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Minimising	Overheating	in	Passive	and	Low	Energy	Buildings	Using	
Kriging-based	inverse	modelling	techniques	

Michael	Wood1,	Matthew	Eames1	and	Daniel	Fosas2	

1	College	of	Engineering,	Mathematics	and	Physical	Science,	University	of	Exeter,	Exeter,	UK	
2	Department	of	Architecture	and	Civil	Engineering,	University	of	Bath,	UK.	

Abstract:	 Preventing	 summertime	 overheating	 within	 passive	 buildings	 is	 important	 for	 the	 comfort	 of	 the	
occupants.	The	 likelihood	that	a	building	will	overheat	depends	on	several	 factors,	 including	the	form	of	the	
building,	the	percentage	glazing	and	the	building’s	thermal	mass	and	insulation.	Furthermore,	the	amount	of	
overheating	depends	on	the	criteria	we	use	to	measure	it.	We	investigate	the	CIBSE	TM52	overheating	criteria	
and	 look	at	how	they	are	affected	by	changes	 in	 the	design	of	a	PassivHaus	 style	building.	We	calculate	the	
percentage	of	possible	buildings	that	pass	each	of	the	three	CIBSE	criteria	using	the	Gaussian	process	regression-
based	 efficient	 global	 inversion	 (EGI)	 technique.	 Our	 work	 is	 divided	 into	 two	 stages.	 First,	 we	 look	 at	 the	
sensitivity	of	the	overheating	criteria	to	the	design	(i.e.	examining	the	building	parameters	that	have	the	greatest	
effect	on	the	overheating	criteria).	Second,	we	calculate	the	percentage	of	all	possible	building	designs	that	meet	
these	criteria	using	the	EGI	technique.	This	method	provides	an	estimation	of	whether	a	building	design	will	
meet	a	criterion.	This	surrogate	modelling	method	can	be	very	accurate	because	the	EGI	technique	‘tunes’	the	
Gaussian	 process	 regression	 model	 to	 determine	 whether	 variables	 exceed	 a	 threshold.	 We	 explore	 the	
overheating	criteria	for	60,000	potential	building	designs.	Our	findings	show	that	the	relative	glazed	area	has	
the	greatest	influence	on	the	overheating	criteria,	whereas	properties	such	as	thermal	mass	and	insulation	have	
less	effect	 than	expected.	Further	work	 is	needed	to	explore	 the	effects	on	different	building	 types	 in	other	
climates.	

Keywords:	Overheating,	Gaussian	process,	Inverse	modelling,	Design	summer	years	

Introduction	

To	reduce	the	energy	used	by	heating,	many	passive	buildings	are	built	with	very	low	U-values.	
This	minimises	heat	loss	over	the	winter,	but	it	can	lead	to	overheating	during	the	summer	
months.	Since	the	form	of	the	building	affects	overheating	the	most,	buildings	must	be	tested	
for	problems	before	they	are	built	(Jenkins	et	al.,	2012).	This	means	that	we	need	to	make	
use	of	computer	simulations	and	simulated	weather	conditions	so	that	design	decisions	can	
be	made.	Because	of	the	need	for	computers	in	the	design	process,	software	simulations	of	
buildings	have	a	large	influence	on	the	building	design.	

	The	metrics	used	to	measure	overheating	and	the	way	that	we	measure	overheating	
will	influence	the	types	of	buildings	that	we	design	in	the	future.	Our	aim	is	to	look	at	how	
PassivHaus	 style	 residential	buildings	might	be	affected	by	both	 the	weather	 files	and	the	
parameters	used	to	design	them.	

There	 are	 a	 potentially	 infinite	 number	 of	 building	 design	 parameters	 that	 can	 be	
adjusted,	but	some	have	been	shown	to	be	more	important	than	others.	These	include	the	
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use	(and	size)	of	brise	soleil,	the	amount	of	glazing,	the	orientation	of	the	building	and	the	
relative	amount	of	thermal	mass	(Eames	et	al.,	2015;	Banfill	et	al.,	2012).	

