
        

Citation for published version:
Gonzalez, J, Batterham, A, Atkinson, G & Thompson, D 2023, 'Perspective: Is the response of human energy
expenditure to increased physical activity additive or constrained? Constrained human energy expenditure',
Advances in nutrition (Bethesda, Md.).

Publication date:
2023

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Mar. 2023

https://researchportal.bath.ac.uk/en/publications/5b5d7d47-9446-4321-83f7-9ee7544e1434


  
 

Title: Perspective: Is the response of human energy expenditure to increased physical 

activity additive or constrained? 

 

Short title:  Constrained human energy expenditure.  

 

Authors 

Javier T. Gonzalez,1,2* Alan M. Batterham,3 Greg Atkinson,4 Dylan Thompson1,2 

 

Affiliations  

1Department for Health, University of Bath, Bath, UK. 

2Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK. 

3Professor Emeritus, School of Health and Life Sciences, Teesside University, 

Middlesborough, UK. 

4Research Institute for Sport and Exercise Sciences, Liverpool John Moores 

University, Liverpool, UK. 

 

Corresponding Author 

Javier T. Gonzalez 

Email: J.T.Gonzalez@bath.ac.uk 

 

Conflict of interest statement 

J.T.G. is an investigator on research grants funded by BBSRC, MRC, British 

Heart Foundation, The Rank Prize Funds, The European Society for Clinical 

mailto:J.T.Gonzalez@bath.ac.uk


Nutrition and Metabolism (ESPEN), Lucozade Ribena Suntory, ARLA Foods 

Ingredients, Cosun Nutrition Center, and Clasado Biosciences; and has 

completed paid consultancy for PepsiCo and SVGC. 

 

DT is an investigator on research grants funded by BBSRC, British Heart 

Foundation, Diabetes UK, Evolution Education Trust, GlaxoSmithKline R&D, 

MRC, NIHR, Nutricia Research Foundation, UK Sport, Unilever, and Versus 

Arthritis; has completed paid consultancy for Gemina Labs, International 

Consumer Research & Testing (ICRT), Unilever, and Sugar Nutrition UK.  

 

 All other authors declare they have no competing interests. 

 

Sources of support  

Biotechnology and Biological Sciences Research Council grant BB/R018928/1 

(DT, JTG) 

Engineering and Physical Sciences Research Council grant IAA620 (JTG) 

British Heart Foundation PG/19/43/34432 (JTG, DT) 

 

Abbreviations 

TEE, total energy expenditure; 

SMR, sleeping metabolic rate; 

RMR, resting metabolic rate; 

DIT, diet-induced thermogenesis; 



TEF, thermic effect of feeding; 

AEE, activity energy expenditure; 

PAEE, physical activity energy expenditure; 

EXEE, exercise energy expenditure; 

NEAT, non-exercise activity energy expenditure; 

PAL, physical activity level; 

DLW, doubly labelled water; 

CPM/d, counts per minute per day; 

RER, respiratory exchange ratio; 

FFM, fat-free mass; 

TOST, two one-sided tests; 

MCID, minimal clinically important difference; 

RCTs, randomized controlled trials 

 

 

 

 

 

 

 



  
 

Abstract 1 

The idea that increasing physical activity directly adds to total energy expenditure 2 

in humans (additive model) has been challenged by the energy constrained 3 

hypothesis (constrained model). This model proposes that increased physical 4 

activity decreases other components of metabolism to constrain total energy 5 

expenditure. There is a logical evolutionary argument for trade-offs in metabolism 6 

but, to date, evidence supporting constraint is subject to several limitations 7 

including cross-sectional and correlational studies with potential methodological 8 

issues from extreme differences in body size/composition and lifestyle, potential 9 

statistical issues such as regression dilution and spurious correlations, and 10 

conclusions drawn from deductive inference rather than direct observation of 11 

compensation. Addressing these limitations in future studies, ideally randomized 12 

controlled trials, should improve the accuracy of models of human energy 13 

expenditure. The available evidence indicates that in many scenarios, the effect 14 

of increasing physical activity on total energy expenditure will be mostly additive 15 

– although some energy appears to ‘go missing’ and is currently unaccounted 16 

for. The degree of energy balance could moderate this effect even further.   17 

 18 

Keywords 19 

Energy expenditure, Metabolism, Energy balance, Physical Activity 20 

 21 

Statement of Significance 22 



Current evidence for the constrained energy hypothesis is subject to limitations 23 

including methodological, statistical and deductive inference. Suitably powered 24 

randomized controlled trials with measures of energy balance components are 25 

needed to better elucidate whether physical activity is additive or constrained.  26 

  27 



MAIN TEXT 28 

 29 

1. INTRODUCTION 30 

The constrained energy expenditure hypothesis challenges the notion that 31 

increases in activity energy expenditure add to total energy expenditure. This 32 

hypothesis was first proposed by Herman Pontzer (1), and the overarching premise is 33 

conceptualized with the following statement from his recent book: 34 

“The bottom line is that your daily [physical] activity level has almost no bearing on the 35 

number of calories that you burn each day” (p103) (2). 36 

The potential controversy of this topic has been briefly highlighted (3). If this 37 

hypothesis is true, it has profound ramifications for scientific understanding of energy 38 

balance and for prevention and management of obesity. The potential to manipulate 39 

energy expenditure with physical activity and/or calculate energy requirements for the 40 

population would also be severely challenged. The aim of this review is to provide an 41 

independent appraisal of the current evidence used to support the constrained energy 42 

expenditure hypothesis, and to highlight future directions for research. 43 

 44 

1.1.  Human energy expenditure is comprised of multiple components 45 

Human Total Energy Expenditure (TEE) is the energy cost of all metabolic 46 

processes and is comprised of several components (Figure 1). The primarily non-47 

behavioral components include:  48 

1) sleeping metabolic rate (SMR);  49 



2) arousal (when awake)(4); 50 

and 3) cold- and heat-induced energy expenditure [which increase TEE by 3-7% 51 

with typical changes in ambient temperature (5)].  52 

Behavioral components include diet-induced thermogenesis [DIT; a.k.a., the 53 

thermic effect of feeding (TEF), or specific dynamic action of food], representing 54 

increased metabolic rate due to digestion, absorption, and metabolism of ingested 55 

energy (6). Whilst this does have a non-behavioral component, most of the variance in 56 

diet-induced thermogenesis is explained by the amount and type of energy consumed 57 

and thus arises as a consequence of eating behaviors (6). Finally, activity energy 58 

expenditure (AEE) is the increase in energy expenditure with skeletal muscle force 59 

production (7). Exercise energy expenditure (EXEE) is a subcomponent of AEE that is 60 

planned or structured, and thus is defined by the person’s intention, with non-exercise 61 

activity thermogenesis (NEAT) comprising the remaining fraction of AEE. Again, whilst 62 

some variance in AEE is from non-behavioral factors such as efficiency of movement, 63 

most variance is explained by behavioral factors, such as the magnitude and nature of 64 

activity (8). Since the absolute energy cost of movement varies according to body size, 65 

the level of physical activity is often expressed as TEE divided by RMR, known as the 66 

physical activity level (PAL) (9). 67 

 68 

1.2.  What is the constrained energy expenditure hypothesis? 69 

The constrained energy expenditure model proposes that:  70 



“The human body adapts dynamically to maintain total energy expenditure (TEE) within 71 

a narrow physiological range. Rather than increasing with physical activity in a dose-72 

dependent manner, experimental and ecological evidence suggests the hypothesis that 73 

