

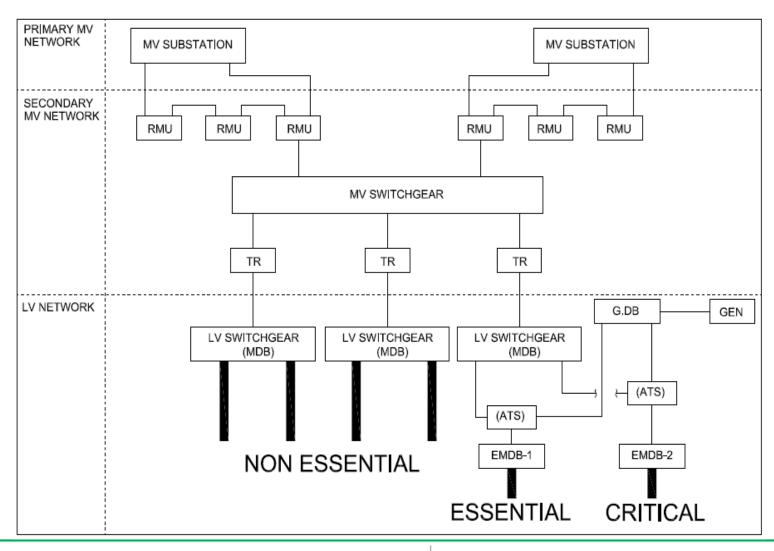
Electrical Rooms Design Space Program

By

Ahmed Besheer

Senior Electrical Design Engineer
at Schneider Electric

Schneider Electric Graduation Projects Sponsorship


- Introduction
- NEC Article 110 Overview
- RMU & Transformer Room Design
- 4 Generator Room Design
- 5 UPS Room Design
- **6** Central Battery Room Design
- 7 MVSG "Building or Room" Design
- **8** LV Switchgears Room Design

Electrical Distribution Network Architecture:

List of Bulky Equipment and Switch Gears:

Bulky Equipment:

- ✓ Distribution Transformer
- ✓ Diesel Engine Generator
- ✓ Uninterruptable Power Supply (UPS)
- ✓ Central Battery

Switch Gears:

- ✓ MV-Switch Gears
 - Distributer
 - Medium Voltage Switch Gear (MVSG)
 - Ring Main Unit (RMU)
- ✓ LV-Switch Gears
 - Free Stand Panels
 - Surface/Flush Mounted Panels

SE: SM6

SE: Minera

SE: Trihal

Cummins

SE: APC

SE: APC

SE: MCset

SE: RM6

SE: BLOKSET & OKKEN

SE: Prisma / Pragma

The Purpose of Electrical Rooms Design Aspects:

1. Providing Proper Working spaces.

- ✓ To ensure safety of operators during dealing with any equipment or switchgear.
- ✓ To help operators to do their tasks without any interruption during installation & maintenance.
- ✓ To easily maneuver all equipment & switchgears.

2. Providing Electrical Rooms Dimensions & details.

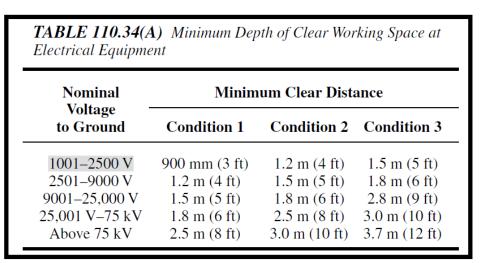
- ✓ To Coordinate with all other Disciplines:
 - Architecture (Location, Space Requirements, Entrance/Egress Doors, Louvres, Ramps)
 - Civil (Trenches, sleeves and concrete bases required for heavy Equipment)
 - HVAC (Ventilation/Air Conditioning)
 - Plumping and Fire Fighting (Fire Fighting Method/Fuel Tanks)
 - Light Current (Interface Points to BMS and Fire Points "status & command signals")

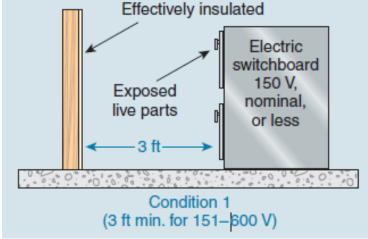
What are references to be followed or used to design required electrical spaces for all electrical Rooms?

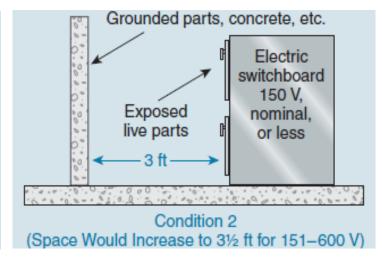
- ✓ Regulations of the country at which the project will be executed.
- ✓ Data sheets of "equipment or switchgear" to know dimensions.
- ✓ Recommended clearances about the equipment or switchgear if provided by its manufacturer catalogues.
- ✓ International Codes like NEC Article 110 which is talking about working spaces & Dedicated Electrical Spaces design.

110 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

110.26 Spaces About Electrical Equipment







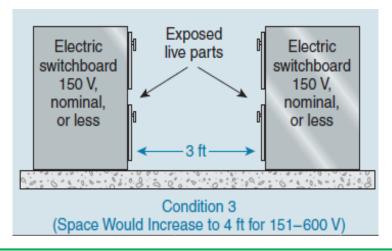
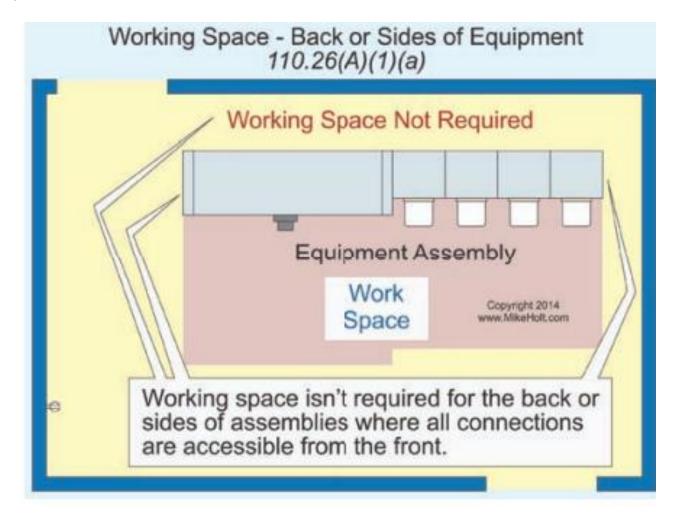
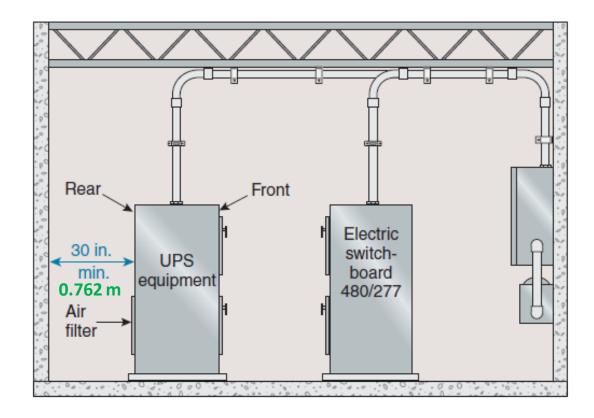

• <u>Depth</u> of working Space:

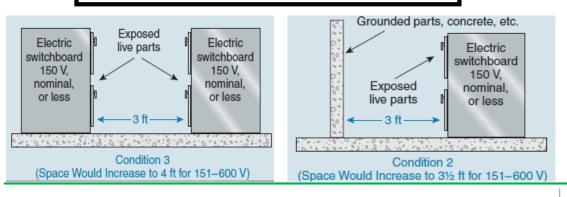
TABLE 110.26(A)(1) Working Spaces								
Nominal Voltage to Ground	Minimum Clear Distance							
	Condition 1	Condition 2	Condition 3					
0–150 151–600 601–1000	900 mm (3 ft) 900 mm (3 ft) 900 mm (3 ft)	900 mm (3 ft) 1.0 m (3 ft 6 in.) 1.2 m (4 ft)	900 mm (3 ft) 1.2 m (4 ft) 1.5 m (5 ft)					

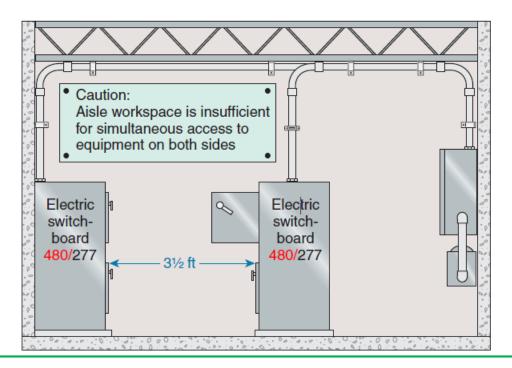




• <u>Depth</u> of working Space:

• <u>Depth</u> of working Space (Rear Access):

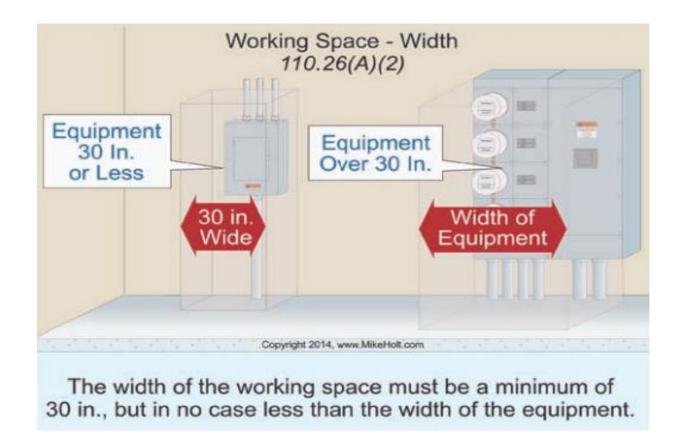

Note: if the Rear of equipment requires working space larger than 30 in., we must provide the proper larger Depth of working space.