The	weather	 files	 used	 for	 the	 dry	 in	 the	 simulation	will	 also	 influence	 the	 building	
design.	In	the	UK,	design	summer	years	(DSY)	are	used	to	test	for	overheating.	In	our	work,	
we	use	the	new	CIBSE	DSYs	(Eames,	2016).	These	DSYs	comprise	of	42	weather	years	–	3	for	
each	of	14	locations	across	the	UK.	The	DSYs	at	each	location	each	contain	a	moderate,	and	
two	separate	near-extreme	heat	wave	events	(DSY1).	One	represents	a	year	with	a	short	more	
intense	heat	wave	event	 (DSY2)	and	 the	other	with	a	 longer	heat	wave	event	 (DSY3).	We	
examine	the	effect	of	these	extremes	on	the	relative	number	of	available	building	designs	for	
each	weather	year.	

We	 explore	 the	 effect	 of	 varying	 five	 continuous	 building	 feature	 on	 the	 potential	
overheating	 of	 the	 building	 as	 judged	 be	 various	 overheating	 criteria.	 However,	 as	 the	
building	parameters	are	continuous,	there	are	a	potentially	infinite	number	of	combinations.	
Even	if	the	features	are	limited	to	20	discrete	values	each,	the	total	number	of	simulations	
required	would	be	3.2	million.	Therefore,	 to	make	 this	problem	more	 tractable,	we	use	a	
Gaussian	 process	 regression	 model	 to	 emulate	 the	 values	 for	 two	 of	 the	 three	 CIBSE	
overheating	criteria	from	CIBSE	TM	52	(Nicol,	2016)1.	We	have	used	GP	models	because	the	
can	 be	 tuned	 to	 be	 very	 accurate	 at	 distinguishing	 between	 thresholds	 in	 a	 model.	 For	
example,	if	we	know	that	we	want	one	of	our	criteria	to	be	below	3%,	then	we	can	tune	the	
model	to	accurately	predict	whether	certain	building	designs	will	be	above	or	below	this	value.		

Methods	

Building	model	

The	 building	model	 that	 we	 will	 analyse	 is	 a	 simple	 mid-terrace	 residential	 building.	We	
simulate	the	results	of	the	building	model	using	EnergyPlus	v8.4	(US	Department	of	Energy	
2017).	 The	 building	 is	 designed	 to	 meet	 the	 standards	 required	 by	 PassivHaus	 (Hopfe	 &	
McLeod,	2015)	and	is	shown	in	Figure	1.	

	

	
Figure	1:	Building	being	modelled	(maximum	glazing	and	overhang	shown)	

	
The	U-values	for	the	building	elements	are	shown	in	Table	1.	The	table	also	shows	the	

glazing	g-values,	light	transmission	and	the	thickness	of	each	of	the	elements	used.	We	allow	
the	glazed	area,	orientation,	overhang	distance,	brick	thickness,	roof	slab	thickness	and	the	
position	of	the	insulation	to	be	varied.	The	maximum	and	minimum	variables	are	shown	in	
Table	2.	
																																																								
1	We	have	not	included	CIBSE	criterion	3	because	we	are	not	considering	short	temperature	
peaks.	
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Table	1:	Thermal	design	of	building	
Variable	 Value	 Unit	
U-Value	Wall	/	
Roof	/	Ground	

0.10	 Wm-2K-1	

U-Value	Door	and	
Windowlimit	

0.85	 Wm-2K-1	

U-Value	
Windowreal	

0.76	 Wm-2K-1	

g-value	 0.59	 Ratio	
Light	Transmission	 0.69	 Ratio	
Window	layers	
(triple	glazed)	

5	/	12	/	
4	/	12	/	
5	

mm	/	mm	
/	mm	/	
mm	/	mm		

	

Table	2:Variables	changed	in	the	building	model	
Variable	 Min	 Max	
Glazing	area	 2.6	m2	 26.0	m2	
Orientation	
(from	North)	

-90°	 90°	

Overhang	
distance	(m)		

0.1	m	 0.9	m	

Wall	and	roof	
thermal	mass	
thickness	
(Tthick)	

