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Overline: METABOLISM 

One Sentence Summary:  

Daily energy restriction more effectively reduces body fat content than alternate-day fasting, 

with no evidence of fasting-specific health benefits.  

Abstract:  

Intermittent fasting may impart metabolic benefits independent of energy balance by initiating 

fasting-mediated mechanisms. This randomized controlled trial examined 24-h fasting with 

150% energy intake on alternate days for 3 weeks (0:150; n=12). Control groups involved a 

matched degree of energy restriction applied continuously without fasting (75% energy intake 

daily; 75:75; n=12) or a matched pattern of fasting without net energy restriction (200% energy 

intake on alternate days; 0:200; n=12). Primary outcomes were body composition, components 

of energy balance, and post-prandial metabolism. Daily energy restriction (75:75) reduced body 

mass (-1.910.99 kg) almost entirely due to fat loss (-1.750.79 kg). Restricting energy intake 

via fasting (0:150) also decreased body mass (-1.601.06 kg; p=0.46 versus 75:75) but with 

attenuated reductions in body fat (-0.741.32 kg; p=0.01 versus 75:75), whereas fasting without 

energy restriction (0:200) did not significantly reduce either body mass (-0.521.09 kg; p≤0.04 

versus 75:75 & 0:150) or fat mass (-0.120.68 kg; p≤0.05 versus 75:75 & 0:150). Post-prandial 

indices of cardiometabolic health and gut hormones, along with the expression of key genes in 

subcutaneous adipose tissue, were not statistically different between groups (p>0.05). Alternate-

day fasting less effectively reduces body fat mass than a matched degree of daily energy 

restriction and without evidence of fasting-specific effects on metabolic regulation or 

cardiovascular health.  
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Introduction 

Intermittent fasting is an umbrella term for dietary regimens involving temporal 

restriction of daily feeding patterns, including a fast on some days each week (for example the 

“5:2” diet), for part of each day (time-restricted feeding) or for part or all of every second day 

(modified/complete alternate-day fasting; 1). The apparent popularity of these approaches 

suggests that many people find adoption and adherence comparatively easy, potentially because 

we as a species are well adapted to erratic food availability as opposed to an abundant food 

supply and thus permanently post-prandial (fed) and lipogenic state throughout waking hours (2, 

3). As neatly described previously, all mammals exhibit evolutionarily conserved (albeit 

somewhat species-specific) adaptive responses to food deprivation (4). Specifically, fasting-

mediated mechanisms stimulate lipolysis and ketogenesis to support energy requirements, whilst 

regulating various cell signalling pathways to efficiently recycle the limited nutrients available 

(reduced glycolysis and protein synthesis, with increased autophagy; 4, 5, 6).  

Studies in mice clearly demonstrate that metabolic health can be improved by restricting 

food availability to certain periods (independent of energy intake or weight loss), although such 

fasting deviates more profoundly from these animals’ naturally continuous foraging pattern than 

from the schedule of regular but less frequent meals more typical of human societies (7). Recent 

reviews of human trials indicate that intermittent fasting can elicit weight loss and health gains 

but that these effects are generally equivalent to standard energy restriction without restricted 

feeding times (that is, without fasting), indicating that metabolic effects may be due to weight 

loss rather than fasting per se (1, 8-10). However, trials to date have generally involved 

substantial reductions in energy intake but without prescribing complete abstinence from 

macronutrients throughout ‘fasting’ days, and so may not initiate the aforementioned fasting-



 

 Submitted Manuscript:  Confidential             template updated: February 28 2012 

 

 

mediated mechanisms (11). Indeed, at least 12-14 consecutive hours of absolute nutritional 

withdrawal is required to elicit frank depletion of hepatic glycogen reserves and the consequent 

transition towards oxidation of endogenous lipid-derived substrates (fatty acids and ketone 

bodies; 12, 13), which are proposed to increase insulin sensitivity, improve cardiovascular 

health, and preserve muscle mass during weight loss (4, 14). 

Based upon the above reasoning, it becomes understandable why the small minority of 

human trials that have reported positive health outcomes peculiar to intermittent fasting (beyond 

that explained by weight loss) are those same few in which the post-absorptive state has been 

regularly sustained via uninterrupted fasting of at least 16 h (1). For example, early time-

restricted feeding (fasting from 1500 h daily) in men with pre-diabetes improved their insulin 

sensitivity within five weeks without losing weight, simply by extending their usual overnight 

fast to 18 h (15). This effect on insulin sensitivity has since been confirmed in healthy young 

adults after just 2 weeks of fasting for 16 h from 1600 h each day (16) and after 8 weeks of 

simply restricting typical daily meals to an 11-h period ending at 1900 h (17). The other common 

form of intermittent fasting that routinely involves such protracted post-absorptive periods is 

complete alternate-day fasting (no energy intake whatsoever during fasting days), yet almost no 

research has examined fasting periods that span an entire day. One recent trial has shown that 

strict ~36 h fasting periods alternated with ~12-h ad libitum eating every other day can markedly 

reduce both fat mass and cardiovascular disease risk markers amongst non-obese adults within 

four weeks (18). However, that study did not include the continuous energy restriction control 

group necessary to dissociate the effects of fasting from the net energy deficit, as has been 

effectively applied previously in demonstrating the absence of independent benefits inherent to 

modified alternate-day fasting (when limited energy intake is permitted on fasting days; 19, 20).  
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Given that intermittent fasting is hypothesized to exert independent benefits via fasting-

mediated mechanisms, it is remarkable that only one previous human trial has attempted to 

isolate such effects by extending the post-absorptive period sufficient to fully initiate those 

mechanisms (a complete 24-h cycle). That study examined insulin-sensitivity by 

hyperinsulinemic-euglycemic clamp rather than examining the response to ingested nutrients or 

the effect on components of energy balance, revealing that 24-h fasting for three non-consecutive 

days each week reduced fat mass, blood lipids and fasted insulin more effectively than either 

continuous energy restriction or fasting without energy restriction in women with overweight 

(21). The present study provides insight using a comprehensive experimental design that 

contrasts strict alternate-day fasting both with and without weight loss relative to a continuous 

energy restriction control, thus isolating the independent and combined effects of fasting and 

dietary energy restriction on measures of body composition, components of energy balance, post-

prandial markers of metabolic health, and subcutaneous adipose tissue gene expression (for full 

protocol see 22). This focus on prolonged fasting but with controlled compensatory refeeding 

therefore addresses fundamental questions about whether this popular form of intermittent 

fasting improves body composition and metabolic health independent of energy balance and 

weight loss. We hypothesized that intermittent fasting would result in compensatory inhibition of 

energy expenditure but improve metabolic health markers irrespective of reductions in adiposity. 
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Results  

Body Composition 

Alternate-day fasting was no more or less effective than a matched degree of daily energy 

restriction in reducing body mass. However, whereas daily energy restriction (75:75) elicited 

weight loss almost entirely by reducing body fat mass, weight loss via alternate-day fasting 

(0:150) was due in equal measure to reductions in both fat and fat-free mass (Table 1 and 

Figure 1A). These body composition data correspond to pre-post group differences (group x 

time interaction p<0.0001) in meanSD percent body fat of -1.80.9 % when restricting energy 

daily (75:75; p<0.0001) but only -0.61.1 % or 0.10.9 % when alternate-day fasting with 

(0:150) or without (0:200) matched energy restriction, respectively (p=0.10 & p=0.69). 

However, this pattern was not apparent for visceral fat mass, which was reduced by a similar 

extent irrespective of whether energy restriction was applied continuously or intermittently (time 

p=0.003, group x time interaction p=0.30; Table 1).  

 

Components of Energy Balance 

The energy ingested in the form of each dietary macronutrient is presented in Figure 1B, 

as reported during the baseline monitoring phase and then each intervention. These changes in 

energy intake from baseline were different between groups, consistent with the prescribed 

experimental model (group x time interaction p<0.0001). Furthermore, the group who were 

asked to fast but without reducing their net energy intake (0:200) appear to have managed to do 

so accurately, thus facilitating the intended analysis of fasting independent of energy restriction 

in relation to potential compensatory responses on the other side of the energy balance equation. 
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The various components of energy expenditure (resting metabolic rate, diet-induced 

thermogenesis and physical activity thermogenesis) are illustrated in Figure 1C and show group 

differences for total energy expenditure (group x time interaction p=0.004) due to a decrease 

from baseline only when alternate-day fasting was combined with energy restriction (0:150; 

p=0.002), with post-hoc analysis revealing a specific difference in this response relative to the 

group which fasted without net energy restriction (0:200; p<0.003). Figure 1C shows that this 

pattern for total energy expenditure [kcal·d-1] is partly attributable to a slight but variable 

reduction in resting metabolic rate (time p=0.18, group x time interaction p=0.19; time effects 

with no differences between groups were apparent for basal/fasted rates [g·min-1] of 

carbohydrate and lipid oxidation p=0.02 & p=0.01, respectively – see data file S1) and partly due 

to a consistent but predictable fall in diet-induced thermogenesis based on reported 

macronutrient intake (group x time interaction p=0.004). Accordingly, the reductions in diet-

induced thermogenesis with energy restriction applied either daily (75:75; p<0.0001) or every 

other day (0:150; p=0.0002) were necessarily proportionate to the prescribed reduction in energy 

intake.  