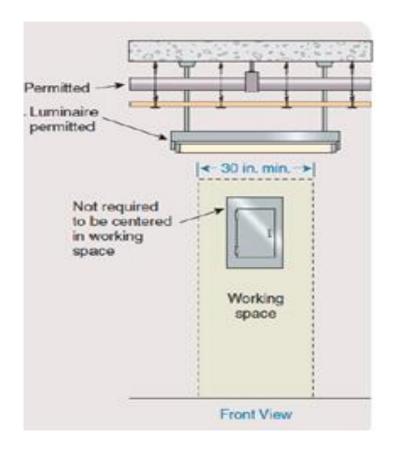


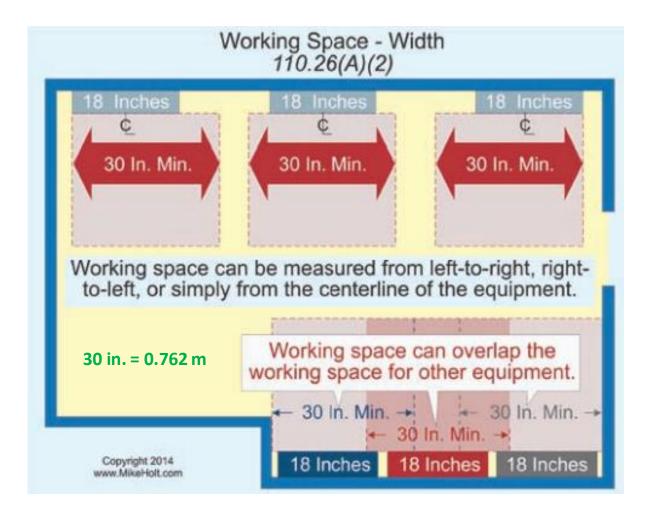
<u>Depth</u> of working Space (Existing Building):

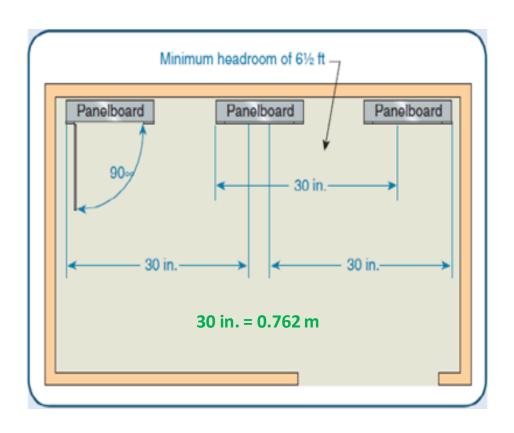
If electrical equipment is being replaced, Condition 2 working space is permitted between dead-front switchboards, panelboards, or motor control centers located across the aisle from each other where conditions of maintenance and supervision ensure that written procedures have been adopted to prohibit equipment on both sides of the aisle from being open at the same time, and only authorized, qualified persons will service the installation.

Nominal Voltage to Ground	Minimum Clear Distance				
	Condition 1	Condition 2	Condition 3		
0-150	900 mm (3 ft)	900 mm (3 ft)	900 mm (3 ft)		
151–600	900 mm (3 ft)	1.0 m (3 ft 6 in.)	1.2 m (4 ft)		
0 100					

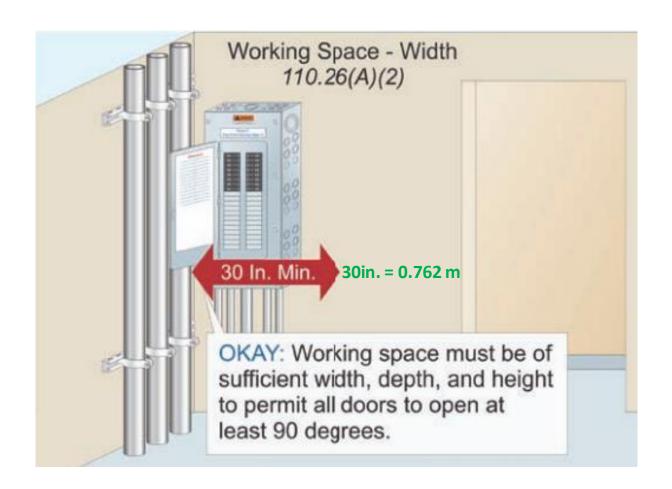


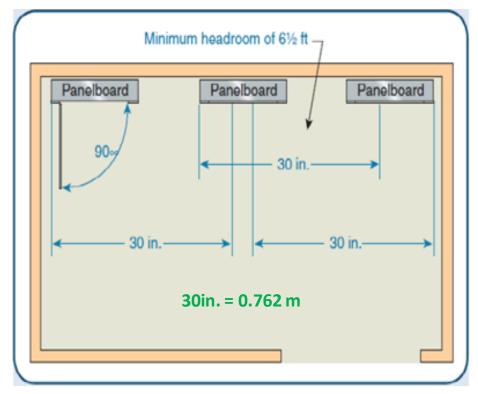



• Width of working Space

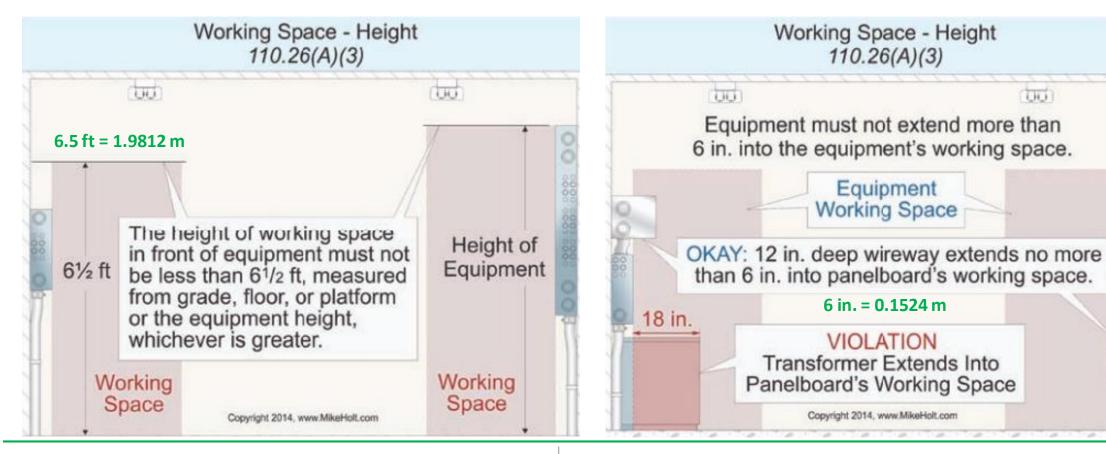


Width of working Space (width measurement methodology & Overlapping)



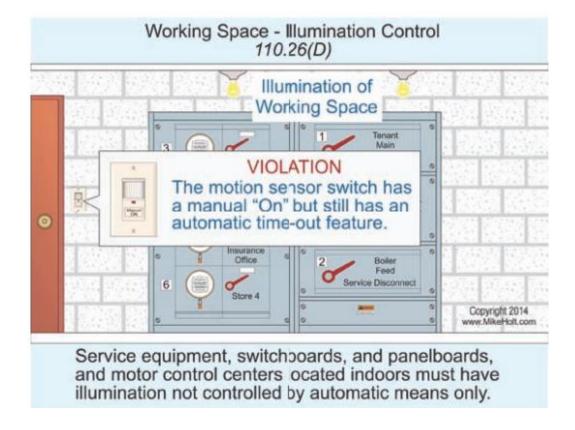


• Width of working Space (Equipment door opening)

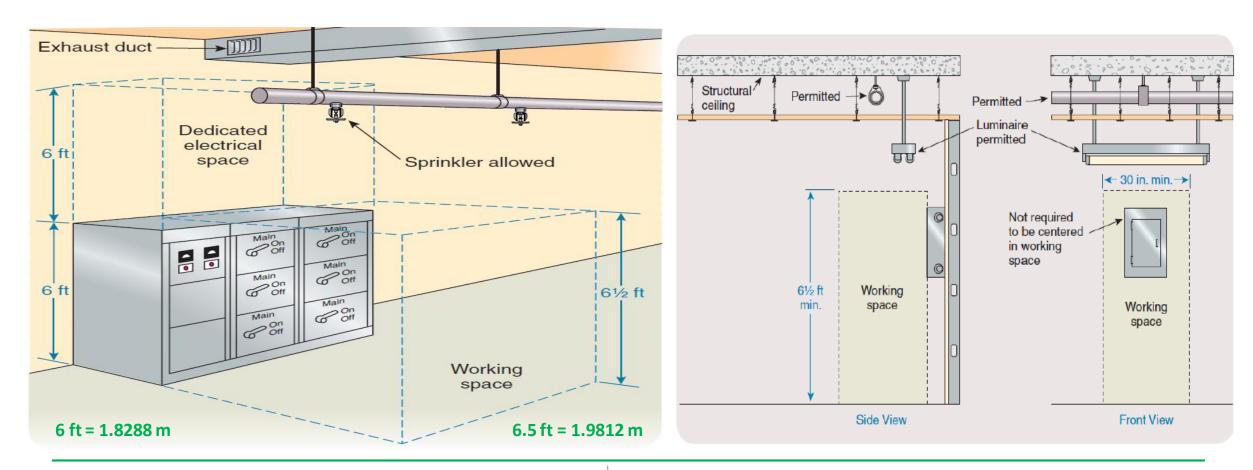


• Height of working Space

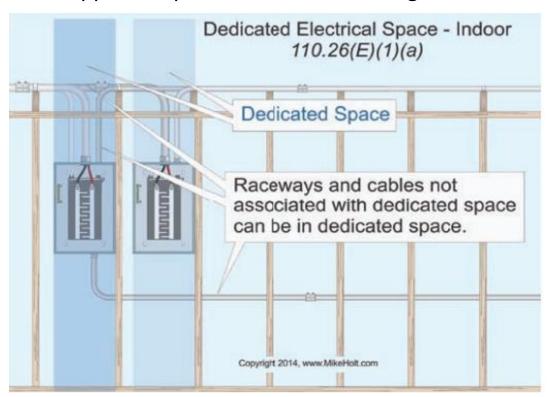
Equipment such as raceways, cables, wireways, cabinets, panels, and so on, can be located above or below electrical equipment, but must not extend more than 6 in. into the equipment's working space.

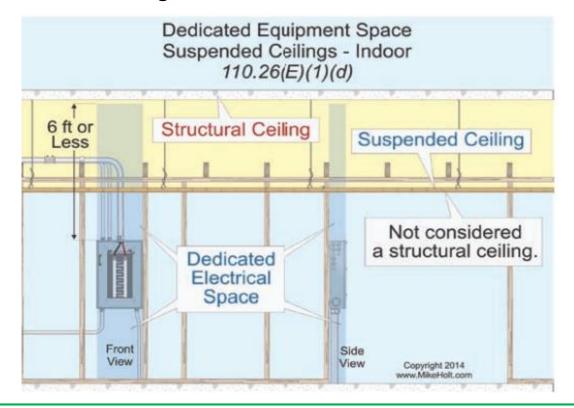


• <u>Illumination</u> of working space


Service equipment, switchboards, and panelboards, as well as motor control centers located indoors must have illumination located indoors and must not be controlled by automatic means

The dedicated electrical space extends the footprint of the equipment from the floor to a height of 6 feet above the height of the equipment or to the "structural ceiling" (whichever is lower) must be dedicated for the electrical installation. No piping, ducts, or other equipment foreign to the electrical installation can be installed in this dedicated footprint space.

