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ABSTRACT

This paper proposes an innovative two-stage data-driven
optimization framework for a multi-energy system. Enormous
energy conversion technologies are incorporated in the system to
enhance the overall energy utilization efficiency, i.e., combined
heat and power, power-to-gas, gas furnace, and ground source
heat pump. Furthermore, a demand response program is adopted
for stimulating the load shift of customers. Accordingly, both the
economic performance and system reliability can be improved.
The endogenous solar generation brings about high uncertainty
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and variability, which affects the decision making of the system
operator. Therefore, a two-stage data-driven distributionally
robust optimization (TSDRO) method is utilized to capture the
uncertainty. A tractable semidefinite programming reformulation
is obtained based on the duality theory. Case studies are
implemented to demonstrate the effectiveness of applying the
TSDRO on energy management.
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This section presents the description of the sets, Py.cup(t) . Pepp(t) , | Input of CHP, GSHP and GF.
parameters and variables, which are used in the Pycr(t)
mathematical modelling. Peup,gout (), Output of CHP, HP and GF.
A.  Sets PeripHout (£),
T | Set of time periods. Piipout (1), Por out (£)
PER (D), PRER(E) Charging and discharging power of heat
B. Parameters storage at time t.
Np2g Conversion efficiency of power-to-gas uSh(t), ulsh(t) Charging and discharging status of heat
(P2G) facility. storage at time t.
HHV Higher heat value of combined heat and PEM(t), PAM(t) Charging and discharging power of
power (CHP). battery at time t.
Ner Nen Electrical and thermal efficiency of CHP. ulh (6), udeh(t) Charging and discharging status of
Npa2c Electrical efficiency of electrolyser. battery at time t.
Nfs Mre Efficiency of GF and solar power Eps(8), Ep(t) Remaining capacity of heat and battery
generation. storage.
COP Coefficient of performance. w,(t) Scheduled solar power generation at time
%, Ponips Maximum input limit of CHP, ground t.
Pyor source heat pump (GSHP) and gas furnace P, () Electricity purchase at time t.
' (GF). Pyas(t) Gas purchase at time t.
Py.ctips Peuip Minimum input limit of CHP, GSHP and Ve (£), vy (t) Dispatch factors of electricity and gas.
Pycr GF. PPR(®), LBR (t) Shifted and resulting electricity load
@, peh Maximum and minimum limit of charging o7 o un(_:ier demand response at t_lme L
_hs power of heat storage. P (t), Ly (t) Shifted and resultlng heating load under
Maximum and minimum limit of demand response at time &

dch dch
Phs ’ Phs

discharging power of heat storage.

P’ ()

Standby power loss of heat storage at time
t.

Ehs,min ’ Ehs,max

Minimum and maximum energy for heat
storage.

nek, ndch Charging and discharging efficiency of
heat storage.
@ peh Maximum and minimum limit of charging

power of battery.

dch dch
Pb 'Pb

Maximum and minimum limit of
discharging power of battery.

Eb,minv Eb,max

Minimum and maximum energy for
battery.

neh, pich Charging and discharging efficiency of
battery.
wf(t) Solar generation forecast at time t.
Peter Pore Maximum and minimum limit of
- electricity purchase.
P P Maximum and minimum limit of gas
gasy fgas

purchase.

Tere(t), Tgas ®)

Electricity and gas purchase cost at time t.

Le (t)r Lth (t)

Electricity and heating demand at time t.

DRele,maxr DRth,max

Maximum limit for demand response
coefficient.

C. Variables

ECelev ECgas

Energy purchase cost of power and gas.

Wp26(t), Py p2g(t)

Input and output of P2G electrolyzer.

2 INTRODUCTION

The modern energy systems tend to strengthen the linkage
among multi-energy systems (MESs), which significantly
aggregates the local generation, distribution and consumption
level by end energy customers with new technologies [1, 2]. This
trend requires a basic understanding of the modelling, operation
and conversion among all the sub-energy systems. Emerging
research efforts are dedicated to resolving the challenges of
decarbonization, facilitating renewable penetration and reducing
the operation cost based on MESs [3-5].

