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Stored Energy Functions for Phase

Transitions in Crystals

Johannes Zimmer

Abstract

A method is presented to construct nonconvex free energies that are
invariant under a symmetry group. Algebraic and geometric methods are
used to determine invariant functions with the right location of minimiz-
ers. The methods are illustrated for symmetry-breaking martensitic phase
transformations. Computer algebra is used to compute a basis of the cor-
responding class of invariant functions. Several phase transitions, such as
cubic-to-orthorhombic, are discussed. An explicit example of an energy for
the cubic-to-tetragonal phase transition is given.

1. Introduction

This article is concerned with the construction of nonconvex energy func-
tions that are invariant under a symmetry group. The application we have
in mind are symmetry-breaking martensitic transformations occurring in
active crystalline materials, such as shape-memory alloys. Yet, the methods
described in this paper are applicable to a large class of other situations
where symmetry breaking occurs. The approach works both for first and
second order transitions.

In the framework of nonlinear thermoelasticity, these phase transitions
are frequently described as changes in the Helmholtz free energy density.
The most common approach to find energy functions describing transfor-
mations in crystals goes back to Landau [16]. Here, the temperature- and
strain-dependent energy function is assumed to be analytic and therefore
expanded into a power series. In practice, it is customary to use an ansatz
where the energy function is polynomial in the components of the strain. For
the different crystal classes, Smith and Rivlin [25] determine a basis for the
invariant polynomials under the respective symmetry group. In Section 4, as
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an example of some results of group theory collected in Section 3, we show
that such a polynomial basis can nowadays be easily computed by means
of computer algebra. The energy functions are taken to be polynomials of
an invariant polynomial basis.

The latter approach has been successfully applied to martensitic trans-
formations in crystalline solids, see, e.g., Falk [9] and the references therein,
or the monograph [18]. Yet, when using this approach, one has to face
some difficulties. The restriction to polynomials considerably reduces the
degrees of freedom. By Weierstraß’ theorem, polynomials approximate C∞

functions arbitrarily close; however, polynomials become much more rigid
objects if one requires them to have minima and maxima only at given
points. The attempt to use a polynomial of the lowest feasible order often
leads to unsatisfactory results, in particular in several space dimensions:
since the minima have to concentrate on the few positions corresponding to
energetically stable crystalline configurations, they tend to be degenerate.
This makes it hard to fit elastic moduli, and the energy wells often become
too shallow to be distinguishable in a finite element simulation.

In this paper, we will describe an alternative approach to derive energy
functions with a given symmetry. For some transitions, like the cubic-to-
tetragonal transformation, this yields a comparatively easy way to find a
large number of energy functions describing this transformation. In par-
ticular, the method is to some extent intuitive since it relies on geometric
arguments, and removes all constraints coming from symmetry. Sometimes,
as for the cubic-to-orthorhombic transformation, an additional algebraic ar-
gument is needed to find energy functions with exactly the right number of
minimizers. In Section 4, it is shown how these obstacles can be be overcome
for the cubic-to-orthorhombic transition. The method presented there will
also work for other symmetry breakings where geometric arguments are not
enough. In Section 4, we also briefly discuss all possible symmetry break-
ings from a cubic parent phase. An application of this method, applied to
zirconia as a material with a triple point, can be found in [7].

This paper is organized as follows: in Section 2, we briefly review some
elementary facts from continuum mechanics used in the subsequent sec-
tions. Section 3 contains the algebraic framework. There, the orbit space is
introduced and characterized in several ways. The orbit space will be the
fundamental object to describe symmetric functions. In Section 4, marten-
sitic phase transitions are considered as an application. Advantages and
limitations of this approach are discussed in Section 5.

2. Martensitic phase transitions

The mathematical framework of Section 3 will be applied to marten-
sitic phase transitions in Section 4. For the convenience of the reader, we
will briefly collect some essential features of these transformations. Cer-
tain crystalline solids, such as CuAlNi, are able to undergo a diffusionless
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temperature- or stress-induced phase transformation. A typical example
is the cubic-to-tetragonal transformation. At high temperature, the cubic
phase is stable in the stress-free configuration. Below a critical tempera-
ture, three tetragonal variants become stable. Typically, the macroscopic
behavior of these materials is modeled within the framework of nonlinear
elasticity. Let Ω ⊆ IRn be a reference configuration. The energy is a func-
tion of the temperature θ and the gradient of the deformation u : Ω → IRn.
The deformation gradient is injective (to prevent self-penetration of mat-
ter) and orientation preserving. Hence, if u is differentiable in x ∈ Ω,
F (x) := grad(u(x)) has a positive determinant. Consequently, we seek an
explicit expression for the free energy (density) Φ:

GL(n, IR)+ × IR+ → IR

(F, θ) 7→ Φ(F, θ)

(GL(n, IR)+ is the set of all real invertible matrices of dimension n×n with
positive determinant).

Let P denote the point group that describes the symmetry of the crystal.
For example, for a cubic crystal, P is the group of orientation-preserving
self-mappings of the cube. Material symmetry requires that

Φ(FP−1, θ) = Φ(F, θ) for every P ∈ P, F ∈ GL(n, IR)+, θ ∈ IR+. (1)

In the sequel, we will assume that P is the point group of the high temper-
ature phase and a subgroup of SO(n).

The axiom of frame-indifference requires that

Φ(SF, θ) = Φ(F, θ) for every S ∈ SO(n), F ∈ GL(n, IR)+, θ ∈ IR+.

It is well known that this implies that Φ is a function of the left Cauchy-
Green strain tensor C :=

√
F ∗F (F ∗ is the transpose of F ). Since there is

no danger of confusion, the energy function defined on C will also be de-
noted Φ. Let Sym(n, IR)+ denote the set of symmetric matrices with positive
determinant. Thus, we can reformulate (1) as

Φ(CP−1, θ) = Φ(C, θ) for every P ∈ P, C ∈ Sym(n, IR)+, θ ∈ IR+.