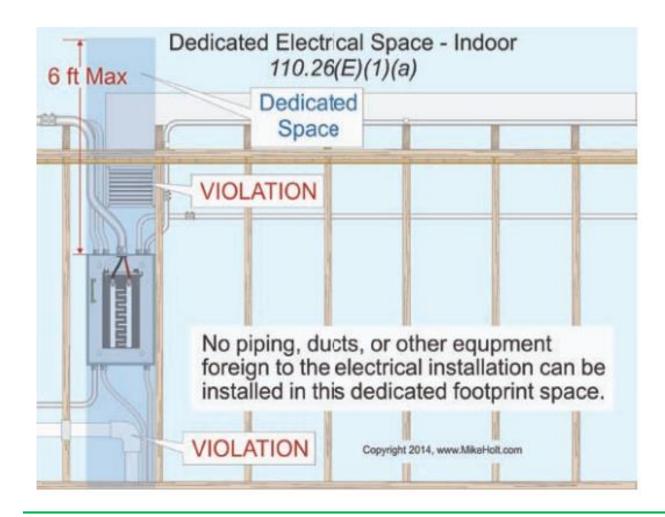


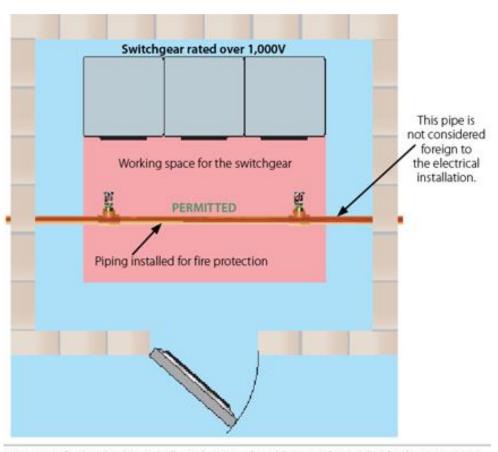

Raceways, cables

Electrical raceways and cables not associated with the dedicated space can be within the dedicated space. These aren't considered "equipment foreign to the electrical installation."

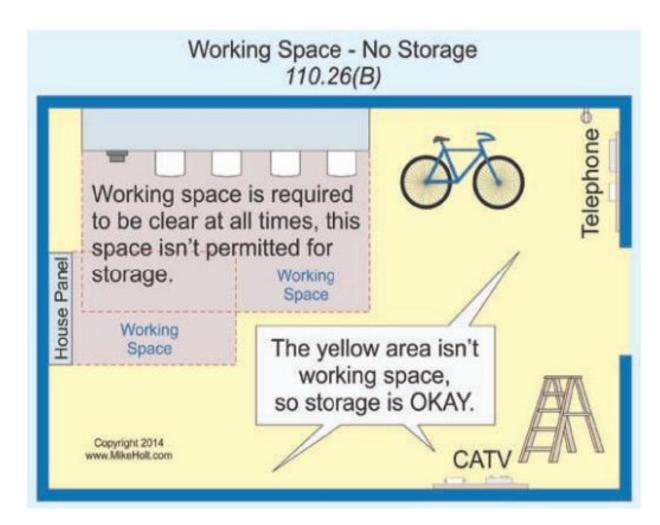
Suspended Ceiling:

Dropped, suspended, or similar ceiling isn't considered a structural ceiling.



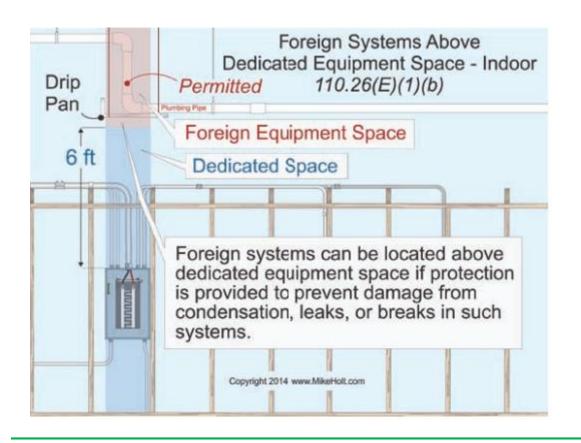


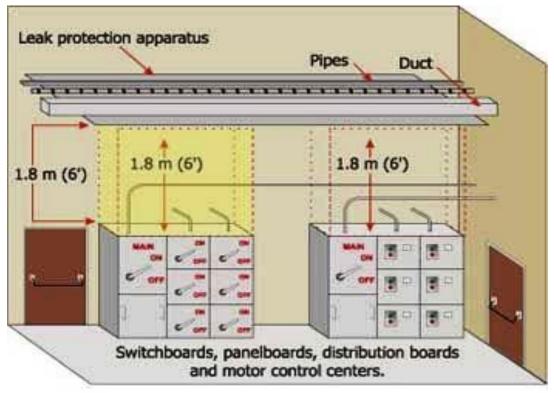
Violations



Piping and other facilities shall not be considered foreign if provided for fire protection of the electrical installation [110.34(F)].

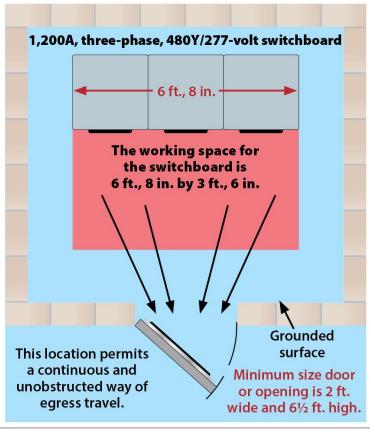
Storage



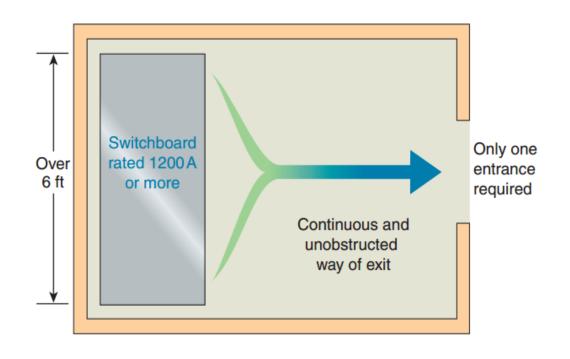

parts in the first place, and it's unacceptable to be subjected to additional dangers by working around bicycles, boxes, crates, appliances, and other impediments.

Foreign systems above dedicated space.

Foreign systems can be located "above" the dedicated space if protection is installed to prevent damage to the electrical equipment from condensation, leaks, or breaks in the foreign systems, which can be as simple as a drip-pan.


• Small Equipment (below 1200A <u>or</u> "6 ft = 1.8288 m" wide)

At least one entrance of sufficient area must provide access to and egress from the working space.

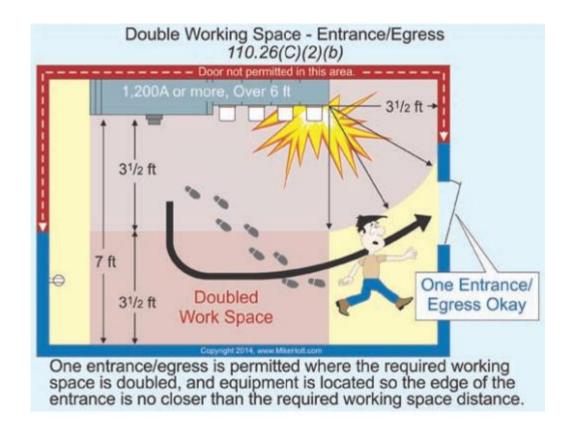


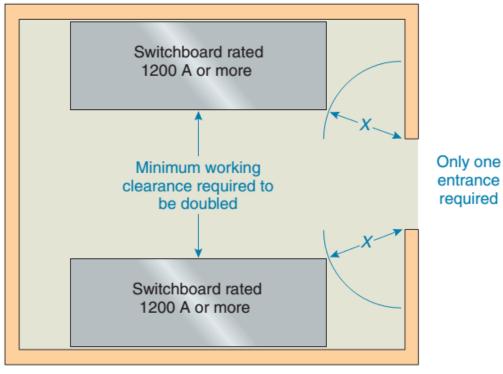
- Large Equipment ("1200A or above" or "more than {6 ft = 1.8288 m}" wide)
 - (Case A) Unobstructed Egress: Only one entrance is required where the location permits a continuous and unobstructed way of egress travel.

Large equipment
(equipment rated 1,200A)
or more and more than
6 feet wide) containing
overcurrent devices,
switching devices, or
control devices normally
requires each end of
the working space to
have an entrance to and
egress from the required
working space.

Where a space contains large equipment, a single entrance to and egress from the required working space is permitted if the installation complies with either 110.26(C)(2)(a) or 110.26(C)(2)(b).

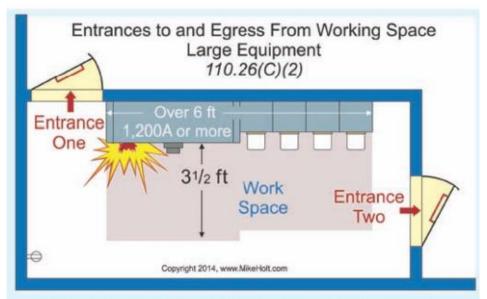
Where the location for large equipment permits a continuous and unobstructed way of egress travel, a single entrance to the working space shall be permitted [110.26(C)(2)(a)].


6.5 ft = 1.9812 m 2 ft = 0.6096 m



- Large Equipment ("1200A or above" or "more than {6 ft = 1.8288 m}" wide)
 - (Case B) obstructed Egress with One door "Double Workspace required": Only one entrance is required where the required working space depth is doubled, and the equipment is located so the edge of the entrance is no closer than the required working space distance.

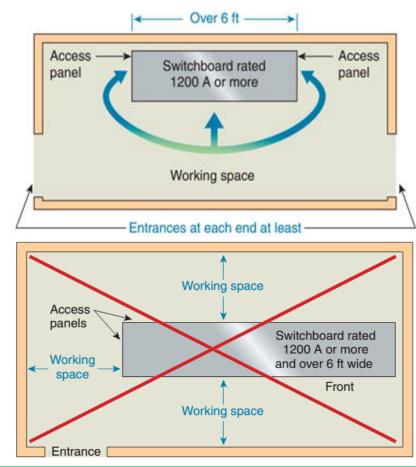
X = minimum allowable distance



• Large Equipment ("1200A or above" or "more than {6 ft = 1.8288 m}" wide)

• (Case - C) obstructed Egress with two doors: An entrance to and egress from each end of the working space of electrical equipment rated 1,200A or more that's over 6 ft wide is required. The opening must be a minimum of 24 in. wide and 6½ ft

high,



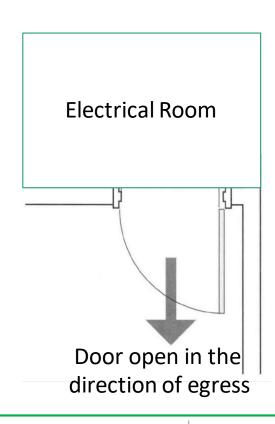
For equipment rated 1,200A or more and over 6 ft wide, an entrance to and egress from (2 ft x 6 ½ ft) is required at each end of the working space.