However, interdependencies and strong couplings have been
always the main challenges without an effective solution [6].
Moreover, another limitation of the current research is that the
inherent uncertainties cannot be well handled due to the limited
data availability, which inevitably affects the system economic
performance. Energy hub is a smart local energy management
system from the multi-energy perspective, which relies on
enormous conversions among multi-energy vectors [7, 8]. The
energy hub is an interface between local energy producers and
consumers with coordination and complementation of multi-
energy vectors to economically and effectively satisfy loads. To
sum up, there are two challenges with respect to multi-energy
management: i) the enormous interdependencies and strong
couplings among multi-energy vectors are required to be
effectively modelled to enhance the overall energy efficiency; and
ii) the renewable uncertainty needs an effective optimization
framework with mild conservatism and sufficient data availability.




A Two-Stage Data-Driven Multi-Energy Management...

This paper aims to provide an optimal multi-energy
management scheme for MESs. The uncertain renewable variation
and fluctuation are handled by a hierarchical two-stage data-
driven approach, which enables to determine an initial day-ahead
operation scheme based on renewable forecast and take adaptive
recourse actions with renewable realization. Cross-vector demand
response (DR) is employed to alter the energy users’ consumption
pattern and thus to reduce the operation cost. To address
challenges of modelling energy interdependencies and improper
uncertainty treatment, this paper proposes a two-stage data-driven
energy hub scheduling considering DR programs, which aims to
minimize the daily operation cost. The energy hub is equipped
with photovoltaic (PV), energy converters and energy storage
systems. The cross-vector DR includes the participation from
customers on electricity and heat loads, which helps to reduce the
daily operation cost of the energy hub and shift the peak-load.
Multiple energy interdependencies and strong energy couplings
are considered, including power-to-gas, power-to-heat and heat-
to-power. The PV uncertainty is captured via a two-stage DRO
framework. Moment information is utilized to construct the
ambiguity set. The main advantages of this paper are as follows:

= This paper designs a comprehensive model of the multi-
vector system in the form of an energy hub, where the
extensive energy conversion is modelled. The proposed
model is effective for improving the mutlti-energy
utilization efficiency based on conversion technologies.

= Both DR program for heat and electric load are
considered to provide additional flexibility for energy
hub operators and the grid.

= A two-stage data-driven DRO model is utilized for
hedging against PV uncertainty in terms of limited data
set and mild robustness. A moment-based ambiguity set
is modelled to capture the PV uncertainty. Dual
reformulations are made and a semidefinite
programming is finally obtained with ensured
tractability.

3 RELATED WORK

Paper [9] proposes an optimal energy flow model for
interconnected energy hubs considering network constraints. The
intermittency of renewable generation is handled by a stochastic
optimization (SO) based chance-constrained programming. A
Cornish-Fisher expansion is utilized to solve the reformulated
problem. A distributionally robust optimization (DRO) is applied
for energy hub operation considering the multimodality of PV
generation [10]. In order to ensure both the voltage security and
economic performance, paper [11] designs a volt-var optimization
in MES. A reinforcement learning-based data-driven optimization
is designed for optimal operation of MESs [12]. The scheduling
decisions of electric vehicles and residential appliances are
subsequently obtained.

DR is a viable solution for network operators to stimulate
energy customers to shift the flexible load profile. Customers are
willing to alter their energy consumption patterns in response to
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Fig. 1. Overview schematic of the energy hub.

energy price signals. DR in EHS has been investigated in many
existing papers. Paper [13] proposes an integrated model for
optimal planning of EHS considering DR and renewable energy.
A two-stage SO is applied to assess the impacts of uncertainties.
The effective DR is embedded into the operational sub-problem.
Instead of conventional DR, an integrated DR is proposed in [14]
for multiple energy carriers. The interactions between EHSs are
modelled as an ordinal potential game. EHSs can participate in
DR via switching energy sources during peak demand hours.
Paper [15] proposes an optimal probabilistic operation model of
EHS with DR. The multi-vector DR contributes to diminishing the
operation cost of EHS with customer participation.

