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Approximating Generalized Network Design under
(Dis)economies of Scale with Applications to Energy
Efficiency”

YUVAL EMEK, Technion - Israel Institute of Technology, Israel
SHAY KUTTEN, Technion - Israel Institute of Technology, Israel
RON LAVI, Technion - Israel Institute of Technology, Israel
YANGGUANG SHI, Technion - Israel Institute of Technology, Israel

In a generalized network design (GND) problem, a set of resources are assigned (non-exclusively) to multiple
requests. Each request contributes its weight to the resources it uses and the total load on a resource is then
translated to the cost it incurs via a resource specific cost function. Motivated by energy efficiency applications,
recently, there is a growing interest in GND using cost functions that exhibit (dis)economies of scale ((D)oS),
namely, cost functions that appear subadditive for small loads and superadditive for larger loads.

The current paper advances the existing literature on approximation algorithms for GND problems with
(D)oS cost functions in various aspects: (1) while the existing results are restricted to routing requests in
undirected graphs, identifying the resources with the graph’s edges, the current paper presents a generic
approximation framework that yields approximation results for a much wider family of requests (including
various types of Steiner tree and Steiner forest requests) in both directed and undirected graphs, where the
resources can be identified with either the edges or the vertices; (2) while the existing results assume that
a request contributes the same weight to each resource it uses, our approximation framework allows for
unrelated weights, thus providing the first non-trivial approximation for the problem of scheduling unrelated
parallel machines with (D)oS cost functions; (3) while most of the existing approximation algorithms are based
on convex programming, our approximation framework is fully combinatorial and runs in strongly polynomial
time; (4) the family of (D)oS cost functions considered in the current paper is more general than the one
considered in the existing literature, providing a more accurate abstraction for practical energy conservation
scenarios; and (5) we obtain the first approximation ratio for GND with (D)oS cost functions that depends only
on the parameters of the resources’ technology and does not grow with the number of resources, the number
of requests, or their weights. The design of our approximation framework relies heavily on Roughgarden’s
smoothness toolbox (JACM 2015), thus demonstrating the possible usefulness of this toolbox in the area of
approximation algorithms.
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mization; Algorithm design techniques;

“An extended abstract of this paper has appeared in the Proceedings of the 50th Annual ACM Symposium on the Theory of
Computing (STOC 2018).

Authors’ addresses: Yuval Emek, Technion - Israel Institute of Technology, Haifa, Israel, 3200003, yemek@technion.ac.il;
Shay Kutten, Technion - Israel Institute of Technology, Haifa, Israel, 3200003, kutten@technion.ac.il; Ron Lavi, Technion -
Israel Institute of Technology, Haifa, Israel, 3200003, ronlavi@technion.ac.il; Yangguang Shi, Technion - Israel Institute of
Technology, Haifa, Israel, 3200003, shiyangguang@technion.ac.il.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

XXXX-XXXX/2019/12-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: December 2019.


https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Yuval Emek, Shay Kutten, Ron Lavi, and Yangguang Shi

Additional Key Words and Phrases: Approximation algorithms, generalized network design, (dis)economies of
scale, energy consumption, real exponent polynomial cost functions, smoothness, best response dynamics

ACM Reference Format:

Yuval Emek, Shay Kutten, Ron Lavi, and Yangguang Shi. 2019. Approximating Generalized Network Design
under (Dis)economies of Scale with Applications to Energy Efficiency. 1, 1 (December 2019), 34 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Generalized Network Design. An instance I of a generalized network design (GND) problem
is defined over a finite set E of resources and N abstract requests. Each request i € [N] is served
by choosing some reply p; C E from request i’s reply collection P; C 2F. Serving request i with
reply p; contributes w;(e) units to the load I, on resource e for each e € p;, where w; € Z%, is
the weight vector associated with request i (specified in 7). We emphasize that our GND setting
supports unrelated weights, that is, request i may contribute different weights to the load on
different resources in p;.

One should serve all the requests of the instance 7 with replies p = {p;};c[n}, satisfying p; €
P; for every i € [N], under the objective of minimizing the total cost C(p). This is defined as
C(p) = Y ocp Fe(le), where F, : Zsog — Ry is a resource cost function that maps the load I, = I =
2ie[N]eep, Wi(e) induced by p on resource e to the cost incurred by that resource.

We restrict our attention to GND problems with succinctly represented requests, namely, requests
whose reply collections P; can be specified using poly(|E|) bits. These requests are often defined
by identifying the resource set E with the edge set of a (directed or undirected) graph G = (V, E),
giving rise to, e.g., the following request types.

e Routing requests. This type of requests is concerned with connecting a given source-target
pair. Formally, in a directed or undirected graph, each routing request i is specified by a pair
(si, t;) € V XV of terminals, and the reply collection P; is defined to consist of all (s;, ¢;)-paths
in G.

e Multi-routing requests. Formally, in a directed or undirected graph, each multi-routing request
i is specified by a collection D; € V X V of terminal pairs, and the reply collection P; is
defined to consist of all edge subsets F C E such that the subgraph (V, F) admits an (s, ¢)-path
for every (s, t) € D; (useful for designing a multicast scheme).!

o Set connectivity (resp., set strong connectivity) requests. This type of requests is concerned
with connecting a given set of terminals. Formally, in an undirected (resp., directed) graph,
each set connectivity (resp,. set strong connectivity) request i is specified by a set T; C V of
terminals, and the reply collection P; is defined to consist of all edge subsets that induce on
G a connected (resp., strongly connected) subgraph that spans T; (useful for designing an
overlay network).

Alternatively, one can identify the resource set E with the vertex set of a graph, obtaining the vertex
variants of the aforementioned request types, or with any other combinatorial structure as long as
it fits into the aforementioned setting.

(Dis)economies of Scale. The classic network design literature addresses scenarios where the
higher the load on a resource is, the lower is the cost per unit load, thus making it advisable to share
network resources among requests, commonly known as buy-at-bulk network design [4, 10, 18, 20].
More formally, the cost functions F(-) in buy-at-bulk network design are assumed to be subadditive,

Notice that the multi-routing request given by D; cannot be (trivially) reduced to |D;| (single-)routing requests since a

reply F for the former contributes w;(e) units to the load on edge e € F “only once”, even if this edge is used to connect
multiple terminal pairs in D;.
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i.e., they exhibit economies of scale. Recently, there is a growing interest in investigating network
design problems with superadditive cost functions (i.e., cost functions exhibiting diseconomies of
scale) [5, 37] or even cost functions that may appear subadditive for small loads and superadditive
for larger loads [5, 6, 9], referred to as cost functions exhibiting (dis)economies of scale ((D)oS) [6].

The (D)oS cost functions studied so far in the context of network design capture the energy
consumption of network devices employing the popular speed scaling technique [3, 6, 7, 15, 22, 29,
38, 47] that allows the device to adapt its power level to its actual load. Given a global constant
parameter o € R, (ak.a. the load exponent), an energy consumption cost function for resource
e € E is defined by setting

Fullo) = {0’ =0 <1>
Oet+&-1F, >0
where o, € Ry (the startup cost) and &, € R (the speed scaling factor) are parameters of e.
This paper improves the existing results on approximation algorithms for GND with energy
consumption cost functions in various aspects (see Section 1.1). In fact, our results apply to a more
general class of resource cost functions exhibiting (D)oS, referred to as real exponent polynomial

(REP) cost functions. Given global constant parameters q € Z>; and ay, ..., aq € R>1, a REP cost
function for resource e € E is defined by setting
0, le=0
Fe(le) = aj; ¢ > ()
Oe + Zje[q] Eej - l’, le>0
where 0, € Rygand & 1,. .., & 4 € Ry are parameters of e, constrained by requiring that & ; > 0

for at least one j € [q].”

On top of the theoretical interest in studying more general cost functions, there is also a practical
motivation behind their investigation. While some of the theoretical literature on energy efficient
network design considers the special case of (1) where o, = 0 (see Section 1.1), it has been
claimed [6, 9] that the startup cost component is crucial for better capturing practical energy
consumption structures. In fact, in realistic communication networks, even the energy consumption
cost functions of (1) may not be general enough since a link often consists of several different
devices (e.g., transmitter/receiver, amplifier, adapter), all of which are operating when the link is
in use. As their energy consumption may vary in terms of the load exponents and speed scaling
factors, the functions presented in (1) do not provide a suitable abstraction for the link’s energy
consumption and the more general REP cost functions (2) should be employed.

Approximation Framework. Our main contribution is a novel approximation framework for GND
problems with REP resource cost functions. This framework yields an approximation algorithm
when provided access to an appropriate oracle that we now turn to define. A reply p-oracle, o > 1,
for a family Q of succinctly represented requests is an efficient procedure that gets as input a
resource set E, the reply collection R C 2F (specified succinctly) of a request in Q, and a function
7 : E — R., referred to as a toll function, that maps every resource e € E to a positive real
number 7(e). The output of the reply p-oracle is some reply r € R that minimizes the total toll
7(r) = Y., 7(e) up to factor g, i.e., it satisfies 7(r) < o - (r’) for every r’ € R. An exact reply oracle
is a reply p-oracle with o = 1.

Notice that the optimization problem behind the reply oracle is not a GND problem: it deals
with a single request (rather than multiple requests) and the role of the resource cost functions
(combined with the weight vectors) is now taken by the (single) toll function. In particular, while

2The scenario where &, ; = 0 for every j € [q] is beyond the scope of this paper and left open. See Section 5 for more
details.
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all the (specific) GND problems mentioned in this paper are intractable (to various extents of
inapproximability [5, 14, 42]), the request classes corresponding to some of them admit exact reply
oracles.

For example, routing requests (in directed and undirected graphs) admit an exact reply oracle
implemented using, e.g., Dijkstra’s shortest path algorithm [24, 25]. In contrast, set connectivity
requests in undirected graphs, set strong connectivity requests in directed graphs, and multi-routing
requests in undirected and directed graphs do not admit exact reply oracles unless P = NP as these
would imply exact (efficient) algorithms for the Steiner tree, strongly connected Steiner subgraph,
Steiner forest, and directed Steiner forest problems, respectively. However, employing known approx-
imation algorithms for the latter (Steiner) problems, one concludes that: set connectivity requests
in undirected graphs admit a reply p-oracle for o < 1.39 [16]; set strong connectivity requests in
directed graphs admit a reply ¢€-oracle, where t = |T| is the number of terminals [17]; multi-routing
requests in undirected graphs admit a reply 2-oracle [2]; and multi-routing requests in directed
graphs admit a reply k'/2*€-oracle, where k = |D| is the number of terminal pairs [19]. This means,
in particular, that set connectivity replies and multi-routing replies in undirected graphs always
admit a reply p-oracle with a constant approximation ratio p, whereas set strong connectivity
replies and multi-routing replies in directed graphs admit such an oracle whenever |T| and |D| are
fixed. The guarantees of our approximation framework are cast in the following theorem.