6.5 ft = 1.9812 m

24 in.= 0.6096 m

2 ft = 0.6096 m

• Importance of Egress doors design to avoid Arc Trap.



• Doors Specs.

If equipment with overcurrent or switching devices rated 800A or more is installed, personnel door(s) for entrance to and egress from the working space located less than 25 ft from the nearest edge of the working space must have the door(s) open in the direction of egress and be equipped with listed panic hardware.

Rooms Configurations according to The Egyptian Electricity Holding company

غرفة داخل المبنى

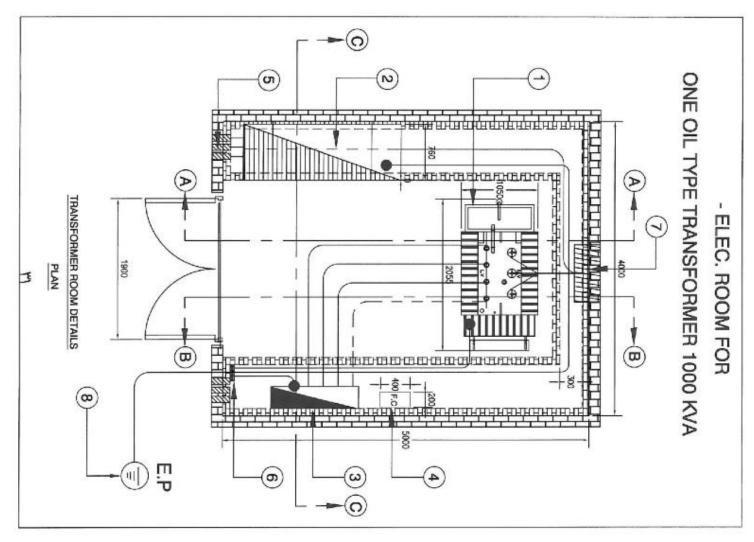
أبعاد الغرفة (طول × عرض × ارتفاع) م			قدرة المحول (ك.ف.أ)		عدد المحولات داخل	نوع المحول	جهد التشغيل
			الى	من	الغرفة		(Li, Li)
(۴ × ° × ۴) (يركب بها محول + لوحة جهد متوسط +لوحة جهد منخفض)		Z	٥	محول واحد	جاف أو زينكي	١٢	
$(3 \times 4 \times 3)$ ($4 \times 4 \times 3$) ($4 \times 4 \times 4 \times 4$) ($4 \times 4 \times$			۲۰۰۰	X			محول واحد محولان
وذلك في حالة عدم إمكانية تسليم غرفة (٣ × ٨ × ٥) لكل محول		1	٥.,				
فى حالة عدم توافر غرفة واحدة لجميع المهمات	غرفة المنخفض غرفة (المحول + لوحة المتوسط)	(" × " × ")	۲ل	3	محول واحد	`5,	
أبعاد غرفة المحول (* × * × *) (يركب بها محول فقط) أبعاد غرفة لوحتي الجهد المتوسط والمنخفض		$(r \times t \times t)$	Y	٥.,	محول واحد	جاف آو زيتي	**
		(" × £ × ")			محول واحد		

Schneider Electric

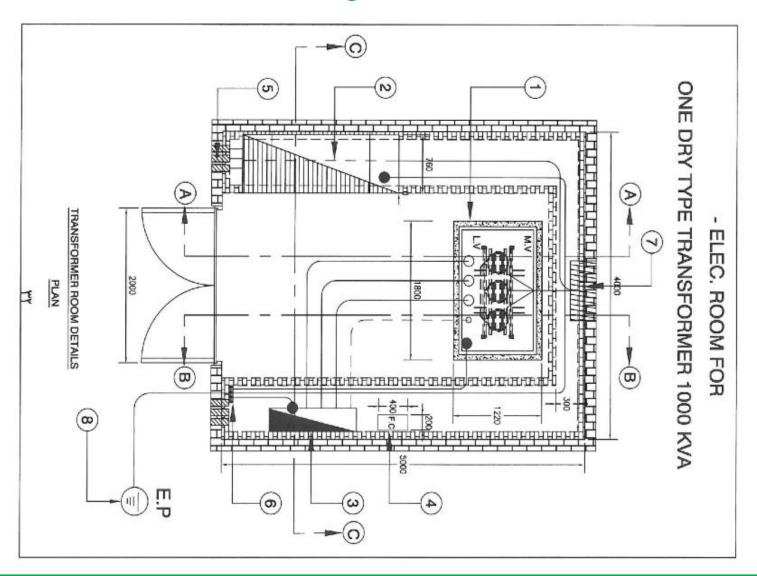
- وفى حالة عدم مطابقة أبعاد الغرفة للأبعاد المطاوبة طبقاً لطبيعة المكان، يجب مراعاة أن تكون الابعاد تسمح بسهوله دخول وفرش المهمات بشكل فني سليم وأمن للعاملين وإجراء أعمال الصيانة الوقانية والعلاجية بسهولة وأمان.
 - بجب مراعاة ألا يعلى سطح غرفة المحول حمام أو أي مصدر أخر للمياه لحماية المهمات.
 - بجب مراعاة أن يتم فرش المهمات داخل الغرف طبقاً للرسومات المرفقة لكل حالة.

في حالة وجود أي معوقات الستلام الغرفة بالمواصفات السابق ذكرها يتم العرض على لجنة برلاسة السيد المهندس/ رئيس مجلس الإدارة والعضو المنتدب أو من ينوب عنه تبحث ومعاينة وضع الغرفة على الطبيعة وإمكاتية استلام الغرفة في حدود المساحة الإجمالية المطلوبة تقريباً أو طبقاً لشكل الغرفة من الداخل.

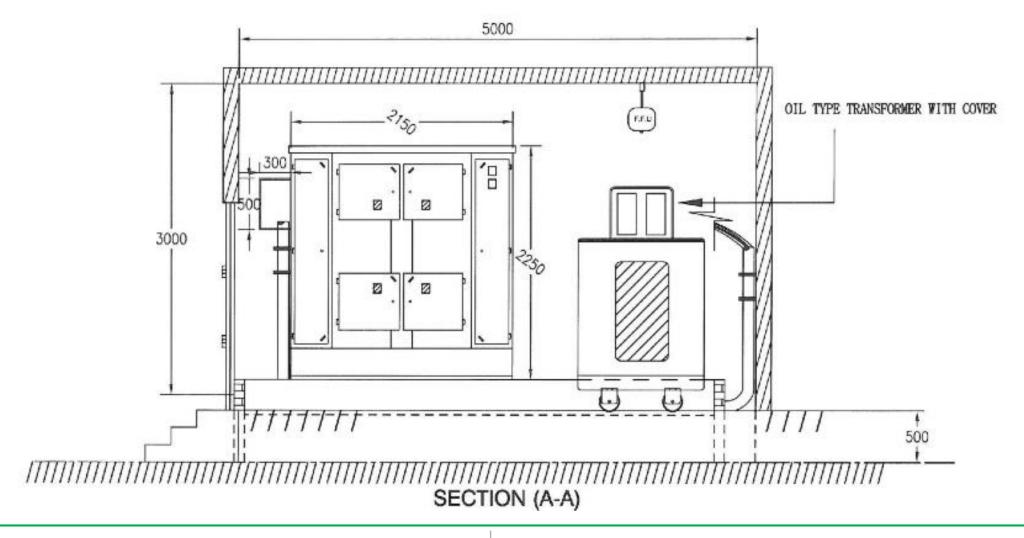
٢. الغرف خارج المبنى (السماوية):


• تطبق جميع الشروط بالبند السابق (غرف المحولات داخل مبنى) على ألا يقل الارتفاع عن ٤م.

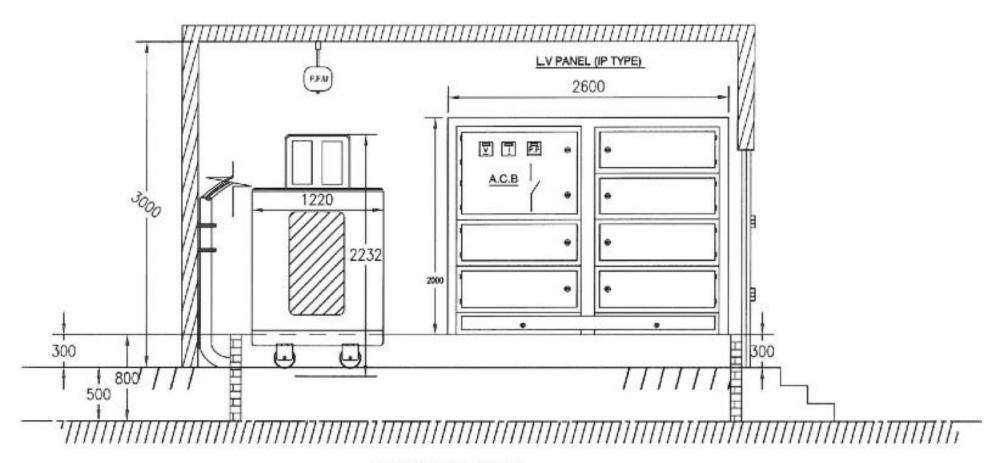
Room for:


Schneider Flectric

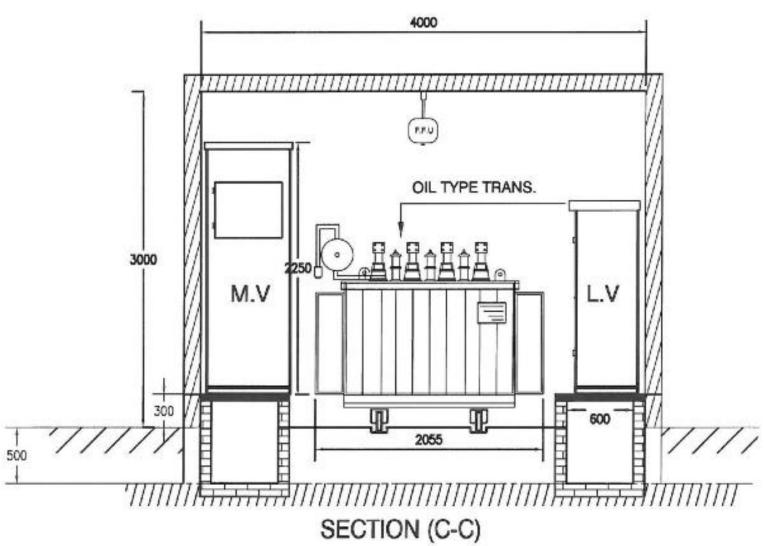
RMU + 1 Transformer <1000 KVA + LVSG



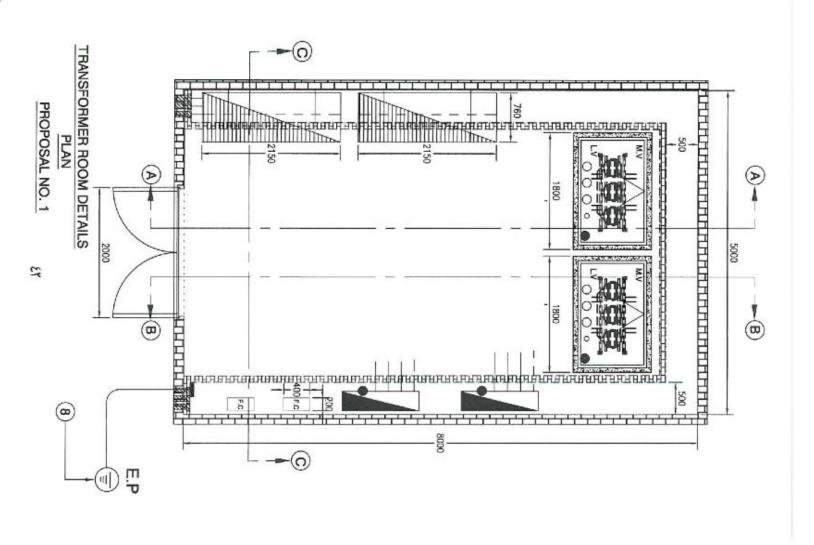
Schneider Electric



Schneider Electric



SECTION (B-B)

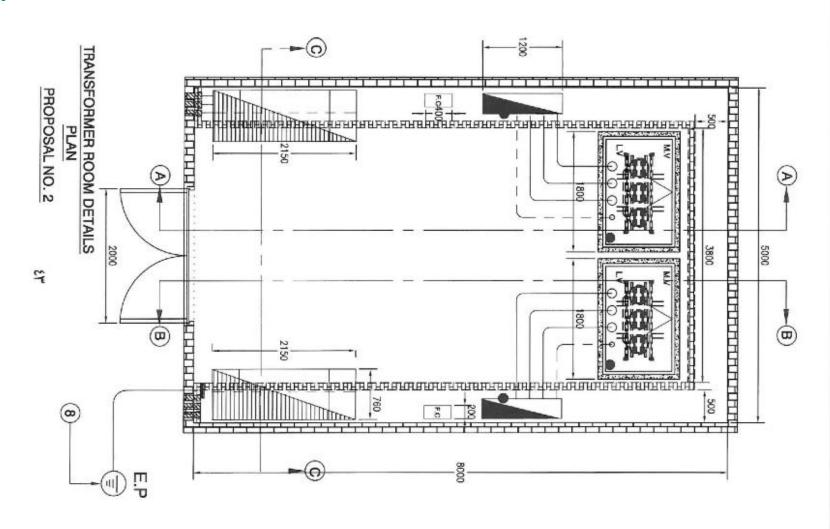


Room for:

Schneider Electric

2 RMU + 2 Transformer <1000 KVA + 2 LVSG

Proposal (1)) – Plan View

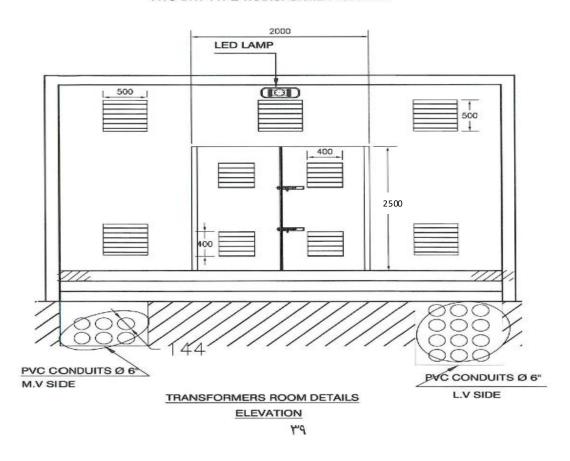


Room for:

2 RMU + 2 Transformer <1000 KVA + 2 LVSG

Schneider Electric

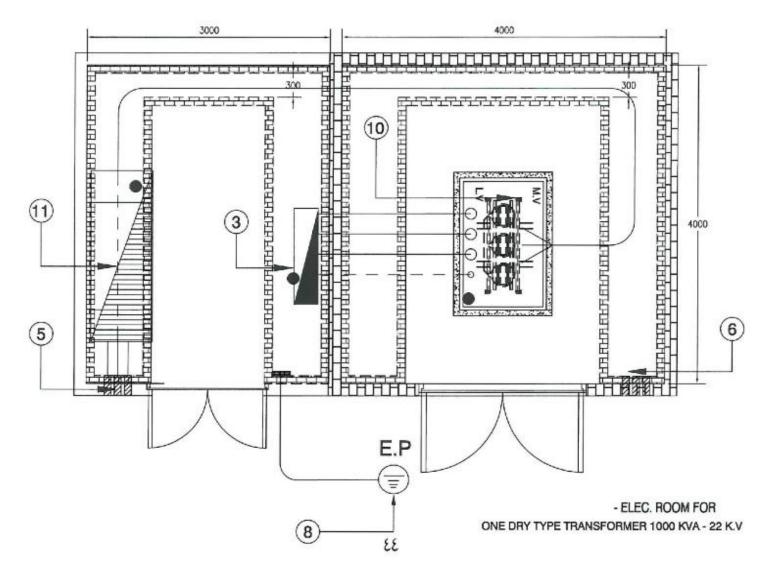
Proposal (2) – Plan View


Room for:

Schneider Electric

2 RMU + 2 Transformer <1000 KVA + 2 LVSG

Proposal (1 or 2) – Elevation


- ELEC. ROOM FOR TWO DRY TYPE TRANSFORMER 1000 KVA

- 1. Room for: 1 transformer up to 2MVA
- Schneider Electric

2. Room for RMU & LSVG

General Specs:

النوافذ في حالة الغرف السماوية

- عدد (۲) نافذة سفاية و علوية (٥٠×٥٠ سم) على الواجهة الأمامية للغرفة عبارة عن ريش من الصاج الأملس سمك ٢مم متداخلة من أعلى إلى أسفل وبسلك شبك من الداخل وخوص حديد (٢سم) للتثبيت
- عدد (۲) نافذة علوية (۰۰×۰۰ سم) على الواجهة الخلفية للغرفة عبارة عن ريش من الصباج الأملس سمك ٢مم متداخلة من أعلى إلى أسفل وبسلك شبك من الداخل وخوص حديد (٢سم) للتثبيت

النوافذ في حالة الغرف داخل المبنى (العمارات)

ويتم عمل عدد (٢) نافذة علوية (٥٠×٥٠ سم) على الواجهة الأمامية للغرفة عبارة عن ريش من الصاج الأملس سمك ٢مم متداخلة من أعلى إلى أسفل وبسلك شبك من الداخل وخوص حديد ٢سم للتثبيت.

الابواب

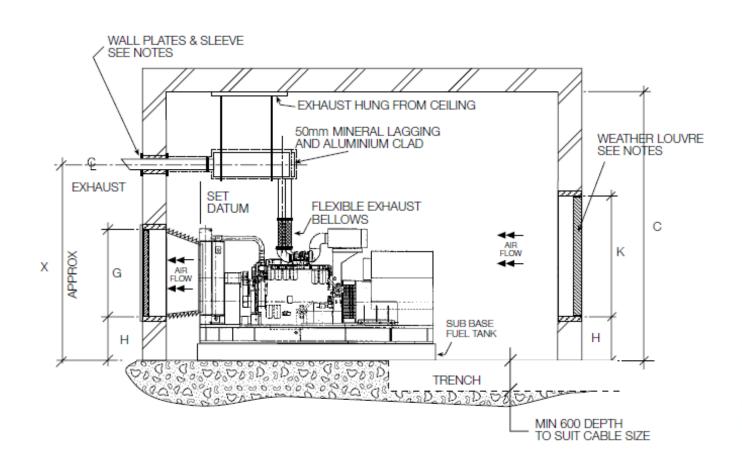

- الباب على شارع رئيسي أو فرعي لا يقل عرضه عن (٢متر) ويسمح بدخول وخروج المهمات بسهوله وأمان خلال ٢٤ ساعة وبدون عوائق
- أبعاد الباب (٢×٢٠٥ متر) (أو طبقاً لطبيعة واجهة الغرفة وأبعادها
 - عدد ٢ ضلفة عرض كل منها لا يقل عن ١ متر
 - عدد ۲ سجان والرزة.
- عدد ۲ فتحة تهوية إحداهما سفلية والأخرى علوية
 (٠٤٠٠٤×٤٠٠٨) بكل ضلفة عبارة عن ريش من الصاح الأملس سمك ٢مم متداخلة من أعلى إلى أسفل وبسلك شبك من الداخل وخوص حديد (٢سم) للتثبيت

سطح الغرفة في حالة الغرف السماوية

الطبقة العازلة أعلى سطح الغرفة ضد المياة والحرارة اتجاه ونسبة ميول السطح

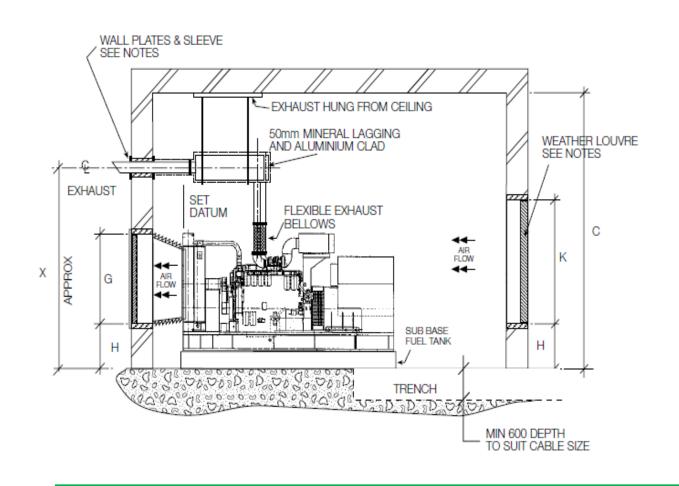
مزراب لتصريف المياة في اتجاه نهاية ميول السطح