To capture the inherent uncertainties in power system
operations such as uncertain renewable generation, load demand
and contingency events, robust optimization (RO) has been
extensively applied. RO makes decisions based on the worst-case
scenario, which effectively improves the optimization reliability.
Paper [16] proposes a dispatch model of a large-scale hybrid
wind/PV/hydro/thermal power system with RO framework. The
intermittent power supply is modelled based on the flexible
control of robustness. An optimal bidding strategy in a day-ahead
microgrid market is proposed in [17]. The intermittency of
distributed generation, load variation, and real-time market prices
are handled by RO. Paper [18] designs a two-stage RO framework
for distribution system reconfiguration, considering load
uncertainty. The first stage is to configure the network and the
second stage determines the optimal AC power flow. Another
classic optimization to capture uncertainties is SO. Compared
with RO, SO is another extreme as it assumes the explicit
uncertainty distributions [19-21]. Notwithstanding, the solutions
are more accurate based on a large number of sample sets and it
causes low computational efficiency. Moreover, it is always
challenging to obtain sufficient historical data to model real
distributions. On the contrary, RO avoids the over-optimistic
assumption of uncertainty distributions and provides reliable and
computational-efficient solutions.

For DRO, the ambiguity set is constructed by statistical
information, such as moment, to restricting possible distributions.
Based on more valuable distribution information, research finds
that the best estimate of the distribution can be obtained through
the statistical fitting. Accordingly, statistical distance information
can be added in the ambiguity set and thus the size of the
ambiguity set can be controlled. In addition, compared with RO,
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DRO determines expected results over all possible distributions,
which are less-conservative. Paper [22] proposes a DRO-based
multi-period economic dispatch based on a segeragated linear
decision rule. Case studies have demonstrated the effectiveness
over the traditional single-period DRO framework. A
distributionally robust operation of an electric vehicle aggregator
is given in [23], which is proved to outperform RO and SO.

4 ENERGY HUB SYSTEM MODELLING

The mathematical modelling of energy hub is presented in this
section, including solar PV panels, heat pump (HP), gas furnace
(GF), power-to-gas (P2G), combined heat and power (CHP) and a
hybrid energy storage system (ESS).

Fig. 1 depicts the proposed energy hub structure, where the
power, gas and heat flow are represented by black, blue and red
lines. CHP consumes gas and generates power and heat
simultaneously. GF converts gas to heat. GSHP enables to convert
power to heat with 300% efficiency. The ESS stores both power
and heat based on the surplus energy [24]. The PV system
generates solar power via PV panels. However, the generation
contains fluctuation due to the unpredicted clouding and weather
conditions, which causes PV uncertainty.

4.1 Objective function

The energy generation, storage, consumption and extensive
energy conversions are realized in proposed energy hub among
power, gas and heat. The power and gas purchase from the
external markets are the original energy source. The P2G
electrolyser converts power to gas with an efficiency of 80%. The
ESS is used to store the surplus energy for later usage. This paper
adopts a two-stage optimization framework for energy hub
scheduling including the day-ahead initial operation scheme based
on PV forecast and the real-time adjustive redispatch based on the
more accurate PV generation. The objective function shown in (1)
to minimize the energy purchase cost. The first-stage objective
minimizes the day-ahead operation cost based on PV forecast.
And the second-stage objective is to minimize the penalty cost
caused by energy purchase deviation ( EC’ . and EC'45).

Objl = minzteTECele +ECgaS,VtET (1)
Obj, = min ¥yer EC' e + EC'gqs, VIET
st (2)-(25)

4.2 Technical Constraint Formulation

4.2.1 Conversion Constraints

The converted output of P2G, CHP, HP, GF are given in (2)-
(6), respectively. Constraints (7)-(9) limit the input of CHP, HP
and GF.