100	mm	 400	mm	

Roof	slab	
thickness	

100	mm		 400	mm	

Relative	size	of	
internal	to	
external	wall	
leafs	(Rrel)	

0.1	 0.9	

	

	
We	use	Rrel	to	calculate	the	relative	thicknesses	of	the	external	(Wext)	and	internal	wall	

leafs	(Wint)	using	the	following	equations:	
𝑊ext = 𝑇thick	×𝑅rel	 and	

	
𝑊int = (1 − 𝑇thick)	×𝑅rel	

CIBSE	TM52	Criteria	

To	test	the	buildings	for	overheating,	we	have	used	the	new	CIBSE	design	summer	years	(DSYs)	
for	 the	UK	 (Eames,	2016).	We	used	 the	DSY1,	DSY2	and	DSY3	weather	 files	 for	Plymouth,	
London	and	Manchester	and	used	them	to	calculate	CIBSE	1	and	2	criteria	(Nicol,	2016).	CIBSE	
criterion	1	measures	the	number	of	hours	where	the	internal	operative	temperature	is	above	
the	maximum	acceptable	 temperature	 (He)	 and	CIBSE	 criterion	2	measures	 the	maximum	
daily	weighted	exceedance	(We).	Both	criteria	are	calculated	based	on	a	variable	known	as	
𝛥𝑇.		
	 𝛥𝑇	measures	the	exceedance	of	the	maximum	acceptable	internal	temperature.	It	is	
calculated	on	every	time	step	of	the	simulation	and	is	related	to	the	operative	temperature,	
Top,	that	is	in	turn	based	on	the	air	temperature,	𝑇7,	and	the	mean	radiant	temperature,	𝑇8:	

𝛥𝑇 = 𝑇9: − 𝑇;7<	 Where	𝑇9: =
=>?=@
A

	
The	maximum	acceptable	temperature	𝑇;7<	is	dependent	on	the	running	mean	temperature,	
𝑇8;:	

𝑇;7< = 0.33𝑇8; + 21.8	 (where	Trm	is	defined	as:	𝑇8; = (1 − 𝛼)𝑇9H?I +
𝛼𝑇8;?I)	

	

Where	𝑇9H?I	is	the	outdoor	daily	mean	temperature	for	the	previous	day,	𝑇8;?I	is	the	
running	mean	temperature	for	the	previous	day	and	𝛼	is	an	empirically	derived	coefficient	
(typically	0.8).	These	equations	can	be	used	to	derive	𝛥𝑇	for	each	time	step.		

	
• CIBSE	Criteria	1:	Hours	of	exceedance	(He)	-	Criterion	1	sets	a	limit	on	the	number	of	

hours	where	𝛥𝑇	is	 greater	 than	 1	 between	 1st	May	 and	 30th	 September.	 This	 is	 the	
number	hours	of	exceedance	and	provides	measure	of	the	duration	of	the	overheating	
periods.	 The	 criterion	 is	 expressed	 as	 a	 percentage	 of	 the	 occupied	 hours.	 To	 pass	
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criterion	1,	the	percentage	of	occupied	hours	where	𝛥𝑇	is	greater	than	1,	should	be	3%	
or	less.		

• CIBSE	Criteria	2:	Daily	weighted	exceedance	 (We)	 -	Where	criterion	1	measures	 the	
duration	of	overheating,	criterion	2	measures	the	relative	severity	of	overheating	events.	
The	 daily	 weighted	 exceedance,	𝑊J ,	 measures	 the	 daily	 overheating	 severity:	𝑊J =

𝛥𝑇KAL
KMI 𝑤here	ℎ	is	the	hours	of	the	day.	This	criterion	is	satisfied	if	We	is	less	than	6	

for	all	days	during	the	year.	