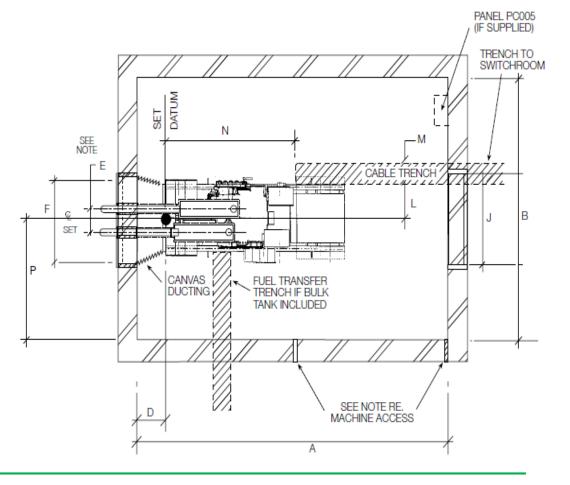
Schneider Electric


أرضية الغرفة ومجاري الكابلات

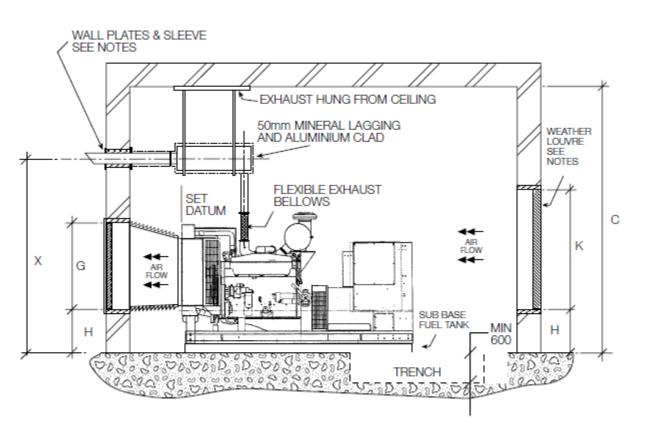
- أرضية الغرفة من طبقه خراسانيه مسلحة لا تقل عن ٣٠ سم وأن تتحمل الوزن الكلى للمحول والمهمات (ويتم إثبات ذلك بالمعاينة على الطبيعة ويطلب شهادة معتمدة من استشاري متخصيص) ويرتفع منسوب أرضية الغرفة عن مستوى الشارع بحوالى ٥٠ سم.
- مجرى لكل من كابلات الجهد المنخفض والمتوسط على شكل حرف U بعرض ٦٠ سم من جهة المنخفض والمتوسط وتكون عرض المجرى خلف المحول ٣٠ سم فقط لكابل المحول على ان يكون عمق مجرى الكابلات ٦٠ سم داخل الغرفة ويتم تغطية الاجزاء المفتوحة لمجرى الكابلات بعد فرش المهمات داخل الغرفة بأغطية صاج مناسبة ويتم دهانها بماده ضد الرطوبة والصدأ
- مواسير بلاستيكية (PVC) قطر ٦ بوصة لدخول وخروج الكابلات من خلالها وذلك أسفل الواجهة الأمامية للغرفة على جانبي باب الغرفة. على أن يكون عدد مواسير التي يمر من خلالها كابلات الجهد المتوسط (٣) ويتم تحديد عدد المواسير التي يمر من خلالها كابلات الجهد المنخفض طبقاً لقدرة المحول.
- عدد (٢) مجرى لدخول المحول (كمر حديدي قطاع حرف "U") غاطسة بارضية الغرفة على أن تكون المسافات بين الكمر تلائم التوسعات المستقبلية في حاله تغيير المحول بقدره مختلفة.

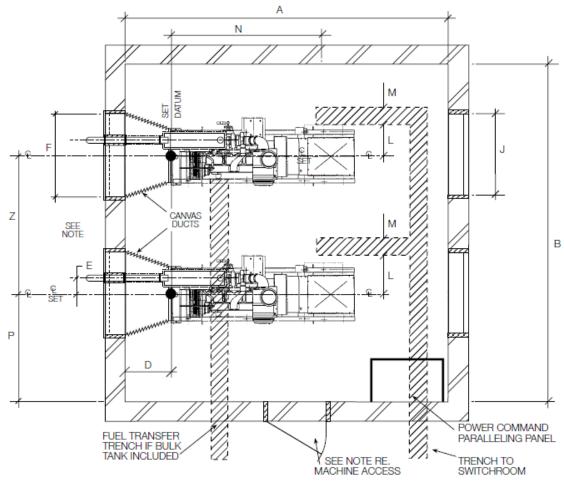
Generator Set overview





1. Without Acoustic Treatment:

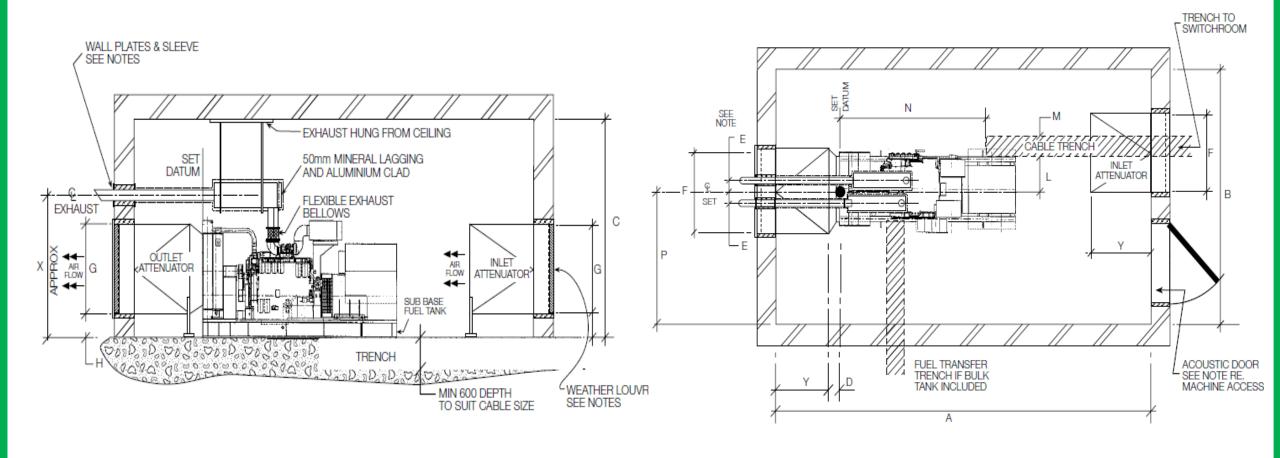




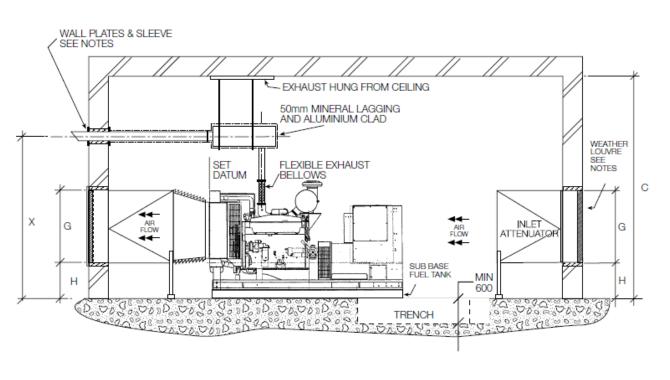
1. Without Acoustic Treatment:

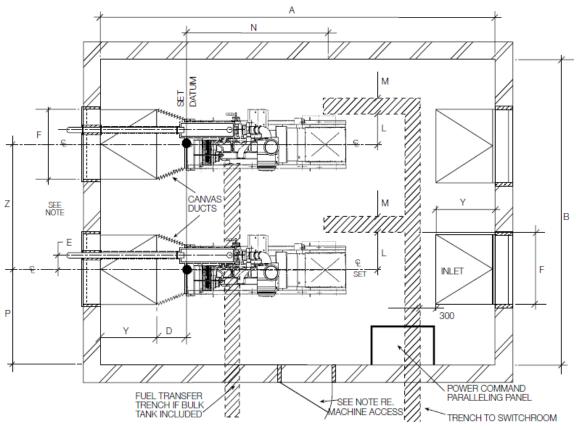
2. With Acoustic Treatment:

Noise permissible levels

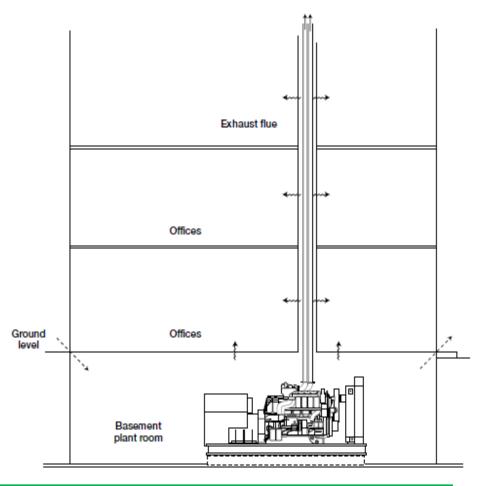

Table. F16 Decibel Rating - (dB) - Environments

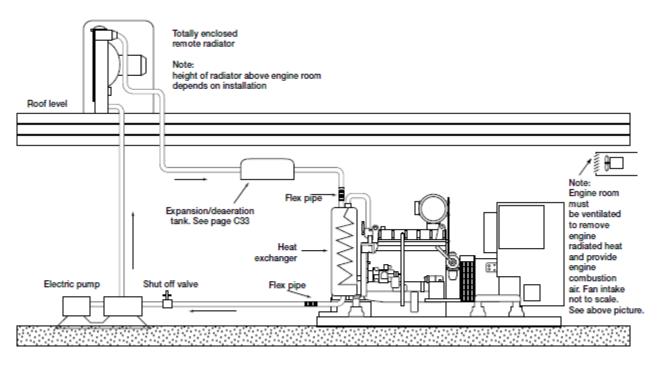
Decibels	dB
Threshold of hearing at 1kHz	0
Studio for sound pictures	20
Residence - no children	40
Conversation	60
Heavy Traffic	80
Underground train	100
Close to pneumatic drill	120
Gas turbine engine at 30m (damage to ears)	140
Rocket engine at 30m (panting of stomach)	160
110dB in vicinity of airports	
Logarithmic scale of measurement	
Sound of 1 watt at 0.3m distance	= Intensity of 104 (painful to ears)
Each step of 10 decibels	= Increase of intensity of 10 times
Therefore 20 dB	= 100 times the minimum
Therefore 30 dB	= 1000 times the minimum

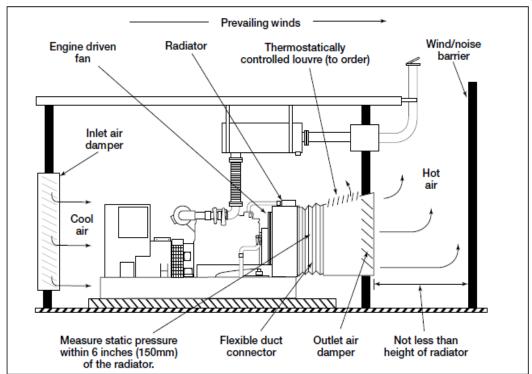

2. With Acoustic Treatment:



2. With Acoustic Treatment:




- a. Special Cases of Generator room must be coordinated
 - ✓ Exhaust "up to the sky"
 - Noise Levels studies must be done according to manufacturer catalogues.
 - Architectural Noise treatment should be implemented
 - Recommendation by manufacturer to be considered.
 - Coordination with HVAC, Civil & Architecture departments must be done.