Wpag (1)
2
gy VEET 2

Py p2c(t) =1e
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Pcrppout(t) = NePycup(t) , VLET (3)
Perpout (t) = NenPycnp(t)  VEET 4
Pypout(t) = COP Poyp(t) ,VtET (5)
Perout(t) =NpPyer(t) , VLET (6)
Py.crp < Pycrp(t) <Pycup VLET @
@SP&HP(LL)SE,V'[ET (8)
Pygr < Pyer(t) < %, VteT 9

4.2.2 ESS Constraints

This paper designs a power-heat hybrid ESS including battery
storage and heat storage. The modelling of ESS is given in (10)-
(14), where {-} represents {hs, b}. Constraints (10) and (11) limit
the charging and discharging power and heat. The binary variables
uff () and uf§"(t) are used to ensure the charging and
discharging behaviour are not happening in the same time.
Constraints (13) and (14) regulate the remaining energy of ESS.

uf OPF < PE® <uff©PG VIeT (10)

ul(OPE" < PEM(6) < uff"(OPE™ vieT (11)

ult () +uf"() <1, vteT (12)

Eqy(0) = Ey(t — 1) + ZL PG (Onf) — PE" )/ (13)
ni" + PP (0), vtEe2..T

E{-},min < E{.}(t) < E{-],max' VteT (14)

4.2.3 Constraints of Energy Purchase

The power and gas purchase from the external market supplies
the energy hub with the modelling given in (15) and (16). Noted
that {-} denotes {ele, gas}.

P{.} < P{.} () < P_{} (15)
EC{.} = ﬂ{.}(t) P{.}(f), VteT (16)

4.2.4 Energy Balance Conditions

The balancing condition (coupling matrix) of the energy hub
modelling is shown in (17) to guarantee the overall balance
between the input and output.

Lele(t) + Pb(t) —
Len(t) + Pys(t)
1-2,() Nre(l —ve(D)) U (01 (1 — v (£))
Ve (D)COP v, ()N COP vy () (Men, + NV (E)COP + 115 — v, (D)71)
Pele(t)
x| @p(t) — wpag(t) (17
Pyas(t) + Py pag (t)

4.2.5 Demand Response Conditions
Energy hub operator implements DR program to encourage the

participation of energy customers for gaining economic benefit,
i.e., lower energy price at certain time periods is applied which
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stimulates customers to alter their energy consumption profile.
The shifted load demand for power and heat are given in (18) and
(22) under the maximum limits in (19) and (23). Constraints (20)
and (24) regulate the demand deviation owing to the DR program.
Equations (21) and (25) guarantees that the overall demand is
unchanged.

L2R () = Lo (t) + PRE(t) , VLET (18)
Lofe(t) < Lggg™ (19)
|Pe[;§ (t)l < Lele (t)DRele,max ' VteT (20)
T
Zpg’;(t) 0Vt ET 1)
t=1
LR (@) = Len () + PRR(D) Vvt € T (22)
LER () < L™ (23)
|Pt[})’LR(t)| < Lth(t)DRth,max th eET (24)

T (25)
ZP{LR(t) =0,vt €T
t=1

5 METHODOLOGY

This section proposes the method for solving the two-stage
energy hub operation via DRO model. The abstract formulation
and ambiguity set is given firstly, followed by the dual
reformulations to ensure the computational tractability. Finally, a
semidefinite programming model is obtained.

5.1 Ambiguity set modelling

The abstract formulation of the proposed model is given in
(26)-(29), where the overall and second-stage objective functions
are given in (26) and (28), respectively. Equation (26) is the
overall ojective incorporating Obj, and Obj, in (1). And (28)
explicitly describes the expected Obj,. Equations (27) and (29)
represent the constraints in the first and second stages.

minc’'x + sup Ep[Q(x,§)] (26)
XEX PfeD
st Ax < b, (27)
QCx§) = minf"y 28)
st. Ex+ Fy + G¢ < h, (29)

The data-driven ambiguity set is used to accommodate the
statistical information of the uncertain variables. In this paper, the
moment information is adopted which reflects the partial
distributional information of the PV uncertainty. The fixed mean
vector and covariance matrix enable to model a set of possible
distributions which share the same moment information. The
moment-based data-driven ambiguity set is given in (30).
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/i C&CG algorithm \

STEP 1: Initialize set of vertices, denoted as
VS, and set tolerance &.

STEP 2: Solve the master problem in (44).
Record the optimal value 0* and solution x*.

S ' '
xvgmlw“cx+(l[’ 0)+ '+ Py

/ ¥ 2 +ar
T 1. - (446 1E]=0
DL @+6'7Y) $o—(h—Ex)c'|1

VEEE,i=12,... Ny, x EX, VIl €VS

STEP 3: Solve the subproblem in (45). Record
the optimal objective value o and optimal
solution 7*.