TEE is a relatively constrained product of our evolved physiology.” (10) 74 

In other words, in contrast to the notion of physical activity directly adding to total 75 

energy expenditure (Figure 2A), the energy constrained hypothesis proposes a 76 

compensatory decrease in other components of energy expenditure, such that total 77 

energy expenditure remains relatively constant (Figure 2B). 78 

Initial support for the constrained energy expenditure hypothesis came from a 79 

cross-sectional study using Doubly Labelled Water (DLW) to estimate total energy 80 

expenditure in 30 Hadza (a population of hunter-gatherers) and compared these data to 81 

measurements in ‘Western’ and ‘Farming’ populations (1). PAL was derived using TEE 82 

minus BMR, which for the Hadza, was predicted from equations. In contrast to the 83 

authors’ expectations, after adjusting for fat-free mass and age, TEE was not 84 

significantly different between Hadza versus Western comparators (1). PAL was ~6% 85 

(women) and 25% (men) higher in the Hadza versus Western population, and it was 86 

deduced that the Hadza must therefore spend a smaller proportion of TEE on BMR – 87 

with the inference that BMR is adjusted downwards when physical activity is high to 88 

constrain TEE. This initial report was followed up by a larger study across 332 men and 89 

women from five diverse locations and populations (11). This study used DLW over 7 90 

days, measured RMR, and assessed physical activity using a hip mounted tri-axial 91 

accelerometer (Actical, Phillips Ltd) over 6 days (at least 62% of a day, and at least 4 92 

days of data were used) (11). Across the whole sample, a positive linear relationship 93 



was reported between accelerometer counts and TEE up to a proposed threshold of 94 

~230 counts per minute per day (CPM/d) but, above this level, additional accelerometer 95 

counts did not predict TEE (Figure 3). Unlike findings from the earlier study that 96 

predicted RMR (1), there was no evidence for any effect of measured RMR on TEE 97 

when measured under more controlled conditions (11). However, AEE from DLW-98 

derived estimates (TEE minus RMR) were reported to plateau at higher energy 99 

expenditures and - based on a proposed piece-wise regression model (two regression 100 

slopes with a threshold of 230 CPM/d) - it was concluded that AEE not captured by the 101 

accelerometer must have been reduced to negate the impact of AEE captured by the 102 

accelerometer. Given the magnitude of the missing AEE (~600 kcal/d), it was proposed 103 

that this could not be due to muscular activity overlooked by the accelerometer alone 104 

but must represent a reduction in some other form of energy expenditure (e.g., 105 

reproductive activity). Presumably, this effect must only be manifested in the AEE 106 

component, since RMR was not related to TEE.  107 

One study from hunter-gatherer children in (Shuar) is also used to directly 108 

support the constrained energy expenditure hypothesis (12). Data for hunter-gatherer 109 

children were compared to reference data from the UK and North America. DLW was 110 

used to derive TEE (11 d) and fasting morning RMR was measured (12). Physical 111 

activity was determined using hip-mounted accelerometry. RMR was higher in rural 112 

Shuar, and this was attributed to the energy cost of ongoing infections and immune 113 

burden based on the positive relationship between RMR and circulating Immunoglobulin 114 

G concentrations (12). Shuar children displayed little-to-no difference in TEE but lower 115 

DLW-derived AEE than industrial comparators, despite ~25% greater accelerometry 116 



counts (12). This was interpreted as evidence for trade-offs in childhood to constrain 117 

TEE, with the lower AEE in Shuar children possibly explained by differences in mass, 118 

efficiency, thermoregulation, or the amplitude of variation in RMR.  119 

Other data used to support the constrained energy expenditure hypothesis 120 

comes from a study that investigated energy expenditure in six adults during the 121 

transcontinental race across the USA, a ~5000 km event involving running 6 days/week 122 

for 20 weeks (13). This study incorporated measures of TEE using DLW (5 d), with 123 

running energy cost estimated using global positioning systems (13). RMR was 124 

measured in three participants and estimated using predictive equations in the 125 

remaining three. Data from the first week of the race showed strong agreement between 126 

predicted and observed energy expenditure, which increased to ~6000 kcal/d. However, 127 

at follow-up (14 or 20 weeks into the race), there was a discrepancy such that observed 128 

TEE (from DLW) was less than predicted (13). The predicted energy expenditure used 129 

RMR and other (non-running) AEE from before the race (AEE = TEE minus RMR, TEF 130 

and running energy expenditure). These calculations indicated that it was this ‘other’ 131 

AEE component which was less than predicted (Figure 4). There was little-to-no 132 

change in measured RMR. Thus, it was concluded that humans partially reduce 133 

components of TEE (manifested in the AEE component) (13).  134 

A final piece of recent cross-sectional evidence for the constrained hypothesis 135 

comes from an analysis of a large DLW database which included paired RMR measures 136 

from indirect calorimetry in adults (n = 1754) (14). AEE was calculated by subtracting 137 

RMR from (0.9 x TEE). The primary observations used to support the constrained 138 

energy hypothesis were that the least squares regression slope for the BEE-TEE 139 



relationship was <1 (Figure 5A), and that the correlation between measured RMR and 140 

calculated AEE was negative (Figure 5B). The authors inferred that these relationships 141 

provide evidence of energy compensation, since a lack of compensation (i.e., an 142 

additive model) should provide a perfect positive relationship between TEE and RMR, 143 

and zero relationship between AEE and RMR (14). To understand if compensation 144 

occurs within-individuals, the authors explored within-individual relationships between 145 

residuals of RMR and of TEE for older individuals with two measures each, and for 146 

residuals of AEE and RMR. Based on the same reasoning applied to the whole sample 147 

(relationship between RMR and TEE <1 and between AEE and RMR, negative) the 148 

authors suggested that compensation occurred within, not between individuals (14). The 149 

potential components that have been suggested to be responsible for the constraint 150 

across these studies, with supporting statements are provided in Table 1.  151 

 152 

2. Critique of current evidence on constrained energy expenditure 153 

At the simplest level, evidence from studies on energy balance components and 154 

body mass change can be used to critique the constrained hypothesis. If TEE is 155 

constant when AEE increases, then a stable body mass would require stable energy 156 

intake. Classical data from the 1950s collected from 213 Mill workers in Bengal 157 

indicated that energy intake increases by almost 1000 kcal/d in individuals performing 158 

very heavy work compared to those undertaking light work, yet body mass was reported 159 

as stable (15). This is also supported by more recent studies in athletes (16) and non-160 

athletes (17). A limitation with this critique, however, is the potential inaccuracy of 161 

measuring energy intake. A more comprehensive critique requires consideration of 162 



methods of assessing energy expenditure, study design and statistical analyses to 163 

establish appropriate inferences regarding the relationships between physical activity 164 

and other components of energy expenditure.  165 

 166 

2.1. Considerations for measurement of energy expenditure components 167 

2.1.1. Total energy expenditure (TEE) 168 

Doubly labelled water (DLW) is considered the gold-standard method of 169 

determining TEE during free-living conditions (18). The primary principle is that labelled 170 

hydrogen disappears only from water losses, whereas the labelled oxygen disappears 171 

from both water losses and exhaled CO2. Accordingly, the difference in disappearance 172 

rates of labelled oxygen and hydrogen in the body pool provides exhaled CO2 over the 173 

timeframe of measurement, typically 1-3 weeks (19). TEE is obtained by estimating O2 174 

consumption from the measured CO2 production by adjusting for the respiratory 175 

exchange ratio (RER), which is measured, assumed, or estimated. One way to estimate 176 

RER is to estimate the food quotient (FQ). When in energy balance, FQ will typically 177 

equal RER, and thus RER can be estimated from accurate food diaries. This is relevant, 178 

since the diet of specific populations such as hunter gathers can vary substantially with 179 

regards to carbohydrate and fat content, varying both between populations, but also 180 

seasonally (20). Since dietary intake is notoriously difficult to measure (21, 22), 181 

accuracy of estimating FQ can be challenging, ultimately impacting on the accuracy of 182 