Seeing	the	building	as	a	mathematical	function	

The	building	model	can	be	viewed	as	a	function.	This	is	because	the	computer	model	takes	
input	variables	(a	vector	of	inputs,	x,	which	describe	the	design	of	the	building)	and	converts	
them	 into	 two	 outputs,	 CIBSE	 criterion	 1	 and	 CIBSE	 criterion	 2.	We	 can	 represent	 these	
outputs	 as	𝑓I(𝒙)	and	𝑓A(𝒙).	 Note	 that	 the	 choice	 of	 weather	 file	 also	 affects	 the	 output	
(Figure	2).	

	
Figure	2:	Representing	the	EnergyPlus	building	model	as	a	function	

	

Exploring	 the	outputs	of	 the	building	model	using	Gaussian	process	and	Efficient	Global	
Inversion	

Since	there	 is	no	analytic	way	to	 link	𝒙	and	𝑓(𝒙),	we	need	run	the	building	simulator	each	
time	we	want	to	obtain	its	output	𝑓(𝒙).	It	is	possible	to	use	the	simulator	alone	for	this,	but	
if	 we	want	 to	 explore	 a	 design	 space	with	more	 than	 1	 or	 2	 input	 variables,	 this	 quickly	
becomes	 a	 very	 large	 problem	 (see	 Bellman’s	 curse	 of	 dimensions	 (Bellman	 1957)).	 One	
solution	 to	 this	 problem	 is	 to	 use	 a	 surrogate	model	 for	 the	 building	model,	𝑓(𝒙).	Many	
different	types	of	surrogate	model	can	be	used,	but	we	use	a	Gaussian	Process	(GP)	regression	
model.		

We	use	GP	regression	in	our	model	for	two	reasons.	First,	GP	models	allow	us	to	explore	
a	 large	sample	of	possible	designs	 in	a	 reasonable	amount	of	 time.	The	second	 is	 that	GP	
regression	models	can	be	‘tuned’	using	a	method	called	Efficient	Global	Inversion	(Chevalier	
et	al.	2014)	to	distinguish	thresholds	in	the	model	with	a	relatively	small	number	of	training	
simulations.	However,	we	first	show	how	we	create	a	regression	model	from	the	building.		

GP	regression	has	certain	advantages	over	other	regression	methods.	One	of	the	nice	
properties	of	this	method	is	that	it	requires	relatively	few	training	samples	to	provide	good	
emulation,	as	little	as	10	–	15	samples	per	input	parameter	(Loeppky	et	al.,	2009)	.		

Efficient	Global	Inversion	(EGI)	iteratively	improves	the	surrogate	model	and	improves	
its	 ability	 to	 estimate	 a	 threshold	within	 the	 model.	 	 This	 allow	 us	 to	 accurately	 predict	
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whether	a	design	will	exceed	an	output	value.	 In	our	case,	we	want	to	know	whether	the	
CIBSE	criteria	will	be	exceeded.		

This	is	useful	for	our	experiment	in	that	we	can	build	emulators	with	good	accuracy	at	
predicting	whether	the	model	has	failed	the	criteria	for	the	hours	of	exceedance	(threshold	
at	𝐻J = 3%)	or	the	daily	weighted	hours	of	exceedance	(threshold	at	𝑊J 	= 	6	degrees).		

To	improve	the	emulator	at	each	threshold,	EGI	uses	a	three-step	iterative	process:	
	
1. Create	a	surrogate	model	𝑓 𝒙 	for	the	original	building	model	𝑓(𝒙)	
2. Predict	the	next	sample	(𝒙UVI)	that	will	improve	the	threshold	estimate	the	most	
3. Run	the	simulator	at	point	𝒙UVI	and	return	to	step	1.	
	
The	surrogate	model	is	created	using	a	training	set	of	inputs	𝑫	(where	𝑫 ∈ 	𝑥),	which	is	

created	using	a	Latin	hypercube	design		(Franco	et	al.,	2011).	This	set	of	inputs	are	fed	into	
the	building	simulator	one	at	a	time.	This	produces	the	response	data	𝑓(𝑫).	The	input	data	
and	the	response	data	are	then	used	to	train	the	surrogate	model.			

