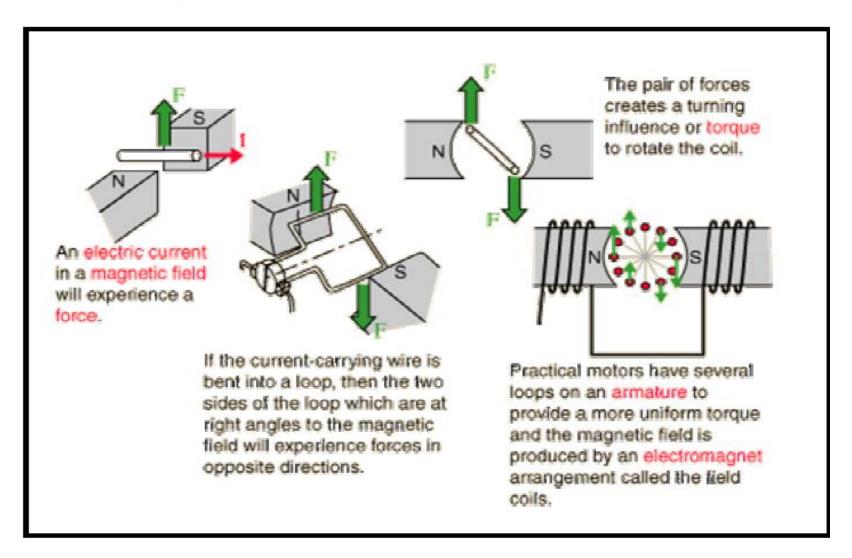

LV Motor Starting & Protection

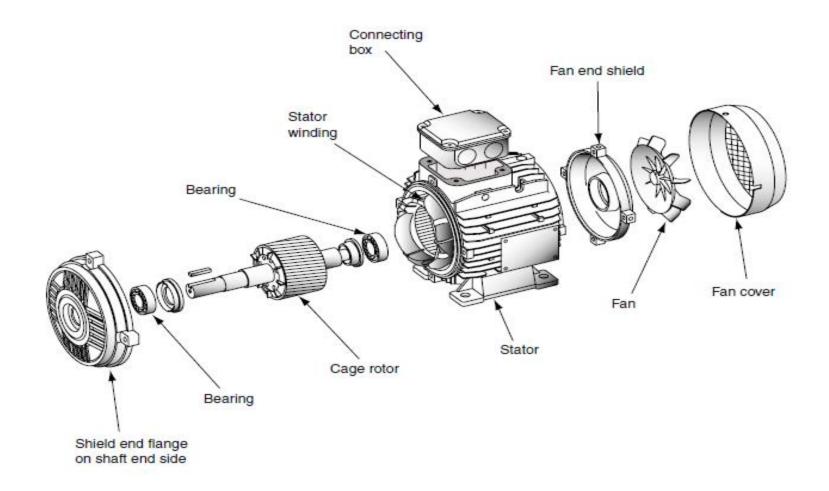

Motor Types

Motoring Action

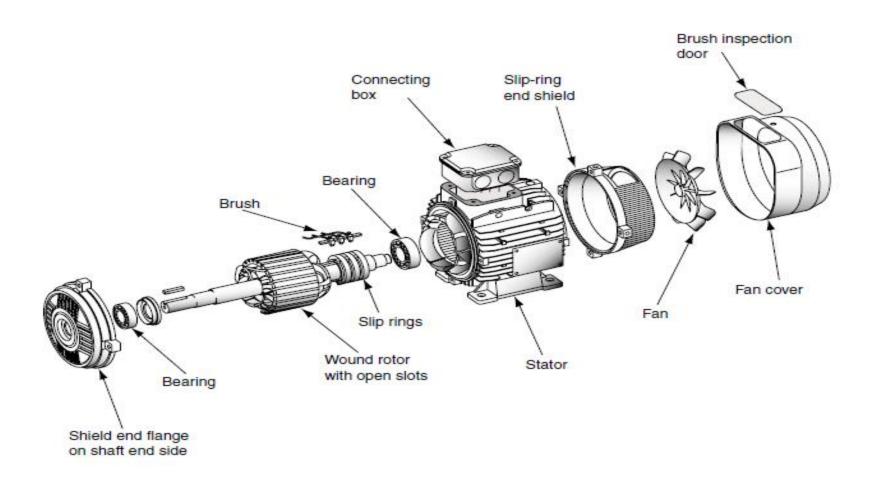
Basic Principle of how Electric Motors Work

Operating Principle & Torque-Speed Characteristic

Construction Features of 3-ph IM


- 3-ph induction motor consists of two parts: the stator and the rotor.
- 3-ph induction motor classified according to the rotor type:
 - Slip ring (wound rotor)
 - Squirrel cage (bar windings)

Squirrel Cage Motor



- Used in the majority of industrial applications
- Simple, economical & rugged motor

Slip Ring Motor

Motor Nameplate

It gives among others, information about the following:

- Motor rating
- Motor supply details
- Motor connection details
- Motor frame type and size
- Motor rpm
- **☐** Permissible temperature rise
- Motor duty
- □ Enclosure type
- □ Number of poles

Motor Insulation

- The insulation utilized should withstand the voltage fluctuations of the motor under varying operating conditions.
- Depending on the load and its surrounding conditions, there could be a rise in the temperature of the motor. The insulation should withstand such temperature rises also.
- The main characteristics of insulating materials used in electrical machines are:
- ✓ Dielectric strength
- ✓ Thermal strength.