THEOREM 1. Consider some GND problem P with succinctly represented requests using REP resource
cost functions as defined in (2). Suppose that the requests of P admit a reply p-oracle Op. When
provided with black-box access to Op, our approximation framework yields a randomized efficient
approximation algorithm Agp for P whose approximation ratio is

0]

o, \Yu
Qman [%9] + © - maxe mln] (é_/_e)
e,J

with high probability. Moreover, our approximation framework runs in strongly polynomial time, so if
Ogp is implemented to run in strongly polynomial time, then Ap also runs in strongly polynomial
time.

Notice that our approximation framework is fully combinatorial and does not rely on solving con-
vex programs. We emphasize that when p = O(1), the approximation ratio promised in Theorem 1

becomes
4 0o l/aj
1 + max, min; | —
é{e,j
which is free of any dependence on the number |E| of resources, the number N of requests, and
the weight vectors {w;};¢[n]; rather, it depends only on the parameters (o, &, ;) of the network
resources’ technology (speed scaling in case g = 1). Notice that the hidden expressions in our O
notations may depend on the parameters q and a, . . ., &g assumed to be constants throughout this

paper.

@)

1.1 Comparison to Existing Results

GND with Routing Requests. The existing literature on (generalized) network design beyond
subadditive resource cost functions [5, 6, 9, 37] focuses on routing requests, identifying the resources
with the edges of a graph, and with the exception of [37], it is restricted to undirected graphs and
related weights, i.e., wi(e) = w; for every e € E. In contrast, the current paper handles a wider
class of request types over much more general combinatorial structures (including both directed
and undirected graphs) and our approximation framework supports unrelated weights. Moreover,
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Table 1. Comparison of the approximation algorithms for GND with routing requests (identifying the
resources with the graph edges) under the energy consumption cost functions (1) and restrictions thereof.

paper graphs weights algorithm restrictions approx. ratio

1

(0] (1 + (maxe %) “ Ioga_l Wmax)

[5] undir.  related math. prog. none
O (N +10g% " Winax)

[6] undir. related math. prog. % = % polylog(N) - O (log‘)‘_1 Winax)

[9] undir. w; =1 combin. & = O (log® N)

[5] undir.  related math. prog. Op = O (log® ™" Winay)

[37] un/dir.  unrel. math. prog. e =0 1+¢e)8,

1

current un/dir.  unrel. combin. none o] (1 + (maxe %) a)

the current paper addresses the general REP cost functions (2), whereas as stated beforehand, the
existing literature addresses only the energy consumption cost functions (1) and special cases
thereof (Table 1 summarizes the relevant approximation upper bounds).

Specifically, Makarychev and Sviridenko [37] consider purely superadditive cost functions by
restricting (1) to o, = 0 for all e € E, obtaining an approximation ratio of (1 + €)8B,, where B,
is the fractional Bell number with parameter «. This improves the prior O (log® ™" wiax) upper
bound of Andrews et al. [5], where wiax = max;c[n] wi. The case where the startup cost o, may
be positive is addressed by Antoniadis et al. [9], obtaining an approximation ratio of O (log”® N),
but this result is limited to the uniform case where w; = 1 for all i € [N].

As stated in [6, 9], for a more accurate abstraction of practical energy conservation scenarios,
the cost function definition of (1) with positive startup costs and arbitrary (related) weights is
unavoidable. In this setting, three different approximation ratios have been devised by Andrews et

1/
al: 0 ((1 + max, %) ¢ log®™! wmax) and O (N +10g* ™" Winax) in [5]; and polylog(N)-log® " wypax

in [6].°

We emphasize that these three approximation ratios grow with the number N of traffic requests
and/or the maximum weight wpax, whereas the approximation ratio established in the current
paper depends only on the parameters of the network resources’ technology. Furthermore, the
algorithms behind these approximation ratios are based on linear/convex programming and their
(currently known) implementations do not run in strongly polynomial time (this is true also for the
algorithm of [37]). In contrast, the approximation framework developed in the present paper is
purely combinatorial with a strongly polynomial run-time.

Scheduling Unrelated Parallel Machines. While GND with routing requests and related weights
is a classic problem by its own right, generalizing it to unrelated weights not also makes this
abstraction suitable for a wider class of GND scenarios, but also captures the extensively studied
problem of scheduling unrelated parallel machines. This problem can be represented as GND with
routing requests over a graph consisting of two vertices and multiple parallel edges (referred to as

3Actually, in [6], the startup cost term in the cost function is somewhat restricted.
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machines) between them. The earlier algorithmic treatment of this problem considers the objective
of minimizing the £, norm (a.k.a. makespan) of the machines’ load [34, 45].* Later on, the focus has
shifted to minimizing the £, norm of the machines’ load for p € (1, c0) [12-14, 33, 37]. The state of
the art approximation algorithm in this regard is the one developed by Kumar et al. [33] with a < 2
approximation ratio for all p € (1, o). Makarychev and Sviridenko [37] studied this problem for
small values of p and designed a {/ZTp-approximation, improving upon the upper bound of [33] for
the p € (1, 2] regime.

The £, norm optimization criterion corresponds to the energy consumption cost function (1)
restricted to zero startup costs o, = 0 (energy efficiency is also the main motivation of [37]). In
practice, however, machines’ energy consumption typically incurs a positive startup cost [6, 9]. This
motivated Khuller et al. [31, 35] to study a variant of unrelated parallel machine scheduling in which
the (sub)set of activated machines should satisfy some budget constraint on the startup costs. To
the best of our knowledge, the current paper presents the first non-trivial approximation algorithm
for scheduling unrelated parallel machines that takes into account the (positive) machines’ startup
costs o, > 0 as part of the objective function.

1.2 Paper Organization.

The rest of the paper is organized as follows. Section 2 introduces the concepts and notations used
in the design and analysis of the proposed approximation framework. Following that, a technical
overview of the approximation framework’s design and analysis is provided in Section 3. The actual
approximation framework is presented in Section 4 and analyzed in Section 5- 8. Two variants of
the proposed approximation framework, which are more feasible for a decentralized environment,
are presented in Section 9. In Section 10, we establish additional bounds that demonstrate the
tightness of certain components in the analysis. Finally, alternative approaches for designing GND
approximation algorithms are discussed in Section 11. In particular, Section 11.2 discusses an
alternative algorithm for the GND problem with routing requests using convex optimization and
randomized rounding.

2 PRELIMINARIES

Throughout, we consider some GND problem # with succinctly represented requests using REP
resource cost functions (2). Let

I = <E, {p;, {Wi(e)}eEE}ie[N] > {aj}je[q] ’ {Ge’ {ge’j}fe[q]}eeE>

be some P instance. Let p* be an optimal solution for 7 and C* = C(p*) be its total cost.

GND Games and Cost Sharing Mechanisms. A key ingredient of the approximation framework
designed in this paper is a GND game derived from instance 7. In this game, each request i € [N] is
associated with a strategic playeri that decides on the reply p; € P; serving the request. In the scope
of this GND game, the reply p; € P; is referred to as the strategy of player i and the reply collection
P; is referred to as her strategy space. We let P = Py X --- X Py and refer to p = (py,...,pN) € P as
the (players’) strategy profile. Although the strategy profile p is a vector of replies, we may slightly
abuse the notation and write e € p when we mean that e € ;¢ pi-

The cost F.(l,) of each resource e € E is divided among the players based on a cost sharing
mechanism (CSM) M = {fi"f(')}ie[N],eeE’ where f; . : P — Ry is a cost sharing function that
determines the cost share f; ((p) incurred by player i € [N] for resource e under strategy profile

4This objective does not fit into the formulation of minimizing the sum of the resource cost functions considered in our
paper.
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p. Player i chooses her strategy p; with the objective of minimizing her individual cost C;(p) =
2eck fi.e(p), irrespective of the total cost C(p) = X;c(n) Ci(p) (ak.a. the social cost).

CSM M = {fi,e()} ;¢ (n.ccr 18 said to be budget-balanced (cf. [21, 46]) if Ticiny fie(P) = Fo(I0)
for every resource e € E. It is said to be separable and uniform (cf. [21, 46]) if the cost share of
player i € [N] in resource e € E satisfies (1) if e ¢ p;, then fi .(p) = 0; and (2) fi .(p) is fully
determined by w;(e) and by the multiset of weights of the (other) players using resource e. Notice
that if M is separable and uniform, then f; .(p) is independent of the identities and weights of the
players using any resource e’ # e. It may be convenient to write f; .(S.) instead of f; .(p), where
Se = {j € [N] | e € p;}, although, strictly speaking, f; .(p) is also independent of the identities
(rather than weights) of the players in S, — {i}. Unless stated otherwise, all CSMs considered in
this paper are budget-balanced and separable and uniform.

Best Response. Following the convention in the game theoretic literature, given some i € [N]
and a strategy profile p = (p1,...,pn), let p_; = (p1,. .., Pi—1,Pi+1s - - -, PN); likewise, let P_; =
Py X --- X Pi_1 X Piyg X --- X Py. Given some approximation parameter y > 1, strategy p; € P; is
an approximate best response (ABR) of player i to p_; € P_; if C;(p;, p—;) < x - Ci(p}, p—;) for every
P} € P;. A best response (BR) is an ABR with approximation parameter y = 1.”

A best response dynamic (BRD) (resp., approximate best response dynamic (ABRD)) is an iterative
procedure that given an initial strategy profile p° € P, generates a sequence p!, p?, ... of strategy
profiles adhering to the rule that for every ¢t = 1,2, ..., there exists some i € [N] such that (1)
P, =p";' and (2) p! is a BR (resp., ABR) of player i to p’7™.

Strategy profile p € P is a (pure) Nash equilibrium (NE) of the GND game if p; is a BR to p_; for
every i € [N]. The (pure) price of anarchy (PoA) of the GND game is defined to be the ratio C(p)/C*,
where p € P is a NE strategy profile that maximizes the social cost C(p).