Figure 1D presents data for post-prandial substrate oxidation following the standardized 

breakfast consumed before and after the intervention; the total amount of energy expended 

during the 3 h post-prandial period was systematically reduced by a similarly small amount (7  

16 kilocalories over 180 minutes) in all groups (time p=0.02), with no differences between 

groups (group x time interaction p=0.36). However, whereas the overall rate of substrate 

oxidation was not affected by fasting alone or in combination with weight loss, the rate of lipid 

oxidation [g·min-1] over that period did increase from pre-to-post intervention in the two fasting 
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groups (0:150 & 0:200) relative to the daily energy restriction group (75:75; group x time 

interaction p=0.047). 

In terms of physical activity thermogenesis, we observed divergent behavioural responses 

to fasting and energy restriction (group x time interaction p=0.04; Figure 1E), albeit without any 

post-hoc differences observed between pairwise group contrasts. Specifically, restricting energy 

intake via alternate-day fasting (0:150) resulted in a compensatory reduction in physical activity 

thermogenesis, primarily due to reduced spontaneous light- and moderate-intensity movements, 

whereas no such reductions in activity were apparent during daily energy restriction (75:75) or 

alternate-day fasting without energy restriction (0:200). Figure 1F shows an exploratory analysis 

of how the overall ~100 kcal·d-1 reduction in physical activity energy expenditure when fasting 

with net energy restriction (0:150) was predominantly due to lower activity during fasting 

periods (especially when they occurred in the second half of the day), although there was also 

evidence of reduced activity during fed periods (especially when they occurred during the first 

part of the day).  

 

Post-Prandial Metabolism 

None of the dietary interventions differentially affected fasted concentrations or post-

prandial responses of plasma glucose, insulin, non-esterified fatty acids, glycerol, total 

cholesterol or the fractions of either high- or low-density lipoprotein cholesterol (Table 2, 

Figures 2 & 3). Although fasted triacylglycerol concentrations did not respond differently 

between treatments, the total area under curve did exhibit pre-post group differences reflecting 

an increase when energy was restricted daily (75:75) relative to a decrease when energy was 

restricted by alternate-day fasting (0:150; group x time interaction p=0.02; Table 2).  
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 Group differences were apparent in the pre-post response of plasma leptin concentrations 

(group x time interaction p=0.04), with the greatest decrement in the daily energy restriction 

group (75:75; Table 2). In contrast to these clear effects on leptin, neither energy restriction nor 

fasting exerted any influence on the plasma concentrations of adiponectin under overnight fasted 

conditions (Table 2) or on the acute response of acylated ghrelin and peptide YY to the two 

sequential mixed-meal tolerance tests (Figure 3C and Figure 3D). There were no differences in 

fasted or postprandial plasma CTX concentrations throughout the laboratory visits pre- and post-

intervention (Figure 3B) nor any group differences in bone mineral density (Table 1).  

Overall, of the various genes pre-selected on the basis of their involvement in biological 

rhythms and metabolic responses to feeding, the relative changes in mRNA from pre- to post-

intervention did not indicate a clear response either within or between groups (Figure 4). This 

was evident both in the general absence of significant group x time interactions and by the fact 

that the fold-changes observed in the raw data were similar in absolute terms between groups 

(see data file S1). Nonetheless, it should be noted that significant group x time interactions 

(p≤0.05) were apparent for CEBPB (CCAAT-Enhancer Binding Protein-β), IRS2 (Insulin 

Receptor Substrate 2), PER1 (Period Circadian Regulator 1) and PPARGC1A (Peroxisome 

Proliferator-Activated Receptor γ Coactivator 1-α), of which post-hoc analysis indicated 

significant within group responses for the latter two in the daily energy restriction group (p≤0.05; 

75:75).  
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Discussion 

The present study indicates that alternate-day fasting is less effective for reducing body 

fat content than a matched degree of energy restriction applied daily without fasting in lean 

healthy adults. This difference in fat loss despite a standardized reduction in energy intake may 

be at least partly explained by the compensatory decrease in energy expenditure within the group 

who restricted energy intake via fasting (primarily due to inhibition of physical activity 

thermogenesis), although this effect did not differ significantly from the other groups who did 

not on average reduce their physical activity. However, other than an adaptive reduction in fasted 

concentrations of plasma leptin proportionate to changes in fat mass, there were no meaningful 

effects of fasting or energy restriction (independently or combined) on systemic markers of 

cardiometabolic health or gut hormone responses to sequential meals. There were also no clear 

fasting-specific patterns in the expression of key genes in subcutaneous adipose tissue. 

It has been a matter of ongoing debate whether intermittent as opposed to continuous 

energy restriction either preserves lean mass during weight loss (23, 24) or favours greater 

muscle protein breakdown and net catabolism (8, 25). Although changes in fat-free mass were 

not significantly different between groups in the current study, our data certainly do not support 

any relative preservation of lean mass when fasting but rather are more consistent with the 

possibility that complete fasting for a prolonged period every other day (0:150) is not conducive 

to the retention of lean mass under conditions of net energy deficit. That interpretation would be 

in agreement with recent trials that have reported reductions in fat-free mass even with modified 

alternate-day fasting that does not require such extended periods without food (25% of energy 

requirements allowed on fasting days), albeit also no differently than daily energy restriction in 

these studies (20, 26). In addition, one recent study has even reported that diet-induced 
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reductions in fat-free mass can be offset by only slightly increasing the daily fasting period from 

18-20 h (27). It therefore appears that losses of fat-free mass are possible even with less 

protracted periods of limited nutrient delivery than implemented in the present study and so 

further research is needed to examine the potential for a more sustained catabolic state to result 

in atrophy of lean soft tissue mass or indeed to improve anabolic sensitivity (16).  

Although lean soft tissue mass includes components such as water, glycogen and the non-

lipid component of adipose tissue (the latter being automatically reduced by fat loss; 28), pre-

scan fluid and food intake were carefully standardized in this experiment and any remaining 

effect on the lean portion of adipose tissue would be relatively minor. Indeed, a recent trial 

reported that late time-restricted feeding (fasting 2000-1200 h daily) reduced appendicular fat-

free mass in particular, which probably reflects losses specific to skeletal muscle (29). It 

therefore remains a possibility that at least some of the individuals who were restricting energy 

intake via alternate-day fasting in the present study were experiencing a reduction in skeletal 

muscle mass, which might erroneously be interpreted as successful dieting if using common 

weighing scales. Losing metabolically active fat-free mass (especially skeletal muscle) is 

generally an undesirable outcome for physical function, cardiometabolic health, and for 

sustaining an energy deficit with minimal adaptation in metabolic requirement. Instead, 

intermittent fasting is generally adopted by individuals hoping to achieve weight loss in terms of 

reducing body fat content and yet the present study clearly illustrates that continuous daily 

energy restriction is more effective in achieving that outcome. It is notable, however, that 

visceral fat mass responded similarly to intermittent versus continuous energy restriction, as that 

particular compartment of adipose tissue is ordinarily highly correlated both with 
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cardiometabolic risk and with the sub-cutaneous fat depot that did respond so differently to the 

interventions in this study (30). 

In terms of metabolic rate, it is noteworthy that there was not a larger or more consistent 

difference between groups either under basal/fasted conditions or in response to breakfast - 

especially given that fasting and energy restriction differentially affected changes in both body 

mass and composition, which automatically dictate metabolic requirements. Notably, this finding 

persists irrespective of whether the rates of metabolism and substrate oxidation are expressed in 

absolute terms (kcal·d-1 and g·min-1) or relative to either body mass or fat-free-mass; any effect 

of fasting or energy restriction in terms of adaptive thermogenesis is therefore likely to be small 

and not markedly different between groups. 