Motor Insulation

 The insulating material used for the electrical machines are classified according to the standards as follows,

- Class A:

Cotton, silk, paper, and similar organic materials, impregnated or immersed in oil and enamel applied wires (Tmax = 105 C)

- Class B:

Mica, asbestos, glass fiber, and similar inorganic materials (Tmax = 130 C)

- Class E:

An intermediate class between A and B

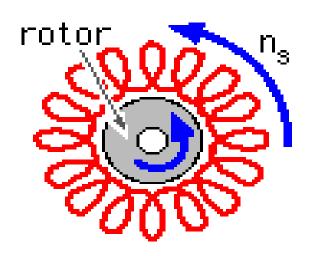
- Class F:

The same as B but with silicone is added (Tmax = 155 C)

- Class H:

The same as F but the insulator is reinforced (Tmax = 180 C)

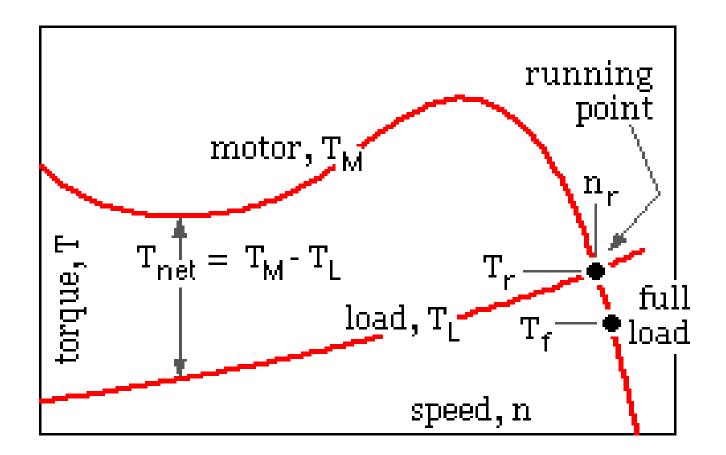
Slip


- If there is no slip the induced emf in the rotor and the developed torque equal zero

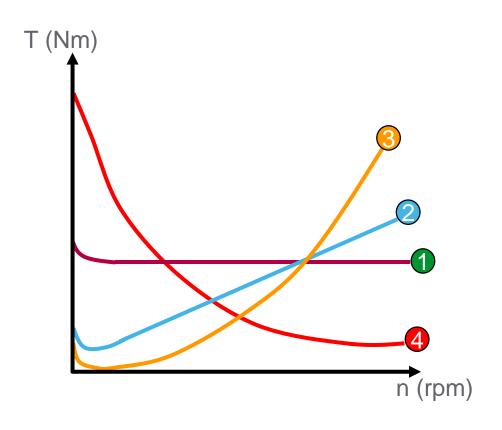
- Ns: Stator rotating field speed,

Nr: Rotor winding speed relative to stator winding,

(Ns-Nr): Speed of rotor winding relative to stator flux, and


$$Slip(s) = (Ns-Nr)/Ns$$

Torque Speed C/Cs

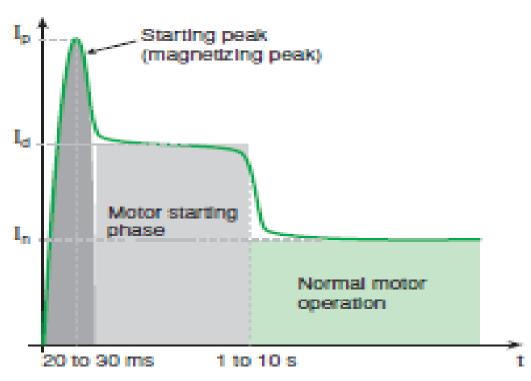

- By analysis, it was found that the speed torque C/Cs is as shown

Load Types

According to the torque C/Cs the loads are classified as follows

- ① Constant torque 90% of applicationsHoistingConveyor belts
- ② Linear torqueVolumetric pumps
- ③ Parabolic torque Fans
- 4 Hyperbolic torqueWinders unwindersMachine tools

Factors influence motor efficiency:

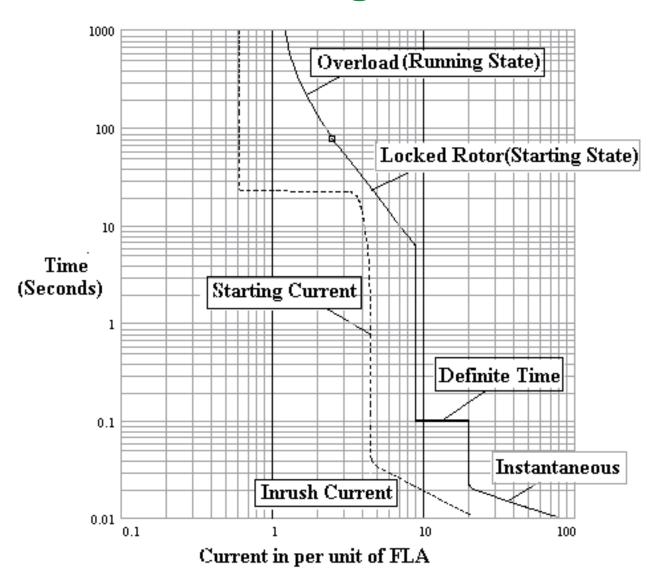

	Age: New motors are more efficient.
□ the	Capacity: As with most equipment, motor efficiency increases with rated capacity.
	Speed: Higher speed motors are usually more efficient.
	Type: For example, squirrel cage motors are normally more cient than slip-ring motors.
□ effi	Temperature: Totally-enclosed fan-cooled (TEFC) motors are more cient than screen protected drip-proof (SPDP) motors.
	Rewinding of motors can result in reduced efficiency.
	Load of the motor.