Smoothness. The following definition of Roughgarden [43] plays a key role in our analysis: Given
parameters A > 0 and 0 < p < 1, we say that the GND game is (4, p)-smooth if

Z Ci(p}p-i) < AC(p") + pC(p) (3)

for any two strategy profiles p, p’ € P.° The game is said to be smooth if it is (A, y)-smooth for some
A>0and0<p<1’

Potential Functions. Function ® : P — R* is said to be a potential function if for every i € [N]
and for any two strategy profiles p and p’ with p_; = p’ , it holds that

(p’) - @(p) = Cilp") = Ci(p) -

A game admitting a potential function is said to be a potential game. The potential function ®(p) is
said to be (A, B)-bounded for some parameters A > 1 and B > 1 if

(p)/A < C(p) < B-2(p)
for any strategy profile p € P.

Additional Notation and Terminology. Throughout, we think of € > 0 as a sufficiently small
(positive) constant and fix €; = if—z A probabilistic event A is said to occur with high probability
(w.h.p.)if P(A) > 1 - 1/(|E| + N)?, where b is an arbitrarily large constant.

5See [39] for a more detailed description of the BR notion.

The original definition of Roughgarden [43], that applies for all cost minimization games, also requires that C(p) =
2 ie[N] Ci(p), but this property is assumed to hold for all CSMs considered in the current paper, so we do not mention it
explicitly.

"Examples of smooth games are given in [43, Section 2.3].
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3 TECHNICAL OVERVIEW

The key concept in the design of our generic approximation framework is to decouple the combi-
natorial structure of the specific GND problem %, captured by the request types (and encoded in
the reply collections), from the (D)oS cost functions of the individual resources. Informally, the
former is handled by the reply oracle Op (specifically tailored for ), whereas for the latter, we
harness the power of Roughgarden’s smoothness toolbox [43]. Since this toolbox was originally
introduced in the context of game theory rather than algorithm design, we first transform the given
% instance into a GND game by carefully choosing the CSM (more on that soon). The algorithm
then progresses via a sequence of player individual improvements in the form of a BRD, where each
BRD step is implemented by invoking Op with a toll function constructed based on the current
strategy profile p € P, the choice of player i € [N], and her cost sharing functions f; .(-), e € E
(Section 4).%

In order to establish the promised upper bound on the approximation ratio, we first analyze
the smoothness parameters of the aforementioned GND game (Section 6) which allows us to
bound its PoA, thus ensuring that the total cost C(p) of any NE strategy profile p € P provides the
desired approximation for the (global) optimum C*. This part of the proof relies on introducing and
analyzing a new class of REP-expanded CSMs (Section 6), interesting in its own right.

One may hope that a BRD of the GND game converges to a NE strategy profile p € P, but
unfortunately, the BRD need not necessarily converge, and even if it does converge, it need not
necessarily be in polynomially many steps. Inspired by another component of the smoothness
toolbox [43] (which is in turn inspired by [11]), we show (in Section 5) that if the game admits
a bounded potential function, then after simulating the BRD for polynomially many steps, one
necessarily encounters a strategy profile p € P that yields the promised approximation guarantee
(although it is not necessarily a NE).

Does our GND game admit the desired bounded potential function? The answer to this question
depends, once again, on the choice of a CSM. We therefore look for a CSM with three (possibly
conflicting) considerations in mind: the game that it induces must admit a bounded potential
function; it must be REP-expanded; and it must be efficiently computable. We prove that the
Shapley CSM satisfies the first two conditions (Section 7 and 6, respectively) and although its exact
computation is #P-hard, we manage to adapt the approximation scheme of [36], originally designed
for superadditive cost functions, to accommodate the REP cost functions (2) with positive startup
costs o, > 0 (Section 8). This presents another obstacle though since the original technique of
[43] assumes (implicitly) that each step in the BRD is (as the definition implies) an exact BR. To
overcome this obstacle, we show that an ABRD is still good enough for our needs (Section 5).

We believe that the construction described here demonstrates the usefulness of algorithmic
game theory tools for algorithm design even for optimization problems that on the face of it, are
not at all concerned with game theory. A similar concept is demonstrated by Cole et al. [23] who
obtained an improved combinatorial algorithm for job scheduling on unrelated machines, with
the objective of minimizing the weighted sum of completion times, based on the game theoretic
tools developed in [11]. In comparison, we employ the smoothness toolbox [43] for the design and
analysis of our approximation framework. It is the robustness of this toolbox that plays the key
role in the generality of our framework that can be applied to a wide family of GND problems.
This is in contrast to most of the existing approximation algorithms for such problems that rely on
linear/convex programming and are therefore heavily tailored to one specific GND problem and
much less generic.

81n this section (only), we assume for simplicity that Op is an exact reply oracle.
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4 ALGORITHM DESCRIPTION

Let Op be a reply p-oracle for the requests of the GND problem #. Our goal is to design an
approximation algorithm with black-box access to Op as promised in Theorem 1. We shall refer to
this approximation algorithm as A1g-ABRD.

Given an instance I = <E, {P;, {Wi(e)}eeE}ie[NJ s {(xj}je[q] R {cre, {fe’j}je[q]}eeE> of P, we
first construct (conceptually) the GND game induced by 7 and a carefully chosen CSM M =
{f,-,e(-)}l.e[N]’eeE. On top of the other properties of M that will be discussed in the next sections,
we require that M is poly-time e-computable, namely, that given 7, p € P, and i € [N], it is possible
to compute in time poly(|E|, N) some e-cost shares ﬁ,e(p), e € E, that satisfy

(1= fi.e®) < fiep) < (1 + )fie(p)
w.h.p. Define the e-individual cost C;(p) to be the sum C;(p) = Y ,ck ﬁ,e(p), which means that

(1-€)Ci(p) < Ci(p) < (1 + €)Ci(p)
w.h.p. As we shall perform the computations of the e-cost shares (and the e-individual costs)
poly(|E|, N) times, all of them succeed w.h.p.; condition hereafter on this event.

To simplify the presentation, we assume that the values of the e-cost shares f:e(p) e € E, and the
e-individual costs C, i(p) have already been fixed before the algorithm’s execution for all i € [N] and
p € P in an (arbitrary) manner that satisfies the aforementioned e-approximation inequalities; the
algorithm then merely “exposes” some (poly(|E|, N) many) of these values. The following lemma
plays a key role in the design of Alg-ABRD.

LEMMA 4.1. IfM is a poly-time e-computable CSM, then there exists a randomized procedure that
giveni € [N] and p_; € P_;, runs in time poly(|E|, N) and computes a strategy p; € P; and the
corresponding e-individual cost C;(p;, p-;) such that C;(p;, p—i) < 0 - 5i(p;,p_,-)for any p; € P;. This
means in particular that p; is an ABR of playeri to p_; with approximation parameter ge,.”

Proor. Construct the toll function 7; ,_, : E — Ry by setting 7; ,_,(e) to be the e-cost share
ﬁ,e(se U {i}), where S, = {j € [N] —{i} | e € p;}. This can be done in time poly(|E|, N) since M is
poly-time e-computable. The assumption that M is separable and uniform guarantees that a reply
pi € P; that minimizes the total toll X, 7i,p_,(€) up to factor o satisfies Cilpip-i)<o- Gi(p;,p,i)
for any p; € P; and that the sum X, 7i,p ,(€) is the desired e-individual cost. Such a reply p; can
be computed using the reply p-oracle Op. O

Employing the procedure promised by Lemma 4.1, ALg-ABRD simulates an ABRD po,pl, ... of
the GND game induced by 7 and M that includes at most T iterations for some T = poly(|E|, N)
whose exact value will be determined later. This is done as follows (see also Pseudocode 1).

Set p° by taking p?, i € [N], to be the strategy generated by O for the toll function 7, defined
by setting 7(e) = Fe(w;(e)). Assuming that p’~*, 1 < t < T, was already constructed, we construct
p' as follows. For i € [N], employ the procedure promised by Lemma 4.1 to compute an ABR p! of
player i to p’;' and let 6! = Cilp ) —e -5l-(plf,pf;1). If 6! < 0foralli € [N], then the ABRD stops,
and we set p* = p’~'; in this case, we say that the ABRD converges. Otherwise, fix A" = 3;(n] 6/
and choose some player i’ € [N] so that

1
5, >0 and &, > —A' (4)
N

9 All subsequent occurrences of the term ABR (and ABRD) share the same approximation parameter pe;, hence we may
refrain from mentioning this parameter explicitly.
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:10 Yuval Emek, Shay Kutten, Ron Lavi, and Yangguang Shi

ALGORITHM 1: A1g-ABRD

Input: A GND instance 7 = <E, {Pi,{wi(e)}ecE}ic[N] > {aj }je[q] s {O’e, {§e,j }je[q] } eeE>'
Output: A profile p € P that is feasible for the given instance 7.
fori e [N]do

set r? to be the toll function defined by setting Tio(e) = Fe(wj(e)) for every e € E;

set p? to be the output of oracle Op on E, P;, and T?;
end
t —0;

while t < T do
te—t+1;

foric[N]do
set p! to be an ABR of player i to pt ;1 with approximation parameter pey;
§f = Cilp'™") —er - Cilp}, pt3 1)
end
if 51? < 0 foralli € [N] then
Pt ptl
break;
end

A' — Y ic[N1 s
pick some j € [N] such that 51.' > 0 and 5; > AY/N;
P ('

end

t* = argmin, C(p");

returnpt*;

to update her strategy, setting p’ = (p/,, p;') (the existence of such a player is guaranteed by the
pigeonhole principle).

When the ABRD terminates (either because it has reached iteration t = T or because it converged),
Alg-ABRD chooses an iteration t* such that the corresponding strategy profile p’” has a minimum
total cost C(p’") and outputs p’". (Recall that in contrast to the player individual costs, the social
cost can always be computed efficiently.)

5 ANALYZING ALG-ABRD

In this section, we begin our journey towards bounding the approximation ratio and run-time
of Al1g-ABRD as promised by Theorem 1. The analysis relies on a careful choice of the CSM M =
{ f,-,e(-)}ie[ NI In particular, we are looking for a CSM whose induced GND game is smooth and
admits a bounded potential function with the right choice of parameters.'’ The reason for that will
be made clear in Theorem 5.3 whose proof relies on Lemma 5.1 and 5.2; the former provides an
upper bound on the approximation ratio when the ABRD converges, whereas the latter is used
to bound the number T of steps in the ABRD (and is the key to ensuring strongly polynomial
run-time).