GP	 models	 are	 different	 from	 most	 linear	 regression	 methods	 as	 the	 outputs	 is	
represented	as	a	multivariate	Gaussian	process:	

	

𝑓 𝒙 ∼ 	GP(𝑚(𝒙)	, 𝑣(𝒙, 𝒙′))	 	
	

	
Figure	3:	Gaussian	process	function	and	example	realisation	in	one	dimension	

	
where	𝑚(𝒙)	is	the	mean	function	and	𝑣(𝒙, 𝒙’)	is	the	variance	function.	

Although	that	output	of	the	Gaussian	process	is	essentially	random	Gaussian	noise	(with	
a	mean	of	𝑚(𝒙)	and	 a	 variance	 of	𝑣(𝒙, 𝒙′)),	 this	 doesn’t	mean	 that	we	 think	 the	 original	
simulator	output	is	random.	Instead,	we	are	using	the	Gaussian	process	to	allow	us	to	express	
uncertainty	 in	 the	 output	 as	 demonstrated	 in	 Figure	 3	 above.	 The	 mean	 and	 variance	
functions	of	the	Gaussian	process	model	are	estimated	using	a	training	set	( 	shown	in	Figure	
3).	Standard	functions	govern	the	mean	and	variance.	However,	these	functions	require	the	
tuning	and	estimation	of	hyper-parameters,	who’s	derivation	would	be	too	lengthy	to	detail	
here.	 There	 interested	 reader	 is	 referred	 to	 Gaussian	 Processes	 for	 Machine	 Learning	
(Rasmussen	&	Williams	2006).	
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Results	

Table	3	shows	the	percentage	of	buildings	passing	for	both	CIBSE	criterion	1	and	criterion	2	
for	each	of	the	weather	files	tested.		

Table	3:	Proportion	of	emulated	buildings	
passing	the	CIBSE	criteria	

Figure	4:	a)	Sensitivity	analysis	of	CIBSE	1	(left)	of	CIBSE	2	
(right)	for	all	weather	files	
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London	DSY1	 49.8	 5.4	 5.4	
London	DSY2	 86.5	 66.0	 66.0	
London	DSY3	 43.6	 0.4	 0.4	
Manchester	DSY1	 96.6	 35.7	 35.7	
Manchester	DSY2	 90.9	 27.2	 27.2	
Manchester	DSY3	 60.9	 0.8	 0.8	
Plymouth	DSY1	 100.0	 96.3	 96.3	
Plymouth	DSY2	 100.0	 75.3	 75.3	
Plymouth	DSY3	 96.4	 32.6	 32.6	

	

	

	 	
	

	
The	results	of	 the	sensitivity	analysis	show	that	the	main	 first	order	effects	on	both	CIBSE	
criterion	1	and	CIBSE	criterion	2	are	the	orientation	and	the	%	maximum	glazing	area.	The	
analysis	was	conducted	using	the	sobol	function	of	the	sensitivity	package	for	RStudio	(R	Core	
Team,	2017;	Sobol,	1993)	.	Figure	4	a)	and	Figure	4	b)	shows	a	violin-plot	of	the	sensitivities	
of	the	parameters	across	all	the	weather	files	tested.	Figure	5	shows	the	compliant	designs.	
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Figure	5:	Plot	showing	the	designs	that	pass	the	CIBSE	1	and	CIBSE	2	criteria	for	each	weather	file	
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Discussion	

The	results	in	table	3	show	that	the	%	of	buildings	passing	criteria	2	is	overall	less	than	those	
passing	criteria	1.	It	also	shows	that	a	much	larger	percentage	of	buildings	pass	criteria	1	than	
criteria	 2.	 The	 later	 as	 few	 as	 0.4%	 of	 buildings	 pass	 criterion	 2	 for	 London	 DSY3.	 The	
percentage	of	buildings	passing	both	criteria	is	the	same	as	those	passing	criterion	2.	Further	
investigation	has	shown	that	all	buildings	that	passed	criterion	1	passed	criterion	2.	