REMOTE RADIATOR COOLING - HIGH LEVEL

b. Technical data of generator set:

• It is mandatory to be check in design phase & in Coordination with MEP departments.

Set output	220-480 V 60 Hz	220-480 V 60 Hz
Prime at 40°C ambient	281 kWe 351 kVA	322 kWe 402 kVA
1999 Set Model (Prime)	CP350-6	CP400-6
New Model (Prime)	281 DFCB	322 DFCC
Standby at 40°C ambient	312 kWe 390 kVA	350 kWe 437 kVA
1999 Set Model (Standby)	CS400-6	CS450-6
New Model (Standby)	312 DFCB	350 DFCC
Engine Make	Cummins	Cummins
Model	NTA855G2	NTA855G3
Cylinders	Six	Six
Engine build	In-line	In-line
Governor/Class	Electronic/A1	Electronic/A1
Aspiration and cooling	Turbo Aftercooled	Turbo Aftercooled
Bore and stroke	140 mm x 152 mm	140 mm x 152 mm
Compression ratio	14.0:1	14.0:1
Cubic capacity	14 Litres	14 Litres
Starting/Min *C	Unaided/-7°C	Unaided/-7°C
Battery capacity	127 A/hr	127 A/hr
Nett Engine output - Prime	299 kWm	344 kWm
Nett at flywheel – Standby	333 kWm	385 kWm
Speed	1800 rpm	1800 rpm
Alternator voltage regulation	±1.0%	±1.0%
Alternator insulation class	н	Н
Single load step to NFPAII0	100%	100%
Fuel consumption (Prime) 100% load	79 Vhr	87 l/hr
Fuel consumption (Standby) 100% load	89 Vhr	96 l/hr
Lubrication oil capacity	38.6 Litres	38.6 Litres
Base fuel tank capacity - open set	800 Litres	800 Litres
Coolant capacity - radiator and engine	79.8 Litres	84.8 Litres
Exhaust temp – full load prime	466°C	521°C
Exhaust gas flow - full load prime	4136 m\hr	4734 m³/hr
Exhaust gas back pressure max	76 mm Hg	76 mm Hg
Air intake – engine	1613 m\hr	1717 m ¹ /hr
Air flow – radiator (50°C)	9.7 m³/s	9.2 m³/s
Pusher fan head (duct allowance) 50°C	13 mm Wg	13 mm Wg
Total heat radiated to ambient	72 kW	76 kW
Engine derating – altitude	4% per 300 m above 1525 m	4% per 300 m above 1525 m
Engine derating – temperature	2% per 11°C above 40°C	2% per 11°C above 40°C

c. Cable Connections & Routing:

- Trench and sleeves must be provided with proper dimensions & quantities according to no. of cables.
- If Cables trays are used, they must by sized and routed properly according to no. of cables and room design.

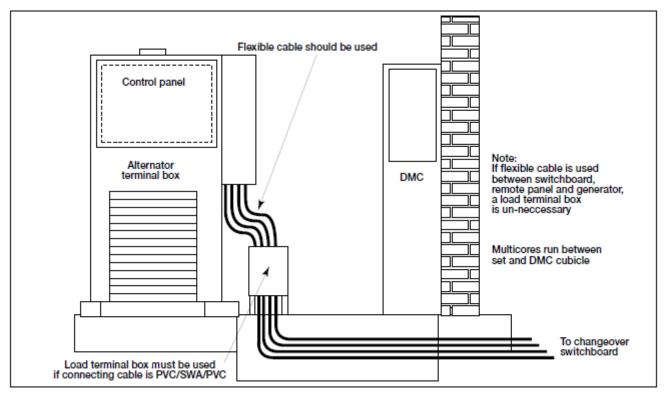


Fig. B1 Cable Connections

d. Silenced Generator Set:

• Drop over silenced enclosure is used.

Silenced Generating Sets 85dB(A) @ 1 m

Type Sil

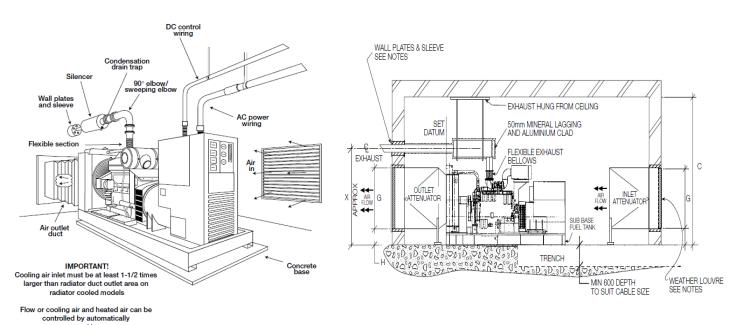
				()) p = =									
Rating				Length	width	height			Rating				Length	width	height		
Prime		2000	1999	Α	В	C	Weight		Prime		2000	1999	Α	В	C	Weight	
KVA	Engine	Model	Model	mm	mm	mm	(Dry)	Style	KVA	Engine	Model	Model	mm	mm	mm	(Dry)	Style
38	4B3.9G	30 DGBC	CP40-5	2850	1050	1725	1210	CF	350	NTA855G4	280 DFCC	CP350-5	4350	1400	2200	5205	CF
52	4BT3.9G1	42 DGCA	CP50-5	2850	1050	1725	1510	CF	425	NTA855G6	340 DFCE	CS400-5	4350	1400	2200	5338	CF
64	4BT3.9G2	51 DGCB	CP60-5	2850	1050	1725	1560	CF	431	KTA19G3	345 DFEC	CP400-5	7062	2451	3020	9716	WR
70	4BTA3.9G1	56 DGCC	CP70-5	2850	1050	1725	1590	CF	450	KTA19G3	360 DFEL	CP450-5	7062	2451	3020	9820	WR
96	6BT5.9G2	77 DGDB	CP90-5	2850	1050	1725	2010	CF	511	KTA19G4	409 DFED	CP500-5	7062	2451	3020	9856	WR
106	6BT5.9G2	85 DGDF	CP100-5	2850	1050	1725	2010	CF	575	VTA28G5	460 DFGA	CP575-5	8052	2451	3020	11635	WR
129	6CT8.3G2	103 DGEA	CP125-5	3523	1050	1825	2700	CF	640	VTA28G5	512 DFGB	CP625-5	8052	2451	3020	12010	WR
153	6CTA8.3G	122 DGFA	CP150-5	3523	1050	1825	2800	CF	725	QST30G1	580 DFHA	CP700-5	9137	2451	3020	15602	WR
185	6CTA8.3G	148 DGFB	CP180-5	3523	1050	1825	2880	CF	800	QST30G2	640 DFHB	CP800-5	9137	2451	3020	15752	WR
233	LTA10G2	186 DFAB	CP200-5	4350	1400	2200	3980	CF	939	QST30G3	751 DFHC	CP900-5	9137	2451	3020	16202	WR
252	LTA10G3	202 DFAC	CP250-5	4350	1400	2200	3990	CF	1000	QST30G4	800 DFHD	CP1000-5	9137	2451	3020	16547	WR
313	NT855G6	250 DFBF	CS300-5	4350	1400	2200	5030	CF	1256	KTA50G3	1005 DFLC	CP1250-5	10127	2451	3020	21198	WR
315	NT855G6	252 DFBH	CP300-5	4350	1400	2200	5160	CF	1406	KTA50G8	1125 DFLE	CP1400-5	10127	2451	3020	22595	WR

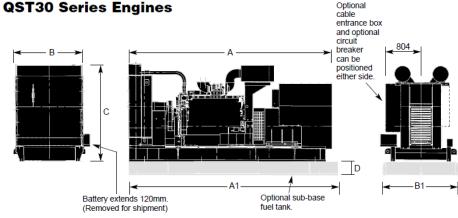
e. Super Silenced Generator Set:

• Drop over super silenced enclosure is used.

Supersilenced Generating Sets 75dB(A) @ 1 m Type SSil

Rating				Length	width	height			Rating				Length	width	height		
Prime		2000	1999	A	В	C	Weight		Prime	l	2000	1999	Α	В	C	Weight	
KVA	Engine	Model	Model	mm	mm	mm	(Dry)	Style	KVA	Engine	Model	Model	mm	mm	mm	(Dry)	Style
38	4B3.9G	30 DGBC	CP40-5	2850	1050	1725	1330	CF	350	NTA855G4	280 DFCC	CP350-5	4900	1400	2200	5725	CF
52	4BT3.9G1	42 DGCA	CP50-5	2850	1050	1725	1661	CF	425	NTA855G6	340 DFCE	CS400-5	4900	1400	2200	5872	CF
64	4BT3.9G2	51 DGCB	CP60-5	2850	1050	1725	1710	CF	431	KTA19G3	345 DFEC	CP400-5	8052	2451	3020	104716	WR
70	4BTA3.9G1	56 DGCC	CP70-5	2850	1050	1725	1740	CF	450	KTA19G3	360 DFEL	CP450-5	8052	2451	3020	10820	WR
96	6BT5.9G2	77 DGDB	CP90-5	3400	1050	1725	2201	CF	511	KTA19G4	409 DFED	CP500-5	8052	2451	3020	10856	WR
106	6BT5.9G2	85 DGDF	CP100-5	3400	1050	1725	2201	CF	575	VTA28G5	460 DFGA	CP575-5	9137	2451	3020	14235	WR
129	6CT8.3G2	103 DGEA	CCP125-5	3923	1050	1825	2970	CF	640	VTA28G5	512 DFGB	CP625-5	9137	2451	3020	14610	WR
153	6CTA8.3G	122 DGFA	CP150-5	3923	1050	1825	3080	CF	725	QST30G1	580 DFHA	CP700-5	11120	2451	3020	16302	WR
185	6CTA8.3G	148 DGFB	CP180-5	3923	1050	1825	3168	CF	800	QST30G2	640 DFHB	CP800-5	11120	2451	3020	16452	WR
233	LTA10G2	186 DFAB	CP200-5	4900	1400	2200	4378	CF	939	QST30G3	751 DFHC	CP900-5	11120	2451	3020	16902	WR
252	LTA10G3	202 DFAC	CP250-5	4900	1400	2200	4389	CF	1000	QST30G4	800 DFHD	CP1000-5	11120	2451	3020	17247	WR
313	NT855G6	250 DFBF	CS300-5	4900	1400	2200	5533	CF	1256	KTA50G3	1005 DFLC	CP1250-5	12200	2451	3020	22298	WR
315	NT855G6	252 DFBH	CP300-5	4900	1400	2200	5670	CF	1406	KTA50G8	1125 DFLE	CP1400-5	12200	2451	3020	23695	WR





Generator Room Dimensions Design:

- Specify if the room will be with acoustic treatment or not.
- Specify Rating of Generator & get the model number of the generator set from generator catalog.
- Specify if the Room "Inlet/outlet air flow openings" will be "I SHAPE" or "L SHAPE".
- Follow the layouts and tables in the generator catalog to specify dimensions.
- If required, Follow the generator set dimensions drawings & tables in the generator catalog.
- Any special case of exhaust or air flow & ventilation must be coordinated with other departments.