Efficiency Improvement Areas used in Energy Efficient Motors

Power Loss Area	Efficiency Improvement
1. Iron	 Use of a thinner gauge because lower loss core steel reduces eddy current losses.
	 Longer core adds more steel to the design, which reduces losses due to lower operating flux densities.
2. Stator I2R	 Use of more copper and larger conductors increases cross sectional area of stator windings. This lowers the resistance (R) of the windings and reduces losses due to current flow (I)
3 Rotor I2R	 Use of a larger rotor conductor bars increases the cross section, thereby lowering the conductor resistance (R) and losses due to current flow (I)
4 Friction & Winding	 Use of a low loss fan design reduces losses due to air movement
5. Stray Load Loss	 Use of optimized design and strict quality control procedures minimizes stray load losses

Motor Starting

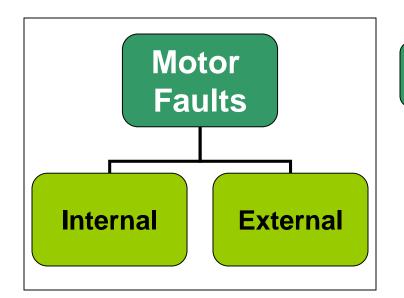
Induction Motor Starting

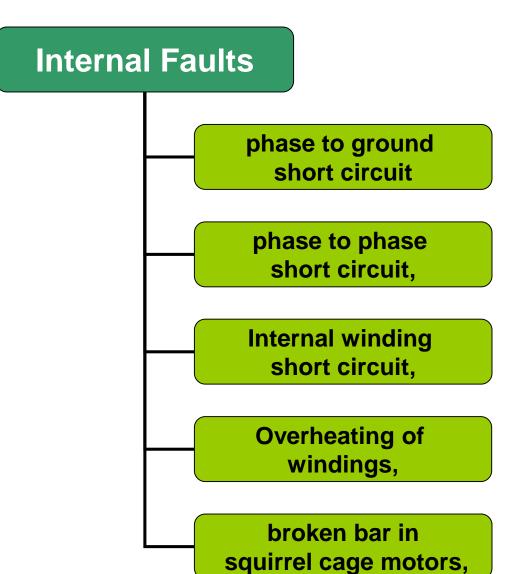

 $I_p = 10$ to 13 I_n : Magnetizing current

Id = 4 to 8 In: Starting current

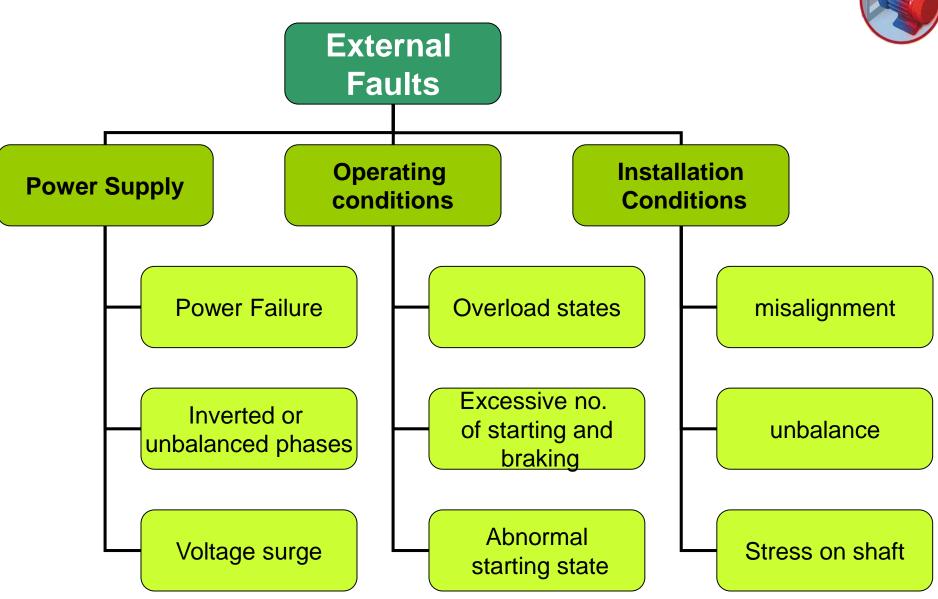
In: Nominal rms current

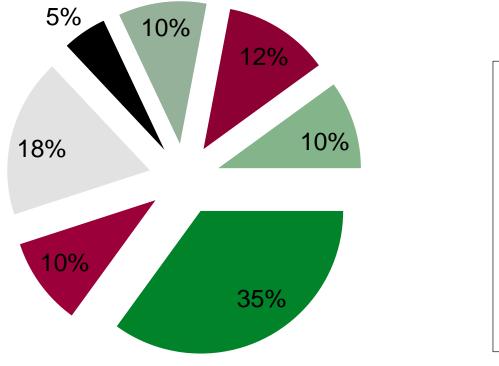
Induction Motor Starting





Faults (Causes & Effects)


