HEAT TREATMENT

- process of controlled heating and cooling of metals
- Alter their physical and mechanical properties
- without changing the product shape
- sometimes takes place inadvertently due to manufacturing processes that either heat or cool the metal such as welding or forming.

DEFINATION:

A combination of heating & cooling operation timed & applied to a metal or alloy in the solid state in a way that will produce desired properties.- Metal Hand Book (ASM)

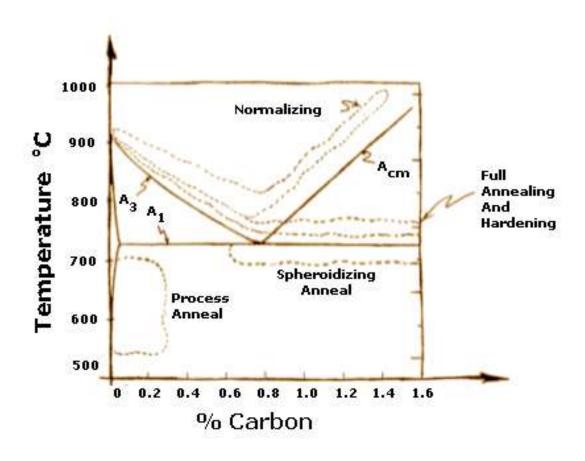
- Often associated with increasing the strength of material
- Can also be used to obtain certain manufacturing objectives like
 - To improve machining & formability,
 - To restore ductility
 - To recover grain size etc.
 - Known as Process Heat Treatment

Heat treatment done for one of the following objective:

- Hardening.
- -Softening.
- Property modification.

- Hardening heat treatments particularly suitable for Steels
 - Many phase transformation involved even in plain carbon steel and low-alloy steel.
- Other type of heat treatments equally applicable to ferrous & non-ferrous

- Hardening of steels is done to increase the strength and wear properties.
- Hardening (Quenching followed by Tempering) is intended for improving the mechanical properties of steel.
- Generally increases hardness at the cost of toughness


- Pre-requisites for hardening is *sufficient* carbon and/or alloy content.
 - Sufficient Carbon Direct hardening/Case hardening.
 - Otherwise- Case hardening

Common Hardening Heat Treatments:

- Direct Hardening
 - -Heating -Quenching -Tempering
- Austempering
- Martempering
- Case Hardening
 - Case carburizing

- Case Hardening (Contd..)
 - Case Nitriding
 - Case Carbo-nitriding or Cyaniding
 - Flame hardening
 - Induction hardening etc
- Precipitation Hardening

Heat Treatment Temperatures

HEAT TREATMENT PROCESS

An act of

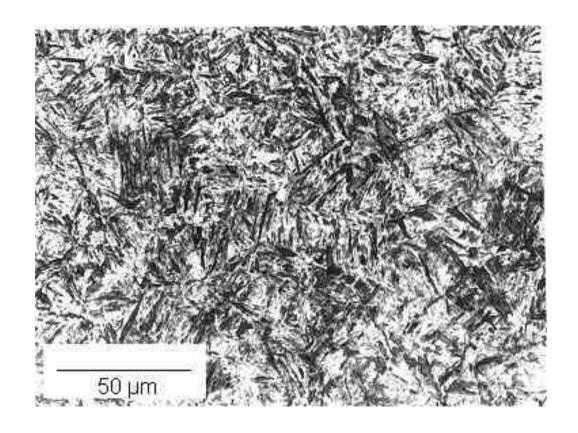
- Heating to austenizing range, $30 50^{\circ}$ C above Ac_3 (Hypoeutectoid) or Ac_1 (Hypereutectoid)
- Holding sufficiently long time for full transformation (1hr/per inch of maxm. Thickness)
- Dipping in Quench Medium

Result

- Avoidance of normal Ferritic-Pearlitic transformation
- Formation of a hard & brittle structure known as Martensite.