Since P is a subgroup of SO(n), this is equivalent to

Φ(PCP−1, θ) = Φ(C, θ) for every P ∈ P, C ∈ Sym(n, IR)+, θ ∈ IR+. (2)

We will use this formulation since from a group-theoretical point of view,
conjugation is the natural way for a group to act on a set.
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3. Review of polynomial invariant theory

In this section, we will present the algebraic background of the method.
A more detailed treatment can be found, e.g., in [26] and [6]. For the more
applied reader, we start with an overview over this section where the re-
sults are motivated and related to symmetries of crystals. The isotropy
(sub-)groups (Definition 2) are the different crystalline (sub-)symmetries;
Proposition 1 states that they form a lattice. Subsection 3.2 deals with
invariant polynomials. This is partially related to the work of Smith and
Rivlin [25]. Here, we explain how to find a generating set of invariant poly-
nomials for a given symmetry (Theorems 1 and 2). Definition 4 introduces
the orbit space, which is a central notion in this paper. Essentially, the orbit
space collapses all symmetry-related points to one point and therefore strips
off the symmetry, making it easy to define an energy. A reader interested
only in the applications can skip Subsections 3.3 and 3.4 and move on di-
rectly to Subsection 3.5, where a geometric description of the orbit space is
given.

The mathematical framework can be stated as follows. Let V be an n-
dimensional real vector space, and suppose Γ ∈ GL(V ) is a finite matrix
group. In Section 4, V will be the strain space (space of symmetric matrices),
and Γ will be the the point group P. The order of the group is denoted by
|Γ |; Greek lower case letters stand for elements of Γ . In particular, ε is the
neutral element of Γ .

With obvious changes, all statements in this section also hold true for a
compact Lie group Γ .

3.1. Background from elementary bifurcation theory

We start with some basic definitions.

Definition 1. The (Γ -)orbit of v ∈ V is the set Γv := {γv
∣∣ γ ∈ Γ}. The set

of all orbits is called the orbit space and is denoted by V/Γ := {Γv
∣∣ v ∈ V }.

The importance of orbits and the orbit space stems from (2): we want
to satisfy a symmetry requirement for V := Sym(n, IR) and Γ := P; but
this requirement states exactly that the energy function Φ is constant on
the orbits. Therefore, we will use the orbit space to define it. Since the orbit
space is a quotient space, it is equipped with the quotient topology.

Definition 2. The isotropy (sub)group Γv of a point v ∈ V is the subgroup
fixing v,

Γv := {γ ∈ Γ
∣∣ γ(v) = v}.

Two isotropy subgroups Γv, Γw are conjugated if there is a γ ∈ Γ such that
Γw = γΓvγ

−1. The equivalence class of Γv is denoted by [Γv]. We omit the
brackets [·] if the class contains only one element.
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If Γ is the symmetry group of the high-symmetry phase, then the iso-
tropy groups correspond to possible low-symmetry phases.

A short calculation shows that Γγv = γΓvγ
−1. Therefore, two points

v, γv on the same orbit have conjugate isotropy subgroups. The set of con-
jugacy classes is finite (this is trivial for finite groups; for compact Lie
groups, see [14, I.1.4]). Combining the last observations, we see that the set
of equivalence classes of isotropy classes is a Γ -invariant finite decomposi-
tion of V . We partially order conjugacy classes by saying that [Γv] ≤ [Γw]
if Γv is conjugate to a subgroup of Γw. We obtain the so-called isotropy lat-
tice of Γ . The proof of the following statements can, for example, be found
in [21]; see also [10]. A locally closed set is a set that is the intersection of
an open and a closed set.

Proposition 1. For equivalence classes of isotropy groups, the following
holds true:

1. Every [Γv] is a locally closed smooth (C∞) manifold.
2. If [Γv] 6= [Γw] and [Γv] ∩ [Γw] 6= ∅, then [Γv] ⊆ [Γw], dim[Γv] < dim[Γw]

and [Γv] < [Γw].
3. With respect to the given partial ordering, there is a uniquely determined

maximal equivalence class that is open and dense in V .

3.2. Algebra of invariant polynomials

Definition 3. We will first consider symmetric functions built of polynomi-
als. To formulate the mathematical framework, we will need the trivial fact
that polynomials form a ring. Let IR[V ] denote the ring of all polynomials
with real coefficients in n variables. The subring of Γ -invariant polynomials
on V is IR[V ]Γ ,

IR[V ]Γ := {p ∈ IR[V ]
∣∣ p(γ(x)) = p(x) for all γ ∈ Γ, x ∈ V.}

We will first construct energy functions in IR[V ]Γ and extend later our
results to the space of symmetric smooth functions. Energy functions for
phase transitions can be characterized as symmetric functions with (usu-
ally parameter-dependent) minimizers at well-defined positions. The first
observation is that it is easy to symmetrize a given function: The Reynolds
operator is defined as

∗ : IR[V ]→ IR[V ]Γ

p 7→ p∗ :=
1

|Γ |
∑
γ∈Γ

p ◦ γ

(for compact Lie groups, one has to use the Haar integral instead of the finite
sum). Therefore, the Reynolds operator applied to an arbitrary polynomial p
returns a polynomial p∗ with the given symmetry. But in general, there is no
relation between the minimizers of p and those of p∗: the Reynolds operator
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may both destroy and create minimizers. Apart from that, for applications
such as those in Section 4, it is difficult to find minimizers of p∗ since p∗

will be a high-order polynomial of several variables. Nevertheless, there are
methods to find minimizers of p∗ by exploiting the symmetry. The paper
of Worfolk [28] is a clear introduction to this subject. Other references on
minimizers of invariant functions are [15,11].

A proof of the following theorem can, for example, be found in [26,
Theorem 2.1.3] or the classical reference [27].

Theorem 1 (Hilbert). The invariant ring IR[V ]Γ of a finite matrix group
Γ is finitely generated. That is, there are finitely many polynomials ρ1, . . . ,
ρk ∈ IR[V ]Γ , such that every p ∈ IR[V ]Γ can be written as p = P (ρ1, . . . , ρk),
where P ∈ IR[x1, . . . , xk] is a polynomial in k variables.

In Landau theory, the space of polynomials is considered as an infinite-
dimensional vector space; one seeks at finding energy functions in a finite-
dimensional subspace. Theorem 1 is the reason why we use another ap-
proach. By considering the set of polynomials as an algebra instead of as
a vector space, we automatically get a finite basis. Furthermore, as we will
see, such a basis can easily be computed.