The	 results	 of	 the	 sensitivity	 analysis	 show	 how	 the	 biggest	 factor	 influencing	 both	
criteria	1	and	criteria	2	was	the	glazing	area.	Across	all	weather	files,	the	sensitivity	of	both	
criteria	 to	 the	 glazing	 area	 was	 between	 0.79	 and	 0.97	 (criterion	 1)	 and	 0.25	 and	 0.94	
(criterion	2).	Of	the	remaining	variables,	orientation	has	the	greater	influence,	but	this	is	not	
significantly	more	than	the	influence	of	the	insulation	location,	overhang	and	the	total	wall	/	
roof	 slab	 insulation	 thickness.	 Interestingly	 the	 amount	 of	 thermal	mass	 appears	 to	 have	
limited	 influence	on	the	overheating	response	 in	all	cases	(at	 least	compared	to	the	other	
variables).	

Knowing	 that	 the	 orientation	 and	 the	 glazing	 were	 the	 biggest	 influencers	 of	 both	
overheating	criteria,	we	plotted	the	buildings	that	pass	each	of	these	criteria	in	Figure	5.	

The	results	of	this	analysis	show	a	wide	range	of	compliant	designs.	Not	surprisingly,	
the	buildings	with	the	lowest	glazing	consistently	pass	both	criteria	in	all	cases.	The	exception	
is	for	London	DSY3	and	Manchester	DSY3,	where	only	a	handful	of	buildings	pass	the	criterion	
2.	The	orientation	also	influences	the	overheating.	In	Figure	4,	we	can	see	a	pattern	where	
the	number	of	compliant	buildings	increases	for	both	criteria	(though	particularly	criterion	2)	
where	the	lounge	side	of	the	building	is	facing	due	south	(i.e.	orientation	=	0	degrees).	This	
can	best	be	seen	for	Plymouth	DSY3	(criterion	2)	and	London	DSY	3	(criterion	3).	

It	 is	 well	 understood	 that	 solar	 radiation	 plays	 an	 important	 part	 in	 overheating.	
However,	our	results	show	that	even	with	the	same	building	designs,	the	pattern	observed	is	
different.	For	example,	comparing	the	results	of	criterion	2	for	Manchester	DSY1	and	DSY2	
we	 see	different	 patterns.	 Both	have	 around	 the	 same	number	of	 compliant	 designs,	 but	
the	pattern	of	where	those	designs	lie	is	different	(see	Figure	4).		

We	 expect	 the	 number	 of	 buildings	 passing	 DSY2	 would	 be	 less,	 which	 is	 true	
(27.2%	vs.	35.7%),	 but	 the	 pattern	 of	 building	 designs	 in	 DSY1	 is	 more	 skewed	 to	 an	
orientation	of	-90	degrees,	whereas	the	DSY2	has	more	high	glazing	options	at	orientations	
around	0	degrees.	

Given	that	criterion	2	is	based	on	a	single	day's-worth	of	overheating,	there	are	several	
possible	explanations	for	this	pattern.	One	explanation	is	that	cloud	cover	may	play	a	major	
role.	Since	the	hottest	day	will	trigger	criterion	2,	then	on	this	day,	 it	may	be	that	there	is	
more	cloud	cover	in	the	weather	file	during	different	periods	of	the	day.	There	needs	further	
investigation,	but	if	cloud	cover	can	influence	the	design	in	this	way,	then	this	has	important	
implications	for	weather	file	design.	

Conclusion	

We	have	demonstrated	the	results	for	a	PassivHaus-style	building	design.	The	results	show	
that	 the	 glazing	 and	 orientation	 are	 the	 biggest	 determinants	 over	 the	 overheating	 risk.	
Further	work	 is	required	to	 investigate	these	same	relationships	for	other	passive	and	low	
energy	design	methodologies.	Also,	 these	 findings	may	also	only	be	 relevant	 to	 the	CIBSE	
overheating	criteria.	Further	work	may	also	consider	 looking	at	other	overheating	criteria.	
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However,	it	is	clear	from	the	results	that	it	is	very	likely	that	the	relative	glazing	area	is	the	
biggest	design	parameter	affecting	the	amount	of	overheating	in	passive-style	buildings.		
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