Mechanism of Quenching

- Austenite to Ferrite transformation takes place by a time dependant process of Nucleation & Growth
- Under slow or moderate cooling rates, the carbon atoms diffuse out of the austenite structure (FCC) forming ferrite (BCC) & cementite (Orthorhombic)
- With increase in cooling rate, time allowed is insufficient


Mechanism of Quenching

Although some movement of carbon atoms take place

- The structure can not be BCC
- The carbon is trapped in solution
- The resultant structure, Martensite is a supersaturated solution of carbon trapped in a body centered tetragonal structure (BCT).

Quenching Contd..

- Quenched steel (Martensite)
- Highly stressed condition
- Too brittle for any practical purpose.
- Quenching is always followed by tempering to
 - Reduce the brittleness.
 - Relieve the internal stresses caused by hardening.

Martensite

- Tempering means subsequent heating
 - to a specific intermediate temperature
 - and holding for specific time
- Tempering leads to the decomposition of martensite into ferrite-cementite mixture
 - Strongly affects all properties of steel.
- At low tempering temperature (up to 200°C or 250°C),
 - Hardness changes only to a small extent
 - True tensile strength increases
 - Bending strength increases

- This may be explained by
- separation of carbon atom from the martensite lattice
- corresponding reduction in its stressed state and accicularity

- Higher tempering temperature reduces
 - Hardness
 - True tensile strength
 - Yield point
 - While relative elongation and reduction area increases.
- This is due to formation of ferrite and cementite mixture.

•

- At still higher temperature or holding time
 - Spherodisation of cementite
 - Coarsening of ferrite grains
- Leads to fall in hardness as well as toughness

Some features of Hardening Heat Treatment

- Retained ferrite detrimental to uniform properties – so heating beyond Ac₃ for Hypoeutectoid steel
- Retained Cementite is beneficial as it is more hard & wear resistant than martensite – so heating beyond Ac₁, not AC_M, for Hepereutechtoid steel

Some features of Hardening Heat Treatment (Contd...)

- Addition of C shifts TTT curve to right and increases hardness of martensite
- Addition of Alloy elements shifts TTT curve to right and changes the shape
- Higher the Alloy% Higher the stability of M
- Higher the degree of super cooling Higher the amount of retained Austenite.

Temper Embrittleness

- A sharp fall in Impact strength when tempered at 250°C to 400°C for extended hours
- All steels, in varying degree, suffer from this
- Carbon steels display slight loss of toughness.
- For alloy steel reduction by 50% to 60%
- The reason associated with
 - Drecipitation of alloy carbides
 - Decomposition of retained austenite.
- Temperature range is avoided.