In 1916, Emmy Noether gave a version of the Finiteness Theorem 1
which allows us to give an explicit set of polynomials generating IR[V ]Γ .

Theorem 2 (Noether’s Degree Bound). If dim(V ) = n, then the in-

variant ring IR[V ]Γ is generated as an algebra by at most
(
n+|Γ |
n

)
invariants

whose degrees are bounded above by |Γ |.

This theorem enables us to compute an algebra basis of IR[V ]Γ since
IR[V ]Γ is a graded algebra, i.e., it is the direct sum of the finite-dimensional
vector spaces IR[V ]Γd , where IR[V ]Γd is the set of all homogeneous invariants
of degree d. It is easy to obtain a basis of IR[V ]Γd by averaging over the space
of homogeneous polynomials of degree d by applying the Reynolds operator
to a basis of that space. In fact, more sophisticated techniques exist. Since
there are many implementations of algorithms to find an algebra basis of
IR[V ]Γ , we will not go into detail, but consider these algorithms as a black
box. The interested reader is referred to [26,6] for more information about
Gröbner bases, which provide the main technical tool for this.

Definition 4. Any finite set of generators {ρ1, . . . , ρk} of the IR-algebra
IR[V ]Γ is a Hilbert basis. The Hilbert map ρ is defined as

V → IRk

v 7→ (ρ1(v), . . . , ρk(v)).

In some sense, the image of V under the Hilbert map is similar to the
more familiar notion of a fundamental domain. A fundamental domain con-
tains exactly one element of every orbit. The Hilbert map ρ, however, is
constant on the orbits of Γ . The next lemma shows that Hilbert map pro-
vides an embedding of the orbit space in a vector space:
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Lemma 1. A Hilbert map ρ : V → IRk is Γ -invariant and separates the
orbits. That is, for v, w ∈ V , ρ(v) = ρ(w) holds if and only if v and w are
on the same orbit. The map ρ : V/Γ → IRk is hence a bijection between the
orbit space and ρ(V ).

Proof. This is taken from [21, 2.5.1]; see also [24]. For the reader’s con-
venience, we repeat the argument. For two different orbits Γv, Γw, there
exists a continuous function f : V → IR such that f

∣∣
Γv

= 0 and f
∣∣
Γw

= 1.
Obviously, this holds true for the symmetrized function f∗ as well. Hence,
one can assume without loss of generality that f is symmetric. Since polyno-
mials are dense in the space of continuous functions, and since the Reynolds
operator is continuous, it is possible to find an invariant polynomial p such
that p

∣∣
Γv
< 1

2 and p
∣∣
Γw
> 1

2 . Since p can be expressed in terms of the Hilbert
basis, one has ρ(v) 6= ρ(w). ut

One can try to determine a fundamental domain for a given action of a
group on a space and define the energy function on the fundamental domain
(see [5] for such an approach for Γ = GL(2,Z)). The difficulty is that the
fundamental domain is usually neither open nor closed: some parts of the
boundary belong to the fundamental domain, others do not. Therefore, one
has to proceed with care to define a function on the fundamental domain.
The embedding in IRk provided by the Hilbert map avoids this problem.

Since the orbit space V/Γ is a locally compact Hausdorff space, the
Hilbert map ρ induces a homeomorphism of V/Γ and the image ρ(V ) [24].

3.3. The Cohen-Macaulay property

Later on, we will use that rings of invariants are Cohen-Macaulay. There-
fore, the minimal background is gathered here; further information can be
found in [3,8].

A ring R ⊂ IR[x1, . . . , xn] of polynomials has the Cohen-Macaulay prop-
erty if there are l polynomials η1, . . . , ηl ∈ R such that

R =

l⊕
j=1

ηjIR[ρ1, . . . , ρn].1 (3)

In this case, in the notation used above, ρ1, . . . , ρn are primary invariants
and η1, . . . , ηl are secondary invariants. The following theorem is due to
Hochster and Eagon [13].

Theorem 3. The invariant ring IR[V ]Γ of a finite matrix group is Cohen-
Macaulay.

1 The formal definition is as follows: A set ρ1, . . . , ρn of n homogeneous invariant
polynomials is said to be a homogeneous system of parameters (h.s.o.p) if IR[V ]Γ

is a finitely generated module over its subring IR[ρ1, . . . , ρn]. A ring R is Cohen-
Macaulay if it is generated as free module over the ring of any h.s.o.p..
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3.4. Relations between polynomials

As mentioned before, we will use the orbit space to define energy func-
tions. To do so, we need to know its structure. In this subsection, we discuss
one possibility of determining the geometry of the orbit space. Eventually,
this method results in a set of equations defining the orbit space. Using ver-
sion 2.0 of Singular [12], it was possible to determine these equations for the
phase transitions considered in Section 4. The resulting equations, however,
needed several MB of storage space. Therefore, the methods discussed in
this subsection will not be used in the sequel.

A Hilbert basis is usually not algebraically independent: in general, there
are nonzero polynomials r ∈ IR[x1, . . . , xk] such that r(ρ1, . . . , ρk) is iden-
tically zero. Such a polynomial is a (nontrivial) relation among ρ1, . . . , ρk.
The set of all relations among ρ1, . . . , ρk is an ideal; it is called the ideal of
relations or syzygy ideal and denoted Iρ:

Iρ := {r ∈ IR[x1, . . . , xk]
∣∣ r(ρ1, . . . , ρk) = 0 in IR[V ]}.

Let V (Iρ) denote the set of common zeros of all elements of Iρ. By
definition, V (Iρ) is an algebraic subset of V (a variety in the language of
algebraic geometry), and ρ(V ) ⊆ V (Iρ). This can be improved as in the
next proposition, which is taken from [6, p. 337].

Proposition 2. Let Iρ and Z := Vρ be as above. Let IR[Z] be the restriction
of IR[V ] to Z. Then

1. Vρ is the smallest variety in IRk containing the the orbit space ρ(V ).
2. IR[Z] ' IR[V ]Γ .

Part 2 of this Proposition shows that Vρ is essentially determined by
IR[V ]Γ , which means one can use Vρ to describe invariant polynomials if Vρ
can be understood in detail.