DLW-estimates of TEE. Moreover, some extreme scenarios will mean that RER cannot 183 

be predicted from FQ, for example, when ketone bodies are being produced or oxidized 184 

(23). It has been estimated that properly accounting for RER can alter the interpretation 185 



of DLW data drastically, cutting the effect size of an intervention on energy expenditure 186 

by half, from 209 ± 58 kcal/d to 104 ± 59 kcal/d (24). Therefore, the measurement of 187 

total energy expenditure under free-living conditions is challenging and the extra 188 

information required to accurately estimate energy expenditure is quite often likely to be 189 

missing or inaccurate from studying extreme populations. 190 

The limitations in assessing TEE with DLW have implications for the currently 191 

available evidence on the constrained energy expenditure hypothesis. The nature of 192 

these studies often involves measures in people with vastly different body sizes, 193 

lifestyles, and diets (1), or in the same people but in very different situations, such as 194 

the phases of an ultra-marathon (13). These extreme differences could undermine or 195 

violate some assumptions of DLW for estimating TEE. Furthermore, TEE measures are 196 

normally taken without direct assessment of RER, which will reduce measurement 197 

accuracy and precision. Given these measurement uncertainties, it is risky to base 198 

interpretations on deductive reasoning and inductive reasoning using TEE 199 

measurements alone, and direct observation of the component demonstrating constraint 200 

is needed to provide greater certainty that deduced differences are not the product of 201 

measurement issues and considerations.  202 

 203 

2.1.2. Activity energy expenditure (AEE) 204 

The measurement of AEE is also challenging and has implications for the energy 205 

constrained hypothesis. In some studies, AEE has been estimated by subtracting RMR 206 

(either measured or estimated), from TEE. The fact that this approach relies on two 207 

measures (one subtracted from another) inherently increases uncertainty compared to 208 



direct measurement (and compared to the measure of TEE), since it relies on additional 209 

assumptions, and amplifies variance introduced by each measure. Moreover, without 210 

additional measurement of other components, this measure can mistakenly assign other 211 

components of energy expenditure to physical activity, such as energy costs of 212 

thermoregulation and variance in RMR across a day. 213 

Some studies which report compensation and/or constraint have used hip 214 

mounted accelerometers to characterize “physical activity” (11, 12). Accelerometry data 215 

(CPM/d) are used as a proxy for physical activity, with the conclusion that because 216 

higher CPM/d do not ‘add’ to TEE, that there must be compensation or constraint in 217 

some other component of energy expenditure which erodes the impact of physical 218 

activity on TEE [see Figure 3 reprinted from (11)]. Whilst hip accelerometry is a good 219 

measure of ambulatory physical activity (25), it is notoriously poor for the assessment of 220 

non-ambulatory physical activity. Hip accelerometry explains only 6-16% of the variance 221 

in AEE derived from DLW (26-28) and ~30% of the variance in measured energy 222 

expenditure (by indirect calorimetry) during a battery of physical tasks (29). So at least 223 

some of the observed ‘constraint’ could be decreases in other forms of physical activity 224 

(not detected by hip-mounted accelerometers). Hip mounted accelerometers would not 225 

adequately capture many common forms of physical activity, such as standing, non-226 

ambulatory physical labor, load carrying, cycling, swimming (29). Capturing only a 227 

proportion of total activity might be useful if patterns of physical activity behavior are 228 

consistent across groups, but there is likely to be considerable heterogeneity in these 229 

types of behaviors across diverse populations (11, 12). Based on regression shown in 230 

Figure 3, a great deal of AEE (~600 kcal/d) is reported with zero accelerometry counts 231 



(11). It was speculated that this could reflect other non-muscular/movement energy 232 

expenditure allocated to AEE from DLW measurements (11), but it could simply reflect 233 

the failure of accelerometry to adequately capture the energy cost of physical activity. 234 

Thus, hip accelerometry data should not be used as a proxy for physical activity without 235 

evidence showing that this method suitably captures the nature of physical activity in a 236 

defined population, including variation due to the distinct types of representative 237 

movements undertaken in that population.   238 

Another consideration with accelerometers is the sampling framework and 239 

recording period. Whereas DLW derives average TEE (and AEE) over a sustained 240 

period [e.g., 5 d to 3 wk (18, 19)], accelerometry data is often accepted for a given day if 241 

a device has been worn for a given proportion of the day [e.g., 10 h or 62% (11, 12)], 242 

and for a proportion of the sampling period [e.g., 4 days (11)]. Given the uncertainty in 243 

the behavior that has been missed outside the recorded period, there is a risk in trying 244 

to reconcile (fragmented) accelerometry records with summative average daily AEE 245 

data from DLW. Technical innovation and development may overcome some of these 246 

issues, for example, the integration of other physiological data to improve estimates of 247 

energy expenditure from body mounted devices (30), and/or positioning of devices in 248 

locations which support improved wear time and sampling (31). The accuracy of 249 

physical activity measurement is crucial for making inferences about the constrained 250 

energy hypothesis given that this is a common proposed explanation for constraint 251 

(Table 1). This component needs to be measured and not deduced to make rational 252 

inferences about the relationship between physical activity and human energy 253 

expenditure. 254 



 255 

2.1.3. Thermic effect of feeding (TEF) 256 

The thermic effect of feeding (TEF) is sometimes assumed in studies on the 257 

basis that fat, carbohydrates, protein, and ethanol have thermic effects of 0-3%, 5-10%, 258 

20-30% and 12-28%, respectively (6). The considerable variance in TEF between 259 

macronutrients would require accurate diet assessment to derive accurate TEF, but 260 

even with accurate diet data, the range within each macronutrient is still considerable, 261 

as some variance in TEF is due to inter-individual differences in the postprandial 262 

handling of nutrients, and others can be due to food form and/or degree of processing 263 

(32). Therefore, measured TEF would be preferable, requiring ~4 h of postprandial 264 

measures, ideally in response to a variety of foods, to understand the interactions 265 

between the individual and the foods on TEF. Studies that are aimed at investigating the 266 

constrained energy expenditure hypothesis may therefore make erroneous conclusions 267 

if TEF is estimated rather than measured directly, or if the measurement is only 268 

performed in response to one type of meal rather than a representative mix of foods 269 

(differing in type, timing, and total amount). An erroneous conclusion could be made in 270 

either direction, (i.e., it is possible that constraint in TEF could be missed, or that 271 

constraint is deduced when direct measurement would counter this). Studies providing 272 

evidence for the energy constrained hypothesis have often assumed TEF, which has 273 

been recognized as a limitation (11). In the same way as AEE, TEF needs to be 274 

measured rather than assumed to provide robust and complete data on the relationship 275 

between physical activity and human energy expenditure.   276 

 277 



2.1.4. Resting metabolic rate (RMR) 278 

The measurement of the lowest rate of energy expenditure (sleeping or BMR), 279 

requires participants to be fasted, asleep, in thermoneutrality, and thereby is typically 280 

assessed by room calorimetry. RMR can be assessed by either room calorimetry or 281 

indirect calorimetry when participants are awake, thereby measuring the sum of 282 

sleeping energy expenditure plus arousal. Room calorimetry is non-portable, and thus is 283 

essentially never used in field studies. In these scenarios, field studies are limited to 284 

either portable indirect calorimetry devices, or estimations of RMR based on prediction 285 

equations (13).Limitation with portable metabolic systems for RMR include inabilities of 286 

many devices to accurately measure ventilation rates and account for inspired gas 287 

concentrations, which can vary substantially in different environments and across time 288 