Causes of faults and their effects





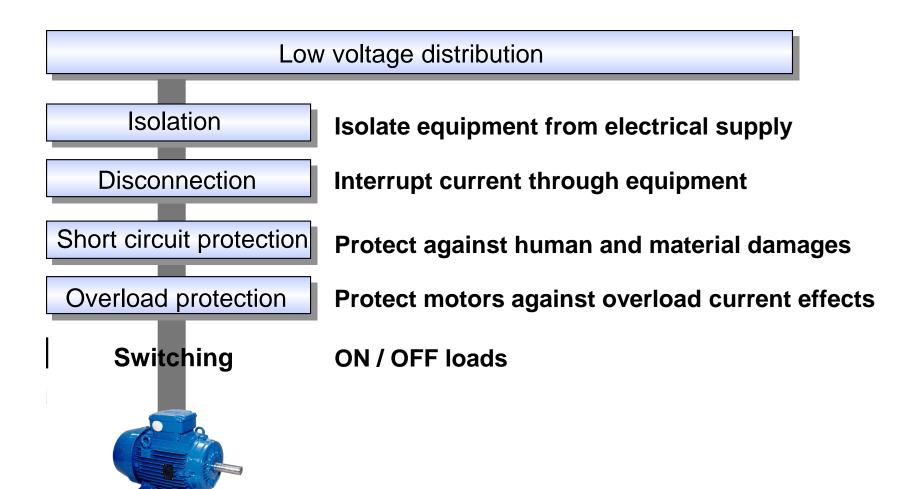
Statistical Data about Motor Faults

Measurements used for motors

- The following are the measurements used for a motor:
- Temperature: thermocouple/resistance element/thermistors measure temperatures of windings, bearing, etc.
- Voltage and current: using portable voltmeter, recording voltmeter, ammeters- clamp type, CRO, etc.
- Insulation resistance: Meggers
- Winding resistance: Kelvin bridge, wheatstone bridge, resistance meters.
- Vibrations: Vibration metering, monitoring, and analyzing equipment
- Speed: Stroposcope, tachometer, etc.
- Dielectric loss angle: Tan-delta measurement

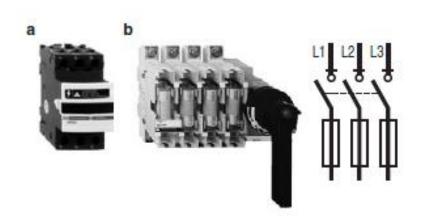
Motor Protection and Coordination

MOTOR PROTECTION Types of faults

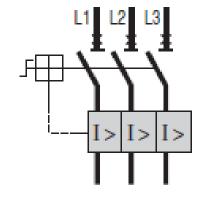

Faults due to the power supply

Faults due to the load

Motor internal faults

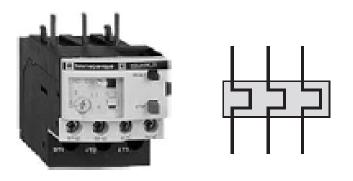

Associated functions to Motor Switching

MOTOR PROTECTION FUNCTIONS


1. SHORT CIRCUIT PROTECTION.

A. FUSES

B. CIRCUIT BREAKERS.



MOTOR PROTECTION FUNCTIONS

2. OVERLOAD PROTECTION.

A. OVERLOAD RELAYS (thermal or electronic)

B. PTC THERMAL PROBES

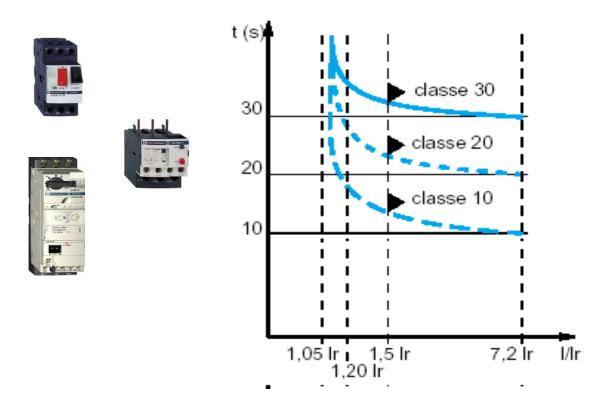
The load break switch / isolator

- This device has disconnection and isolation capability
- Can be used safely « on load »
- It does not include any protection mechanism
- May be used as an emergency stop button (with yellow cover and red handle)

The Thermal Relay

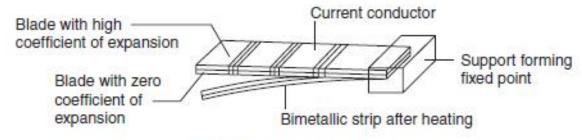
Overload is the most common fault on machines

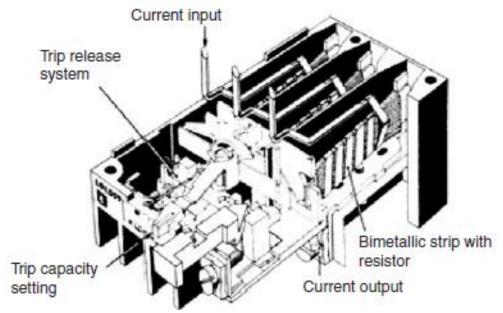
 Overload creates an increase in current drawn by the load and leads to dangerous overheating of the load.