Beyond the above relatively trivial responses of resting metabolic rate and diet-induced 

thermogenesis, a major focus of this experiment and an important potential contributor to the 

decrement in total daily energy expenditure is the compensatory behavioural response. Indeed, 

the energy expended via physical activity is the most variable and malleable component of 

energy expenditure and thus has the greatest potential to undermine an imposed energy 

restriction. It is therefore surprising that no past research had objectively quantified the response 

of this variable specific to alternate-day fasting. Several past studies have monitored aspects of 

physical activity during other forms of intermittent fasting but even these few studies were 

designed to focus on isolating metabolic responses and so tended to advise participants not to 

consciously alter their physical activity during the interventions (20, 21, 31, 32). However, 

structured exercise is only one aspect of physical activity and sub-conscious behavioural 

adaptations in non-exercise activity thermogenesis (NEAT) are an important compensatory 

response to fasting.  
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In the present study we objectively quantified all aspects of exercise and non-exercise 

physical activity thermogenesis under free-living conditions in which participants were given to 

understand that, far from consciously avoiding unplanned behaviour changes, they should 

behave naturally. Our observation of reduced physical activity when restricting energy intake via 

alternate-day fasting but without any such reductions when energy restriction or fasting were 

applied separately is inconsistent with a recent trial that found activity energy expenditure to be 

very stable during 4 weeks of alternate-day fasting relative to a non-intervention control group 

(thus not matched for energy restriction; 18) or after two weeks of early time-restricted feeding 

(16). However, behavioural compensation has been noted in past trials involving weight loss or 

daily caloric restriction but without fasting (33). In terms of isolating the effect of fasting per se 

on physical activity, two previous investigations into daily breakfast omission in lean and obese 

adults corroborate the current findings given that light- and moderate-intensity physical activity 

were also lower with extended fasting in those studies, particularly during the morning period 

when participants were post-absorptive (34, 35). Here we used the same tool to objectively 

measure physical activity thermogenesis and so it is similarly possible to explore the temporal 

pattern of behavioural compensation specific to fasted and fed periods. 

To consider what might explain the apparent differences in physical activity, it is 

important to note that the responses to the intervention cannot be explained simply by reactive 

changes in the times participants rose in the morning or went to bed at night depending on 

whether they were fasting, because these times remained within six minutes of the times 

recorded at baseline. Equally, the energy expended directly preparing (or not preparing) food is 

unlikely to account for overall changes in physical activity as the overall energetic contribution 

of cooking activities is minimal (36). It is also conceivable that systematic bradycardia or 



 

 Submitted Manuscript:  Confidential             template updated: February 28 2012 

 

 

tachycardia may respectively explain the lower energy expenditure with fasting or the higher 

energy expenditure when refeeding (particularly considering the increase in physical activity 

specific to fed periods in the group who avoided energy restriction). This is also unlikely, 

however, because extreme (even maximal) overeating only increases resting heart rate by ~6 

beats·min-1 in the immediate post-prandial period (37) and by ~2 beats·min-1 after a week of 

energy surplus (38). Recent work has also now reported anticipatory behavioural modification 

even outside the period of dietary intervention, which cannot therefore be attributed to changes 

in heart rate during the fast (39). Moreover, the changes in physical activity reported here were 

all primarily due to light- and moderate-intensity movements, for which the branched model 

equations used to calculate energy expenditure are weighted heavily towards accelerometry 

unless heart rate is increased markedly above rest.  

It therefore seems reasonable to conclude that behavioural compensation in low-to-

moderate intensity physical activity is indeed responsible for the divergent responses of physical 

activity thermogenesis between groups in this study, consistent with the hypothesis that sub-

conscious engagement in spontaneous movements is reduced by the interaction of alternate-day 

fasting with weight loss but not by fasting per se. This may therefore be a direct influence of low 

nutrient availability due to fasting, although our results indicate that not all the reduction in 

physical activity occurred during fasting periods (with some reduction in energy expenditure 

during fed periods, especially when they occurred during the first part of the day). The latter may 

indicate an anticipatory reduction in physical activity behaviours in advance of the impending 

dietary restriction (39). Future research is therefore warranted to examine both whether there is 

any carry-over effect from the overfeeding period that preceded both afternoon fasting and 
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morning feeding and also whether early- or late-time restricted feeding may differ in their 

potential to elicit this behavioural response. 

Understanding the effects of intermittent fasting on post-prandial metabolic control has 

recently been identified as a research priority (1, 9). Post-prandial measures provide a better 

indication of disease risk than basal/fasted blood samples (40, 41), and simultaneously provide a 

more valid reflection of the fed state that generally predominates for the majority of each 24-h 

cycle (2, 3). Notably, the few studies to have begun examining meal responses to intermittent 

fasting diets have identified clear benefits in terms of reducing post-prandial glycemia (42), 

insulinemia (15) and triglyceridemia (43), albeit without any improvement in whole-body insulin 

sensitivity whether assessed via hyperinsulinemic-euglycemic clamp (21) or oral glucose 

tolerance test (44). Most recently, however, early time-restricted feeding was shown to improve 

post-prandial skeletal muscle glucose and branched-chain amino acid uptake in healthy men 

independent of weight loss (16). In view of these recent findings, it is notable that fasted and 

post-prandial metabolites were generally unresponsive to energy restriction in the present study, 

particularly in light of the post-prandial substrate oxidation data, which indicated that the fasting 

interventions increased post-prandial lipid oxidation.  

One possible explanation for the absence of response in relation to systemic indices of 

cardiometabolic health in this study is that an intervention longer than three weeks may be 

required to elicit meaningful changes in these outcomes, although it has been argued that such 

responses are usually evident within 2-4 weeks (4). That latter interpretation would certainly be 

consistent with recent studies of intermittent fasting that show effects on insulin sensitivity and 

glycemic control within 1-5 weeks (15, 42). A more likely reason why markers of 

cardiometabolic health were not improved by fasting or weight loss in the present study may be 
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that participants were not overweight at baseline. Specifically, positive effects of energy 

restriction on metabolic profile may be secondary to clearance of ectopic lipids (45), which may 

not yet have accumulated substantially in the ostensibly healthy individuals tested here. Further 

research should therefore repeat this experiment in an overweight or obese population. 

Leptin is secreted from adipose tissue in proportion to fat mass (46). It is therefore 

understandable that the varied decrements in fat mass observed in the two energy restriction 

trials in this study (75:75 & 0:150) were mirrored by group differences in the pre-post response 

of fasted concentration of plasma leptin. This pattern is consistent with the physiological role of 

leptin as part of a negative feedback loop to sustain endogenous energy reserves in the face of 

sustained negative energy balance (47), thus validating the established relationship between 

leptin and fat mass irrespective of whether weight loss is elicited by continuous energy 

restriction or intermittent fasting. It might therefore be speculated that the greater fat loss in the 

daily energy restriction group (75:75) might lower satiety more so than the alternate-day fasting 

groups in order to minimise further reductions in fat mass or even restore the lost energy 

reserves. When considering this effect on leptin alongside the absence of group differences in 

acylated ghrelin and peptide YY, it appears that that energy restriction can elicit an adaptive 

neuroendocrine response via the basal concentration of tonic (longer-term) satiety hormones 

such as leptin but without compensation in the acute concentrations of episodic appetite 

hormones to daily meals, although leptin may act synergistically to potentiate the response of 

acute hormones (48, 49). 

Although not pre-specified as an outcome measure in our clinical trial registration 

(www.clinicaltrials.gov NCT02498002), an opportunity arose to measure plasma concentrations 

of carboxy-terminal telopeptide of type I collagen crosslinks (CTX) as a marker of bone 

http://www.clinicaltrials.gov/
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resorption, thus allowing an exploratory analysis of bone turnover with intermittent fasting 

relative to the bone mineral density data obtained from the DXA scans in this study. Our 

observation that neither plasma CTX or bone mineral density differed between treatments may 

simply reflect that it requires longer than 6 months to reveal measurable changes in bone 

turnover via DXA, yet even 6 months of alternate-day fasting does not appear to alter bone 

mineral density or fasted plasma CTX concentrations (50). Nonetheless, CTX rapidly responds 

to under 4 weeks of intensive exercise with restriction and subsequent replacement of 

carbohydrate alone (even without net energy restriction; 51). It may therefore be that the 

additional stimulus of exercise and restriction of carbohydrate in particular may be required to 

alter bone metabolism during interventions lasting only a few weeks. 