Quenching Media

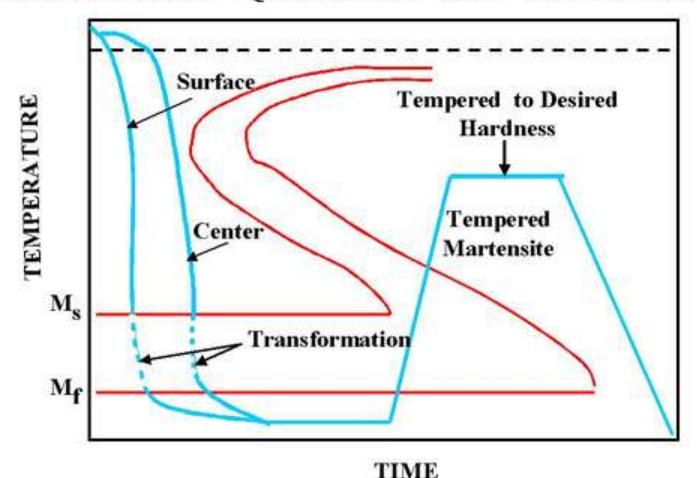
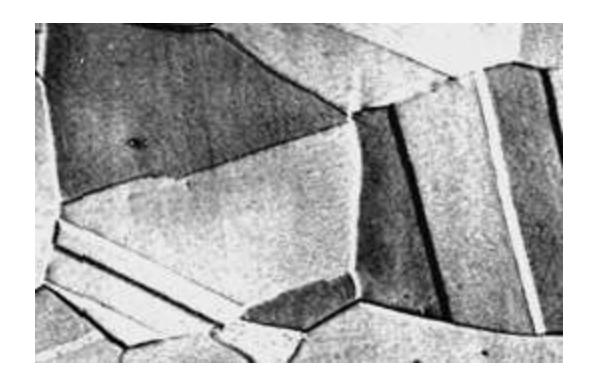
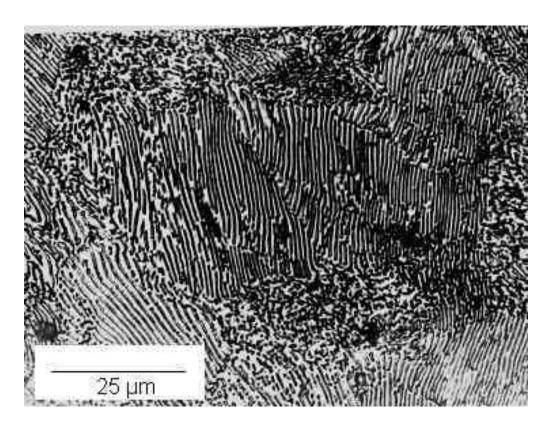
- Quenching media with increased degree of severity of quenching
 - Normal Cooling
 - Forced Air or draft cooling
 - -Oil
 - Polymer
 - Water and
 - Brine

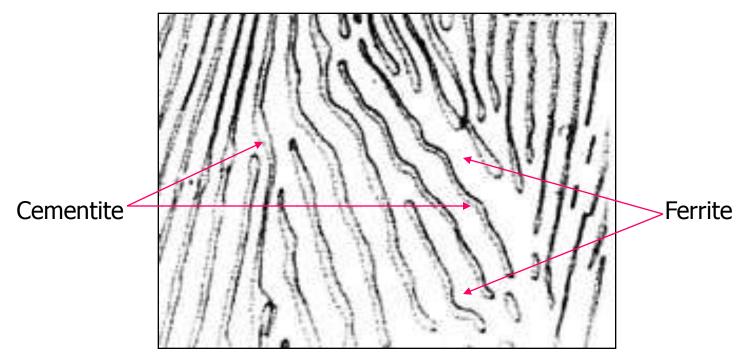
Quenching Media

- quenching medium depends on
 - Material composition
 - Weight of job
- Aim is to have a cooling rate just bye-passing the nose of TTT curve for
 - minimum stress
 - minimum warping/crack during quenching.
- Cooling rate varies from surface to core: slower cooling towards centre.

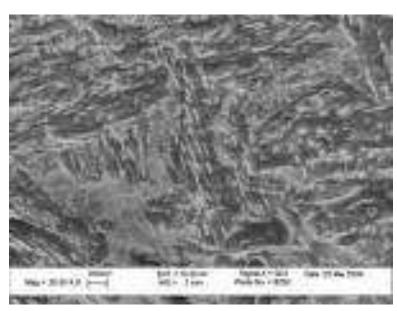
Tempering contd..