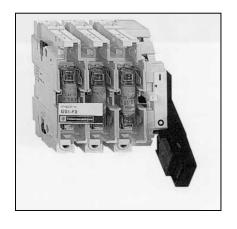

LRD Relay

- Overheating can affect the isolating materials and thus the lifetime of the motor
- The relay is made of 3 bimetal elements, each being surrounded by a heating coil carrying its phase current.
- As the motor draws current, the bimetal will bend and the amount of bending is linked to the level of current

Tripping class


Definition


The class define the tripping time to 7.2 I_r ; the selection is depending to the nature of the application.


Class 10 $4 < T_p <= 10s$ Class 20 $6 < T_p <= 20s$ Class 30 $9 < T_p <= 30s$

The Thermal Relay

The Manual Fused Switch Isolator

GS1

- These devices can be operated on load
- Include fuses to provide short circuit protection
- The operation is often made through side handle

The Magnetic Circuit Breaker

GV2-L

- Device which provides short-circuit protection. It detects and break high levels of short circuit currents up to the limit of their breaking capacity.
- Has disconnection capability
- Reset after fault can be done manually by operating the rotary switch, or remotely using optional module
- For relatively low fault currents, the operation of a circuit breaker is faster than that of fuses

The Magnetic Thermal Circuit Breaker

- This circuit breaker includes both magnetic protection against short circuits, and thermal protection (motor overload)
- Since it includes all types of protection and has disconnection capability, it can be used as a motor starter for simple machines.
- Optional blocks can be added to enable remote reset and control of the circuit breaker.

LC1-D contactor

Bar contactor

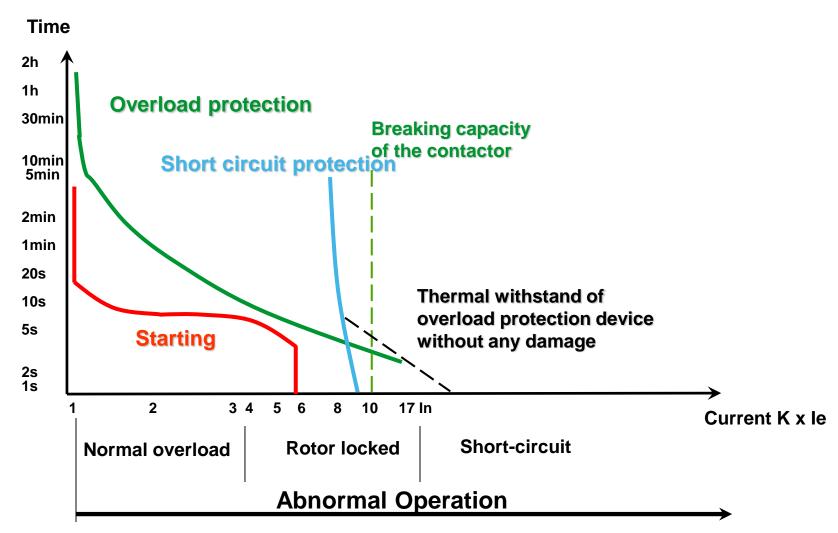
The Contactor

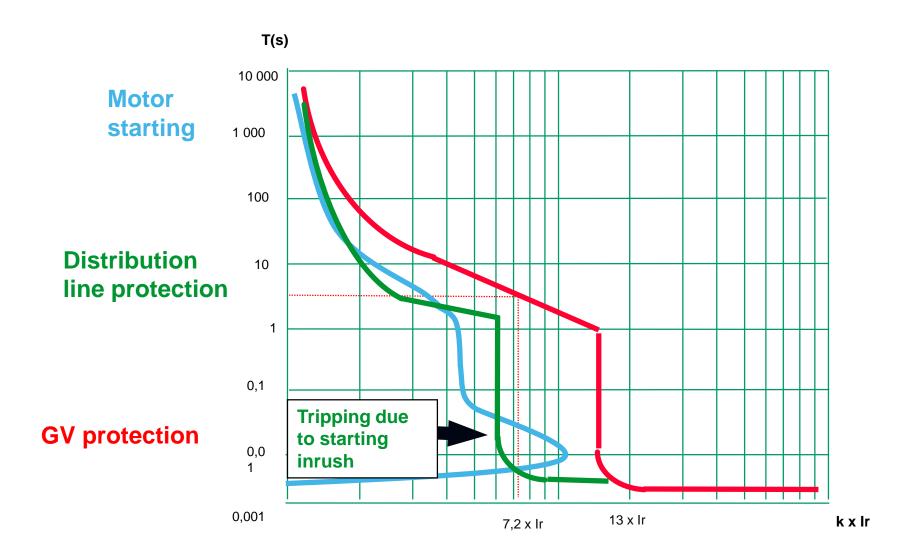
- Makes and breaks current on loads Switching capacity
- Operated remotely using an electromagnet and a separate control circuit
- When the coil of the electromagnet is energized, the mobile part of the contactor moves and current can flow from the supply network to the load.
- Auxiliary contacts are included and moving simultaneously with the mobile part of the contactor