LEMMA 5.1. Suppose that the CSM M is chosen so that the induced GND game is (A, p1)-smooth with
p < 1/(p€?). If the ABRD simulated in A1g-ABRD converges at step t for anyt € [T], then the last

191t is an open question whether there exists a CSM that induces a smooth game when &, ; = 0 for every j € [q].
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Approximating Generalized Network Design 11
strategy profile p' satisfies
t 1 *
PrOOF. Recalling that we use p; to represent the ABR of player i to p*, we observe that

Z Ci(p")

Cp")

< 1162 Ci(p")
< 1661 Zgi(Pz{’Pii)
<

€1 'Qzéi@?apfi)
< g€ - Zci@::pi»
< oef(A-C 4+ p-C(ph),

where the second and fifth transitions follow from the definition of e-individual cost, the third
transition holds since the algorithm converges at step t, the fourth transition holds following
Lemma 4.1, and the sixth transition follows from the definition of (A, y)-smoothness. m}

LEMMA 5.2. The initial strategy profile p° of Alg-ABRD satisfies C(p°) < o - N™3% % . C*,

ProoF. The construction of p° guarantees that

2 Joet 2 feamten| < e 3 fout 3 destmten®].

eep? Jj€lql eep; J€lql
Therefore,
2 e+ X estwiten] <o Z 2 Joe+ 3 st
i€[N]eep? Jelql N]eep; Jelql
NS ae+Z§e] >, wile)|
ecp* i:e€py
<o- Z |:N'(7e+ Z §e,j'( Z Wi(e)) j:|
cep* jelql ieep}
<o NZ Oe + Z INE ( Z Wi(e))aj]
ecp* Jj€lql ireep;
=oN - C*,
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12 Yuval Emek, Shay Kutten, Ron Lavi, and Yangguang Shi

where the third transition follows from the superadditivity and the last transition holds since
" > 0 for every e € p*. Then,

) =) >c7e > fe,j( >, Wi(e))aj]
ecp® b Jjelql ireep?
< 3 o Z Eoj N1 Y (wile) ]
eepﬂ lEEpl
DA PIEEDN IR LI
eep’ ieep! Jjelql ireep?
<NmaX10!J Z Z [Ue +Z§ej(w,(e)) ]
eep’ izeep!
NmaXJ aj— Z Z [o’e + dej(w (6)) ]
Nleep?

< QN™3; % C* ,

where the second transition holds because the convexity indicates that

Zi;ee 0 i( ) %
(&) (€)%,

. <
IS2°) é’ | iieapt

which means that
.
(D wi@)” <1s19 Y wilen™ < N9 Y (i)™
i:eEP? i:eEp? i:eep?

The assertion follows. m]

THEOREM 5.3. Suppose that the CSM M is chosen so that the induced GND game admits an
(A, B)-bounded potential function ® and is (A, p)-smooth with i < 1/(ge?). Let Q = %. If
= [Q - In (ABN™ %)), then the output p* of Alg-ABRD satisfies
. 20€2)
) =
- 961/1

Proor. Lemma 5.1 ensures that the assertion holds if our ABRD converges at any step t < T,
so it is left to analyze the case where the ABRD does not converge. We say that profile p’ of the
ABRD is bad if

296 23
- 951/'1

*

c@p") >

CrLamM 5.4. Foranyt < T, ifp' is bad, then d(p'*!) < (1 —1/Q) - d(p").

Proor. Fix

d' =

116[ Z Cip)—o- & Z 5i(Pf»Pfi)]~ )

i€[N] i€[N]
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This means that

1 —
Cp) = ) Glp") < > Gk
ie[N] i€[N]
= ZL N Cipopto) +
1-e ie[N]

< 9612 Z Ci(P?’Pii)"‘dt

i€[N]
< 0€X(A-C* + puC(p')) +d" .

Therefore, d* > [1 - QEIZ/I] C(p") — 0€?A - C*, hence, if p’ is bad, then d’ satisfies

1 - p€? 1 - p€?
@ > [1- e Cp') - —Eeph) = —Eeph. ©
Since the ABRD does not converge at step ¢, there exists a player i’ being selected to update its
strategy. Recalling that the ABR of player i to p is denoted by p/, we observe that

d(p") - d(p'™*") = Cie(p") = Cie (P} p’ 10)
1

~ 1 ~
> i (ph) = ——Cit (e, L
> 1+6Cl ") 1_6Cl Pie.pl;0)

= rle [@z(pt) - 615if(P,{tsPiit)]
LY e
i€[N]
% Z [a-@t) —9'6151'(17?,17;)]
i€[N]
1-€¢ d!

1+e N

1-€¢ 1 2 :

1+e 2N [1 Qelp] ')
Z]‘D(Pt)

\%

1
1+¢€

\%

1

> L _ 7

=& on |1 -een] =

where the fourth transition follows from Eq. (4), the fifth transition holds since p/, is the ABR
promised by Lemma 4.1, which means that C;: @iepf)<e- Ci (P> P’ ,+), the sixth and seventh
transitions follow from Eq. (5) and Eq. (6), respectively, and the last transition holds because the
potential function is assumed to be (A, B)-bounded. Therefore,

1— el

ZeNA ) = (1-1/Q)- d(p")

q)(Pt+1) < q)(pt) (1 _

as promised. m (Claim 5.4)

Since Alg-ABRD outputs the strategy profile with the minimum total cost among all the generated
strategy profiles, this theorem holds if any of these strategy profiles is not bad.

Cram 5.5. Ifall the T + 1 strategy profiles in the ABRD are bad, then C(p”) < o - C*.
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14 Yuval Emek, Shay Kutten, Ron Lavi, and Yangguang Shi

Proor. Claim 5.4 implies that if all the T + 1 profiles in the ABRD are bad, then

1\? 1 [an (ABN'““J‘ % H 1
o(p) < [1-=] (%) = [1-= d(p’) < —————0(p°).
0" < [1-5) @00 = (1-5) ) < e )
By the definition of the bounded potential function and by Lemma 5.2, we have
B QNman a]C*
T T 0 — e
C(p ) <B q)(p ) < ABNmaxjajq)(p ) ANMax; a; C(p ) = Nmax; a; e ¢
which completes the proof. m (Claim 5.5)
20€22
CLamM 5.6. o < 1—95112;1'

Proor. For any cost minimization (A, y)-smooth game that has a (bounded) potential function,
we have L > 1. This is because the existence of a potential function implies the existence of a
QGl 23 > Zg/l

(pure) NEp € P with C(p) < —C* [43]. Therefore, ; —oeTs

> p. m (Claim 5.6)

By combining Claims 5.5 and 5.6, we conclude that not all T + 1 profiles are bad, thus completing
the proof. O

REMARK 5.7. Roughgarden [43] proves that in the BRD of a (A, u)-smooth game, the number of
strategy profiles whose cost is larger than m - C* for some constant v € (0, 1) is bounded by a
polynomial. However, his proof depends on the exact values of the cost shares and exact best responses,
both of which may be intractable in our GND setting.

In the following sections, we search for a CSM whose induced GND game is (A, u)-smooth and
admits an (A, B)-bounded potential function for parameters A, y, A, and B that when plugged into
Theorem 5.3, yield the desired approximation ratio and run-time bounds.

6 SMOOTHNESS OF THE GND GAME

In this section, a rather wide class of CSMs, the REP-expanded CSMs, is presented and the smoothness
parameters of the induced GND games are analyzed. This class is introduced because it includes
every CSM that we investigate in the scope of this paper and provides a uniform way to study
the smoothness of the GND games induced by these CSMs. The proof that an adequate potential
function exists for (the GND game induced by) one of these CSMs is deferred to Section 7.

A CSM (for GND games) is said to be REP-expanded if the cost share f; .(p) satisfies

fre®) < oe+ Z b (21 (1= wi@) i) + 22 (e ) (7)
Jelql
for any player i € [N], edge e € E, and strategy profile p € P, where z; ; and z, ; are non-negative
constants that can only depend on ;. For convenience, we also write Eq. (7) as

Xk ,
fre®) < et 3 Eor Dk (= wite)) ™ (wite)e,
jelql k=1
where x1; = @j_1, y1,; = 1, x2,; = 0, and y ; = ;. Note that the exponents {xy j, y2,j}je[q) and the
coefficients {z1 j, z2 j}je[q) are not necessarily integral.
THEOREM 6.1. Consider some REP-expanded CSM M. For any ¢ > 1, the GND game induced by M is

1 .
1 . Oe laj
aj=1  &e,j

guaranteed to be (yo + Ay - ™9 971, 1/(20))-smooth, where y = maxeer minjeq] (

and Ay > 0 is a positive constant that depends only on q and ay, . . ., ay.
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Proor. Our goal in this proof is to show that (3) holds with A = y, + A4 - 0™ % and p = 1/(2p).

We begin by observing that
Z Z ie(pfs p-1)

Z Ci(ps p-i)
i€[N]

N]eep;
< Z Dot Db D U™ e
N]eep] Jjelql ke{1,2}
< Z Dot Dz Y B Y (wile)
N]eep; jelgl.ke{1,2} eep’ ireep)
< Z ool Yz Y Ee Uy
ecp’ jelql,ke{1,2} ecp’

where the second transition follows by the definition of REP-expanded CSMs because when player
i deviates to p;, the load on edge e € p; is at most IZ + w;(e) and the last transition holds because
(1) wi(e) > 1, hence [{i € [N] : e € p{}| < lf, for any edge e; and (2) (w;(e))Y*/ is a superadditive
function of wl(e) hence } ;. eep H(wie))¥ei < (X, ecp wi(e))¥%J = (lp/)yk The desired upper bound
on Yeepy ool + 2k 2k, j Deep e, ](lp)xk J(lp )Yx.J is established in Claims 6.2 and 6.3.

CLAIM 6.2. Z ot < Yo - C(p")
eep’

Proor. Define the function g(x) = for arbitrary positive numbers o > 0, £ > 0 and « > 1.

o‘+§ a
Since its derivative is

g9'(x) = [0 = (a - 1)éx”]

o
(o +&x®)?