€)' PE +WE +o
—(h—Ex—G&)T =20

STEP 4: Stop the algorithm when o* = 0. And
thus obtain 0" and x*. When o* < 0, VS =VSU
7" and then return to STEP 2.

STEP 5: Solve the second stage problem after
¢ is revealed.

Q&) =minf'y

Fig. 2. Flowchart of C&CG.

( P{E} =1 )
p={f@)|  E&=u (30
BIEE)} =2 +u ()

5.2 Dual reformulations

This section proposes two dual reformulations. The first dual
reformulation is to merge the two sub-objectives in the first and
second stages with ‘sup’ eliminated. And the second dual
reformulation is to transform the infinite variable cardinality to
finite cardinality.

The explicit form of sfup Ep[Q(x,&)] can be rewritten as

PfED

(31)-(35).
SGoPinel = max [ Qe©) PO (31)
st.Pf()=0,VEEE (32)
[ Prepas =1 (33)
[, EMPF(E)AE = i, m=12, ..., E (34)
fg fmfnpf(f)df = E‘mn + Ilmlln, m’ n=1>2a LRRS] 5 (35)

Pf(&) is the decision variable of (31) which is with infinite
cardinality. The dual reformulation enables to transform the
infinite-dimensional primal form to the dual form with tractability
ensured [25]. The dual reformulation is given in (36) and (38)
with dual variables ¥, ; and ¥j.

S(x)duat = S0 (P70) + 9" i+ o (36)
st ()PE+YE+1Po2Q(x,$),VEeE (37)

min c'x + S(x)dual (38)
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5.3 Semidefinite programming

Another dual reformulation is required to transform to a
closed-form of Q(x, &) [26], which is shown in (39) and (40).
maxt'(h - Ex = G§) (39)
VS ={z|F't=f,t <0} (40)
Equation (41) is the optimal solution of (27) and equations
(42) and (43) can be obtained when (41) is substituted by (37).
AT eVS:Q(x, &) =(h—Ex—GE&)'t (412)
(©)WE+WE + o > (h—Ex—GE)'T @)
véeE,i=1.2,...,N,
@EOPE+ (Y +6'7T)E +po—(h—Ex)t =0
véeE,i=12,...,N,
Thus, equation (44) is the final reformulated objective function
to be solved with positive quadractic function in matrix form.
min c'x +(P'O)+yY'u+1,
¥ Paho

1 i

1 > (Y +6'7) Po—(h—Ex)7 1

véeE i=12,..,N, x €X, VTt € VS
However, the remaining issues is that the vast cardinality of
the extreme point set VS causes high computational burden. The
proposed column and constraint generation alforithm can solve
the large-scale linear models [27], which is given in Fig. 2. And
equation (45) presents the sub-problem. The initial set for all the
vertices is set in the first step. Then the master and sub problems
are solved in turn. At each iteration, the optimal objective value is
checked if it is above 0. If it is not, the set of vertices is updated to
incorporate more vertices. When the terminal condition is
satisfied, record the optimal value and optimal solution. Then the
second-stage problem can be solved based on an expected

manner.
(fs)’llufs + 1,[)’{5 + 1»[)0 - (h —Ex — Gfs),T (45)

=0

(43)

(44)

6 CASE STUDIES

Case studies are conducted to show the effectiveness of the
proposed two-stage data-driven energy hub management with DR.
The load shift result based on DR program is given firstly. Then
the economic performance and load rescheduling with different
pricing schemes are given. The pricing information of real-time
pricing (RTP), time-of-use (TOU) and critical peak pricing (CPP)
are shown in Fig. 3 and the gas price is fixed at $0.03/kWh [8-10].
The other technical parameters of the energy hub can be found
from the previous literature of the authors [9, 10].