Integral

TeSys U

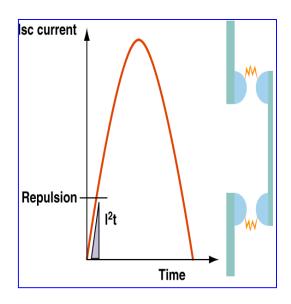
The Combined Motor Starter

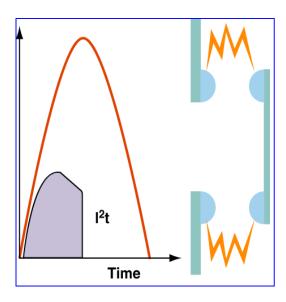

- In 1983, Telemecanique introduced the first device capable of disconnection, switching and thermal-magnetic protection: the INTEGRAL
- This type of product offers all motor starting functions in one product
- Provides total coordination : no contacts welding after short-circuit, reduced maintenance operation
- TeSys U starter offers embedded communication capability with field buses and modularity.


IT curves of protective devices

Contactors and motor starters

Coordination with short-circuit protection devices

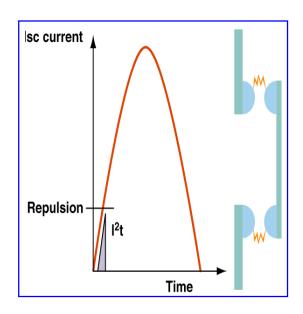

Motor circuit breaker & Distribution protection


Effects of a short-circuit on the contactors

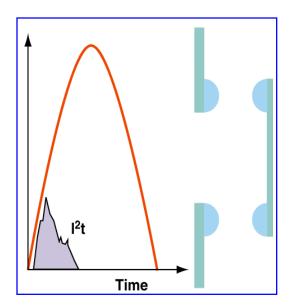
- Electrodynamics effects of peak current Imax:
 - repulsion of contacts
 - propagation of electrical arcs
 - damage to isolation equipment and deformation of parts
- Thermal effects l²t:
 - fusion of contacts
 - generation of electrical arcs
 - heat damage to isolation equipment


Behavior of contactor under the effect of <u>non limited</u> short-circuit currents

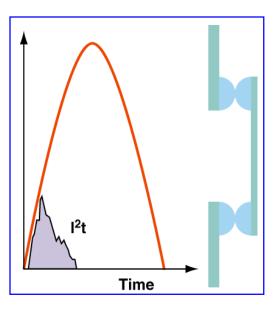
Repulsion of the contacts, due to the energy delivered by the short-circuit



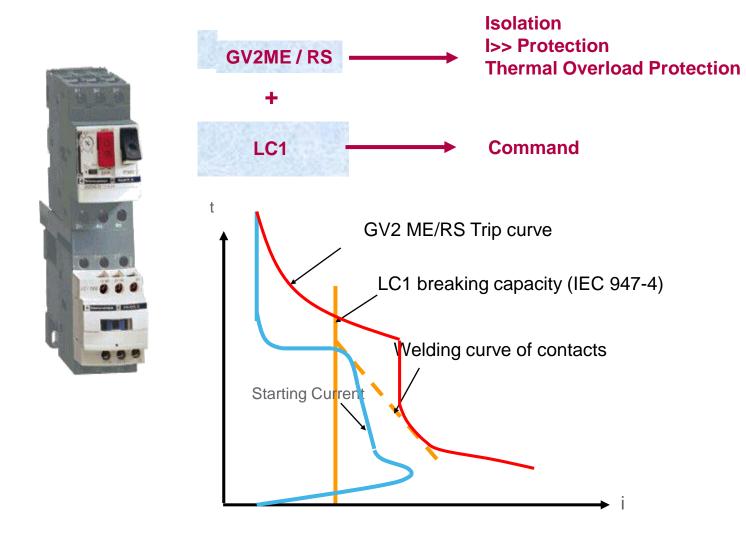
The energy due to the shortcircuit becomes very high, the arc becomes important



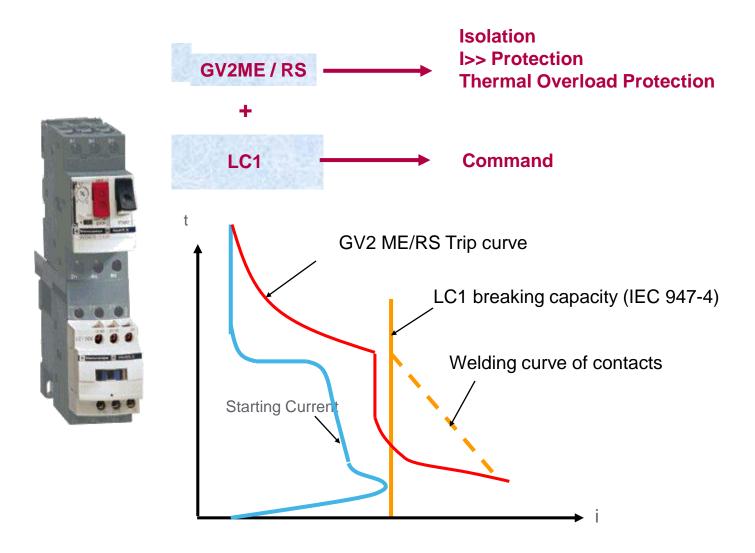
The silver contacts becomes liquid and weld