1/a
it attains its maximum for x > 0 at x = (ﬁ) . Therefore, for any x > 0, we have

. \Ve e
O——'x:g(x)gg((o'/f(a—l))l/a):U(mz :(ail-z)/ /(1+ 1 )

o+ & -x% 0+§m a-1

1/a;
ﬁ . gfj ) . By the inequality above, we have

1/« 1/ o+
’ 1 o, Je ’ . 1 o, Je ,
ol < (o) o ] < (g )R,

aj. =1 Eej: aj; =1 &

Let j; € argmin; g (

1/«
The assertion follows since (Wl_l : %) < yq forevery e € E. m (Claim 6.2)
Je €Je

Fix zmax = I-man k Zk, j-l and let A, = (2 . zmax)maxj @
CLAIM 6.3. Z} ) Zk 2k Yeep fej(lp)xkf(lp Yk < (P + o™ G710
Proor. Let p and p’ be any two profiles. First, consider the term Z}]:l Deep zlnge’j(lf)“j—l . [f/.

o If I < 2zpay0 - lf,, then since «; — 1 for every j, we have

Y9 1 < (2zman@)® - (1)
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o If I > 22,00 lf/, then
1
—— ()%

2 max

Yo 1 <

Therefore, we have

Z Zzl}gef(lp)aj - Z Z 21j - §ej(lp)a’

Jjelql esp’ jelqleep’Np
o N 1 )
< Zmax Z Z é:e,j [(szaxg)a’] 1, (léJ )‘XJ + 2—(15)0(J
jelqleep Ny’ max

1
< (20)"™49 7 e ) + 5 9(p),

where 3(p) = Xje(q) Zeep fe,j(lf)“f, and 3(p’) = Xje[q) eep §e,j(lf,)“f. The first transition above

holds because for any e € p — p’, the load I£ = 0. Since Djelq] Zecp’ zz,jge,j(lf/)"‘f < Zmax - 9(P'),
we have
2

q
Dz D Ee () < (20)™ " 1<zmax>maxf“fs<p>+—&<p>+zmaxs(p>

J=1 k=1 eep’
1
< da @I + - 9(p).
@

where the second transition holds because ¢ > 1 and max; a; > 1. Notice that

o)< Y oo+ ) &y (£) 7| = Co) and 967y < Y |+ dej(lp) = c(p),

ecp Jjelql eep’ Jjelql

which establishes the assertion. m (Claim 6.3)

Together, Claims 6.2 and 6.3 imply that
D Cilphp-) = (Ve + Aa@™9 ) () + C(p)/(20),
ie[N]
so (3) indeed holds with A = y, + 1,0™% %~ and 1 = 1/(20). O
Since 1/(20) < 1/(o€?) for sufficiently small e > 0, it follows that we can employ Theorem 5.3

with the smoothness parameters 1 = y, + A4 - ™% %~ and y = 1/(20) guaranteed by Theorem 6.1
to obtain the following corollary.

COROLLARY 6.4. If M is an REP-expanded CSM, then the approximation ratio of A1g-ABRD is
1

Oe

O™ % +o- maxemln](§ )aj).
e.j

We now turn to show that some natural and extensively studied CSMs are REP-expanded. Under
the proportional fair CSM (see, e.g., [26, 32]), the cost share of player i € [N] in edge e € p; is
defined to be her share of the cost incurred by load £ on edge e, proportional to her weight w;(e),

namely f; .(p) = “42F. ().

LEMMA 6.5. The proportional fair CSM is REP-expanded.
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Proor. Under the proportional fair CSM, the cost share of player i in edge e satisfies

wi(e) l z

q
< 0ot ) e jwile) - ()Y

=1

q9
= et Y Eewile) - [0 = wile) + wi(@)]
j=1

o |+ D L)

e j=1

where the inequality holds because I = 3., s Wir,e 2 wi(e). Consider the following two cases.

e 0 < ¥ —w;(e) < wi(e): Since aj —1 > 0, it follows that

G+ ) Ee jwile) - [(I2 = wi(e) + wi(e)] T < oo+ D & jwile) - (2 wile) !
J J
= 0. + Z fe’jzaf‘l(wi(e))“j .
J

o 17 —w;(e) > wj(e): In this case,

e+ Z £, jwie) - [ = wi(e) + wie)] ™" < oo + Z Ee 1297 wi(e)(D — wi(e)) Y.
J J

The assertion follows by taking z; ; = 2% 7!, and z,; = 2%! for every j € [q]. i

Let S = {i € [N] | e € p;} and let 7, be a random permutation of S, drawn from the
uniform distribution. Under the Shapley CSM (see, e.g., [26, 32]), the cost share of player i € [N]
in edge e € p; is defined to be its expected marginal contribution if the players are added to
e one-by-one in 7, order. More formally, taking Si(z.) C S, to denote the set of players that
precede player i in 7., the cost share of i in edge e under the Shapley CSM is defined to be

fi.e(p) =E [Fe (Zi'es;'(ne) Wire + w,-(e)) - F, (Zi'esg(ne) w,-,,e)] if e € p;, otherwise f; .(p) = 0.
Before proving that the Shaply CSM is REP-expanded, we first define a function h, : 2N — R,

by setting
he(X) = Z e, j- (Z Wi(e)) . (8)

j€lql ieX
LEMMA 6.6. The function h.(X) is supermodular.
Proor. By definition, h.(X) is supermodular if for any X; c X; € X and i’ € X\ Xy,
9 (Xj (Xj 9 [XJ‘ (Xj
2l 23 w@)" = (2 w@)"| < Ra|( 3 w@) - (3 we@)”|.
j=1 ieX;u{i’} iex j=1 ieX,0{i’} i€X;

Therefore, it suffices to prove that for any three non-negative numbers x1, x; and y, (x; + y)% —
(x1)% < (1 +x2+y)% —(x1+x2)% holds for any a; > 1. Let v(xy, x2, y) = (x1 +x2+y)% — (1 +x2)%Y.
Then we have

dv
T = [(x1 +ox + )T = (o + xz)a-"_l] .
aXQ
Since a; > 1, g—;; > 0 when x; > 0. Therefore, v(x1, X2, y) > v(x1,0,y) = (x1 + )% — (x1)%. O

LEMMA 6.7. The Shapley CSM is REP-expanded.
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Proor. Under the Shapley CSM, the cost share of player i € [N] in edge e € p; is

D{j aj
fre®) <Bloe+ Y &yl D) wrerwi@)] =D &y D) wie
J i7€Si(me) J i"eSi(ne)
a; a;
<o+ Z & j Z wire +wile)| — Z Ee,j Z Wire
Jj i"e(Se—{i}) J i’€(Se—{i})

= 0ot ) Ee j ) = Y Ee (I - wile)
J J

where the first transition holds since }; & ;% < Fe(l) < 0e + X; &, ;1% for any [ > 0 and the
second transition follows from Lemma 6.6. Consider the following two cases.

o £ < 3. w;(e): In this case,

G+ D Ee )T = D & I = wile)T < o+ ) Ee 3T (wile)) .
J J

J

e I > 3. w;(e): By Newton’s generalized binomial theorem, we have

Oe+ ) Ee j )T = Y Ee (I —wile)®
J J

=

<ot Yt ) ()0 - wenHoue = 3 s - e
J k J

oo
=0

o
=1

=0e + Z Ee. j kz (ij)(lf —wi(e) ¥ F(wi(e)*
J

% P aj-1 S Wi(e) k=
< O'E+Z§e,j(\‘aj_+lJ)W,’(€)(le —wi(e)) 'j Z(lp—)
J

- p e — wi(e)
&j P AN o
o st - S
- - k=1

< 0¢+2 Z g&j({aﬁw)wi(e)(lf - wi(e)¥!,
J 2

where the third transition holds because for any a > 1 and k € Z*, the absolute value of (Z)
is at most (L&J)
2

The assertion follows by taking z; ; = 3%, and z, ; = Z(laﬁlJ) for every j € [q]. O
T

7 THE POTENTIAL FUNCTION OF THE SHAPLEY COST SHARING MECHANISM

The next step is to prove that among the REP-expanded CSMs, there exists one that induces a
GND game with an (A, B)-bounded potential function for sufficiently small A, B > 1. (Recall that
by Theorem 5.3, this would provide an upper bound on the number of steps in the ABRD.) While
we could not accomplish this task for the proportional fair CSM, the Shapley CSM turned out to be
more successful.
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It can be inferred from [44, Proposition 2.1] (see also [28, 32]) that the GND game induced by
the Shapley CSM admits the potential function

Op) = Y. " fielSie) Ui}, )

eEp ieS,

where S, = {j € [N] | e € p;}, Y, is an arbitrary permutation of S,, and S!(i/.) is the set of players
that precede i in i/.. Note that in contrast to the random permutation 7, used in the definition
of the Shapley CSM, the permutation . is an (arbitrary) deterministic permutation. The rest of
this section is dedicated to proving that this potential function is (Hy, [max; «;1)-bounded, where
Hy is the N-th harmonic number. The following result is based on the function h, : 2lN
defined in Eq. (8).

]—’Rzo

LEmMA 7.1. For any edge e and any permutation ., we have

|Se ]

o= Sl 5

i€S, k=1 TCSe,|T|=k ( k ) -k

Proor. By the definition of the Shapley CSM, the cost share of player i who uses edge e is

fi,e(se) =E Fe( Z Wi’,e"'wi(e))_Fe Z Wi’,e) s

i’€Sk(m,) i’eSk(rme)

where 7, is a random permutation on S,. For a fixed ., and a fixed player i using edge e,

e + he({i}) — he(0), if Si(m) =0
F. Z Wi’,e+Wi(e) - F. Z Wi e ={h si ({ L}J) . ( Z si th ( )
oy oy ((S1(7) U {i}) ~ he(Si(.)) . otherwise

=1(Se (1) = 0)0e + he(Se(me) U {i}) = he(Se(me)),

where 1(S.(n,) = 0) denotes the indicator of the event S.(r,) = 0. Since 7, is taken from the

uniform distribution, it follows that P(S.(r.) = 0) = ﬁ for any player i using edge e, thus

Oe

E|F. Z Wire + Wi(e)) -F, Z Wi',e) = m +E [he(Sé(”e) ) {l}) - he(sé(ﬂ'e))] .

i’eSi(re) i’eSk(rme)
(10)

Let H; ¢(Se) = E[he(SL () U {i}) — he(SL(7e))]. Then, it can be inferred from Eq. (10) that for
any player i using e,

fie(SeWe) U {i}) =

o,
Se(Ye) U {i}]
[Sel o

Since Y;cs, m = X 0c) . it follows that

Hie (Se(e) U{i}) -

Se |
D S UL = 025+ D Hie (SL) U () -
i€Se k=1 i€Se

Notice that H; .(Se) can be viewed as the Shapley cost share of a player i who uses edge e in a
network game where the cost of each edge e is h.(S.). Since for every j, @; is assumed to be larger
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than 1, the ratio h(Se) M is non-decreasing with [,. Kollias and Roughgarden [32, Proof

of Proposition 3. 2] prove that in such case, for any ¢,

ZHi,e (SL(ge) U {i}) = Z he(T) ’

[Sel
ies, resorek (%) -k

thus establishing the assertion. O

We are now ready to prove that the potential function ®(p) of (9) is ([max; a;1, Hy)-bounded.