6.1 Impact of Demand Response

This section proposes the impact of DR programs on system
operation. In Figs. 4 and 5, the altered energy patterns are given
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Fig. 3. Pricing mechanisms of TOU, CPP and RTP.
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under different DR programs based on RTP. Fig. 6 shows that the
large portion of electricity demand is added during the low-price
periods, i.e., from 1:00 to 11:00. While a large amount of
electricity load is reduced at the high-price periods, i.e., 13:00 to
20:00. When the DR limit (DR mqy) is increasing, the resulting
electricity load consumption pattern is gradually deviating from
the original load consumption pattern. For instance, at 19:00, the
original electricity load is 540kW while it is 486kW, 432kW and
378kW under the DR limit of 10%, 20% and 30%, respectively.
Similarly, Fig. 5 depicts the heating load profile under different
DR limits. With the increase of DR limit, more heating load is
shifted from the original heating load periods (6:00-10:00, 13:00-
16:00, 20:00-22:00) to the other time periods.
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Table 1: Economic Performance under Different Pricing

Schemes
Economic result RTP TOU CPP
Electricity purchase cost ($) 220.80 193.50 208.24
Gas purchase cost ($) 134.92 142.74 48.82
Total operation cost ($) 355.72 336.24 257.06
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Fig. 6. Electricity load under different DR programs.

6.2 Application of Different Pricing Mechanisms

In this section, the comparison is made conducting three
different pricing mechanisms, i.e., RTP, TOU and CPP. The
economic performance of implementing the three pricing
mechanisms is given in TABLE 1. Noted that the hybrid
uncertainty set is applied. RTP vyields the highest electricity
purchase cost and total operation cost. The gas purchase cost
under TOU scheme is the highest but the total operation cost is
$19 lower than that under RTP. The reason of the cost difference
between RTP and TOU is that the proposed TOU is the
approximation of RTP, which is generally lower than RTP. The
lower unit purchase cost determines the lower energy purchase
cost. In comparison, CPP has a totally different pricing curve than
RTP and TOU, i.e., the electricity price during the peak load
periods is much higher than those under RTP and TOU. The total
operation cost applying CPP is only $257.06, which is 72% and
76% of the operation cost under RTP and TOU. In addition, the
gas purchase cost ($48.82) is much lower than those of RTP and
TOU. It is because under DR with RTP, load is extensively
shifted to low-price periods. Instead of employing CHP and GF
with gas consumption, the shifted electricity profile is more
scheduled. In Fig. 6 the altered energy patterns are given under
different DR programs among RTP, TOU and CPP. Compared
with the original electricity load profile without DR participation,
when applying CPP, the consumption profile changes
significantly. The load from 14:00 to 18:00 is mainly shifted to
6:00-14:00 due to the extremely high electricity tariff at the peak
hours.
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Table 2: Economic Performance

Economic  result RO LDR-based The proposed
$) DRO model
First-stage cost 444 389 377
Expected Second- 0 26 21
stage cost

Total cost 444 415 398

6.3 Comparison Analysis

In order to test the mathematical performance of the proposed
two-stage DRO model, a single-stage RO and a DRO model based
on linear decision rule are adopted for algorithm comparison.
TABLE 1I shows the economic result of the two stages. A box
uncertainty set is utilized for the single-stage RO. Both the first-
stage cost and total cost are $444 without considering the second-
stage recourse actions. The proposed moment-based DRO is also
compared with a linear decision rule (LDR) based DRO approach,
which assumes an affine relationship between the second-stage
decisions and uncertain variables [22]. This method
conservatively approximates the feasible region of the decision
problem, which is computationally efficient. However, the less-
conservatism is sacrificed. TABLE II shows that the operation
cost of the two stages are $389 and $26 via LDR-based DRO. In
comparison, the proposed two-stage moment-based DRO reduces
the total operation cost by $17. To sum up, the proposed model
mitigates the over-conservatism by RO and LDR-based DRO.

7 CONCLUSION

This paper develops a novel two-stage data-driven optimal
operation of energy hub considering cross-vector DR program.
The energy hub incorporates multiple energy converters,
renewable energy sources and ESS. The uncertain PV generation
is effectively modelled via the data-driven ambiguity set with
limited distributional information to resolve the limited data
availability of using SO. Case studies are conducted to
demonstrate the effectiveness of the DR program. This work can
benefit both the energy hub operator and customers in terms of
saving the operation cost and reducing peak loads.
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