(33). Finally, even with a single accurate estimate of RMR, there is then the assumption 289 

that this measurement reflects the full 24-h period and is stable day-to-day. A snapshot 290 

measurement of RMR is unlikely to be sufficient to extrapolate across an entire day (34, 291 

35). Based on these limitations, evidence from a single measurement should be 292 

interpreted with caution, as they may not reflect RMR at other times of the day and/or 293 

may display some errors compared to more rigorous methods. Accordingly, 294 

measurement (rather than estimation) of RMR is required to confidently determine 295 

whether RMR is responsible for any compensation in TEE with physical activity and 296 

multiple measures of RMR across a day are likely needed to account for circadian 297 

rhythmicity. 298 

 299 

2.2  Statistical issues in the interpretation of energy constraint 300 



Alongside study design and measurement-related considerations, it is also 301 

important to consider statistical factors arising from the mainly observational studies on 302 

the constrained energy expenditure hypothesis. These potential issues include:  303 

1) matching the statistical model with the proposed causal pathway between the 304 

exposure (independent) variable(s) and outcome (dependent) variable(s);  305 

2) the influence of measurement error on least squares regression estimates of 306 

slope and intercept;  307 

3) the risk of correlations being spurious because of mathematical coupling 308 

between the variables of interest;  309 

4) the appropriate use of null hypothesis testing vs equivalence analyses for 310 

“indistinguishable” or “no difference” type hypotheses;  311 

5) a comprehensive and robust approach to comparing the appropriateness of 312 

non-linear, e.g., change point associations, vs linear statistical models. 313 

 314 

2.2.1. What are the exposure and outcome variables? 315 

Prior to application of any statistical model, a proposed direction of a causal 316 

pathway between the various variables of interest should be considered, preferably 317 

aided by a directed acyclic graph (36). The causal pathway determines important 318 

aspects of the proposed statistical model (37), e.g., estimates from least-squares 319 

regression models can differ considerably depending upon which variable is deemed 320 

the exposure [or independent variable (x)] and the outcome [or dependent variable (y)]. 321 

The energy constraint theory indicates that increases in physical activity cause 322 



reductions in other components of energy expenditure, .e.g., “Increasing levels of 323 

activity may bring diminishing returns in energy expenditure because of compensatory 324 

responses in non-activity energy expenditures.” (14)(p4659). In some studies, this latter 325 

component is deemed to be in RMR. In other words, energy expended in physical 326 

activity – often using AEE derived from DLW - is the exposure (independent) variable 327 

that should be placed on the x axis, and BEE is the outcome (dependent) variable that 328 

should be placed on the y axis. It can be seen in Figure 5 that Careau et al. (14) 329 

selected the axes for these two variables in a way that is not consistent with the causal 330 

pathway for compensation theory. 331 

It is important to select exposure and outcome in a way that is consistent with a 332 

causal pathway because this selection influences how much least squares regression 333 

estimates are affected by measurement error. Researchers should consider whether an 334 

association is “symmetric” or “asymmetric” (37). Symmetry refers to the situation where 335 

the purpose is to estimate a slope to ultimately identify a general pattern between two 336 

mutually co-dependent variables (37). If a research question is grounded in such 337 

symmetry, then least squares regression may not be appropriate for estimating a slope 338 

at all. This is because least squares regression is asymmetric, so that there are two 339 

different lines, and two different slopes, depending upon which variable is selected for 340 

each axis. Least squares regression is more appropriate for a definitive causal pathway 341 

between an exposure variable and outcome variable. Along with the importance of 342 

correctly identifying exposure and outcome variables, the important issue of regression 343 

dilution is relevant to least squares regression. This issue is, in turn, dependent on the 344 

relative magnitudes of error variance between the exposure and outcome variables.  345 



Because the energy constrained hypothesis postulates that increases in physical 346 

activity result in constrained TEE, then it follows that physical activity should, in our 347 

opinion, be the exposure on the x axis when examining such correlations. But this is not 348 

the case in many studies. 349 

 350 

2.2.2. Is evidence for constraint an artefact of regression dilution? 351 

Regression dilution results when measurement errors in the predictor (x) variable 352 

attenuate the least squares regression slope (37). The true regression slope can be 1, 353 

but measurement errors in the exposure variable (AEE) lead to the least squares 354 

regression slope being attenuated to less than 1. Importantly, neither BEE nor AEE are 355 

immune from measurement errors and biological variability. Therefore, a slope of <1 as 356 

the criterion used to support the compensation hypothesis needs to be considered 357 

carefully in the context of regression dilution. 358 

Guidelines for exploring regression dilution have been published (38), where 359 

advice is to adopt multiple approaches to diagnose and control for the effects of 360 

regression dilution, including: 1) exploration of relative measurement errors between x 361 

and y variables, 2) appreciation of the causal nexus between x and y variables (see 362 

above), 3) calculation and consideration of the correlation coefficient between x and y 363 

variables (the lower the r, the more prone a least squares regression slope is to dilution, 364 

and 4) undertaking sensitivity analyses where alternative regression approaches are 365 

compared to least squares regression. It is unclear to what extent regression dilution 366 

influenced the findings of Careau et al. (14).  367 



The use of the following published guidelines for exploring regression dilution 368 

may help to advance the understanding of whether TEE is constrained, especially given 369 

the known measurement and biological errors in components of human energy 370 

expenditure (6, 18, 19, 39). 371 

 372 

2.2.3. Is some evidence for constraint an artefact of spurious correlations? 373 

Spurious correlations are those that are not explained by biological mechanisms 374 

but occur even in the absence of any biological links between correlated variables (40). 375 

One type of spurious correlation results when a variable (x) is correlated to another 376 

variable (y), but variable x is also present in the calculation of variable y (or vice versa). 377 

In many studies, AEE has not been directly measured but, rather, has been deduced by 378 

subtracting RMR (and sometimes other estimated or measured components) from TEE 379 

(1, 13, 14). 380 

AEE calculated by this subtraction method has then been correlated against 381 

RMR itself, setting up mathematical coupling and risk of spurious correlation. In Figure 382 

6A, we present the scatterplot for the BEE-AEE correlation, whereby data have been 383 

obtained from simulation. Using the random number generator in Excel, we simulated 384 

BEE and TEE to be completely independent, uncorrelated (r = 0.02) and normally 385 

distributed variables (n = 100). Our simulation was based on mean and SD values 386 

similar to those supporting the energy constrained hypothesis (14). Figure 6A illustrates 387 

that, in this simulation, even though BEE and TEE are separate, independent variables, 388 

a negative correlation between BEE and AEE (when AEE = TEE minus BEE) can be 389 

obtained, simply because BEE is one of the variables in the correlation, but is also a 390 



negative term in the calculation of the other variable (AEE). The correlation we present 391 

is entirely spurious and it is unclear to what extent prior reports of constraint could be 392 

influenced by similar spurious correlations. 393 

To reduce the likelihood of spurious correlations between AEE and RMR, such 394 

associations should ideally be explored with direct measures of each variable. If there is 395 

indeed a negative slope between these two measured variables, then this would 396 

support the constrained energy expenditure hypothesis. In Figure 6B, we present the 397 

scatterplot for the correlation between RMR and AEE using the data reported in a 398 

previous study where each of these variables was measured directly and independently 399 