To the authors’ knowledge, this trial provides a report of gene expression in human 

adipose tissue within the context of alternate-day fasting. Rather than interpreting the ostensible 

response of a few genes in isolation, illustrating such data using a heat map renders it possible to 

consider the overall pattern of responses across all the genes that operate in concert. From that 

perspective, it may be worth noting that fasting with net energy restriction (0:150) indicates 

consistent downregulation of almost all genes analyzed, with the few exceptions that were 

markedly upregulated all being the same genes that are markedly downregulated after fasting 

without net energy restriction (0:200) and also all implicated in inflammation (CEBPB, 

NAMPT/visfatin & Tumor Necrosis Factor-α). These few observations notwithstanding, the 

overall lack of effects on gene expression in the present study of lean individuals may indicate 

that fasting and energy restriction for several weeks do not exert any substantial influence at the 

genetic level in human subcutaneous adipose tissue. This absence of effect may therefore be 

tissue-specific because skeletal muscle does exhibit altered expression of certain metabolic genes 
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(but not core clock genes) in response to time-restricted feeding (52). It may be that any effects 

of fasting on adipose tissue gene expression are short-lived and so do not persist following even 

one day of habitual energy intake, which in the present study was standardized within each 

participant 24 h prior to follow-up samples in order to replicate conditions preceding the 

corresponding baseline samples. Alternatively, a more prolonged or intensive intervention that 

elicits more profound reductions in fat mass may be necessary before effects on adipose tissue 

gene expression can be detected. 

There are several limitations to our study that arise primarily due to the practical 

constraints inherent to intensive human intervention trials. Although groups were well-matched 

for physiological characteristics at baseline, the proportion of males and females was not equal 

between groups (table S1) and the sample size was slightly reduced for adipose tissue gene 

expression as adipose biopsies were an optional procedure for which few volunteered (although 

the small/similar absolute fold-changes in gene expression indicate that no physiologically 

meaningful differences have gone undetected simply due to statistical power). Similarly, no 

participants elected to provide skeletal muscle biopsies; measures of muscle protein synthesis 

would have been informative in view of the fat-free mass data reported here. In relation to the 

free-living intervention, it should be acknowledged firstly that compliance was self-reported (so 

would have benefitted from objective verification via continuous glucose monitoring; 34, 35) 

and secondly that additional effects may have become evident had it been feasible to sustain this 

intervention beyond 3 weeks. The post-prandial measures of triacylglycerol and glycerol should 

also be interpreted with caution because a high degree of variability was apparent in measured 

values, yet the effects reported here in relation to triacylglycerol total area under curve are 

consistent with a previous study in which fasting on 2 consecutive days per week for ~8 weeks 
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reduced post-prandial triglyceridemia (43). Last, not all metabolic responses to the second meal 

had returned to basal levels within the 2-h post-prandial measurement period. It would therefore 

be interesting to have extended the monitoring period later into the evening and, ideally, to have 

documented a complete 24-h diurnal cycle. 

The fact that intermittent fasting exerted no greater effect than continuous daily energy 

restriction on anthropometric, metabolic, and behavioural outcomes in this study may in part be a 

consequence of the alternating daily nature of the fasting periods. Specifically, the transition 

between fasted and fed states at 1500 h on alternate days may not be conducive to the 

entrainment of diurnal rhythms within the human circadian timing system; the signalling effects 

of high or low nutrient availability may then be compromised because metabolic and behavioural 

food anticipatory activity cannot be aligned to a regular meal pattern in each daylight period 

(53). It may therefore be that intermittent fasting models such as alternate-day fasting or the 

“5:2” diet that do not repeat every 24 hours necessarily have less potential to optimise 

physiological function than models in which fasting is scheduled at the same time each day (such 

as time-restricted feeding). However, given that human physiology operates to defend against the 

desired energy deficit that is the objective of dieting, there may still be some value in 

deliberately misaligning and thus impairing that natural protective response via a more erratic 

fasting schedule - perhaps in overweight or obese individuals for whom there is more excess 

body fat to lose or pre-existing health conditions to rectify. 

Although the intermittent fasting regimen employed here was inferior for reducing body 

fat relative to daily energy restriction in terms of our completers-only analysis, participants 

allocated to the 0:150 group nonetheless appeared to find adoption and adherence reasonably 

acceptable (or at least tolerable, with only one withdrawal) and did experience significant albeit 
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more modest reductions in adiposity. Alternate-day fasting may still therefore represent a viable 

even if sub-optimal weight loss option for those who find this pattern relatively easy to adopt and 

adhere to within their wider lifestyle, perhaps in combination with countermeasures targeting 

lean tissue mass (such as resistance exercise). Even accepting that alternate-day fasting may not 

be sufficiently feasible in the specific form described here or may not be justified by the overall 

risk-benefit analysis, an improved basic science understanding of intermittent fasting can inform 

related approaches (development of novel ingredients, periodization of particular nutrients or 

exercise, fasting mimicking diets, and so on) with a view to maximizing potential advantages 

whilst minimizing any disadvantages. 

In summary, for lean healthy adults, continuous daily energy restriction (traditional diet 

advice) results in meaningful weight loss that is almost entirely attributable to reduced adipose 

tissue mass. By contrast, using alternate-day fasting to elicit the same energy deficit can 

spontaneously inhibit physical activity relative to the usual pre-diet engagement in such 

behaviour and so less effectively reduces fat mass than continuous daily energy restriction. These 

are generally undesirable responses linked to poor long-term health outcomes, although no short-

term changes in metabolic health were apparent in the lean population reported here. The main 

practical message for individuals to consider if planning to use alternate-day fasting for the 

purpose of weight loss or health gain is thus to consciously insert opportunities for physical 

activity alongside the intermittent fasting regimen in order to maintain energy expenditure and 

maximize potential beneficial effects on body composition. 
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Materials and Methods 

Study Design 

We conducted a randomized controlled trial in which 36 lean healthy adults were 

randomly allocated into three experimental conditions following a 4-week baseline monitoring 

phase (habitual diet and physical activity). One group (n=12) served as a continuous dietary 

energy restriction control by being prescribed 75% of their habitual energy intake each day (25% 

daily energy restriction; 75:75); a second group (n=12) were prescribed a matched degree of 

dietary energy restriction but achieved via alternating 24-h periods of complete fasting and 

consuming 150% of their habitual energy intake (25% net energy restriction; 0:150); a third 

group (n=12) were prescribed a matched pattern of complete fasting every other 24 hours but 

consuming 200% of their habitual energy intake on fed days (no net dietary energy restriction; 

0:200).  

Critically, the two fasting groups (0:150 & 0:200) consumed no energy-providing 

nutrients whatsoever during fasting periods and transitioned from fasted to fed state and vice 

versa at 1500 h on a daily basis. This time was selected for a number of reasons: it provides a 

consistent fasting duration of precisely 24 h, thus sufficient to elicit the desired fasting-mediated 

mechanisms whilst also standardized between fasted and fed periods (rather than a more variable 

fasting duration if dictated by sleep times); our recent work revealed diurnal rhythms in human 

skeletal muscle transcriptomics and lipidomics that exhibit peak accumulation of relevant gene 

transcript and lipid metabolites at 1600 h (54, 55), so the metabolic switch between the fed and 

fasted state would be complete by 1600 h each day (11); effects can be attributed to fasting as 

opposed to any systematic shift in circadian rhythms because the time-restricted feeding 

alternates between the first and second part of each day-night cycle; the transition occurs at 
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approximately the mid-point of each waking period, allowing equally weighted contrasts 

between the metabolic and behavioural responses in each half of the day; and our pilot testing 

suggests that participants find it relatively feasible to fast for this duration given that there is no 

complete waking period without food. 

In terms of outcome measures, recent reviews on this topic have highlighted the need for 

trials investigating the components of energy balance under free-living conditions in order to 

understand the distinct compensatory metabolic and behavioural responses to fasting per se as 

opposed to mere energy restriction (1, 9). In particular, there is an outstanding need to establish 

the effects of regularly fasting for an extended period on the preservation of fat-free mass (and 

thus resting metabolic rate during weight loss); compensatory behavioural adjustments in 

physical activity thermogenesis; and alterations in metabolic control both under fasted conditions 

and in the fed state. Below we therefore present data for three primary outcomes, namely 

changes in body composition, components of energy balance, and post-absorptive/post-prandial 

measures of systemic metabolites and regulatory responses to sequential mixed-meal tolerance 

tests (breakfast and lunch) applied pre- and post-intervention. 