3.5. Inequalities defining the orbit space

We will use the fact that the orbit space can be described as a set
defined by inequalities (in terms of algebraic geometry, this means it is a
semialgebraic variety).

By introducing coordinates if necessary, we can assume V = IRn. Let J
be the Jacobian matrix of ρ,

J :=

(
∂ρj
∂vk

)
j,k=1,...,n

.

Let us take all pointwise inner products of grad(ρj) and grad(ρk) for j, k =
1, . . . , n. Then for G := JJ∗, one has

(G)j,k = 〈grad (ρj) , grad (ρk)〉 ,

where 〈·, ·〉 is the inner product in IRn.
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Theorem 4. One has ρ(V ) = {z ∈ Z
∣∣ G(z) is positive semidefinite}.

This has been conjectured by Abud and Sartori [1,2]. See [19] for the
proof; applications of this theorem to gauge symmetry breaking are given
in [20].

Having several descriptions of the orbit space at our disposal, it is in
principle easy to define energy functions: by defining them on the orbit
space, one does not have to take symmetry constraints into account (similar
to the construction using a fundamental domain). The main point is now to
determine the position of the minimizers. In the next section, this is carried
out for an example.

4. Application: Energy functions for martensitic transformations

In this section, the methods presented in Section 3 are applied to energy
functions describing martensitic phase transitions. More precisely, we study
symmetry breaking with a cubic high-symmetry phase. That is, we assume
P = O, where O is the group of orientation-preserving mappings of the cube
to itself. In applications, this is the most important case. By (2), O acts on
C ∈ Sym(3, IR)+ by conjugation:

P × Sym(3, IR)+ → Sym(3, IR)+

(P,C) 7→ PCP−1

(PCP−1 is symmetric since P ∗ = P−1. Therefore, this really defines an ac-
tion of P on Sym(3, IR)+). Since Sym(3, IR)+ is invariant in Sym(3, IR) under
conjugation by P, we can extend this action to an action on Sym(3, IR).

In Sym(3, IR), we introduce coordinates as follows: for (mjk)1≤j,k≤3 ∈
Sym(3, IR) , let us define

e1 := m11, e2 := m22, e3 := m33,
e4 := m12, e5 := m23, e6 := m13

(4)

(From an engineering point of view, this is just Voigt’s notation of the
strain. From a mathematical point of view, we are defining a representation
of Sym(3, IR)). Since the (symmetrized) strain space is six-dimensional, we
have V := IR6.

It is easy to see that O is generated by two elements, namely

α :=

0 −1 0
1 0 0
0 0 1

 and β :=

0 0 1
0 −1 0
1 0 0

 .

(Of course, this choice is far from being unique. See [17] for a discussion of
the octaeder group O.)
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Theorem 5. The ring of invariant polynomials is generated by

ρ1 := e1 + e2 + e3,

ρ2 := e21 + e22 + e23,

ρ3 := e24 + e25 + e26,

ρ4 := e31 + e32 + e33,

ρ5 := e4e5e6,

ρ6 := e44 + e45 + e46,

ρ7 := 1,

ρ8 := e1e
2
4 + e2e

2
4 + e2e

2
5 + e3e

2
5 + e1e

2
6 + e3e

2
6,

ρ9 := e21e
2
4 + e22e

2
4 + e22e

2
5 + e23e

2
5 + e21e

2
6 + e23e

2
6,

ρ10 := e1e
4
4 + e2e

4
4 + e2e

4
5 + e3e

4
5 + e1e

4
6 + e3e

4
6,

ρ11 := e21e
4
4 + e22e

4
4 + e22e

4
5 + e23e

4
5 + e21e

4
6 + e23e

4
6,

ρ12 := e21e2e
4
4e

2
5 + e2e

2
3e

2
4e

4
5 + e1e

2
2e

4
4e

2
6 + e22e3e

4
5e

2
6 + e1e

2
3e

2
4e

4
6 + e21e3e

2
5e

4
6.

Proof. This basis can be computed by the methods presented in Section 3.
To avoid tedious computations, we used the software package Singular [12],
version 1.0.2. The computation is based on an algorithm by Sturmfels [26].
ut

The invariants given in Theorem 5 are a Cohen-Macaulay basis: the
first 6 invariants ρ1, . . . , ρ6 are primary invariants, ρ7, . . . , ρ12 are secondary
invariants. By (3), there exist uniquely determined polynomials P7, . . . , P12

such that every invariant polynomial p can be written as

p =

12∑
j=7

ρjPj(ρ1, . . . , ρ6).

It should be remarked that the basis given in Theorem 5 is not a minimal
basis. In fact, it is easy to give a minimal basis, consisting of 9 elements.
However, we will exploit the Cohen-Macaulayness of the basis given above.

By Lemma 1, we can consider ρ(V ) as orbit space. Since energy functions
are defined only on Sym(3, IR)+ instead of Sym(3, IR), we have to determine
the image of Sym(3, IR)+ in the orbit space ρ(V ).

Lemma 2. For the given Hilbert map, the image of Sym(3, IR)+ in the orbit
space is characterized by the inequalities

ρ1 > 0,
1

2

(
ρ21 − ρ2

)
+ ρ3 > 0,

1

6

(
ρ31 − 3ρ1ρ2 + 2ρ4

)
+ 2ρ5 + ρ8 − ρ1ρ3 > 0.
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Proof. Let M ∈ Sym(3, IR)+ be a symmetric matrix. We use Voigt’s no-
tation. Since M is positive definite, the principal minors are positive by
Jacobi’s criterion. These minors are

e1, e2, e3 > 0 (1× 1 minors),

e1e2 − e24 > 0, e1e3 − e26 > 0, e2e3 − e25 > 0 (2× 2 minors),

e1e2e3 + 2e4e5e6 − e2e26 − e1e25 − e3e24 > 0 (determinant).