(41). In a similar way to Careau et al. (14), we ran a multivariable-adjusted general 400 

linear model to explore the relationship between measured BEE and measured AEE, 401 

adjusting for covariates of sex, age and fat-free mass.  402 

The slope on the scatterplot in Figure 6B is -0.09 (95%CI: -0.70 to 0.52) and the 403 

correlation coefficient is 0.04. Mathematical coupling is not present in the correlation 404 

presented in Figure 6B, and the flat slope does not support the constrained energy 405 

expenditure hypothesis. There also does not appear to be any evidence for a “change 406 

point” association in the scatterplot. Incidentally, if exposure (AEE) and outcome (BEE) 407 

are reversed and remodeled [similar to Careau et al., (14)], then the slope we obtained 408 

is still flat (-0.01, 95%CI: -0.11 to 0.08). Furthermore, because our x-y and y-x slopes 409 

are very similar, then this indicates no meaningful influence of regression dilution on our 410 

least squares slope estimate (37).  411 

Although the data we have used are from a smaller, less diverse sample, this still 412 

raises the possibility that prior correlations of DLW-derived AEE versus BMR could be 413 



the result of including the same measurement in the calculation of variables in both the 414 

x- and y-axes. 415 

 416 

2.2.4. Accounting for body size and composition 417 

In some studies, the differences in body size between samples being compared 418 

are substantial, and this should be considered in order to appropriately compare 419 

measures of energy expenditure components between such groups. For example, 420 

mean body mass differed between Hadza and western samples by ~30 kg (~60-70%) 421 

(1). It could be questioned whether the statistical models employed in comparative 422 

studies have adequately adjusted for body size and composition, especially given that: 423 

1) body mass and energy expenditure scale allometrically; and 2) adjusting for body 424 

composition (fat-free mass; FFM) is inherently problematic due to limitations of 425 

measurement methods. 426 

Two common methods of assessing FFM within this field are bioelectrical 427 

impedance and dual-energy x-ray absorptiometry. However, neither of these methods 428 

can determine body cell mass, which is the most relevant measurement for RMR since 429 

cell mass is the metabolically active component of fat-free mass. The gold-standard 430 

method for assessing cellular mass is the 40K dilution method. Examples of how this is 431 

relevant for normalizing RMR include evidence from energy deficits and ageing. The 432 

degree of metabolic adaptation seen with severe energy deficits such as semi-433 

starvation (i.e., the larger than predicted decrease in RMR seen with a recent energy 434 

deficit) can be attenuated from ~750 kcal/d when using fat-free mass, to ~200 kcal/d 435 

when using body cell mass (Luke and Schoeller 1992). Moreover, the apparent decline 436 



in RMR with age when adjusted for fat-free mass is abolished when using body cell 437 

mass (42).  438 

Accordingly, adjusting measurements of energy expenditure across populations 439 

with vastly different body size and/or composition is not straightforward, and even 440 

measures such as dual-energy x-ray absorptiometry may not be optimal for appropriate 441 

correction for body composition under extreme conditions. Including measures of body 442 

cell mass by the potassium dilution method may enhance the ability to compare TEE 443 

and TEE components across populations with large differences in body size and 444 

composition, and within the same individuals before and after extreme interventions. 445 

 446 

2.2.5. Equivalence testing vs null hypothesis testing 447 

Support for the compensation hypothesis often comes from the use of null 448 

hypothesis tests to conclude that the difference between two or more sample means is, 449 

or is not, statistically significant (p < 0.05). This approach is also often used for two or 450 

more outcomes related to energy expenditure in a differential and dichotomous fashion. 451 

For example, it has been reported that mean physical activity level was greater in a 452 

sample of Hadza foragers than in a sample of Westerners, while it was also reported 453 

that mean daily energy expenditure of traditional Hadza foragers was “no different” to 454 

that of Westerners (1). 455 

It is important to highlight that a non-significant p-value from a null hypothesis 456 

test should not be used to make conclusions of the “not different” type (43). Ironically, all 457 

a researcher would need to do to arrive at such a conclusion is recruit a small sample of 458 



participants and use outcomes that are measured with a substantial amount of random 459 

measurement error. These conditions would almost guarantee a non-significant p-value 460 

for a null hypothesis test on two sample means. For this, and other, reasons, 461 

equivalence analyses have been developed specifically to arrive at conclusions 462 

regarding “no relevant difference” inferences (44, 45). 463 

For future research, various approaches are available for equivalence analyses, 464 

a common approach involves ‘two one-sided tests’ (TOST). In this frequentist interval 465 

approach, the null and alternative hypotheses within each set are reversed. Equivalence 466 

is concluded only if both one-sided tests statistically reject the presence of effects equal 467 

to or larger than a threshold value that is deemed to be clinically or practically relevant. 468 

This approach places informed thresholds for minimal clinically important differences 469 

(MCID) at the center of the inferential process. Without such an MCID, a statistically 470 

significant difference may be negligible, or a non-statistically significant difference could 471 

be important. There have been very few efforts to arrive at consensus regarding MCIDs 472 

in exercise science, despite the recent publication of formal and informed methods (46). 473 

Importantly, the difference in a study outcome might not be statistically significant 474 

merely because it is associated with more measurement error than another study 475 

outcome that has been found to be statistically significantly different.  476 

Our primary point here is that conclusions of “no statistically significant 477 

difference” are commonly used in components of research on energy compensation, yet 478 

informed and robust indications of MCIDs seem absent in the field, raising the likelihood 479 

that important differences between samples are not being detected because of the 480 

emphasis on null hypothesis testing, alongside issues of small samples and differential 481 



amounts of measurement error between study outcomes. We also believe that this field 482 

of research would benefit from careful consideration of directional (one-sided) or non-483 

directional (two-sided) null hypothesis tests when such testing is appropriate, e.g., for 484 

testing whether the mean BMR of one sample is specifically larger than another sample.  485 

 486 

2.2.7. Comparison of linear and non-linear models 487 

Pontzer et al. (11) proposed that TEE and AEE varied in a non-linear fashion 488 

when plotted against accelerometry counts. After various explorations with different set 489 

values, they proposed a cut-off or “change point” threshold of 230 CPM/day and applied 490 

piecewise (segmented) regression to suggest that a linear model was appropriate when 491 

physical activity was below this threshold. For physical activity higher than this 492 

threshold, it was suggested that the regression slope is zero, i.e., the association 493 

“plateaus”. There was no formal model comparison in arriving at this claim of non-linear 494 

(plateauing at higher physical activity) associations between physical activity and TEE 495 

or AEE. Ideally, information would be provided to show that the selected piecewise non-496 

linear model provides a “better” fit than a single linear model across the whole 497 

measurement range of physical activity. Although some model comparison procedures 498 

were reported to be employed by Pontzer et al. (12), other more modern statistical 499 

criteria such as Akaike’s information criterion can also be used to inform any 500 

comparison of the relative fit of two competing statistical models (47) . The relevant 501 

question is whether a single linear model for the data in scatterplots presented by 502 

Pontzer et al. (11) can be ruled out in preference of a piecewise non-linear model. Using 503 

the Digitizeit software, we extracted the adjusted AEE and TEE data from Figure 3 in 504 



Pontzer et al. (11). Using these data, it is debatable whether a piecewise non-linear 505 

model is a more appropriate fit to the data than the single linear model we fitted (Figure 506 