 

Experimental Model & Subject Details 

Sampling & Recruitment – This study involved the recruitment of human volunteers and thus 

obtained a favourable opinion from a National Health Service Research Ethics Committee 

(reference: 15/SW/0007). Participants were recruited via local advertisement in the South West 

of the United Kingdom between 2015 and 2018 (trial first advertised May 20th 2015 and first 

participant enrolled June 17th 2015) in order to obtain a total sample of 36 lean and purportedly 

healthy men and women. This sample size is consistent with previous studies in this area that 
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have provided reliable and useful data, so was justified using a priori statistical power estimates 

based on studies of similar duration to have examined the outcome measures in question. For 

example, one study (56) observed a decline in resting metabolic rate following 21 days of daily 

energy restriction (1898 ± 262 versus 1670 ± 203 kcal·day-1), which would therefore have an 

80% probability of detection at p0.05 with n=33. In relation to other outcomes in this study, a 

previous study (57) reported a reduction in 2-hour post-prandial plasma glucose concentrations 

following 10 days of daily energy restriction (10.7 ± 3.6 versus 7.1 ± 3.0 mmol·l-1), in which 

case n=27 would be required to achieve beta 0.8 and alpha 0.05. Collectively, it was therefore 

deemed that ~30 participants would be adequate to detect meaningful treatment effects in the 

present study and recruitment proceeded on a rolling basis until at least 12 had completed each 

experimental condition given that our primary hypotheses concern the physiological responses of 

actually fasting, so a completers-only analysis is appropriate. 

To be eligible upon volunteering, participants had to first be classified as lean based on 

body mass index (BMI; 20.5-24.9 kg·m-2), which was subsequently confirmed upon their first 

laboratory visit using sex-specific fat mass index (FMI) obtained from a dual-energy x-ray 

absorptiometry (DXA) scan. Values of ≤7.5 kg·m-2 and ≤11.0 kg·m-2 were classified as lean for 

males and females, respectively. Further inclusion criteria for this study were that participants 

must be: aged 18-65 years; weight stable (±3 kg) for prior 6 months; able and willing to comply 

with study procedures; willing to undertake required fasting durations; and have the capacity to 

provide informed consent. Exclusion criteria were as follows: body mass >120 kg; engagement 

in fasting practices within 3 months of start date; recent or planned change in diet/physical 

activity habits; evidence of disordered eating as assessed using the EDE-Q 6.0 (Fairburn, 2008); 

diagnosis with diabetes or other metabolic health disturbances; ongoing medical condition or 
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treatment which may interfere with study variables; menopausal; pregnant, recently pregnant or 

planning to become pregnant (within 3 months) or currently breastfeeding; having donated blood 

within the last 3 months; lack of capacity/language skills to independently follow the protocol; 

unable to consume test meals due to intolerances/dietary preferences (vegan, gluten, milk 

proteins); or any other behaviour or condition that introduces bias to the experiment or poses 

undue personal risk. Baseline characteristics of the 36 individuals who completed the study are 

reported in table S1. A total of 97 individuals were formally screened for eligibility, of whom 42 

met the inclusion criteria and were consented to complete the first laboratory visit. During the 4-

week baseline monitoring control phase, three individuals withdrew from the trial (citing illness, 

work, or relocation) and two more were excluded from the trial for data outside the inclusion 

criteria (not weight-stable at baseline and implausibly low energy intake). Post-randomization 

only one participant withdrew from the study (0:150 group), citing difficulty fasting. Hence the 

final sample size of completers was n=36 (see supplementary participant flow diagram; fig. S1). 

 

Experimental Design – A randomized controlled trial (www.clinicaltrials.gov NCT02498002; 

trial registered July 15th 2015) with an independent measures, parallel groups design was adopted 

to contrast the effects of intermittent fasting with and without weight-loss relative to standard 

daily energy restriction. Specifically, all volunteers completed a 4-week baseline monitoring 

phase during which they consumed and recorded their habitual diet without consciously 

modifying any aspect of their lifestyle. One week later participants were randomly assigned to a 

4-week dietary intervention using a blocked randomisation scheme with a 1:1:1 allocation and 

stratified according to fat-mass index and physical activity level (PAL), thus ensuring a relatively 

even distribution of more (PAL: ≥1.75) and less (PAL: <1.75) active participants in each group. 

http://www.clinicaltrials.gov/
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This randomization scheme, including block sizes and sequences, was generated by an individual 

who was not involved in participant recruitment or aware of participant identification codes, with 

details of the allocation sequence concealed from all who were involved with participant 

recruitment and code assignment in order to minimise any risk of bias. Participants completed a 

pre-intervention laboratory visit, after which they received their group assignment and adhered to 

the prescribed dietary intervention for 20 days (with monitoring of free-living diet and physical 

activity during), before a post-intervention laboratory visit to follow-up pre-intervention 

measures. The three experimental conditions were as follows: Daily Energy Restriction (75% 

of habitual diet every 24 hours; 75:75); Alternate-Day Fasting with net Energy Restriction 

(alternating 0% and 150 % of habitual diet every other 24 hours; 0:150); Alternate-Day Fasting 

without net Energy Restriction (alternating 0% and 200% of habitual diet every other 24 hours; 

0:200).   

Protocol – Following the provision of written informed consent, eligibility was initially assessed 

using a series of self–report questionnaires together with a BMI calculation. Eligible participants 

then undertook the 8-week protocol shown in fig. S2. For all laboratory sessions, participants 

abstained from caffeine, alcohol, smoking and strenuous exercise throughout the preceding 24 

hours, and also standardized their dietary intake on a within-participant basis. Following an 

overnight fast (minimum 10 hours), participants reported to the laboratory at 0730 h (± 1 h) 

having consumed 500 ml of water upon waking. For female participants, laboratory sessions 

were scheduled to coincide with the follicular phase of their menstrual cycle (3-10 days after 

onset of menses). 

 



 

 Submitted Manuscript:  Confidential             template updated: February 28 2012 

 

 

Baseline Laboratory Visit 1 – This visit provided a reference point for examining the stability of 

body mass, as an indicator of overall energy balance, throughout the ensuing 4-week 

control/monitoring phase in which habitual dietary intake and physical activity were quantified. 

In addition, this visit served to familiarise participants with key procedures to improve reliability 

over subsequent laboratory sessions. A urine sample was collected when voiding prior to 

measurements of height and body mass to ensure adequate hydration for these measurements 

(urine specific gravity <1.020 and osmolality <900 mOsm). Following a 20-minute rest in a 

semi-recumbent position, resting metabolic rate and substrate oxidation were then measured via 

indirect calorimetry of expired gas samples, after which a fasted blood sample was drawn.  To 

conclude this session, a submaximal treadmill protocol was undertaken to individually calibrate 

the physical activity monitors being used throughout the study (Actiheart, Cambridge 

Neurotechnology). Before departing, participants were given the materials to capture free-living 

measurements of dietary intake and physical activity.  

Control/Monitoring Phase – During this phase, both energy intake and physical activity energy 

expenditure were measured concurrently in four designated monitoring windows of three 

consecutive days each. Each of these windows was separated by at least two days from any other 

and the final window covered the three days leading up to the second laboratory visit to ensure 

compliance with standardisation procedures. Physical activity energy expenditure and intensity 

were measured using individually–calibrated Actiheart monitors and energy intake using a 

weighed record of food and fluid intake. Energy balance was verified by maintaining a stable 

body weight (≤1.0 kg increase or decrease) between the first and second laboratory visits. 

Pre-intervention Laboratory Visit 2 – Participants returned to the laboratory following the 

control/monitoring phase for measurement of a series of fasted and postprandial outcomes. 
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Adequate hydration status was again ascertained via urinary biomarkers upon arrival prior to 

measuring body mass. Fasting measurements of resting metabolic rate and substrate oxidation 

were then obtained before an intravenous cannula was fitted to an antecubital vein. At this stage, 

an initial venous blood sample was drawn to provide fasted concentrations of relevant 

metabolites and hormones. A small sample of adipose tissue was obtained from volunteers who 

opted-in to that procedure (in which case a repeated venous blood sample was taken afterwards 

to serve as the baseline for the meal response tests). Participants then completed the first of two 

sequential mixed-macronutrient meal tests: a homogenous porridge meal (meal 1; breakfast) and 

a meal-replacement shake (meal 2; lunch). The morning post-breakfast period involved the 

collection of expired gases for indirect calorimetry along with venous blood samples, whereas 

the afternoon post-lunch period only involved blood sampling. 