Summing up the 1× 1 minors, we obtain

ρ1 = e1 + e2 + e3 > 0 (5)

and analogously in the 2× 2 case

e1e2 − e24 + e1e3 − e26 + e2e3 − e25 =
1

2

(
ρ21 − ρ2

)
− ρ3 > 0. (6)

A simple computation yields

e1e2e3 + 2e4e5e6 − e2e26 − e1e25 − e3e24

=
1

6

(
ρ31 − 3ρ1ρ2 + 2ρ4

)
+ 2ρ5 + ρ8 − ρ1ρ3 > 0. (7)

This proves that ρ(Sym(3, IR)+) is contained in the set characterized by
the inequalities. We have to show that it is not a strict inclusion. To do so,
we express inequalities (5)–(7) in terms of eigenvalues. This gives

λ1 + λ2 + λ3 > 0,

λ1λ2 + λ1λ3 + λ2λ3 > 0,

λ1λ2λ3 > 0.

The last inequality shows that either all eigenvalues are positive or negative
eigenvalues appear pairwise. In the latter case, possibly after relabeling the
eigenvalues, we can assume λ1, λ2 < 0 and λ1 ≤ λ2. The first inequality
shows λ3 ≥ −2λ2 and hence λ1λ2 + λ1λ3 + λ2λ3 ≤ 0, contradicting the
second inequality. ut

As a next step, we determine the isotropy subgroups since they describe
possible symmetry breakings. The list of isotropy subgroups can be gener-
ated automatically, e.g., by using XGAP and GAP [23]. Here, we carry out
the elementary computation. Let Γ ′ be a subgroup of Γ . The fixed point
space Fix(Γ ′) is defined as Fix(Γ ′) := {v ∈ V

∣∣ γ(v) = v for all γ ∈ Γ ′}.
The fixed point space of Γv is the linear subspace of V containing all points
with the same symmetry as v. To find all isotropy subgroups, we consider
the lattice of all subgroups of O. See Figure 1. For a given point v ∈ V ,
its isotropy subgroup is by definition the maximal subgroup leaving v in-
variant. Hence, isotropy subgroups are those groups in the group diagram
whose fixed point space has a smaller dimension than the fixed point space
of the group containing the group under consideration.
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Fig. 1. Group diagram of O. The group-subgroup relations are shown by lines.
Zk denotes the cyclic group of order k, while Dk stands for a dihedral group. The
symmetry group of a tetragon is denoted T . Upper indexes distinguish groups that
are not conjugated. For Z2 subgroups, upper indexes also indicate the generators.

Group Γ ′ Generator F (Γ ′) := Fix(Γ ′) dim(F (Γ ′)) Iso.

Z(β)
2 β {(a, b, a, c,−c, d)} 4 yes

Z(α2)
2 α2 {(a, b, c, d, 0, 0)} 4 yes

Z3 γ := (βα)−1 {(a, a, a, b, b,−b)} 2 no
Z4 α {(a, a, c, 0, 0, 0)} 2 no

D
(1)
2 α2, βα2β {(a, b, c, 0, 0, 0)} 3 yes

D
(2)
2 β, α2βα2α2 {(a, b, a, 0, 0, c)} 3 yes

D3 β, αβα−1 {(a, a, a, b,−b,−b)} 2 yes
D4 β, α2 {(a, b, a, 0, 0, 0)} 2 yes
T γ, α2γα2 {(a, a, a, 0, 0, 0)} 1 no
O α, β {(a, a, a, 0, 0, 0)} 1 yes

Fig. 2. Subgroups of O, their generators, their fixed point space and the dimen-
sion of the fixed point space. Isotropy groups marked by ‘yes’ in the last column.

For our application, all subgroups of O, their generators, their fixed
point space and the dimension of the fixed point space are listed in Figure 2;
isotropy groups marked by ‘yes’ in the last column.

Thus, we have the following symmetry types:

O, D4, D3, Z(β)
2 , D

(1)
2 , D

(2)
2 , Z(α2)

2 , 〈ε〉.

Symmetry types and their images under the Hilbert map will be called
strata.

Since ρ(V ) is embedded in a 12-dimensional vector space, it is difficult to
visualize. To use geometric ideas as much as possible, we restrict ourselves
to the projection on the primary invariants. Here, the situation is particu-
larly easy: The representation induced by the operation of O on Sym(3, IR)
decomposes in three representations. Namely, the representation of the trace
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and one more representation on the elements e1, e2, e3 representing the di-
agonal, and a third representation on the off-diagonals e4, e5, e6. The two
representations on the diagonals are orthogonal to each other, as we will see
below. We will study these representations separately.

Let us start with the representation on the off-diagonals. Proceeding
as before, we see that the following groups are isotropy subgroups for the
restriction to the off-diagonals:

Isotropy group O [D3]
[
D

(2)
2

] [
Z(β)
2

]
〈ε〉

dim(fixed point space) 0 1 1 2 3

Primary invariants for the off-diagonals are

ρo1 := ρ3 = e24 + e25 + e26,

ρo2 := ρ5 = e4e5e6,

ρo3 := ρ6 = e44 + e45 + e46.

This can be seen from Theorem 5; but one has to prove that this is really
a basis for the off-diagonals and not just an invariant set. This can be
done using the tools presented in Section 3, but there is an easier way:
restricted to the off-diagonals, O is a reflection group. By a theorem of
Chevalley [4, Theorem (A)], for reflection groups, there is an algebraically
independent Hilbert basis of n elements, where n is the dimension of the
underlying vector space. This shows that for the off-diagonals, there is a
basis of three algebraically independent invariants, and one can convince
oneself that ρo1, . . . , ρ

o
3 is such a basis.

To characterize the orbit space of the off-diagonals, we use Theorem 4.
A computation of the principal minors of

(〈
grad (ρoi ) , grad

(
ρoj
)〉)

i,j
gives

conditions for this matrix to be positive semidefinite. A short calculation
show that the following inequalities are active:

ρo1 ≥ 0,

ρo3 ≤ ρo1
2,

ρo1
6 − 20ρo1

3ρo2
2 − 4ρo1

4ρo3 + 36ρo1ρ
o
2
3ρo3 + 5ρo1

2ρo3
2 + 108ρo2

4 − 2ρo3
3 ≤ 0.