7). The coefficient of determination of 0.06 (6%) for this single linear model is higher 507 

than the two piecewise models reported to fit the data by Pontzer et al. (11) and is 508 

statistically significant (p<0.0005). Regression model selection is crucial for the 509 

interpretation of some key data supporting the energy constrained hypothesis. It is 510 

unclear whether linear or non-linear models best fit the currently available data. Future 511 

studies should explore this choice objectively, alongside other relevant considerations 512 

such as allometric scaling (48). 513 

  514 

2.3. Biological plausibility and potential mechanisms underlying constraint 515 

As discussed above, the evidence from empirical studies in humans often used 516 

to support the constrained energy expenditure hypothesis is under-developed, and 517 

more empirical data are needed with additional considerations of measurement and 518 

statistical approaches to confirm or refute this hypothesis. However, the evolutionary 519 

argument for energy expenditure compensation and constraint under conditions of 520 

increased TEE is persuasive (10, 49). Furthermore, non-human animal studies indicate 521 

constraint of TEE with increased physical activity across a variety of birds and mice in 522 

tightly controlled experiments (10). There is also some evidence supporting some 523 

degree of compensation from two long-term (6-10 month) randomized, controlled trials 524 

of exercise training in specific populations of adults with DLW estimates of energy 525 

expenditure (50, 51). These trials were not designed to determine compensation, and 526 

while both show that prescribed exercise > 200 kcal/d will lead to an increase in TEE, 527 



the effect is less than predicted (50-66% on average), and there appears to be some 528 

form of compensation (Figure 8). Although it should be noted that - at least in one study 529 

- the magnitude of this difference between predicted and observed TEE was similar in 530 

the control group compared to the exercise groups, suggesting that the observation of a 531 

mismatch between predicted and observed TEE could be expected for several reasons 532 

other than constraint due to increased physical activity (e.g., trial effects, seasonal 533 

effects, measurement errors etc.). The less-than-predicted weight loss with exercise 534 

interventions has often been attributed to dietary compensation (52, 53), but these two 535 

randomized controlled trials (RCTs) with DLW measures of TEE indicate that at least 536 

part of the explanation may involve less-than-predicted changes to energy expenditure 537 

(50, 51). The biologically plausible mechanisms underlying the less-than-predicted 538 

changes to energy expenditure with supervised exercise from these RCTs and other 539 

relevant studies will now be discussed.  540 

 541 

2.3.1 Resting Metabolic Rate (RMR) 542 

The mean changes in morning RMR reported in the two long-term RCTs ranged 543 

between -50 to +40 kcal/d (50, 51). This is consistent with the wider literature, with 544 

meta-analysis revealing the difference in RMR with aerobic exercise training is +82 545 

kcal/d (95%CI: -58, 221 kcal/d). Therefore, evidence from RCTs does not support a 546 

reduction in RMR with increased exercise, even in studies which indicate some form of 547 

compensation of TEE. Thus, gross effects on RMR are unlikely to be a major (single) 548 

mechanism underlying compensatory reductions in energy expenditure leading to 549 

constraint in TEE. 550 



If the circadian fluctuations in RMR across the day were attenuated with high 551 

levels of physical activity, DLW-estimates of AEE would incorrectly allocate the 552 

decrease in TEE to AEE rather than RMR, if RMR is only taken as a morning snapshot. 553 

This is likely to only exert a modest effect, since the amplitude in circadian variation of 554 

RMR is ~55 kcal/d (34). Nevertheless, to accurately quantify all components of TEE, 555 

studies are needed to directly assess RMR at different times of the day, and at low and 556 

high levels of physical activity, ideally within-individuals and at different states of energy 557 

(im)balance. 558 

 559 

2.3.2. Non-Exercise Activity Thermogenesis (NEAT) 560 

NEAT is a substantial and highly malleable sub-component of TEE. Even within 561 

the confines of a chamber respirometer, with no scheduled physical activity, NEAT is 562 

~400 kcal/d on average in a large sample of adults and can be as high as 800 kcal/d 563 

(54). These activities comprise miscellaneous and often incidental physical activity, 564 

including a diverse range of movements such as fidgeting, play, standing, mastication 565 

and self-care (55). In free-living non-exercisers with an average PAL, NEAT could easily 566 

be ~800-1000 kcal/d due to the energy cost associated with other tasks such as 567 

occupation, household chores, and childcare (7, 56). From an evolutionary perspective, 568 

it might be sensible to ‘cut back’ on the non-essential components of NEAT before 569 

making other metabolic and physiological changes. This could involve some conscious 570 

decisions (e.g., choosing to drive rather than walk due to a perceived exercise ‘credit’). 571 

In humans, feeding and fasting appear to influence NEAT within just a few days (57, 572 



58). Thus, NEAT is a large component of energy expenditure that is biologically 573 

regulated and differences in NEAT could account for compensation in TEE.  574 

In one of the long-term RCTs that indicates some form of compensation (51), 575 

data from room calorimetry indicated a reduction in spontaneous physical activity 576 

(NEAT) under chamber conditions, suggesting compensation in physical activity may 577 

have contributed to the lower-than-predicted TEE. There was no evidence for this effect 578 

from hip mounted accelerometry data under free-living conditions in either trial (50, 51), 579 

but this could reflect the limited ability of this technique to capture AEE (discussed in 580 

section 2.1.2). Other chamber measured components of energy expenditures (sleeping 581 

metabolic rate, arousal and TEF) did not account for the less-than-expected increase in 582 

total energy expenditure (51). In the ultramarathon Race Across the USA, the reduction 583 

in observed TEE (‘other’ AEE) was likely explained by reductions in NEAT (Figure 4) 584 

(13). 585 

The idea that increases in exercise can lead to less-than-expected increases in 586 

TEE due to compensation and substitution of other physical activity is not new (59). If 587 

compensation of NEAT accounts for the observed constraint, then this would have very 588 

different implications than if the constraint occurred in a non-behavioral component of 589 

energy expenditure, since the behavioral components can be (at least theoretically) 590 

more directly manipulated to counteract or prevent compensation and constraint. In 591 

future studies, better measures of NEAT are required to examine whether this explains 592 

the apparent compensation in exercise training studies.  593 

 594 

2.3.3. Physical Activity Efficiency 595 



The degree of coupling between internal to external work is often termed 596 

exercise efficiency. Changes in efficiency would not be detected by accelerometry and 597 

would appear as reductions in AEE if AEE is estimated by RMR minus TEE using DLW.  598 

The mechanisms that underpin efficiency include biomechanical, biochemical, and 599 

physiological components, and could be altered by physical activity status, providing a 600 

potential mechanism for apparent constraint. 601 

Differences in gait can have a profound impact on exercise efficiency (60). Since 602 

gait and other movement patterns could be altered by repeatedly performing specific 603 

movement patterns, it is possible that humans find the most efficient movement pattern 604 

with repeated practice, resulting in a lower energy cost for that activity. Biochemical 605 

aspects are primarily related to the fuels oxidized during physical activity, since the 606 

oxidation of fat requires more oxygen for the equivalent energy expended than does the 607 

oxidation of carbohydrate (23), people on a high carbohydrate diet display a gross 608 

efficiency during cycling of ~20.4% compared to 19.6% on a lower carbohydrate diet 609 

(61). Finally, there are physiological aspects such as muscle mitochondrial efficiency 610 

that also contribute to exercise efficiency (62). Importantly, human muscle mitochondrial 611 

efficiency has been demonstrated to increase following high-intensity interval training 612 

(63), suggesting a possible mechanism by which prolonged increases in physical 613 

activity may decrease the energy cost of movement. 614 

It is plausible that with long-term increases in physical activity, adaptations 615 

relating to increased efficiency occur which uncouple measured energy expenditure 616 

from the expected increase in energy expenditure, supporting a constrained model. 617 

Without measuring efficiency of movement under differing levels of physical activity and 618 



across a wide range of tasks representative of daily physical activity, differences in 619 

efficiency could cloud inferences regarding the nature of any compensation or 620 

constraint. 621 

 622 

2.3.4. Altered thermic effect of feeding? 623 

Changes in TEF could underlie apparent energy constraint in several ways. First, 624 

even if diet is similar, TEF could decrease with high physical activity levels. Cross-625 

sectional evidence supporting this includes lower TEF in endurance-trained athletes 626 

compared to controls in response to a meal providing 10 kcal/kg FFM (~56 kcal/180 min 627 

versus 79 kcal/180 min) (64). However, even if TEF is reduced by high physical activity, 628 

it is questionable whether the magnitude is meaningful for TEE, as extrapolation of this 629 

difference to 4 meals across a day equates to a difference of <100 kcal/d. It is possible, 630 

however, that constraint in TEE exists as the sum of very small decreases in energy 631 

expenditure within multiple components, with the cumulative total being meaningful. 632 