THEOREM 7.2. The potential function ®(p) of the GND game induced by the Shapley CSM satisfies
W C(p) < ®(p) < Hy - C(p) for any strategy profile p.

Proor. Let us first prove the lower bound on ®(p). Since e € p implies that |S.| > 1, we get

Se | Se |
w-g8(e 3 F)asled 3 )
S\ k resoqrik (¢) -k eep i resori—k (%) -k

By the convexity of &, ; - x%, we conclude that

‘Se ) ) aj
o(p) > Z Ue+Z§eJZ 61 .k(|5}:|) (ZTgse,m—k Z,eTWz(e)) l .

= (%)

Since every player i is included in exactly (|59| ") subsets of S, with k elements, it follows that

[ q [Se 1 (ISkI l)lp %
1
CD(P)ZZ O'e+Z§e,jZE(—|S| ) l
eep | Jj=1 k=1 ( k )
9 lP aj [Se |
> Oe + = kot
eep | ’ ;Ee’j (|Se|) kz=; l
q P o\ % [ajl-a; |Sel
al (s 2
> Oe + e | —=— k=1
2| ;g : (|se| 5] 2

Then, we can derive from [8, Corollary 3.2] that

S A N R e L]
®@2§3%+Z@4Eﬂ(ﬁﬂ M]l

eep

[maxj P Dloe+ Z Ee i (I0)].

ecp

For the upper bound on ®(p), by Lemma 7.1 and since h.(T) is a (set-wise) increasing function of
Tand T C S, we get

] (78 he(T) S hE(Se)
ORI D vl B GRS YD W
eep k=1 TCSe,|T|=k ( k ) -k ecp k=1TCS.,|T|=k ( k ) -k
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As there are exactly (lS |) subsets of S, with k elements, it follows that

|Se |
o(p) < Z(w5| oe+zh (S))

e€p

= Z 7’{|56| + Oe + 7‘(\5” . he(se))
ecp

- Zq{‘s | |oe + Z Ee,j (Z wi(e))
eep Jjelql i€Se

Since e € p means that lf > 0, we conclude that

®(p) < ) His.|Fe(ll) < Hy - Clp)

ecp

which establishes the assertion. m]

8 POLYNOMIAL-TIME e-APPROXIMATION OF SHAPLEY COST SHARING

So far, we have proved that the Shapley CSM can satisfy the requirements on the smoothness and
the potential function. It remains to show how to compute the e-cost shares subject to the Shapley
CSM in polynomial time for a sufficiently small € > 0. For the problem of computing the cost shares
specified by the Shapley CSM, Liben-Nowell et al. [36] establish the following lemma.

LEmMA 8.1 ([36]). There exists an FPRAS (i.e., a randomized FPTAS), referred to as SV-Sample, for
computing the e-cost shares in any game subject to the Shapley CSM and supermodular monotone cost
functions. In particular, given any ¢ € (0, 1), SV-Sample generates an ¢-cost share with probability at

least 1 — m in O(log(TN|E|) . Ij—; + 10g(log(TN|E|))])-time.

Note that owing to the existence of the term o, the cost function F,(I) is not supermodular. Now
Lemma 6.6 comes to our help. Combining Lemma 8.1 and Lemma 6.6 with Eq. (10), we obtain an
efficient procedure, named Shapley-APX, for computing the e-cost share of any given player i on
any resource e with respect to the Shapley CSM and the REP cost function.

More specifically, if i ¢ S, then this procedure returns 0 as the cost share. Otherwise, Shapley-APX
uses algorithm SV-Sample to obtain an e-cost share 6;, e for player i on resource e with respect to
the Shapley CSM and the cost function h,(S,). Finally, = ot 0;.c is returned as the desired e-cost
share. By Eq. (10), Lemma 8.1 and Lemma 6.6, the following lemma trivially holds.

LEMMA 8.2. Procedure Shapley-APX computes an e-cost share of a player i on resource e with

probability at least 1 — (10g(TN|E|) . ]g—; + log(log(TN|E|))] ) -time.

1 .
arNEe O
THEOREM 8.3. If Shapley-APX is employed to generate all the e-cost shares used in Alg-ABRD,

then w.h.p., every e-cost share f; .(Se) is an e-approximation of the exact cost share f; ¢(Se).

Proor. Recall that the ABRD contains at most T steps. In each step t, every player i needs to
calculate f; (S% U {i}) for every resource e to find her ABR. Therefore, procedure Shapley-APX
is invoked at most TN |E| times. The probability that this function generates a result that is not

1 1
the e-approximation of the exact cost share is at most TN|E| - [1 - ( 1- )] = .
2(TN|E])? 2TN|E|

Therefore, this theorem follows. O
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Using the facts that €, A, (from Theorem 6.1), and pe? /2 are all constants, and Hy can be bounded
by O(log N), the main result is established as summed up in the following theorem.

THEOREM 8.4. By plugging the Shapley CSM into A1g-ABRD, the total cost of the output profile is an
1

Oe

0] (Q - max, min; (§E ’ ) Yy oM ”‘J’)-approximation of the optimal result with probability at least

1-0 (;) .
N2|E|log® N

The time complexity of the algorithm is
o(N5 log? N - |E| 1og2(N|E|)) )

9 IMPLEMENTATION IN A DECENTRALIZED ENVIRONMENT

The approximation algorithm Alg-ABRD that was developed up to now is centralized, and in
particular two main aspects of the algorithm are incompatible with some common settings in game
theory. The first aspect is that A1g-ABRD deterministically chooses a specific player for strategy
update. Instead, if traffic requests were separate uncoordinated entities, it would make more sense
that they decide to update their strategies in an uncoordinated way. The second aspect is that
Alg-ABRD chooses the best profile it has seen during the ABRD. However, it is inappropriate in
game theory to ask uncoordinated individual entities to “roll back” to a previous profile that might
be more costly for some of them.

This section tackles these issues by providing two techniques for adapting algorithm A1g-ABRD
to the game-theoretic settings. First, instead of choosing a specific player for updating the strategy,
we now select the player uniformly at random. We believe that this better simulates the behaviors
of uncoordinated players. Subsection 9.1 shows that this modification will still yield the same
approximation ratio, with only a polynomial loss in the number of steps. Second, instead of
choosing the best configuration in the sequence, subsection 9.2 analyzes the case where the last
configuration is chosen. It is shown that the approximation ratio loses another O(log N) factor.
Thus, while certainly inferior to the centralized algorithm, the game-theoretic version of A1g-ABRD
still admits an approximately optimal outcome.

9.1 Randomized Selection and Decentralized Implementation

This subsection develops a random procedure, called randomized player choosing (RPC), for deciding
the player to update her strategy in an uncoordinated way, using some techniques in the leader
election protocol proposed in [1, 43].

Consider an arbitrary step t > 1 in the ABRD. We assume that all the players have the same
view of p’~!. Notice that this assumption trivially holds when ¢ = 1, because p° is generated in a
deterministic way, which means that every player i can easily simulate the computation for p°;
without any communication between players. Given the strategy profile p’~!, each player i first
finds her ABR p! to p’;! by the procedure promised in Lemma 4.1, and computes the value of 5!
(recall that 8! = Ci(p*™") — €1 - Ci(pls p'7Y))-

Then, every player i generates an integer Y/ € [N] randomly and uniformly, and sends Y/ to
all the other players. After receiving all the N — 1 integers {Y},}#cnai#i, every player i calculates

Yt = (( RS ) mod N ) + 1, where mod refers to the modulo operator. It is easy to see that Y*
i€[N]
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follows the uniform distribution over [N]. If the player with index Y’ satisfies
5 > 0, (11)

then this player deviates to her ABR py,, and send p{, to all the other players. Otherwise, player
Y! simply sends her current strategy p;‘,l to the other players. After receiving the strategy from
the chosen player Y?, all the other players update p*~! to p? with the received strategy. In this way,
it is guaranteed that in step ¢ + 1, all the players have the same view of p.

LEMMA 9.1. For any step t > 1, if the player selected for strategy update satisfies Eq. (11), we have
o(p' 1) - d(p") > 0.
Proor. By the definition of the potential function,

d(p') - d(p") =Ci(p'h) - Cip}. p'S

1 ~ 1 ~
> C; t=1y _ C: t." t—.l
1+4¢€ J(p ) 1—¢ J(P] p—]
1 ~ (b o t-1 1 ~ t o t-1
> TGP ps ) = TGPy
=0.

The second transition holds by the definition of the e-individual cost. The third one follows from
Eq. (11). O

Let RPC-ABRD be a variation of A1g-ABRD that uses RPC to decide the player for updating the
strategy, and runs in T = N - T? steps. Then we have the following result.

THEOREM 9.2. The output p*’ of RPC-ABRD satisfies
20€21

—
1 - oerp

cp') <

with probability at least 2,

Proor. According to Lemma 5.1, we only need to consider the case where the ABRD does not
converge. Partition the T’ steps in ABRD into T stages, each of which contains N - T steps. We say a
player i is appropriate for step t if (5} satisfies Eq. (4). A step t is said to be appropriate if in this step
an appropriate player is selected, and a stage is appropriate if it contains at least one appropriate
step.

Craim 9.3. With probability at least 1, all the T stages are appropriate.

Proor. If the ABRD does not converge, then the Pigeonhole Principle implies that there exists
at least one appropriate player in each step. Procedure RPC ensures that each step is appropriate
with probability at least % Therefore, the probability that there exists no appropriate step in a

stage should be at most
1\NT 1 \T
(I_N) = (exp(l)) ’

Hence, the probability that all the stages are appropriate is
1\NT\T 1 \1\" nr\" 1
1—(1——) > 1—( ) > 1—(—) > . (12)
N exp(1) 2 2

T 1T
The last transition holds because (%) + (%) decreases with T when T > 1. m (Claim 9.3)
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20€)

— - C*. Then we have the
1-oeip

Recall that a strategy profile p’ is said to be bad if C(p*) >

following proposition.

Cram 9.4. For any appropriate stage k, if all the profiles generated in this stage are bad, then
1 1
d(p') < (1 - 5)@({)!}1), where tk? an tul respectively represent the first and the last steps in stage k.