Intervention Phase – Following pre-intervention laboratory visit 2, a 6-day wash-out period 

occurred prior to commencing the interventions – this was done both to avoid prolonged periods 

of lifestyle monitoring and to maintain an interval of 4 weeks between pre- and post-intervention 

tests. During fasting cycles participants were only permitted water, herbal teas and black 

tea/coffee with no sugar (unsweetened energy-free drinks). During feeding cycles, and 

throughout the daily energy restriction intervention, participants were prescribed the same meals 

as they reported habitually consuming during their baseline monitoring phase but with quantities 

proportionately modified to provide 75%, 150% or 200% of their habitual energy intake. Energy 

intake and physical activity were also monitored over the first and last 6 days of the intervention 

period – the former to quantify compliance and the latter to examine behavioural compensation 

in energy expenditure. 
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Post-intervention Laboratory Visit 3 – After the completion of 20 consecutive 24-hour dietary 

cycles plus one wash-out day of replicating the standardised diet and activity from before the 

pre-intervention visit, participants returned to the laboratory and repeated the protocol outlined 

earlier for laboratory visit 2. 

Outcome Measures 

Body Composition – Post-void body mass was measured to the nearest 0.1 kg using a 

sliding balance scale (Weylux 424) and height was measured to the nearest 0.1 cm using 

a wall-mounted stadiometer (Seca Stadiometer). Body composition was assessed using a 

DXA scan (QDR Discovery W, Hologic) conducted in accordance with the 

manufacturer’s instructions. Prior to each exposure a quality control procedure was 

executed in which a spine phantom with known radiographic attenuation properties was 

scanned to ensure adequate performance. This was accompanied by a background 

radiographic uniformity test at regular intervals, in which a whole-body scan was 

completed whilst the scanning table was empty to ensure proper functioning and monitor 

changes in background radiation levels. All DXA scans were obtained at the end of data 

collection sessions to provide greater control over hydration status and tissue glycogen 

content. Before scans, participants voided, wore the same lightweight clothing and 

removed shoes along with any heavy items and jewellery. 

Dietary Intake – Participants were provided with a set of compact kitchen scales (Pocket 

Pro 2000, Smart Weigh) and a logbook with which all food and drink items were 

recorded. A member of the research team discussed best practice with participants and 

emphasised the level of detail required. Weighed records were analysed (Nutritics version 

5.031) to determine energy and macronutrient intake. Free-living diet-induced 
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thermogenesis was then estimated based on these self-reported food diaries based on the 

established constants for the thermogenic effect of each macronutrient ingested (58). 

Physical Activity – Physical activity was measured using Actiheart monitors (Cambridge 

Neurotechnology). These monitors were individually calibrated using a treadmill protocol 

involving four 3-minute stages of incremental treadmill locomotion with concurrent 

measurements of heart rate and energy expenditure (indirect calorimetry of expired gas 

samples) to yield a heart rate–physical activity intensity regression equation upon which 

estimates were based. The times at which participants rose in the morning and went to 

bed at night were determined based on visual inspection of individual daily physical 

activity traces to identify when physical movements commenced and ceased at the 

beginning and end of each waking phase (this analysis was completed by an individual 

blinded to treatment allocation). 

Meal Tests – Two successive meal tests were completed pre- and post-intervention. Both 

meals were prescribed to provide one-third of resting metabolic rate, as measured pre-

intervention. Meal 1 was a homogenous porridge meal (1.31 kcal·g-1; 59% carbohydrate, 

29% fat, 12% protein) composed of golden syrup flavour instant oats (Sainsbury’s), 

whole milk (Tesco) and white granulated sugar (Silver Spoon). This was cooked in a 

microwave and cooled for 10 minutes before being consumed in its entirety within a 10-

minute eating opportunity following a pre-meal blood draw. Meal 2 took the form of a 

liquid meal-replacement supplement (1.50 kcal·ml-1; 54% carbohydrate, 30% fat, 16% 

protein) (Ensure Plus; Abbott Nutrition). This was consumed following a pre-meal 

arterialised-venous blood draw within a 5-minute feeding window commencing 3.5 hours 

after the consumption of meal 1.  
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Indirect Calorimetry – Resting metabolic rate and substrate oxidation were measured 

using indirect calorimetry of expired gas samples (59). In each instance, three consecutive 

5-minute samples were taken in accordance with best practice guidelines (60), with the 

values from two or more samples that agree to within 100 kcal·day-1 taken as an 

arithmetic average. 

Blood Sampling and Analysis – At the pre- and post-intervention visits all blood samples 

were procured by means of an intravenous cannula. To permit the sampling of 

arterialised-venous blood, for 10 minutes prior to arterialised-venous sampling intervals 

participants were asked to place the hand of their cannulated arm into a heated-air box 

(University of Vermont), the internal environment of which was held steady at 55oC. 

Samples were drawn and dispensed into an EDTA-coated tube for processing before the 

cannula was flushed with 0.9 % saline to keep it patent. Analysis of plasma samples for 

concentrations of metabolites was performed using an automated analyser (RX Daytona; 

Randox Laboratories) and commercially available reagents (Randox Laboratories). 

Plasma insulin and leptin concentrations were determined using commercially available 

ELISAs (Mercodia). For the analysis of acylated ghrelin, 1 mL of EDTA-treated whole 

blood was treated with 50 μL of a p-hydroxymercuribenzoic acid solution (prepared as 

100 mM concentrate solution in potassium phosphate buffer containing 1.2 % 10 m-

NaOH). Samples treated in this way were analysed for acylated ghrelin using 

commercially available ELISAs (Merck-Millipore). Total PYY was analysed in plasma 

samples using commercially available ELISAs (Merck-Millipore). Plasma C-terminal 

telopeptide of type I collagen (CTX) concentrations were analysed using commercially 

available ELISAs (Immunodiagnostic Systems). For all assays, where concentrations fell 
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below the limit of detection for the assay, values were supplanted by the limit of 

detection, as specified by the assay manufacturer. 

Adipose Tissue Sampling and Analysis – Subcutaneous adipose tissue biopsies were 

performed under local anaesthesia (1% lidocaine (lignocaine)) from the area around the 

waist approximately 5 cm lateral to the umbilicus using a 14-G needle using an aspiration 

technique with follow-up biopsies sampled from the opposite side. The sample was 

cleaned with isotonic saline and any clot was manually removed. After weighing the 

sample, it was homogenized in 5 mL of Trizol (Invitrogen) and placed on dry ice before 

being stored at −80°C. Subsequently, samples were defrosted and vortexed, before 0.1 

mL of 1-Bromo-3-Chloropropane per 1 mL of Trizol was added. After shaking the 

mixture vigorously for 30 s, samples were incubated at room temperature for 3 min and 

then centrifuged at 10,000 g for 15 min at 4°C. The aqueous phase was removed and 

mixed with 0.5 mL ice-cold isopropanol per 1 mL of Trizol and stored overnight at -20°C 

to precipitate RNA. Samples were centrifuged at 10,000 g for 10 min at 4°C and the 

supernatant was discarded. The remaining pellet was washed in 1 mL of 75% ethanol per 

1 mL of Trizol and centrifuged at 10,000 g for 10 min. Supernatant was removed once 

more and the pellet was air-dried for 10 min before being suspended in 30 μL of RNase-

free water.  Each sample was quantified by spectrophotometry using a NanoDrop One 

(Thermo Scientific), with 5 ng of total RNA reverse transcribed using a high-capacity 

cDNA reverse transcription kit (SuperScript III, Invitrogen).  A 100 μL reaction mix 

comprising 200 ng of cDNA, 50 μL of Universal Mastermix (Applied Biosystems) and 

RNase-free water, was used for each sample. The following assays, obtained from 

Applied Biosystems, were run on a real-time PCR system (7900HT, Applied Biosystems) 
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according to manufacturer’s guidance: CLOCK (Hs00231857_m1), CRY1 