Behavior of contactor under the effect of <u>limited</u> short-circuit currents

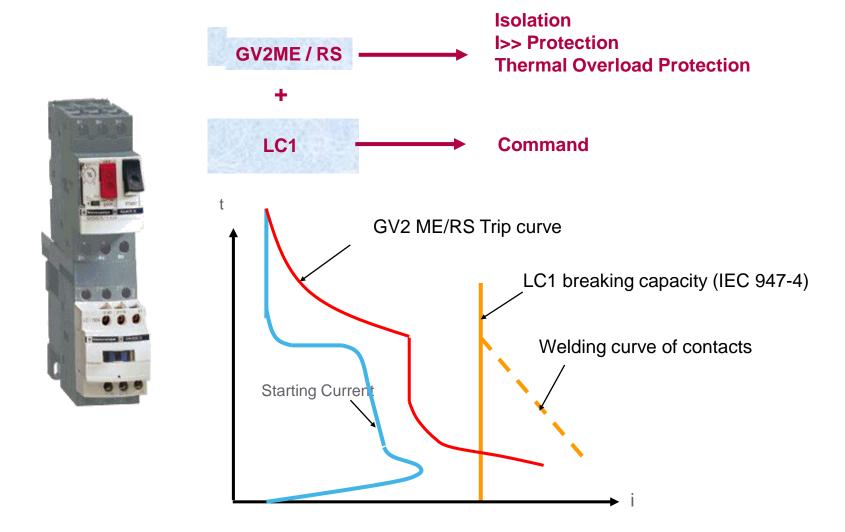
Start of repulsion of contacts under the effect of the short-circuit



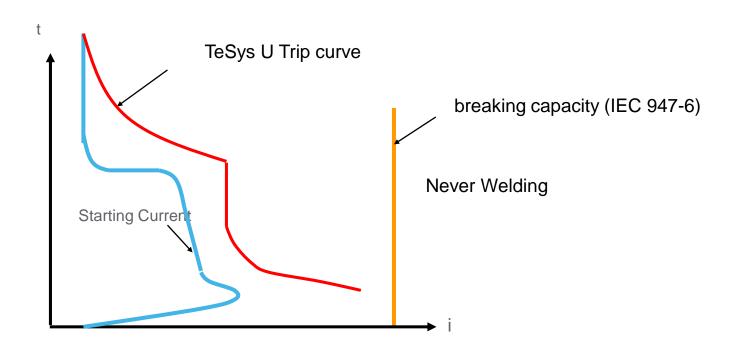
The energy from the shortcircuit is limited and repulsion is stopped



The contacts remain operational

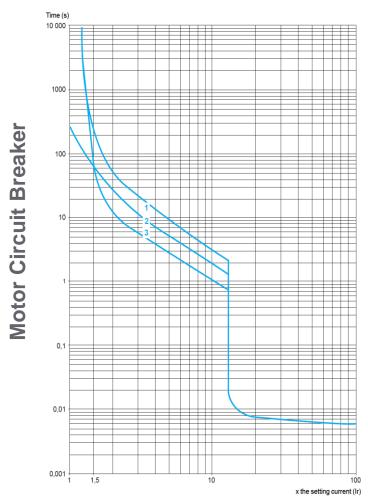

Coordination type: NO Coordination

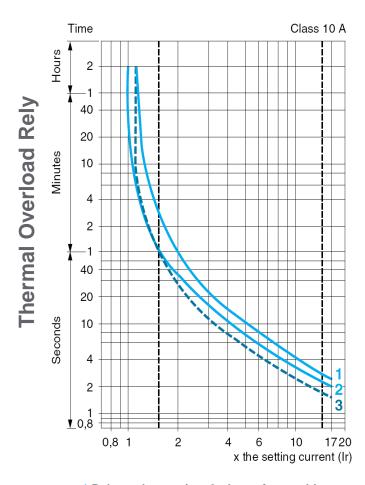
Coordination type: Coordination Type 1


Coordination type: Coordination Type 2

Coordination type: Total Coordination

Coordination of protective devices




- Without coordination
 - The risks are important for the personnel, the physiques and materials damages can be also important.
- Type 1 coordination
 - Without risk for the operator. It is the most standard solution used.
 - Before to restarting, the replacement of parts can be necessary.
- Type 2 coordination
 - It is the high performance solution. The risk of fusion of contacts is possible. In this case, the contacts must be easier separated.
- Total coordination, continuity of service
 - It is the higher performance solution.
 - No damage and no risk of fusion. Once the fault has been fixed, the motor starter must be able to restart immediately.

IEC 60947-4-1 I – T Curve

- 2 2 poles from cold state
- 3 3 poles from hot state

- 1 Balanced operation, 3-phase, from cold state.
- 2 2-phase operation, from cold state.
- 3 Balanced operation, 3-phase, after a long period at the set current (hot state).