Proor. Since the player selected in each step does not update its strategy unless Eq. (11) is
satisfied, Lemma 9.1 indicates that the potential function is non-increasing in all the steps. Let ¢,
be an arbitrary appropriate step in stage k. Then we have

t! I _ l -1 _ l 101
2t < 0 < (1-5)ept ) < (1-5)ept .
where the second transition follows from Claim 5.4. m (Claim 9.4)

Combining Claim 9.4 with the techniques in the proof of Theorem 5.3, it can be proved that if all
the stages are appropriate, then at least one stage generates a profile that is not bad. O

Putting Theorem 9.2, Theorem 6.1, Theorem 7.2 and Theorem 8.3 together, we obtain the following
result.

J

1 1
2 (- o))
2 N2|E|log? N

The time complexity of the revised algorithm is

l/aj
COROLLARY 9.5. RPC-ABRD generates an O (Qmaxf % + p - max min ( £ ) )-approximation so-
e

e.j
lution with probability at least

O(N7 log* N - |E| 1og2(N|E|)) )

9.2 Output the Last Strategy Profile

Now let us study the approach of directly outputting the last strategy instead of the one with the
minimum overall cost, p’ .

THEOREM 9.6. Suppose that the ABRD does not converge at any step t, then the cost corresponding to
the last profile is at most [max; a;|Hy times larger than C(p'"), no matter whether RPC is employed
or not.

PROOF. Let tp,x be the last step of the ABRD. This theorem trivially holds when t* = tyay.
Suppose that t* < tj,x, then

Cp™) < [maxa;]1(p™) < [maxa;]1(p") < [maxa;HNC(P').
J J J

The first transition and the last one hold since the potential function is (Hy, [@])-bounded. The
second transition follows from Eq. (4), Eq. (11) and Lemma 9.1, for the deterministic procedure of
deciding the player for strategy update and RPC, respectively. O

Using the fact that Hy is bounded by O(log N), we get the following result.

COROLLARY 9.7. Returning the strategy profile generated in the last step of the ABRD instead of p*~
as the output will increase the approximation ratio by O(log N) times.
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Fig. 1. A directed graph Gy for proving the lower bound on the PoA.

10 POA OF THE GND GAME: UPPER BOUND AND LOWER BOUND

A byproduct obtained in this paper is a tight bound on the PoA of the GND games for a class of
CSMs. In [43], it is proved that the PoA of a smooth cost minimization game is

A
inf {1— : the game is (4, ,u)-smooth} .
—H

Such a PoA is said to be robust and can be extended to the mixed Nash equilibrium, correlated
equilibrium, and coarse correlated equilibrium [43]. From Theorem 6.1, it can be inferred that:
THEOREM 10.1. For any REP-expanded CSM M, the induced GND game has a robust PoA of
(0] (maxmin ( Ge )aj)
e€E jelq] \&e,j
Recall that our definition of CSMs requires that they are budget-balanced, namely, that

> frelp) = Fell?) (13)

i€Se

for any edge e. In the following, we prove based on this requirement that the upper bound in
Theorem 10.1 is asymptotically tight. To that end, we restrict our attention to the GND problem
with routing requests.

Definition 10.2 (GND problem with Routing Requests). In the GND problem with routing requests,
the resources are represented by the set E of edges in a graph G = (V, E), where V is the set of
nodes. The feasible reply collection P; of each request i is composed of the paths which connect
the associated source-target node pair and contain no repeating edges.

THEOREM 10.3. For any (budget-balanced) CSM, there exists induced GND games with a PoA of
Q (maxe min; (g‘:ej ) aj)

Proor. Let J be an instance of a GND problem with routing requests defined on the directed
graph Gy = (V, Ep) in Fig. 1. In particular, V; contains N +2 nodes {s, ¥, {ti}ie[N]}. Foreachi € [N],
there are a directed edge e; from s to t;, and a directed edge e; from ¢ to t;. For each request i € [N],
the associated source-target pair is (s, t;), and the weight w;(e) = 1 for any e € Ey. It is easy to see
that the reply collection P; of each request i contains two paths, {e*, e;} and {e;}.
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1
Define o, £, and « to be three positive parameters such that (%) “ is a large enough integer, and
1
a > 1. The number of requests N is assumed to be (%) “ . For the edges e € Ey, the parameters in
the associated REP cost functions are set as follows.

® O = NAJIA o,and £ g = NIYH i3
e Foreveryi € [N], g,, = 0, and &, 1 = £.
e For every i € [N], o¢; = ﬁ o,and &/ 1 = ﬁ - &

® a) =aq.

e Forevery2<j<gql<aj<apée;< %
1 1
With these settings, we have max.cg, minje(q] (§ )“j - % s
e.j

Consider a GND game induced from 7 by an arbitrary budget -balanced CSM. Let p be a strategy
profile where every player i chooses the path p; = {e;}. With any budget-balanced CSM, the cost
of each player i must be

N+2
N+1°

q
ﬁ,ei(p) = Fi,ei(l) = O¢; + dei,j < o+ §
j=1
The first transition follows from Eq. (13), since S, only contains player i for every i € [N]. The last

transition holds since N% > 1 for every j. If any player i changes her strategy to p! = {e", e/}, with
any budget-balanced CSM, her individual cost should be

ﬁ,e*(P;, P—i) + fi,e;.(Pl{, P—i) = Fi,e*(l) + Fi,e;(l)

> Oer + Eer 1+ Oy + 8o 1

N N 1 3
= o+ &+ o+ £
N+1 N+1 N+1 N+1
N+3
=0+ £,
N+1

where the first equality still follows Eq. (13). Therefore, any player i cannot decrease her cost
through a unilateral deviation. By definition, strategy profile p is a pure NE.

The total cost incurred by this NE is N - (0, + X; &;. ;) > N(o + £). In contrast, if every player
chooses the path {e", e}, the total cost should be

) N
Ge*+;§e*,j'Na] +N~(0’e;+;§e;’j) <EC+N+1§.N01
1 3 2
+N + +
N N N
N N N 3N +2
= o+ o+ o+ £
N+1 N+1 N+1 N+1-
<3(c+¢&).
Thus, the PoA is at least 1;1((;:{5)) = % Since N = (%)5, this theorem follows. m]

From Lemma 6.5, Lemma 6.7, and Theorem 10.1, it follows that for both the proportional fair
CSM and the Shapley CSM, the induced GND games have a PoA of O( max, minj(o'e/ge’j)l/“f).

Then from Theorem 10.3, we know that these two natural CSMs are asymptotically optimal in the
class of budget balanced CSMs, since they trivially follow Eq. (13).
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11 ALTERNATIVE APPROACHES

Up to now, a set of game theoretic results, such as the smoothness parameters, have been established
to investigate the performance of A1g-ABRD. Nevertheless, Alg-ABRD is not the only framework
that can generate outputs with a desired approximation ratio. This section is dedicated to two
alternative approaches for approximating the GND problem based on techniques developed in the
existing literature in the context of routing requests.

11.1 Learning Based Algorithm for the GND problem with Routing Requests
In this part, we start to introduce a learning-based technique [43], which also utilizes the smoothness,
and can guarantee a good approximation for the GND problem with routing requests when the
optimal cost C* of the input instance has a constant lower bound.

Definition 11.1 (Problem of Online Decision[30]). Consider an online problem where the input

consists of a graph G = (V, E) and a sequence of T cost vectors {Tt = {Tt(e)}egE} , where
te[T’

(1]
t'(e) € [0, 1]. For each t € [T’], this online problem requires a path r’ between a given source-
target node pair without any knowledge of the cost vectors {r’, z**!,---  z7"}. The objective is to

minimize the REGRET, which is defined as

T’ T
REGRET = Z Z ti(e) - . COnmnglts ) Z Z t'(e).

t=1 eert t=1 e€p’

LEmMA 11.2 (FoLLow THE PERTURBED LEADER (FPL) [30]). For the problem of online decision, there
exists a randomized algorithm called FPL [30] that can compute every r' in O(|E| + |V|log |V|)-time
such that the expectation of REGRET is no larger than 2|V |+/|E|T".

Using FPL as a subroutine, a learning based algorithm, referred to as Alg-L, is constructed as
follows for the GND problem with routing requests. The first step is to transform the given problem
instance J to a GND game by employing the proportional fair CSM, and divide every o, and
every &, ; by a large enough number such that the cost share of any player on any edge is in the
interval [0, 1]. Obviously, such a linear scaling on the cost functions {F.} does not influence the
approximation ratio. Then, generate T’ = 4N?|V|?|E| strategy profiles {p’};¢[z]. For every t and
every player i, the path p! is obtained by running FPL with 7/ = {{Tit'(e) = fi.o(SYU{iP)}ecr } -
as the input, where f; .(-) refers to the cost share determined by the proportional fair CSM. Note
that with the proportional fair CSM, the exact cost share of each player on each edge can be obtained
in constant time. Finally, choose one strategy profile t* from [T”] randomly and uniformly, and
output p* .

LEMMA 11.3. The algorithm Alg-L has a time complexity of O(N3|V|?|E|% log |V]).

THEOREM 11.4. Let C’* be the optimal solution with respect to the linearly scaled cost functions. If
the total cost of C"* has a constant lower bound LB, then algorithm A1g-L guarantees an approximation
1
ratio ofO( maXeep Minjeq] (;'_e) @ ) for the GND problem with routing requests.
€.j
ProoF. According to [41, Corollary 3.3], for a (A, y)-smooth game, by generating the strategy
profiles {p* },¢[7+] through a randomized algorithm for the problem of online decision, the chosen
strategy profile p* guarantees that:
2 1 2 Bty [REGRET]

E.~[C'(")] < c* +
50 [C'(P" )] = T T
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where C’(p'") represents the total cost with respect to the scaled cost functions. By Theorem 6.1,
the values of y, and A, are not influenced by the linear scaling on c, and & ;. Thus,

N
2.5 E{P{}tem][REGRET]
T’

N - 4|VVIEIT’
Tl

Eye [C'(6")] <2(va + Ae)C™ +
<2yq + A)C +

1
sz(ya+aa+ﬁ)c’*.

The second transition above follows from Lemma 11.2. The third transition holds because it is
assumed that OPT” > LB. Since LB is a constant, this theorem holds. O

Lemma 11.3 and Theorem 11.4 indicate that, Alg-L promises the same upper bound on the
approximation ratio as A1g-ABRD for the special input instances with C* > LB, and when the given
graph has a small size while the number of requests is large, Alg-L has a better time complexity
than Alg-ABRD. However, it remains unknown for us how to generalize Theorem 11.4 to the general
case where there is no guarantee for the lower bound of the optimal solution. The critical issue here
is that even before the linear scaling, the optimal result C* can be arbitrarily small. This problem is
left for future research.