(Hs00172734_m1), NPAS2 (Hs00231212_m1), PER1 (Hs00242988_m1), CREB1 

(Hs00231713_m1), APLN (Hs00175572_m1), C/EBP alpha (Hs00269972_s1), C/EBP 

beta (Hs00942496_s1), LEPTIN (Hs00174877_m1), AKT2 (Hs00609846_m1), IRS1 

(Hs00178563_m1), IRS2 (Hs00275843_s1), PIK3R1 (Hs00381459_m1), IGF1R 

(Hs00609566_m1), SIRT1 (Hs01009006_m1), Slc2a4/GLUT-4 (Hs00168966_m1), 

FASN (Hs00188012_m1), MLXIPL/ChREBP (Hs00263027_m1), NAMPT/visfatin 

(Hs00237184_m1), SREBF1/SREBP1C (Hs01088691_m1), PDK4 (Hs01037712_m1), 

ACACA (Hs01046047_m1), ACADM (Hs00936580_m1), ANGPTL4 

(Hs01101127_m1), CIDEC/FSP27 (Hs01032998_m1), CPT1 alpha (Hs00912671_m1), 

FABP4 (Hs01086177_m1), HADHB (Hs01027270_g1), LIPE/HSL (Hs00193510_m10), 

LPL (Hs01012571_m1), PLIN2 (Hs00605340_m1), PNPLA2/ATGL (Hs00386101_m1), 

PNPLA3 (Hs00228747_m1), PPARG (Hs01115513_m1), CIDE-A (Hs00154455_m1), 

IL-6 (Hs00985639_m1), PARP1 (Hs00242302_m1), TNF-a (Hs99999043_m1), 

ADIPOQ/adiponectin (Hs00605917_m1), PRKAA1 (Hs01562315_m1), PRKAA2 

(Hs00178903_m1), PPARGC1A (Hs00173304_m1), SIRT3 (Hs00953477_m1), UCP2 

(Hs01075227_m1). Relative quantification of the genes of interest was performed using 

the comparative CT method as previously described (61). The expression of all these 

genes were first normalized for the geometric mean of PPIA/Cyclophilin A 

(Hs04194521_s1) and PGK1 (Hs99999906_m1) which were used as endogenous controls 

for calculation of ΔCt. The comparative threshold cycle (Ct) method was then used to 

process the data where ΔCt = Ct target gene – Ct endogenous control, with data 

subsequently normalized to an internal calibrator (a nominated baseline sample broadly 
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displaying higher Ct values across all genes) for the relevant quantification using ΔΔCt, 

and then to each participant’s own baseline expression of each gene for calculation of the 

relative changes presented in Figure 4. 

Urine Collection and Analysis – Urine samples collected at the outset of each laboratory 

session were analysed for specific gravity via refractometry (SUR-NE Clinical) and 

osmolality via the freezing-point depression method (Micro Osmometer 3300; Advanced 

Instruments). Throughout the 3-hour postprandial period following meal 1, total urine 

output was also collected in order to correct rates of energy and substrate metabolism for 

protein oxidation. Urinary urea concentration was determined using an automated 

analyser, as described above for plasma samples. 

 

Statistical Analysis 

All analysis was performed using SPSS 23.0 (IBM). As specified a priori in our 

published protocol (22), primary contrasts were examined using a 2-way group x time mixed 

model analysis of variance (ANOVA), with experimental condition (group) as a between-

subjects factor and either pre-post visit or control/monitoring-intervention phase (time) as a 

within-subjects factor. Where the time-course of postprandial responses were quantified pre- and 

post-intervention, a three-way ANOVA was utilized to include timepoint in the model (group x 

time x timepoint). Wherever there were multiple contrasts for such timeseries data, the 

Greenhouse-Geisser correction was adopted for epsilon <0.75 and the Huynh-Feldt correction 

adopted for less severe asphericity. This parametric approach was applied irrespective of the 

distribution of data given that the type I error rate of the model is typically close to the nominal 

value (p≤0.05) even when data are non-normally distributed (62, p. 109). Any relevant main 
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effects of treatment or interaction effects were followed up using appropriate post-hoc tests to 

identify the location of variance, with a Ryan-Holm-Bonferroni stepwise correction to adjust the 

resulting p-values for multiple comparisons and thus avoid inflation of the type I error rate (63). 

Statistical significance was accepted at p≤0.05 and all data are reported as means  standard 

deviations and standard errors in tables and figures, respectively, with delta change scores (with 

95 % confidence intervals). 
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Supplementary Materials 

Figure S1. CONSORT flow diagram illustrating progress through each phase of the trial. 

Figure S2. Schematic of the 8-week study design (A) and laboratory sessions 2 and 3 (B). 

Table S1. Participant anthropometric and blood plasma characteristics at baseline. Data are 

meansstandard deviation. 

Table S2. CONSORT reporting checklist 

Data file S1. Primary data. (Excel) 
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Figure Captions:  

Figure 1: Changes in body composition and components of energy balance at baseline and during 

interventions involving either: 25% daily energy restriction diet (75:75); alternate-day fasting with 

50% refeeding for a net 25% energy restriction diet (0:150); or alternate-day fasting with 100% 

refeeding for a net 0% energy restriction diet (0:200). A) Fat and fat-free mass. B) Energy intake C) 

Energy expenditure D) Post-prandial substrate oxidation. E) Physical activity thermogenesis. F) 

Changes in physical activity thermogenesis from baseline. p-values are post-hoc between group 

differences in response [panel A] and post-hoc within group responses [panels B and C]. Data are 

means and standard error of the mean (all conditions n=12). 

Figure 2: Plasma metabolite concentrations in response to breakfast and lunch before and after 

following interventions involving either: 25% daily energy restriction diet (75:75); alternate-day 

fasting with 50% refeeding for a net 25% energy restriction diet (0:150); or alternate-day fasting 

with 100% refeeding for a net 0% energy restriction diet (0:200). A) Glucose. B) Non-esterified 

fatty acids (NEFA). C) Triacylglycerol. D) Glycerol. Data are means and standard error of the 

mean (all conditions n=12).  

Figure 3: Plasma hormone and telopeptide concentrations in response to breakfast and lunch 

before and after interventions involving either: a 25% daily energy restriction diet (75:75); 

alternate-day fasting with 50% refeeding for a net 25% energy restriction diet (0:150); or 

alternate-day fasting with 100% refeeding for a net 0% energy restriction diet (0:200). A) Insulin 

(n=12/12/12). B) Carboxy-terminal telopeptide of type I collagen crosslinks (CTX; n=11/9/10). 
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C) Acylated ghrelin (n=11/9/10). D) Peptide yy (tyrosine-tyrosine; n=10/7/7). Data are means 

and standard error of the mean. 

Figure 4: Relative changes in adipose tissue mRNA expression before and after interventions 

involving either: 25% daily energy restriction diet (75:75); alternate-day fasting with 50% 

refeeding for a net 25% energy restriction diet (0:150); or alternate-day fasting with 100% 

refeeding for a net 0% energy restriction diet (0:200). The colour hue and intensity represent the 

direction and effect size (Cohen’s d), respectively, for the pre- to post-intervention change within 

each group (n=8/6/4). Genes with a group x time interaction p≤0.05 are in bold; p-values are 

post-hoc within group responses. 

 

Table Captions:  

Table 1. Body composition responses pre- and post-intervention. Data are meansstandard 

deviation, delta change (95% confidence intervals) for within-group responses and p-values for 

between-group differences in response. 

 

Table 2. Blood plasma responses pre- and post-intervention. Data are meansstandard deviation 

and delta change (95% confidence intervals) for within-group responses and p-values for 

between-group differences in response.   
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Table 1. Body composition responses pre- to post-intervention. Data are meansstandard deviation, delta change (95% confidence intervals) for within-group responses 

and p-values for between-group differences in response.  