Second, in response to increases in physical activity, people may change the amount 633 

and composition of their diet, which in turn, would alter TEF directly (as discussed in 634 

section 2.1.3) and/or potentially via changes in the gut microbiome (65). 635 

  636 

2.3.5. Is energy balance rather than energy expenditure the signal? 637 

Energy expenditure should not be considered in isolation since there are 638 

important interactions between components of energy intake and energy balance which 639 

consequently affect energy expenditure. When in energy deficit, RMR can decrease 640 



greater than would be predicted by the loss of fat-free mass (66). This phenomenon is 641 

called metabolic adaptation (or adaptive thermogenesis). This phenomenon is relatively 642 

short lived, and responds in the reverse direction, where RMR increases with energy 643 

surplus (67). When people increase physical activity to very high levels, it is possible 644 

that energy intake does not match expenditure and thus an energy deficit is created, 645 

thereby (transiently) reducing RMR and producing apparent constraint. For the energy 646 

constrained model to substantially change understanding, it would need to refer to 647 

physical activity-induced changes in metabolism that occur independent from energy 648 

imbalance, since energy deficit-induced adaptive thermogenesis is already a relatively 649 

well-established phenomenon. Whilst the two RCTs discussed in Section 3 (50, 51) 650 

demonstrated no meaningful or statistically significant effects on RMR, this does not 651 

rule out the possibility that participants could have been in a brief period of energy 652 

balance prior to the post-intervention RMR measurement, and if the RMR measures 653 

had been taken at another time, perhaps when participants were in an energy deficit, 654 

RMR might have been lower. Accordingly, whilst recognizing the difficulty in this level of 655 

control in humans, the state of energy (im)balance should be considered at each 656 

measurement point in future studies of both cross-sectional and interventional nature. 657 

Further support for the idea of energy deficit driving reductions in TEE comes 658 

from evidence that metabolic signals such as 3,5,3’-triiodothyronine and testosterone 659 

decrease with energy deficit, but not with energy surplus, even in the face of sustained 660 

high energy expenditure equating to 4000-4250 kcal/d (68). Indeed, recent data provide 661 

further support for this, demonstrating that people in energy balance or energy surplus 662 

display TEE-activity responses consistent with the additive model, whereas individuals 663 



in an energy deficit display TEE-activity responses consistent with the constrained 664 

model (28). 665 

This energy deficit hypothesis fits well with evolutionary and physiological 666 

viewpoints. Increased physical activity threatens energy balance and energy deficits 667 

threaten survival in resource-limited environments. Therefore, from an evolutionary 668 

perspective, it is likely that energy deficit is the causal link rather than physical activity 669 

per se. Physiologically, hormonal changes with energy deficits such as reductions in 670 

leptin concentrations can cause conservation of energy-consuming physiological 671 

processes such as menstruation. Correction of hypoleptinemia with recombinant leptin 672 

can improve reproductive function in women low body weight or high physical activity 673 

and hypothalamic amenorrhea (69). Furthermore, decreases in leptin correlate with 674 

metabolic adaptation (70) and leptin replacement can prevent the decline in RMR 675 

following an energy deficit (71). Therefore, energy deficit and consequent changes in 676 

hormonal concentrations could result in constrained TEE via reductions in RMR. 677 

Energy (im)balance has also been shown to influence NEAT (55), whereby 678 

NEAT decreases during energy deficit by as much as ~300 kcal/d, and increases during 679 

energy surplus by a mean of ~300 kcal/d (72, 73). Substantial inter-individual variability 680 

in this response is also observed, whereby increases in NEAT with a surplus of 1000 681 

kcal/d ranged from negligible to >700 kcal/d. This variation is clearly meaningful for 682 

energy balance, since it explained the majority of variance (r = 0.77) in fat gain during a 683 

1000 kcal/d surplus (73). This highlights the importance of direct measurement of NEAT 684 

to capture the full potential for compensation and constraint in energy expenditure under 685 

differing degrees of energy (im)balance. 686 



It could be expected that the largest effect of adaptive thermogenesis would be in 687 

the most extreme energy deficits over the longest periods of time. As an indication of 688 

the degree of energy deficit to which the constrained model is plausible, the Minnesota 689 

starvation experiment restricted energy intake to ~50% of baseline intake for 6 months. 690 

The reduction in RMR adjusted for fat-free mass was ~400 kcal/d (74). Therefore, it is 691 

conceivable that this reduction might represent the maximum effect of adaptive 692 

thermogenesis and it would take extreme reductions in RMR (greater than those with 6 693 

months of semi-starvation) to offset increases in AEE of more than 400 kcal/d. 694 

 695 

3. SOLUTIONS AND FUTURE DIRECTIONS 696 

Based on current evidence, there is insufficient evidence to fully support either 697 

the additive or the constrained model of human energy expenditure. Most data to date 698 

are from cross-sectional observations and statistical models comparing populations with 699 

extreme differences in a variety of characteristics, which may negatively impact on 700 

measurements. Some are based on deductive inferences rather than direct 701 

measurement, or studies lacking a suitable control group. In addition, the only 702 

randomized controlled trials of exercise training with DLW measures of TEE were not 703 

directly designed to measure compensation, and many outcomes are still deduced 704 

rather than measured, or measured as snapshots and under specific conditions, 705 

potentially missing variation across a day or within different conditions.  Compensatory 706 

reduction has not yet been directly demonstrated and thus is derived from deductive 707 

inference. There is, therefore, a need for adequately powered, long-term, randomized 708 

controlled trials with gold-standard methods that directly quantify the major components 709 



of energy expenditure to assess if human energy expenditure is constrained or additive, 710 

and to identify the source and nature of the compensation and constraint. 711 

There is little evidence to support the extreme constrained model, proposed as:  712 

“The bottom line is that your daily [physical] activity level has almost no bearing on the 713 

number of calories that you burn each day” (p103) (2). 714 

An upper limit of TEE probably exists (75), but this is likely irrelevant for most 715 

people, and large changes in physical activity will alter TEE. Indeed, ultramarathon 716 

studies such as the Race Across the USA study supports the additive model more than 717 

the constrained model, as there was a huge increase in TEE (+2500 kcal/d) even after 718 

20 weeks (13). Therefore, even if some constraint exists, it is unlikely to fully offset 719 

physical activity, such that further increases in physical activity will result in a net 720 

increase in energy expenditure, just not in a linear manner. 721 

Measurements of energy expenditure components are imperfect, and variation 722 

can never be eliminated, which means that deduction cannot be used to establish 723 

where constraint may exist in energy expenditure. To overcome these limitations, 724 

triangulation of methods could be employed, with measurements repeated at multiple 725 

timepoints and under varying dietary and environmental conditions to capture the full 726 

circadian, energy balance and lifestyle conditions that could modulate any 727 

compensation and constraint. 728 

These controlled trials could be combined with statistical models to account 729 

properly for changes in body size and composition. The appropriate statistical approach 730 

might include a non-inferiority analysis with a justifiable margin of non-inferiority 731 



between expected (based on the increase in activity energy expenditure) and observed 732 