11.2 Convex Programming and Rounding for the GND Problem with Routing
Requests

The approach presented in this subsection was suggested to us by an anonymous reviewer for a
special case of the GND problem. Specifically, like the approach presented in Section 11.1, this
approach also addresses the GND problem with routing requests, but restricts the attention to the
more specific case where the given graph G = (V, E) is undirected and the weights of the requests
are related. (Recall that related weights means that the weight of every request i satisfies w;(e) = w;
for every e € E.) Furthermore, in this part, the cost function F, of each edge e is assumed to be
an energy consumption cost function Eq. (1), a specific (simpler) form of the REP cost functions
Eq. (2) used in the other parts of this paper. We shall refer to this specific GND restriction as energy
efficient routing (EER).

Since this approach is based on convex programming and rounding, we shall refer to the resulting
approximation algorithm as CPR. Throughout the following description of algorithm CPR, the notion
fractional solution is often used. It refers to the solution obtained when the integral constraint is
relaxed. Formally, for each request i in an EER problem, a fractional solution p specifies a finite
set pi = {pi.k Yke[%;] of paths p; ;. connecting the source-target pair of request i, where each path
i,k is associated with a positive real number y; x € (0, 1] satisfying that } ;. c;%) yi,x = 1. For each
e € E, the load I incurred by a fractional solution p is defined tobe Y 3 > Wit Uik

i€[N] ke[K;] Pik:€eEPik
The total cost of a fractional solution p is defined to be 3, Fe(I).

In algorithm CPR, every request i € [N] is first partitioned into a set R} of w; sub-requests, where
every sub-request i; is associated with the same source-target node pair as the original request i,
and has the same weight w;, = 1. Such a partition is feasible since the weights are assumed to be
related. Let R’ = J; R be the set of all the sub-requests, 7’ be the instance obtained by replacing

the set of requests in the given EER instance 7 with R’, and 7" be a variant instance which replaces
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the energy consumption cost function F, in 7’ with the following variant cost function

~ o ¥ =0
0D = ot ()7 + Zuwp @) o >0 i

where p’ is an arbitrary feasible path profile for R”, I£ '(i) is the load incurred by routing sub-requests

in R/ along e. Let p* be the fractional optimal solution of 7’. Then the following result can be
proved in a similar way with [13].

LEMMA 11.5. 5([7*) < 2-C*, where 5() denotes the total cost with respect to Eq. (14).

Proor. The path profile p* also induces a feasible solution for 7', which routes i ; along the path
p; for every i € [N]. Let the total cost incurred by this feasible solution be C(p*), then,

D e+ & (@) Yo lf*a))]

eep*
oovte (e Y (wm)]

c@H < Cp)

2

eep” ireep;

oo+ e (@ + @)

eep*
<2 ) (oot @)
eep*”
=2-C".

IA

The second line holds since p* is an integral solution of 7 [13]. The third line following the

fact Xjeepr Wi = /4 " and the superadditivity of the power function. The fourth line holds since
ge > 0. [}

The next step of CPR is to utilize the convex programming based technique proposed in [5] to
generate a solution for the instance J"’. In particular, it converts F.(p’) to a convex cost function

Fe(p') = We(p') + &e Xi(wi)* 7t - lg/(i), where

G- () if If' [0, max {1 (WH]

We(p') = +
oo+ & () i 1 > max {1, (%)

>

and

1
Oe + & if ((a 1)f)m<1
éve = 1 1 .

a

-z
"“fe(<_aff>§e) if ((a 1)52) 21

By employing the convex cost function F,(p’) and relaxing the integral constraint, a solvable
convex program is obtained. Following [5], CPR solves the convex program to obtain a fractional
solution p° and then rounds it to an integral solution p* through a random rounding procedure. In
particular, for each sub-request ij, a path [7,-]. is chosen from the set ﬁfj = {17';] k}kE[Wij | by taking

the positive real numbers {y;,, k}kE‘Kij associated with {171.’_ k}kE[Wij] as a probability distribution
]
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[5]. This random rounding procedure guarantees that for every edge e € E,

B |t D1 <z>l = & Yo I ) and B[] < (( : )é)-we@“). (15)

Then we have
a[r)] < of(mE)) NAG (16

Since p° is the optimal fractlonal solution of the convex program with respect to the cost function
F.(p’), and F.(p’) < F(p’) for any edge e and any profile p’ that is feasible for R’ [5, Section IV.B]:

ZF ) < ZF ) < ZF = C(pY) (17)

Recall that Ct (p*) is the optimal fractional solution of I, Eq. (16) and Eq. (17) imply that:

LEMMA 11.6. The solution p* is an O (( max, %) @ ) -approximation solution of the instance 7.

The last step of CPR is to convert p* to an integral solution p* that is feasible for the original
instance 7, still by randomized rounding. In particular, to generate p¥, each traffic request i in

1
instance 7 should be routed along the path ﬁfj € p* with probability —. Then we have
Wi

B RGh| <D (o + &)
e |ecph
=E Z o.| +E Z §e(lg”)a
lecp? | eept
<E Z oe| + O(a®)E Z §e(l” )+ Z(W,)a llp (i)
leep? | eep!
< 0(a®)E Z F.(pM| . (18)

eept
The third transition above follows from [27, Section 5.2]. Combining Lemma 11.5, Lemma 11.6, and
Eq. (18) gives the following result:

1
THEOREM 11.7. The algorithm CPR has an approximation ratio of O (( max, %) a )

Weight-scaling and Loss in Approximation Ratio. Algorithm CPR processes every sub-request
independently, therefore its time complexity depends on the numeric value },; w; which cannot be
bounded by a polynomial of the instance size poly(|J|). A naive idea for overcoming this issue is
to scale down and round the weights so that w; is bounded by a polynomial of |7 |. Although this
weight-scaling technique works well for some classic optimization problems such as the Knapsack
problem, it may incur a significant loss in the approximation ratio for the EER problem.
Generally speaking, the weight-scaling technique can be described as a function WSF that maps
each weight vector w to a weight vector w’ of the same length. For any N € Z5; and k > 1, let
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1y and xn be two vectors of length N so that every element in 1y (resp. k) is 1 (resp. k). A
weight-scaling function is said to be xk-ambiguous if WSF(1x) = WSF(xx) for any N € Z5;.
For illustration, consider a weight-scaling function WSF which maps each given w to w’ so that

w(i) - [w]

for each i € [|w]|], the element w’(i) is set to { w, where 0 < ¢ < 1 is a constant. A

¢ - max; w(i
similar function is used in [40] to obtain an FPTAS algorit}(lrzl for the Knapsack problem. It is easy
to see that such a weight-scaling function is k-ambiguous for any k > 1.

To analyze the loss in approximation ratio that can be caused by a weight-scaling function, now
construct an undirected graph Gy = (Vj, Eo) with respect to some positive number x > 1. There are
two nodes in Gy, u and v, which are connected by more than k71 parallel edges. There exists a
special edge e* with cost parameters o,- = 1 and &« = 1, while for any other edge e € E — {e*},

oe = k% and &, = 1. Following theorem shows that on this graph, a x-ambiguous weight-scaling
1

function leads to an approximation ratio that cannot be bounded by O( max, (%) ;) = O(x) when

a>%§.

THEOREM 11.8. By taking any k-ambiguous weight-scaling function, the approximation ratio of

any deterministic algorithm for the EER problem on the graph Gy has a lower bound of Q (K = )

Proor. Consider two input instances, 7; and 13, on the graph Gy. Each of these two instances
contains N = kZ1 requests with the source-target pair {u, v}. For every i € [N], the weights of
player i in instance J; and instance 7, are set to 1 and «, respectively. Suppose that the vectors
of weights in 7; and 7 are fed to a k-ambiguous weight-scaling function to generate two new
instances 7" and 7,"*". By definition, no algorithm can distinguish 7T from Z,’*T. Hence, the
following observation trivially holds.

Cram 11.9. For any deterministic algorithm of the EER problem, the output generated for I, is
same as the one for I°T.

Let the output generated by a given deterministic algorithm of the EER problem for 7T be p.
Denote the optimal solution of 7; (resp. 1) by C*(1;) (resp. C*(Z3)), and the total cost incurred by p
for I; (resp. 1) be C(11, p) (resp. C(1, p)).

Cramm 11.10. The approximation ratio of the given deterministic algorithm is at least

CLi.p) CB.p)
max { c T }

C(I1,p) C(Ip,p) 1, ezl

Cramm 11.11. For any profile p, max{ C*(ljl) , C*(ZIZ) } > Sk 2,
ProOF. Suppose that x edges in E — {e*} are used by p. Then C(Z1,p) > x - (x* + 1). Since the

a?

cost of routing all requests through e* in the instance J is 1 + k%=1,
a ala—

C(;Tl,p) S x(k* + 21) S X . a-1)

C (-[1) 1+ K'Zgi—l 2

Noticing that the x + 1 edges used by p have the same value of the parameter &, we have:

N a a(a-1)
C(I,p) = (x+ 1)[( -K) ] = K = S(x+ )i
x+1
5 0(2
By routing each request along a distinct edge, a solution with total cost 2K2a1 can be obtained for
the instance 1. Therefore,
1-a _
C(Z,p) 5 (x+1) oy
CH (L) 2
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C(41,p) C(Iz,p)} S CI.p) _ 1 aan

’ > —k 2a-1 ;whileif x = 0,
C (L)~ C* (L)

Note that x € Z5o. When x > 1, max{ Ccx(L) ~ 2

C(5,p) CTap)| . CZz,p) 1 atan |

’ z Z ket m (Claim 11.11

{C*(L) C*(Iz)} @) 2 (Claim )
This proof is completed by combining the claims above. 0

For any randomized algorithm for the EER instance, it should generate an output for the instance
I, with the same probability distribution over the path profiles as the one for the instance 7.
Therefore, we have the following result.

COROLLARY 11.12. With any k-ambiguous weight-scaling function, the approximation ratio of any
randomized algorithm for the EER problem on the graph Gy has a lower bound of Q (K Gt )

ala-1)

As mentioned earlier, the approximation ratio Q (K.' 2a-1 ) is worse than the approximation ratio

promised by A1g-ABRD when o« > # ~ 2.618. Furthermore, by Theorem 11.7, we cannot expect

an approximation ratio better than the ratio promised by A1g-ABRD when a < 2.618, either, if we
combine CPR with a weight-scaling function.
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