CONVENTIONAL QUENCHING AND TEMPERING


Figure 1. Conventional quenching and tempering process

Equiaxed Austenite Grain

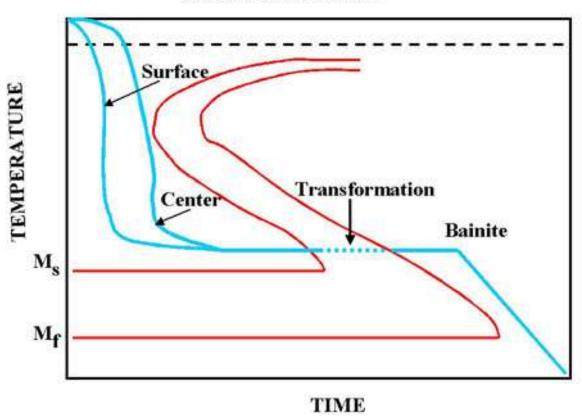


Pearlite

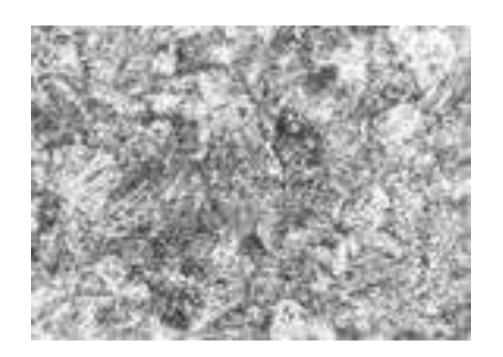
Pearlite at high Magnification (Lamellar arrangement of Cementite & Ferrite)

Tempered Martensite

Austempering


- A specially designed quenching technique.
- Quenched around 315 °C (above M_s).
- Held at this temperature for sufficient time to
 - Homogenize surface & core temperature.
 - Undergo isothermal transformation from Austenite to Bainite.

Austempering


- Bainite has same composition as Pearlite with
- much finely spaced structure (inter lamellar spacing)
- is tough as well as hard
- Suitable for direct use in many application

Austempering Contd...

AUSTEMPERING

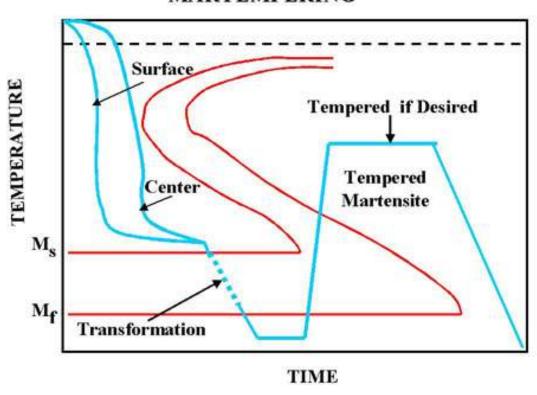
Austempering process.

Bainite in prior Austenite matrix

Bainite at high magnification

Martempering

- Also a specially designed quenching technique.
- Quenched around 315


 C (above M_s).
- Held at this temperature for sufficient time to
 - Homogenize surface & core temperature.
- Further quenched to M_s through M_F
- The structure is martensite

Martempering

- Tempered to get desired combination of Hardness & Toughness
- Advantage over rapid quenching
 - More dimensional stability
 - Less Warping
 - Less chance of quench crack
 - Less residual stress

Martempering Contd...

MARTEMPERING

Martempering process.

Case Hardening

- Objective is to harden the surface & subsurface selectively to obtain:
 - Hard and wear-resistant surface
 - Tough impact resistant core
 - The best of both worlds
- Case hardening can be done to all types of plain carbon steels and alloy steels

Case Hardening Contd..

- Selectivity is achieved
 - a) For low carbon steels
 - By infusing carbon, boron or nitrogen in the steel by heating in appropriate medium
 - Being Diffusion controlled process, Infusion is selective to surface and subsurface
 - b) For medium & High carbon or Alloy steel
 - By heating the surface selectively followed by Quenching

Case Carburizing

- Heating of low carbon steel in carburizing medium like charcoal
- Carbon atoms diffuse in job surface
- Typical depth of carburisation; 0.5 to 5mm
- Typical Temperature is about 950°C
- Quenching to achieve martensite on surface and sub-surface
- If needed, tempering to refine grain size and reduce stresses

Case Nitriding

- Heating of steel containing Al in nitrogen medium like Nitride salt, Ammonia etc.
- Typical temperature is about 530°C
- Nitrogen atoms diffuse in job surface
- Forms AlN, a very hard & wear resistant compound on surface & sub-surface
- Typical use is to harden tubes with small wall thickness like rifle barrel etc.