From this, it is almost immediate to obtain the following geometric in-
terpretation of this orbit space as image of the fixed point spaces:

Stratum Parametrization
O ρo1 = ρo2 = ρo3 = 0[
D

(2)
2

]
ρo1 = t, ρo2 = 0, ρo3 = t2

[D3] ρo1 = t, ρo2 = ±
√
3
9

√
t3, ρo3 = 1

3 t
2[

Z(β)
2

]
ρo1 = t, 1

3 t
2 < ρo3 < t2,

ρo2 =

± 1
18

√
30t3 − 54tρo3 ± 6

√
−2t6 + 18t4ρo3 − 54t2ρo3

2 + 54ρo3
3

〈ε〉 Interior
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Fig. 3. Orbit space of the off-diagonals. The tip is the stratum of O, the surfaces

are strata of
[
Z(β)
2

]
, the upper edge is the image of

[
D

(2)
2

]
, and [D3] corresponds

to the two lower edges.

This can be visualized as in Figure 3.
We repeat this for the restriction of the representation to the diagonal

elements e1, e2, e3. This case is simpler since the representation (4) decom-
poses into a one-dimensional and a two-dimensional representation.

One has the following strata:

Stratum O [D4]
[
D

(1)
2

]
Dimension of fixed point space 1 2 3

A Hilbert basis of invariant polynomials is given by

ρd1 := ρ1 = e1 + e2 + e3,

ρd2 := ρ2 = e21 + e22 + e23,

ρd3 := ρ4 = e31 + e32 + e33.

We introduce new coordinates to use the fact that the representation
decomposes. Here, s parametrizes the one-dimensional fixed-point space and
t and u are chosen to be orthogonal to s. Explicitly,

s(e1, e2, e3) :=
1√
3

(e1 + e2 + e3),

t(e1, e2, e3) :=
1√
2

(e1 − e2),

u(e1, e2, e3) :=

√
2

3

(
1

2
e1 +

1

2
e2 − e3

)
.

A Hilbert basis with respect to the new coordinates is, for example, given
by

ρ̃d1 := s =
1√
3

(e1 + e2 + e3), (8)

ρ̃d2 := t2 + u2, (9)

ρ̃d3 :=
3√
2
t2u− 1√

2
u3. (10)
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Fig. 4. Orbit space of the diagonals. The line is the stratum of O, the surfaces

correspond to [D4], the interior is the image of
[
D

(1)
2

]
. The surface is cut for better

inspection.

Proceeding as before, we arrive at

(〈
grad

(
ρ̃di
)
, grad

(
ρ̃dj
)〉)

i,j
=

1 0 0
0 4ρ̃d2 6ρ̃d3
0 6ρ̃d3

9
2

(
ρ̃d2
)2
 .

An application of Theorem 4 provides a characterization of the orbit
space as the set of all points for which

(〈
gradρ̃di , gradρ̃dj

〉)
i,j

is positive

semidefinite. Using minors to check positive semidefiniteness, a description
of the orbit space can be stated as follows:

ρ̃d2 ≥ 0,

ρ̃d3 ≤ ±
√

1

2
(ρ̃d2)3.

The orbit space is visualized in Figure 4.

4.1. First Example: Cubic-to-tetragonal phase transition

To illustrate the ideas presented above, let us construct an energy func-
tion for the cubic-to-tetragonal phase transition. Using the usual group-
theoretic notation, the cubic symmetry is denoted O, the tetragonal sym-
metry is denoted D4. Since we studied the representations on the diagonal
and the representation of the off-diagonals separately, we have to identify
the groups acting on these sets corresponding to the given groups on the
whole set. It is easy to see that [D4] corresponds to the Cartesian product
of [O] on the off-diagonals and [D4] on the diagonals (this also can be read
of from the the table in Figure 7).

We make the following ansatz

f(ρo1, ρ
o
2, ρ

o
3, ρ̃

d
1 , ρ̃

d
2 , ρ̃

d
3 , θ) := f1(ρo1, ρ

o
2, ρ

o
3, θ) + f2(ρ̃d1 , ρ̃

d
2 , ρ̃

d
3 , θ)
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Fig. 5. The location of minimizers for a cubic phase (arrow pointing to the axis
ρ̃d1 and arrow in the right picture), and location of minimizers for a tetragonal
phase (arrow pointing to the surface in the left picture and arrow in the right
picture).

and have to determine f1, f2. In particular, this means we ignore all sec-
ondary invariants except for the trivial ρ7 = 1. The reason for this is that
the orbit space ρ(V ) of the entire space can be shown to consist of finitely
many layers that project to the primary invariants; different layers are dis-
tinguished by the secondary invariants. This is explained in more detail in
the example of the cubic-to-orthorhombic transition. Here, we can ignore
this subtlety: it can be shown that for the tetragonal case, there is just one
layer and hence there is no need to introduce secondary invariants unless
this is useful for fitting some parameters.

As seen before (Figure 3), since the restriction of both O and D4 on V
to the off-diagonals is O, it is immediate that f1 has to have a minimizer
in the tip of this orbit space. A possible choice is

f1(ρo1, ρ
o
2, ρ

o
3, θ) := ρo1.

On the diagonals, D4 acts as D4, and Figure 4 shows that the strata
associated with this are the surfaces. A parametrization of this surface is
given by

ρ̃d1 = v,

ρ̃d2 = w,

ρ̃d3 = ±
√

1

2
w3.

A natural way to define a function f2 would be to locate the positions
of the cubic and the tetragonal phase (indicated in Figure 5), and to define
a (temperature dependent) function in a neighborhood of these positions.
Such a function could be a quadratic polynomial, with the coefficients being
determined by the elastic moduli. Splines are a natural choice to extend
these functions to the entire domain. A certain care has to be taken that the
splines model an energy barrier without introducing additional minimizers.
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Since the explicit derivation and representation of such a spline is lengthy,
we will here use another approach to define the function f2.

The key idea in this example is to reduce the problem of defining f2 to an
essentially one-dimensional problem, where it is very well understood (and
easy) to construct temperature-dependent functions with wells at given posi-
tions. We first reduce the dimension to a two-dimensional problem by defin-
ing a function f(v) := (v − v0)

2
, which has minimizers exactly in the plane

v = v0 (we need v0 > 0 since, according to Lemma 2, v0 = 0 is not in the
image of Sym(n, IR)+). To get, within this plane, minimizers only at the po-
sitions marked by the arrows in Figure 5, we use a one-dimensional Landau
energy, where we quotient out the one-dimensional symmetry. This results
for first phase transitions in g(w) :=

(
θ − θc + 1

4

)
w− 1

2w
2 + 1

3w
3, while sec-

ond order phase transitions can be described by g̃(w) := (θ − θc)w+ 1
3w

3. To
move the minimum to the upper surface, we introduce h(x) := (θ− θc)x :=√

2
2 (θ − θc)w3/2. Putting things together, a possible choice is

f2(v, w, x) := f(v) +

{
g(w)
g̃(w)

}
+ h(x) for transitions of

{
first

second

}
order.

