algorithm for the EER instance, it should generate an output for the instance

I1 with the same probability distribution over the path profiles as the one for the instance I2.

Therefore, we have the following result.

Corollary 11.12. With any κ-ambiguous weight-scaling function, the approximation ratio of any
randomized algorithm for the EER problem on the graph G0 has a lower bound of Ω

(
κ

α (α−1)

2α−1

)
.

As mentioned earlier, the approximation ratio Ω
(
κ

α (α−1)

2α−1

)
is worse than the approximation ratio

promised by Alg-ABRD when α > 3+
√

5

2
≈ 2.618. Furthermore, by Theorem 11.7, we cannot expect

an approximation ratio better than the ratio promised by Alg-ABRD when α ≤ 2.618, either, if we

combine CPR with a weight-scaling function.
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