Combination starters for customer assembly

TeSys motor starters - open version D.O.L. starters with circuit-breaker

D.O.L. starters with circuit-breaker and overload protection built into the circuit-breaker

Standard power ratings of 3-phase motors 50/60 Hz in category AC-3									Circuit-breaker		Contactor
motors 50/60 Hz in cat 400/415 V			egory AC-3 440 V			500 V			Reference	Setting range of	Reference (2)
P le		Iq (1)	P	le	Iq (1)	P P	le	Iq (1)	_	thermal trips	
kW	Α	kA	kW	Α	kA	kW	Α	kA		Α	
0.06	0.22	50	0.06	0.19	50	-	-	-	GV2 ME02	0.160.25	LC1 K06 or LC1 D09
0.00	0.00		0.09	0.28	50				CVO MEAN	0.05 0.40	1 C4 K00 1 C4 D00
0.09	0.36	50	0.12	0.37	50		_		GV2 ME03	0.250.40	LC1 K06 or LC1 D09
0.12 0.18	0.42 0.6	50 50	0.18	0.55	- 50	_	_	_	GV2 ME04	0.400.63	LC1 K06 or LC1 D09
0.25	0.88	50	0.25	0.76	50						
0.37	0.98	50	0.37	0.99	50				GV2 ME05	0.631	LC1 K06 or LC1 D09
- 0.55	- 1.5	- 50	0.55	1.36	- 50	0.37 0.55	1 1.21	50 50	GV2 ME06	11.6	LC1 K06 or LC1 D09
-	-	-	-	-	-	0.75	1.5	50	GV2 ME06	11.6	LC1 K06 or LC1 D09
0.75	2	50	0.75	1.68	50		-	-			
	_	_	1.1	2.37	50	1.1	2	50	GV2 ME07	1.62.5	LC1 K06 or LC1 D09
1.1 1.5	2.5 3.5	50 50	- 1.5	3.06	- 50	1.5 2.2	2.6 3.8	50 50	GV2 ME08	2.54	LC1 K06 or LC1 D09
2.2	5	50	2.2	4.42 5.77	50 50	- 3	- 5	- 50	GV2 ME10	46.3	LC1 K06 or LC1 D09
3	6.5	50		-	_	4	6.5	10	J.E.MEIV	1	2011100 01 201 000
4	8.4	50	4	7.9	15	5.5	9	10	GV2 ME14	610	LC1 K09 or LC1 D09
5.5	11	15	5.5	10.4	8	7.5	12	6	GV2 ME16	914	LC1 K12 or LC1 D12
7.5	14.8	15	7.5	13.7	8	9	13.9	6	CVO MEGO	42.40	1.04.040
	-	-	9	16.9	8	-	-		GV2 ME20	1318	LC1 D18
9	18.1	15	11	20.1	6	11	18.4	4	GV2 ME21	1723	LC1 D25

Combination starters for customer assembly

TeSys motor starters - open version

D.O.L. starters with circuit-breaker and overload protection built into the circuit-breaker

(continued)

Standard power ratings of 3-phase motors 50/60 Hz in category AC-3									Circuit-breaker		Contactor
400/415 V 440 V 500 V						500 V			Reference (2) Setting range of		Reference (3)
		Iq (1)	P	le	Iq (1)	P P	le	Iq (1)		thermal trips	
w	Α	kA	kW	Α	kA	kW	Α	kA		A	
.06	0.22	130	0.06	0.19	130	-	-	-	GV2 P02 or GV2 ME02	0.160.25	LC1 D09
.09	0.36	_ 130	0.09 0.12	0.28 0.37	130 130	-	-	-	GV2 P03 or GV2 ME03	0.250.4	LC1 D09
).12).18	0.42 0.6	130 130	- 0.18	- 0.55	- 130	-	-	-	GV2 P04 or GV2 ME04	0.40.63	LC1 D09
0.25 0.37	0.88 0.98	130 130	0.25 0.37	0.76 0.99	130 130	-	-	_	GV2 P05 or GV2 ME05	0.631	LC1 D09
-).55	- 1.5	_ 130	- 0.55	1.36	130	0.37 0.55	1 1.21	130 130	GV2 P06 or GV2 ME06	11.6	LC1 D09
-	-	-	-	-	-	0.75	1.5	130	GV2 P06 or GV2 ME06	11.6	LC1 D09
0.75 -	2	130	0.75 1.1	1.68 2.37	130 130	- 1.1	_ 2	- 130	GV2 P07 or GV2 ME07	1.62.5	LC1 D09
1.1 1.5	2.5 3.5	130 130	- 1.5	- 3.06	- 130	1.5 2.2	2.6 3.8	130 130	GV2 P08 or GV2 ME08	2.54	LC1 D09
2.2	5	130	- -	-	-	-	-		GV2 P10 or GV2 ME10	46.3	LC1 D09
	-	-	2.2 3	4.42 5.77	50 50	- 3	- 5	- 50	GV2 ME10	46.3	LC1 D09
	-	_	2.2 3	4.42 5.77	130 130	- 3	- 5	- 130	GV2 P10	46.3	LC1 D09
3	6.5 8.4	130 130	-	-	-	-	-	-	GV2 P14 or GV2 ME14	610	LC1 D09

THANK YOU