It is a calculus exercise to check that this function, defined on the orbit
space, has exactly one minimizer.

The energy function is of course defined as the sum of f1 and f2. Spelled
out in coordinates, it reads for a first order transition

Φ(e1, . . . , e6, θ) = e24 + e25 + e26 +
1

3
(e1 + e2 + e3 − 1)

2

+

(
θ − θc +

1

4

)(
1

2
(e1 − e2)

2
+

2

3

(
1

2
e1 +

1

2
e2 − e3

)2
)

− 1

2

(
1

2
(e1 − e2)

2
+

2

3

(
1

2
e1 +

1

2
e2 − e3

)2
)2

+
1

3

(
1

2
(e1 − e2)

2
+

2

3

(
1

2
e1 +

1

2
e2 − e3

)2
)3

+

√
2

2
(θ − θc)

(
1

2
(e1 − e2)

2
+

2

3

(
1

2
e1 +

1

2
e2 − e3

)2
) 3

2

. (11)

Of course, many other functions are possible. Figure 5 shows again the
location of minimizers of a tetragonal phase; any function with minimizers
precisely at these locations would be a possible choice.

It should be pointed out that the function defining the minimizers on the
orbit space is by no means restricted to the class of polynomials (indeed,
the function above involves a root). This is a major difference to energy
functions constructed by using the polynomial ansatz derived from Landau
theory, and we believe this is useful to fit elastic moduli and other parame-
ters. In fact, one can show that every smooth (C∞) function invariant under
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Fig. 6. The location of minimizers for an orthorhombic phase, marked by arrows.

a compact Lie group can be constructed in the way described above [24];
with some modifications, this is also true for Ck functions [21,22].

Authors using a polynomial function often neglect to verify that there
are no additional minimizers. That can be a nontrivial task (see [28]). In the
example discussed above, it is immediate that the function has minimizers
exactly at the correct positions.

4.2. Second Example: Cubic-to-orthorhombic phase transition

We want to discuss the cubic-to-orthorhombic transition as second ex-
ample, since this transition will prove to be more subtle. This can bee seen
as follows. The symmetry group representing the orthorhombic phaseα 0 γ

0 β 0
0 0 α


with α 6= β is D

(2)
2 . It is easy to see that this group acts on the diagonal

elements as D4, and as D
(2)
2 on the off-diagonals (see the table in Figure 7).

It is easy to mimic the construction in the tetragonal case, as far as the
primary invariants are concerned. Indeed, exactly the same methods used
to get a minimizer in a surface of the orbit space of the diagonals can be
applied to create a minimizer in the upper edge of the orbit space of the
off-diagonals. This ensures that only phases represented by these positions
in the two orbit spaces have minimizers at a given temperature. Figure 6
shows the location of minimizers for an orthorhombic phase.

However, in this case, it is not enough to consider the primary invariants.
We claim that the stratum of this symmetry group might be foliated over the
projection on the two separate orbit spaces. The foliation could consist of up

to three leaves. To see this, first compute the orbit length of D
(2)
2 , given by

|Γx| = |Γ |
|Γx| . Here, Γ = O and Γx = D

(2)
2 . Consequently, the orbit length in

this case is 6. Now imagine the secondary invariants were irrelevant. Then,
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the group would split as a cross product over the two separate spaces for
the diagonals and the off-diagonals. The orbit length of the restrictions of
the group to these two spaces could be computed as before; the orbit length
of the group as the cross product would be the product of the orbit lengths.

Here, D
(2)
2 acts on the diagonals as D4, resulting in a first orbit length of

24
8 = 3. On the off-diagonals, D

(2)
2 acts as D

(2)
2 , giving an orbit length of

6 as for the entire group. Therefore, the group acting as the cross product

had an orbit length of 18. Since D
(2)
2 has an orbit length of 6, the secondary

invariants have to distinguish points that are identified in the cross product.
One way to visualize this is to say that the real orbit space consists of a num-
ber of leaves over the space generated by the primary invariants. Obviously,
the quotient of the orbit length of the group acting as cross product and
the group itself limits the number of leaves. Here, we find that there could
be 18

6 = 3 leaves. If we ignore the secondary invariants, we would end up
with several non-conjugated minimizers, all of them projecting to the same
point in the cross product of the two orbit space. How to single out just one
phase and its variants? There a comparatively simple way. First, we consider
the element that should be the energetically stable configuration. Since it

assumed to be orthorhombic, it is in the fixed point space of D
(2)
2 , with co-

ordinates (a, b, a, 0, 0, c), where a 6= b; see Figure 2. The orbit of this element
is (a, b, a, 0, 0,±c), (a, a, b,±c, 0, 0), (b, a, a, 0,±c, 0). We just computed that
there are 18 − 6 = 12 more elements that are mapped to the same point
in the product of the two orbit spaces. It is easy to see that they are of
the form (a, b, a,±c, 0, 0), (a, b, a, 0,±c, 0), (a, a, b, 0,±c, 0), (a, a, b, 0, 0,±c),
(b, a, a,±c, 0, 0), (b, a, a, 0, 0,±c). We have to find secondary invariants that
separate the latter elements from the former ones. A short inspection shows
that any secondary invariant except the trivial ρ7 = 1 and ρ12 does this. For
example, ρ8 maps the ‘right’ elements, such as (a, b, a, 0, 0, c), to 2ac2, while
all ‘wrong’ elements, for example (a, b, a, c, 0, 0), are mapped to (a + b)c2.
The same applies to ρ9, ρ10, ρ11, since only the exponents change. So, if we
construct a function in ρ8, say, that has a minimizer exactly at the position
ac2, where a and c are functions of the lattice parameters, and carry out
the construction of functions on the two separate orbit spaces analogously
to the cubic-to-tetragonal case and add the function defined on ρ8, then the
entire function, composed with the Hilbert map, will have exactly the right
minimizers and no other minimizers.