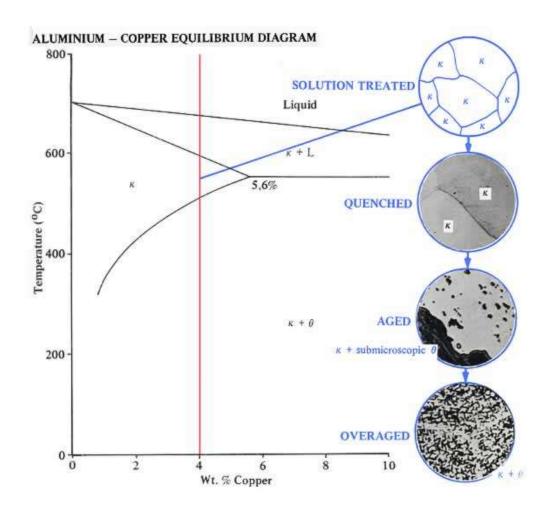
Case Carbo-nitriding

- Heating of low carbon steel containing Al in cynide medium like cynide salt followed by Quenching
- Typical temperature is about 850°C
- Nitrogen & Carbon atoms diffuse in job
- Typical case depth 0.07mm to 0.5mm
- Forms very hard & wear resistant complex compounds, on surface & sub-surface
- If needed, tempering to refine grain size and reduce stresses

Induction and Flame Hardening

- Employed for medium & high carbon steel or alloy steels
- Local heating of the surface only either by flame or induction current
- Heating to austenizing range, 30 50°C above Ac₃
 (Hypoeutectoid) or Ac₁ (Hypereutectoid)
- Quenching in suitable quenching media
- If needed, tempering to refine grain size and reduce stresses

- Also known as Dispersion or Age hardening
- Applicable to common non-ferrous metals and alloys and some spl. Steels
- Technique used for strengthening
 - Al (Mg, Cu), Mg, Ti (Al, V) alloys
 - -Some variety of SS, Maraging Steel etc.


- Hardening in steel is mainly due to martensite formation during quenching
- common non-ferrous metals normally don't respond to quenching
- A method where finely dispersed second phase precipitates in the primary matrix
- These precipitations lock the movement of dislocation causing increase in hardness

- Exploits phenomenon of super- saturation.
- Nucleation at a relatively high temperature (often just below the solubility limit)
 - Maximise number of precipitate particles.
- Lower the temperature an hold
 - -These particles grow in size
 - -The process called aging.
- Typical dislocation size is 5-30 nm

- Diffusion's exponential dependence upon temperature makes precipitation strengthening a fairly delicate process.
- Too little diffusion (under aging)
 - The particles will be too small to impede dislocations effectively
- Too much diffusion(over aging)
 - Particle will be too large and dispersed to interact with the majority of dislocations

Softening Heat Treatment

- Softening Heat Treatment done to:
 - Reduce strength or hardness
 - Remove residual stresses
 - Restore ductility
 - Improve toughness
 - Refine grain size
- necessary when a large amount of cold working, such as cold-rolling or wire drawing been performed

Precipitation Hardening

Softening Heat Treatment

- Incomplete Annealing
 - Stress Relieving
 - Process Annealing
 - Spherodising
- Full Annealing
- Normalizing

Stress Relieving

- To reduce residual stresses in large castings, welded and cold-formed parts.
- Such parts tend to have stresses due to thermal cycling or work hardening.
- Parts are
 - -heated to 600 650°C (1112 1202°F)
 - -held for about 1 hour or more
 - then slowly cooled in still air.

Process Annealing

- used to treat work-hardened parts made out of low-Carbon steels (< 0.25% Carbon).
- In process heat treatment
- allows the parts to be soft enough to undergo further cold working without fracturing.

Process Annealing

- Temperature raised near the lower critical temperature line A_1 i. e. 650°C to 700° C
- Holding for sufficient time, followed by still air cooling
- Initially, the strained lattices reorient to reduce internal stresses (recovery)
- When held long enough, new crystals grow (recrystallisation)

Process Annealing

- Material stays in the same phase through out the process
 - Only change in size, shape and distribution of the grain structure
- This process is cheaper than either full annealing or normalizing
 - As material is not heated to a very high temperature or cooled in a furnace.