TEE defined a priori.  Direct measurement of the component that is expected to 733 

demonstrate constraint is required. This is important for several reasons, including the 734 

simple notion that we may not fully appreciate all components of energy expenditure 735 

that could demonstrate constraint, although it could be that constraint manifests in small 736 

changes in each component, summing across multiple components to produce a 737 

meaningful reduction in the expected TEE. 738 

 739 

4.  SUMMARY AND CONCLUSIONS  740 

Whilst there is a key need to collect more data to establish which model of 741 

energy expenditure is closer to truth, currently available data indicate that neither the 742 

simple additive nor the extreme constrained models (i.e., where physical activity adds 743 

nothing to TEE) are likely to be correct, and the true response likely resides somewhere 744 

in between. In energy balance, large increases in physical activity will add to and 745 

increase total energy expenditure, but the effect appears to be less than predicted. The 746 

less-than-expected increase in total energy expenditure when energy balance is 747 

maintained could be due to increased mitochondrial efficiency, increased efficiency of 748 

force transfer across the muscle-tendon unit, more efficient movement patterns, or other 749 

factors such as compensatory behaviors and reductions in non-exercise activity 750 

thermogenesis. Randomized controlled trials are needed to address these questions, 751 

with multiple designs to test the different contexts such as energy balance and energy 752 

deficit. 753 
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Tables 1029 

 1030 

Table 1. Summary of studies used to generate the energy constrained hypothesis, 1031 

with the proposed components demonstrating constraint and supporting 1032 

evidence. 1033 

Type Study Constrained 

component 

Supporting evidence/reasoning 

Original 

data 

 

Pontzer et 

al.  

(2012) (1) 

BMR TEEADJ was similar between Hadza vs 

other populations despite a higher PAL 

Pontzer et 

al.  

(2016) 

(11) 

AEE RMRADJ not different across a wide 

range of physical activity, assessed by 

accelerometry, but TEEADJ plateaued at 

higher accelerometry counts. 

Urlacher et 

al.  

(2019) 

(12) 

AEE Shuar children displayed little-to-no 

difference in TEE, but lower AEE vs 

industrial counterparts, despite higher 

accelerometry counts. 

Thurber et 

al.  

(2019) 

(13) 

AEE Little-to-no difference in BMR, TEF or 

ExEE between week 1 and weeks 14/20 

of an ultramarathon, but lower TEE.  



Careau et 

al.  

(2021) 

(14) 

BMR Relationship between BMR and TEE <1 

and relationship between BMR and AEE 

negative. 

Review 

Pontzer 

(2015) 

(10) 

Non-AEE 

metabolic activity 

(BMR/TEF/Other) 

Cross-sectional evidence in humans and 

experimental data from non-human 

animals 

Pontzer 

(2018) 

(49) 

Immune function, 

reproduction and 

stress response 

(BMR/TEF/Other) 

Reduced markers of inflammation (e.g., 

C-reactive protein) with chronic 

exercise, lower concentrations of sex 

hormones in endurance athletes, lower 

cortisol, and norepinephrine responses 

in people with high physical fitness 

Pontzer et 

al. (2018) 

(76) 

Non-AEE  

(BMR/TEF/Other) 

Higher accelerometry counts but little-to-

no differences in TEE, AEE or PAL with 

Hadza and Tsimane populations 

compared to seven industrialized 

populations. 

Pontzer 

and 

McGrosky 

(2022) 

(77) 

BMR Measures of TEE at multiple timepoints 

indicate increase AEE is negatively 

associated with BMR in humans. 



BMR, basal metabolic rate; TEF, thermic effect of feeding; AEE, activity energy 1034 

expenditure; ExEE, exercise energy expenditure; ADJ, adjusted for body 1035 

composition and/or age; PAL, physical activity level. 1036 
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Figure Legends 1041 



 1042 



Figure 1. Components of energy expenditure in 75 healthy adults. 1043 

Components in pink are primarily behavioral. Components in black are primarily 1044 

non-behavioral. AEE, activity energy expenditure; DIT, diet-induced 1045 

thermogenesis; SEE, sleeping energy expenditure. Data adapted from 1046 

Chrzanowski-Smith et al. (41). Physical activity level (PAL) is calculated by 1047 

dividing resting metabolic rate (the sum of SEE and Arousal) by total energy 1048 

expenditure. 1049 



 1050 



Figure 2. Additive and constrained energy expenditure models as proposed 1051 

by Pontzer. Adapted from (11). RMR, resting metabolic rate; DIT, diet-induced 1052 

thermogenesis; PAEE, physical activity energy expenditure. 1053 



 1054 



Figure 3. Adjusted total energy expenditure (from doubly labelled water), 1055 

resting metabolic rate, and activity energy expenditure in relation to 1056 

increasing physical activity levels estimated by accelerometry. Reprinted 1057 

from (11). 1058 



 1059 



Figure 4. Predicted and observed components of total energy expenditure 1060 

of athletes competing in the Race Across USA (RAUSA). Reprinted from 1061 

(13). BMR, basal metabolic rate; TEF, thermic effect of feeding; RUN, running 1062 

expenditure. Whereas at week 1, the predicted and observed components of 1063 

energy expenditure appear broadly in agreement, there is a larger difference in 1064 

the predicted versus the observed components at week 6, primarily due to a 1065 

reduction in other physical activity. 1066 



 1067 



Figure 5. The two primary analyses proposed to be indicative of energy 1068 

compensation. Reprinted from Careau et al. (14). It was proposed by the 1069 

authors of the paper that a least squares regression slope between measured 1070 

BEE and TEE (A) of <1 is indicative of compensation, and that a negative slope 1071 

between measured BEE and calculated AEE (B) is also indicative of 1072 

compensation. 1073 



 1074 



Figure 6. Spurious correlation between AEE and BEE (RMR), when AEE is 1075 

deduced by subtracting BEE from TEE (A) and lack of correlation between 1076 

measured AEE and measured BEE adjusting for covariates of sex, age, and 1077 

fat-free mass (B). Because BEE (RMR) is one variable, and a negative term in 1078 

the calculation of AEE, the correlation shown above is entirely spurious, caused 1079 

by mathematical coupling and could be present in data used to support the 1080 

energy constrained hypothesis. The lack of correlation between directly 1081 

measured AEE and BEE raises the possibility that prior reports of correlations 1082 

between these measures could be due to artefacts of including the same 1083 

measurement in the calculation of the variables on both the x- and y-axes. Data 1084 

for panel B are from Chrzanowski-Smith et al. (41). Fat mass was not included as 1085 

a covariate in this model for two reasons: 1) in this dataset, fat-free mass strongly 1086 

correlated with BEE (Pearson r = 0.84) but fat mass shows little-to-no correlation 1087 

with BEE (Pearson r = -0.06); 2) since the calculation of fat-free mass and fat 1088 

mass by DEXA are interlinked (one is calculated by subtracting the other from 1089 

total mass), the inclusion of both within a statistical model introduces the 1090 

potential for multicollinearity (78). BEE, basal energy expenditure; AEE, activity 1091 

energy expenditure. 1092 



 1093 



Figure 7. Data extracted from Figure 3A in Pontzer et al. (11). In this report, a 1094 

fitted two piecewise regression slopes to these data (below and above 230 1095 

CPM/day). In the present figure, linear regression slopes were fitted and 1096 

demonstrate a good fit with TEEAdj and AEEAdj. TEEadj, adjusted total energy 1097 

expenditure; AEEadj, adjusted activity energy expenditure.  1098 



  1099 



Figure 8. Predicted and measured changes in total energy expenditure 1100 

(TEE) from two randomized controlled trials of increasing exercise on total 1101 

energy expenditure (50, 51). Each demonstrate some evidence for 1102 

compensation since the measured increases in TEE are less than the predicted 1103 

increases. Delta values represent the difference between predicted and 1104 

measures TEE. TEE, total energy expenditure. Data are means ± SD. 1105 
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