 Daily Energy Restriction  

(ER; 75:75) 

Alternate-Day Fasting w. net ER 

(0:150) 

Alternate-day Fasting w/o net ER 

(0:200) 

  

   75:75 

p-value 

   0:150 

 

      75:75 

 Pre Δ post  Pre Δ post  Pre Δ post     0:150       0:200        0:200 

Body Mass (kg)a 72.1  10.2 -1.91 (-1.29, -2.54)  72.3  8.2 -1.60 (-0.93, -2.28)  67.7  7.8 -0.52 (0.18, -1.21)  0.46 0.04 0.01 

Body Mass Index (kg·m-2)a 24.0  1.9 -0.6 (-0.5, -0.8)  24.0  2.3 -0.5 (-0.3, -0.8)  23.7  2.1 -0.2 (0.1, -0.4)  0.45 0.03 0.003 

Fat Mass (kg)b 18.3  4.1 -1.75 (-1.25, -2.25)  15.9  5.2 -0.74 (-0.02, -1.24)    17.1  6.7 -0.12 (0.31, -0.55)  0.01 0.05 0.0001 

Fat Mass Index (kg·m-2)b 6.2  1.5 -0.59 (-0.42, -0.76)  5.4  2.2 -0.24 (-0.08, -0.41)  6.0  2.4 -0.01 (0.11, -0.20)  0.01 0.06 0.0001 

Percent Body Fat (%)b 25.7  6.2 -1.81 (-1.25, -2.37)  22.4  7.9 -0.56 (0.12, -1.24)  25.3  9.1 0.10 (-0.45, 0.66)  0.02 0.21 0.001 

Waist Circumference (cm) 84.0  7.1 -2.4 (-1.3, -3.6)  83.2  4.6 -1.7 (-0.5, -2.8)  80.0  7.9 -0.7 (0.6, -1.9)  0.42 0.42 0.09 

Visceral Fat Mass (g) 383  164 -31 (-12, -51)  356  95 -34 (-13, -56)  311  162 -8 (33, -48)  0.81 0.65 0.65 

Fat-Free Mass (kg) 53.0  10.3 -0.03 (0.40, -0.47)  55.4  9.8 -0.75 (0.09, -1.59)  49.5  8.8 -0.53 (0.004, -1.06)  0.35 0.64 0.35 

Lean Soft Tissue Mass (kg) 50.3  10.0 -0.03 (0.40, -0.45)  52.6  9.4 -0.74 (0.09, -1.57)  47.0  8.4 -0.52 (0.01, -1.06)  0.33 0.33 0.63 

Bone Mineral Content (g) 2676  431 -8.5 (30.8, -47.8)  2747  453 -6.6 (26.3, -39.4)  2499  428 -5.9 (18.9, -30.8)  >0.99 >0.99 >0.99 

Bone Mineral Density (g·cm-3) 1.20  0.10 -0.004 (0.01, -0.18)  1.23  0.11 -0.01 (0.01, -0.02)  1.18  0.10 -0.01 (-0.004, -0.03)  >0.99 >0.99 >0.99 

a  denotes significant group x time (pre-post) interactions at p=0.01 
b  denotes significant group x time (pre-post) interactions at p=0.0001 

Within-group responses where the confidence interval does not include zero are in bold text; between group p-values are independent t-tests, adjusted for multiple comparisons. 
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Table 2. Blood plasma responses pre- to post-intervention. Data are means±standard deviation and delta change (95% confidence intervals) for within-group responses  

and p-values for between-group differences in response.   

 Daily Energy Restriction  

(ER; 75:75) 

Alternate-Day Fasting w. net ER 

(0:150) 

Alternate-day Fasting w/o net ER 

(0:200) 

  

   75:75 

p-value 

   0:150 

 

      75:75 

 Pre Δ post  Pre Δ post  Pre Δ post     0:150       0:200         0:200 

Glucose (mmol·l-1) 5.27 ± 0.38 0.01 (-0.13, 0.15)  5.62 ± 0.37 0.04 (-0.29, 0.38)  5.14 ± 0.67 0.10 (-0.20, 0.40)  >0.99 >0.99 >0.99 

iAUCa Meal1 (mmol·l-1·180 min) 136 ± 103 26.8 (-29.9, 83.4)  106 ± 68 9.9 (-75.1, 94.9)  90 ± 30 0.8 (-22.8, 24.5)  >0.99 >0.99 >0.99 

iAUCa Meal2 (mmol·l-1·120 min) 197 ± 65 -1.8 (26.7, -30.2)  196 ± 90 1.5 (-47.5, 50.4)  176 ± 72 -0.9 (21.2, -23.0)  >0.99 >0.99 >0.99 

Insulin (pmol·l-1) 20.6 ± 8.2 -3.5 (1.0, -7.9)  19.0 ± 5.0 -0.01 (4.7, -4.7)  18.5 ± 5.8 2.7 (-2.1, 7.5)  0.52 0.52 0.16 

iAUCa Meal1 (nmol·l-1·180 min) 13.1 ± 4.9 1.0 (-3.2, 5.2)  17.9 ± 7.8 2.5 (-4.0, 8.7)  18.5 ± 8.0 0.3 (-3.6, 4.3)  >0.99 >0.99 >0.99 

iAUCa Meal2 (nmol·l-1·120 min) 14.9 ± 5.4 -0.1 (3.1, -3.3)  16.7 ± 6.0 0.3 (-1.2, 1.9)  20.2 ± 11.3 -0.5 (5.1, -6.0)  >0.99 >0.99 >0.99 

HOMA2-IRb 0.46 ± 0.18 -0.08 (0.02, -0.17)  0.43 ± 0.11 -0.004 (0.10, -0.11)  0.40 ± 0.11 0.06 (-0.04, 0.16)  0.52 0.52 0.12 

NEFAc (mmol·l-1) 0.48 ± 0.34 -0.02 (0.08, -0.13)  0.33 ± 0.09 0.01 (-0.08, 0.09)  0.34 ± 0.18 -0.04 (0.09, -0.16)  >0.99 >0.99 >0.99 

AUCa (mmol·l-1·330 min) 49.7 ± 21.1 -3.8 (5.0, -12.7)  39.7 ± 10.7 -0.1 (6.6, -6.8)  41.5 ± 17.6 -2.1 (8.9, -13.0)  >0.99 >0.99 >0.99 

Glycerol (µmol·l-1) 58.0 ± 32.9 -0.39 (18.5, -19.3)  40.6 ± 29.9 0.44 (-16.0, 16.9)  35.9 ± 24.5 -1.75 (14.7, -18.2)  >0.99 >0.99 >0.99 

AUCa (mmol·l-1·330 min) 12.3 ± 5.0 1.7 (-0.8, 4.2)  10.7 ± 4.1 0.3 (-1.1, 1.7)  10.7 ± 4.1 -0.1 (1.3, -1.6)  0.60 0.63 0.54 

Triacylglycerol (mmol·l-1) 0.81 ± 0.32 -0.04 (0.13, -0.21)  0.97 ± 0.33 -0.12 (0.02, -0.27)  0.92 ± 0.32 -0.02 (0.13, -0.18)  >0.99 >0.99 >0.99 

AUCa (mmol·l-1·330 min)e 236 ± 109 38.5 (-3.1, 80.2)  384 ± 126 -46.7 (1.1, -94.4)  345 ± 165 -5.0 (40.4, -50.4)  0.02 0.27 0.27 

Total Cholesterol (mmol·l-1) 4.75 ± 0.97 -0.28 (-0.09, -0.48)  4.74 ± 0.77 0.00 (-0.23 ,0.23)  4.68 ± 0.96 0.01 (-0.24, 0.27)  0.16 0.94 0.16 

HDLd Cholesterol (mmol·l-1) 1.64 ± 0.43 -0.07 (0.03, -0.18)  1.53 ± 0.43 0.05 (-0.04, 0.14)  1.60 ± 0.41 0.04 (-0.05, 0.13)  0.21 0.91 0.21 

LDLd Cholesterol (mmol·l-1) 2.96 ± 0.93 -0.24 (-0.07, -0.41)  3.06 ± 0.85 -0.10 (0.12, -0.31)  2.82 ± 1.18 -0.02 (0.27, -0.31)  0.55 0.66 0.53 

Leptin (µg·l-1)e 9.3 ± 6.0 -3.8 (-1.5, -6.1)  10.5 ± 13.9 -2.8 (0.4, -6.0)  16.4 ± 15.9 0.2 (-1.3, 1.7)  0.59 0.16 0.01 

Adiponectin (mg·l-1) 9.9 ± 2.6 -0.7 (-0.3, -1.2)  8.8 ± 2.6 -0.3 (0.3, -0.6)  10.5 ± 4.9 -0.2  (1.0, -1.5)  0.21 0.97 0.87 

a iAUC = incremental area under the curve from concentrations prior to each Meal (i.e. Breakfast and Lunch); AUC = total area under the curve across both meals. 
b HOMA-IR = Homeostatic Model Assessment of Insulin Resistance 2 (64) 
c NEFA = Non-Esterified Fatty Acids 
d HDL/LDL = High-/Low-Density Lipoprotein 
e denotes significant group x time (pre-post) interactions at p≤0.05 
Within-group responses where the confidence interval does not include zero are in bold text; between group p-values are independent t-tests, adjusted for multiple comparisons. 
 
 

 

vs vs vs 



 

 

Submitted Manuscript:  Confidential                                                template updated: February 28 2012 

 

 



 

 

Submitted Manuscript:  Confidential                                                template updated: February 28 2012 

 

 

Figure 2 
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Figure 4 