Spheroidization

- used for high carbon steels (Carbon > 0.6%) that will be machined or cold formed subsequently.
- Be done by one of the following ways:
 - Heat just below the line A₁ (727 °C)
 - Hold for a prolonged time
 - Followed by fairly slow cooling.

Or

Spheroidization Contd...

- Cycle multiple times between
 - temperatures slightly above and below the
 A₁ say 700 and 750°C
 - -Slow cool.

Or

- For tool and alloy steels
 - -heat to 750 to 800°C
 - hold for several hours
 - followed by slow cooling.

Spheroidization Contd...

- Results formation of small globular cementite (spheroids)
- Dispersed throughout the ferrite matrix.
- Improved machinability
- Improved resistance to abrasion.

Full Annealing

- An act of
 - Heating to austenizing range, $30 50^{\circ}$ C above Ac_3 (Hypoeutectoid) or Ac_1 (Hypereutectoid)
 - Holding sufficiently long time for full transformation (1hr/per inch of maxm. Thickness)
 - Cooling slowly upto 500°C
 - Normal cooling to room temperature

Full Annealing

- Cooling rate varies from 30°C/hr to 200°C/hr depending on composition
- Enable the austenite to decompose fully
- Higher the austenite stability, slower the cooling to ensure full decomposition.
- Thus, alloy steels, in which austenite is very stable should be cooled much slower than carbon steel.
- The microstructure is coarse Pearlite with ferrite or Cementite (depending on whether hypo or hyper eutectoid).

Full Annealing

- full annealing hyper eutectoid steel is required only for restoring grain size
- when hot working (rolling or forging) finished at high temperature resulted in coarse grained structure.
- For hot working finished at a normal temperature, incomplete annealing OK
- Hypoeutectoid hot worked steel (rolled stock, sheet, forgings, etc), castings of carbon & alloy steels, may undergo full annealing.

Normalizing

- Raising the temperature to 60°C (140 °F) above line A₃ (hypo) or line A_{CM} hyper)
- fully into the Austenite range.
- Held at this temperature to fully convert the structure into Austenite
- Removed from the furnace
- Cooled at room temperature under natural convection.
- Results a grain structure of fine Pearlite with pro-eutectoid Ferrite or Cementite.

Normalizing Vs Annealing

- Normalising considerably cheaper than full annealing
- no added cost of controlled cooling.
- Fully annealed parts are uniform in softness (and machinablilty)
- Normalized parts, depending on the part geometry, exhibit non-uniform material properties
- Annealing always produces a softer material than normalizing.

Hardenability

- Ability of a metal to respond to hardening treatment
- For steel, the treatment is Quenching to form Martensite
- Two factors which decides hardenability
 - TTT Diagram specific to the composition
 - Heat extraction or cooling rate

Hardenability Contd..

TTT Diagram

- For low carbon steel, the nose is quite close to temperature axis
- Hence very fast cooling rate is required to form Martensite
 - Causes much warp, distortion and stress
 - Often impossible for thick sections
- Carbon and Alloy addition shifts the nose to right and often changes the shape

Hardenability Contd..

Factors affecting cooling rate

- Heating Temperature
- Quenching bath temperature
- Specific heat of quenching medium
- Job thickness
- Stirring of bath to effect heat convection
- Continuous or batch process