This example is also interesting from a group theoretic point of view.
In the preimage of the point in the product space the orthorhombic phase
is mapped to, there are points of orbits of different isotropy groups. There-

fore, we only find one leave for D
(2)
2 , instead of the maximal number 3

computed before. So far, we have no clear understanding when this phe-
nomenon occurs—it is possible to construct similar situations, but we are
not aware of a really low-dimensional example; neither are we able to give
a precise formula for the number of leaves instead of an upper bound.
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4.3. Geometry of the orbit space

The orbit space method presented above provides an intuitive, since
geometric, way of constructing energy functions. For a specific phase trans-
formation, the key point in the construction is the identification of points
in the strata of the orbit space corresponding to stable phases. As soon as
they are found, any function defined on the orbit space with minimizers
precisely in the designated spots will, composed with the Hilbert map, be
an energy function with the correct symmetry breaking. Usually, one would
also try to fit parameters, such as elastic moduli. There are several ways of
doing this. We found it useful to define the function f on the orbit space in
a piecewise manner. One way would be to define a function locally in the
neighborhood N of the minimizers. If this function has no other minimizers
in its domain of definition and matches the parameters prescribed for the
minimizers, one could solve the Laplace equation on the complement of N
in the orbit space. With a suitable choice of boundary values, this function
will have no additional minimizers. See [7] for an example of this approach.
Another way to define f would be to use splines or Bézier curves.

Therefore, the main remaining technical difficulty is the identification of
the location of the minimizers. For the reader’s convenience, we present in
Figure 7 a table collecting the relevant information. With this information
at hand, the construction of energy function can be carried out essentially
as in the two examples discussed above. All data in the table is easy to
compute; we use the formulas listed in Subsection 4.2 to compute the orbit
length, the number of preimages of primary invariants and maximal number
of leaves. Displayed are the nontrivial groups (strata) Γ ′, their restriction
Γ ′d to the diagonal, Γ ′o as the restriction to off-diagonal elements, the orbit
length o of the entire group Γ ′, the number of preimages of the primary
invariants p (= the orbit length of Γ ′, acting on the cross product of the
space of diagonals and the space of off-diagonal), and the maximal number
of leaves of this stratum, l.

Whenever a layer consists only of one leaf, the construction can be car-
ried out analogously to the cubic-to-tetragonal case. The secondary invari-
ants ρ7, . . . , ρ12 can be ignored, and the geometric approach to work with
the two separate orbit spaces will suffice. The table shows that there are
only two more cases with several layers. Both cases can be treated exactly
as the orthorhombic case, even using the same secondary invariant.

5. Discussion

Rather than constructing specific energy functions for martensitic phase
transitions, this paper aims at presenting a general approach, using the orbit
space of the symmetry group. In the theory of Higgs potentials, the con-
nection between symmetry breaking, energy functions and the orbit space
has been known for some time. See the work by Sartori and others [1,2].
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Γ ′ Γ ′d Γ ′o o p l
[D4] [D4] [O] 3 3 1[
D

(1)
2

] [
D

(1)
2

]
[O] 6 6 1[

D
(2)
2

]
[O]

[
D

(2)
2

]
6 6 1[

D
(2)
2

]
[D4]

[
D

(2)
2

]
6 18 3[

Z(α2)
2

] [
D

(1)
2

] [
D

(2)
2

]
12 36 3

[D3] [O] [D3] 4 4 1[
Z(b)

2

]
[D4] [D3] 12 12 1[

Z(b)
2

]
[O]

[
Z(b)

2

]
12 12 1[

Z(b)
2

]
[D4]

[
Z(b)

2

]
12 36 3

Fig. 7. The nontrivial groups (strata) Γ ′, their restriction Γ ′d to the diagonal,
Γ ′o as the restriction to off-diagonal elements, the orbit length o of the entire group
Γ ′, the number of preimages of the primary invariants p (= the orbit length of Γ ′,
acting on the cross product of the space of diagonals and the space of off-diagonal),
and the maximal number of leaves of this stratum, l.

For phase transitions in crystals, however, the situation is usually more
complicated, since the orbit space is high-dimensional.

Computer algebra can greatly facilitate the computations. We feel that
software packages as Singular [12] or GAP [23] can ease some computations
in continuum mechanics, making it unnecessary to rely on invariants given
in the literature.

For the cubic-to-tetragonal transformation, the construction is based on
simple geometric arguments, making it possible to construct a variety of
energy functions. In particular, one is not restricted to the class of polyno-
mials. This will facilitate the task of fitting parameters. Additionally, this
degree of freedom can be used to give examples of energy functions with
given growth conditions at infinity, as commonly required by existence and
uniqueness theorems for equations of thermo(visco)elasticity with noncon-
vex energies.

The case of a cubic-to-orthorhombic transition proves to be more com-
plicated. It requires a certain understanding of the complete orbit space in
IR12. However, we wanted to show that this can be achieved with compar-
atively simple arguments. A more systematic approach would be to choose
invariants such that the stratum for a given symmetry phase is contained
in a vector space. A discussion of this idea can be found in [11].

These two examples were not only chosen due to their relevance in ma-
terial science. The methods needed to find energy functions in these cases
are likely to show typical difficulties, as well as the relative simplicity of this
approach.

It should be pointed out that only Section 4 applies specifically to phase
transitions in crystals; the method is applicable to a variety of problems.
The main requirement is that the symmetry group is a compact Lie group.
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A drawback of the method discussed in this paper is that, as seen in
Section 4, the number of variables can increase. For a problem in the six-
dimensional strain space, one has a six-dimensional fundamental domain.
The orbit space, however, is embedded in IR12, see Theorem 5 (one compo-
nent is trivial; it is possible to embed the orbit space in IR9 with one triv-
ial component). For the cubic-to-tetragonal transformation, this was not a
problem, since the restriction to the 6 primary invariants suffices for most
applications. For the cubic-to-orthorhombic transition, this is not true. As
demonstrated in Section 4, the construction of an energy function has to
take one secondary invariant into account.
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