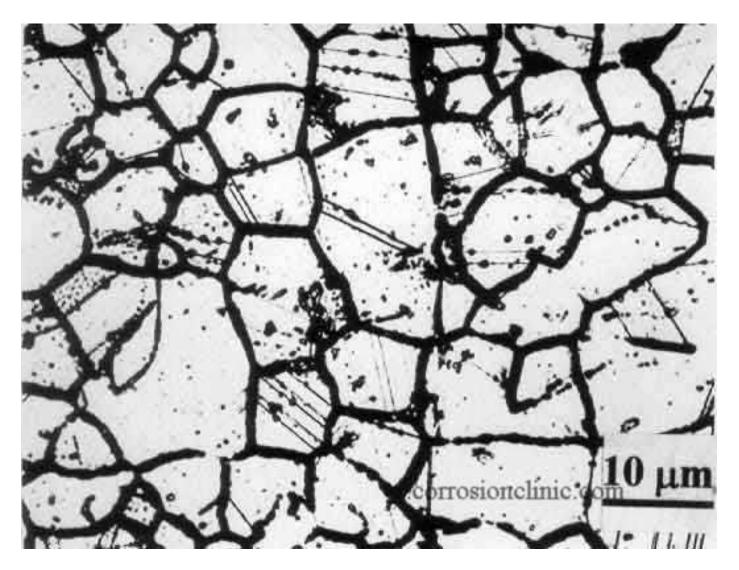
Hardenability Contd...

- Hardenability is quantified as the depth upto which full hardness can be achieved
- Amount of carbon affects both hardness of martensite and hardenability
- Type and amount of alloying elements affect mostly hardenability
- The significance of alloying element is in lowering cooling rate for lesser distortion and thick section

Property Modification Treatment

- These heat treatments are aimed either to
- achieve a specific property
- to get rid of a undesired property

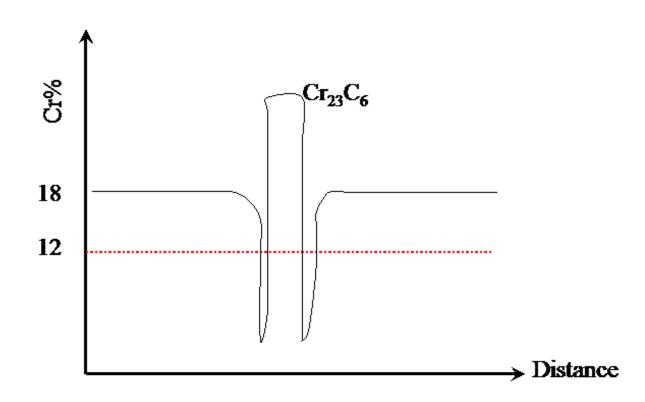
Example


-Solution heat treatment

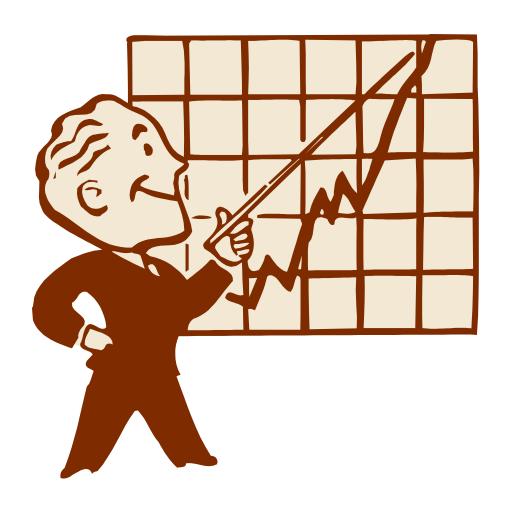
Solution Heat Treatment

- Refers to taking all the secondary phases into solution by heating and holding at a specific temperature
- Except martensite, all other phases in steel are diffusion product
- They appear or disappear in the primary matrix by diffusion controlled process
- Diffusion is Time & Temperature dependant

Solution Heat Treatment


- In SS, when held at temperature range of 500°C – 800°C, Cr combines with Carbon at GB to form complex inter-metallic compounds
- This depletes the GB of Cr resulting in loss of corrosion resistance at GB
- Become susceptible to Inter Granular corrosion.

Sensitized Stainless Steel



Chromium Profile Across Grain

Solution Heat Treatment

- This situation may occur due to high service temperature or welding
- Remedy is
- Heat the job at 1050°C
- Hold till all the carbide re-dissolves in matrix
- Fast cool to RT avoiding re-precipitation

THANK YOU