New		Old		Dim	ensions and	Weights (mm	√kg)		Set Weight	Set Weight	Tank Weight	Tank Weight
Model	Engine	Model	Α	A1	В	B1	С	D	kg Dry	kg Wet	kg (dry)	kg (wet)
580 DFHA	QST30G1	CP700-5	4297	4460	1442	1640	2092	300	6552	6850	850	2210
640 DFHB	QST30G2	CP800-5	4297	4460	1442	1640	2092	300	6702	7000	850	2210
751 DFHC	QST30G3	CP900-5	4297	4460	1442	1640	2092	300	7152	7450	850	2210
800 DFHD	QST30G4	CP1000-5	4547	4460	1722	1640	2332	300	7712	8000	850	2210

Generator Room Dimensions Design:

- ✓ Example from Cummins Application & installation guide.
 - Room Type according to acoustic treatment: with Acoustic Treatment.
 - Room air inlet/outlet shape: I shape
 - Required standby gen. set "Type / rating / quantity at the same room" = Standby / 950KVA / one Gen. set at the room.

> Design Steps:

1. By checking the Catalog, the suitable page for our case is page 24.

RECOMMENDED ROOM SIZES

Section B/60

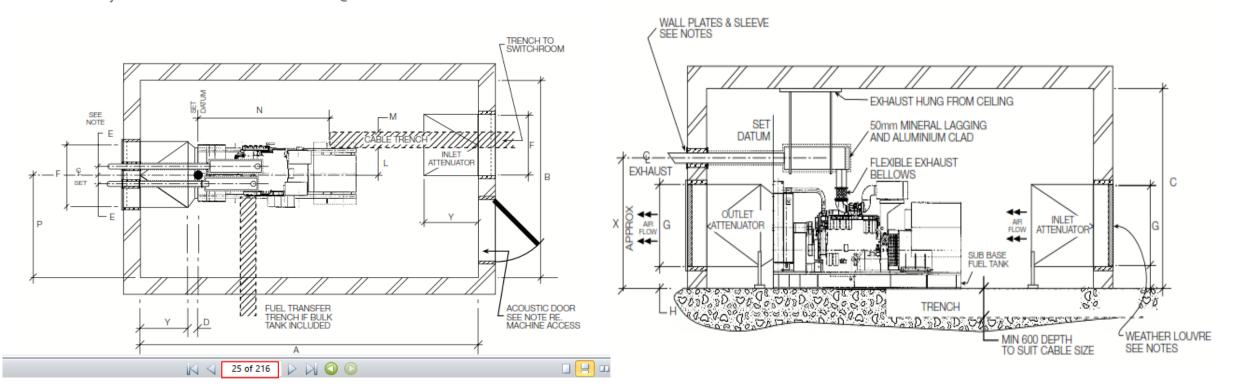
CUMMINS ENGINE POWERED 681 kVA - 2500 kVA - 60 Hz GENERATING SETS WITH ACOUSTIC TREATMENT. SINGLE SETS.

Standby		Туре				m dimer		Set			Exhaust		Attenuato imensio			Cablo	trench po	ocition
Rating kVA	Rating kVA	of ENGINE	2000 Model	1999 Model	Length A	width B	height C	back D	position P	offset E	height X	F	Y	G	uplift H	L	M	N
754	681	VTA28G5	603 DFGB	CS750-6	9000	3450	3450	400	1725	400	2950	1800	1800	2150	300	775	500	5150
950	862	QST30G1	760 DFHA	CS950-6	9000	3640	4000	500	1820	400	3450	2700	1500	2750	300	920	500	5100
1012	920	QST30G2	810 DFHB	CS1000-6	9000	3640	4000	500	1820	400	3450	2700	1500	2750	300	920	500	5100
1156	1044	QST30G3	925 DFHC	CS1100-6	9000	3640	4000	500	1820	400	3450	2700	1500	2750	300	920	500	5100
1276	1160	KTA38G4	1020 DFJD	CS1250-6	10300	3800	4000	500	1900	450	3200	2100	2200	2650	200	920	600	3655
1587	1400	KTA50G3	1270 DFLC	CS1600-6	11160	3800	4000	500	1900	450	3100	2100	2200	2650	200	920	600	4375
1931	1608	KTA50G9	1545 DFLE	CS1900-6	12700	4000	4500	500	2000	500	3800	2700	2600	3050	200	920	600	5000
2188	2000	QSK60G6	1600 DQKB	CS2200-6	13650	4500	4500	600	2250	693	3800	3000	3000	3150	325	645	600	4800
2500	2250	QSK60G6	2000 DQKC	CS2500-6	13650	4500	4500	600	2250	693	3800	3000	3000	3150	325	645	600	4800

Before finalising the generator room layout design please ensure you read the guidance notes.

The attenuator dimensions indicated are based on 100mm airways and 200mm acoustic modules.

In free field conditions we would expect this treatment to achieve 85dBA at 1 metre.



➤ Design Steps:

2. In page 25, you will find plan view & section view for the room. From the table mentioned in previous point.1: you can get all needed dimensions mentioned in the room views.

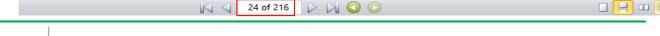
Cummins Generator Sets 681 - 2500 kVA - 60 Hz

Generator room layout with Acoustic Treatment to Achieve 85dBA @ 1 metre

- ➤ Note for L shape Rooms:
 - The mentioned dimensions in the catalog is only for I Shape Rooms.
 - In case of L Shape rooms, we must draw the room manually to know the accurate dimensions.
 - ➤ What are additional steps to do that?
 - 1. Get the type of engine name from the catalog based on your selection.

RECOMMENDED ROOM SIZES

Section B/60


CUMMINS ENGINE POWERED 681 kVA - 2500 kVA - 60 Hz GENERATING SETS WITH ACOUSTIC TREATMENT. SINGLE SETS.

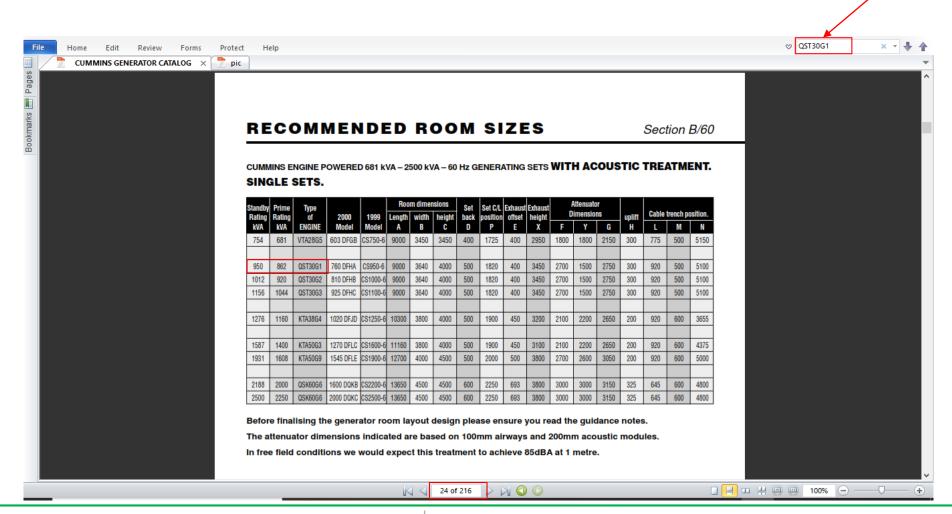
S	tandby	Prime	Туре			Roo	m dimer	sions	Set	Set C/L	Exhaust	Exhaust		ttenuato					
	Rating	Rating	of	2000	1999	Length	width	height	back	position	offset	height	D	imensior	ns	uplift	Cable	trench po	isition.
	kVA	kVA	ENGINE	Model	Model	Α	В	C	D	P	E	X	F	Y	G	н	L	M	N
$\sqrt{}$	754	681	VTA28G5	603 DFGB	CS750-6	9000	3450	3450	400	1725	400	2950	1800	1800	2150	300	775	500	5150
	950	862	QST30G1	760 DFHA	CS950-6	9000	3640	4000	500	1820	400	3450	2700	1500	2750	300	920	500	5100
	1012	920	QST30G2	810 DFHB	CS1000-6	9000	3640	4000	500	1820	400	3450	2700	1500	2750	300	920	500	5100
	1156	1044	QST30G3	925 DFHC	CS1100-6	9000	3640	4000	500	1820	400	3450	2700	1500	2750	300	920	500	5100
	1276	1160	KTA38G4	1020 DFJD	CS1250-6	10300	3800	4000	500	1900	450	3200	2100	2200	2650	200	920	600	3655
	1587	1400	KTA50G3	1270 DFLC	CS1600-6	11160	3800	4000	500	1900	450	3100	2100	2200	2650	200	920	600	4375
	1931	1608	KTA50G9	1545 DFLE	CS1900-6	12700	4000	4500	500	2000	500	3800	2700	2600	3050	200	920	600	5000
	2188	2000	QSK60G6	1600 DQKB	CS2200-6	13650	4500	4500	600	2250	693	3800	3000	3000	3150	325	645	600	4800
	2500	2250	QSK60G6	2000 DQKC	CS2500-6	13650	4500	4500	600	2250	693	3800	3000	3000	3150	325	645	600	4800

Before finalising the generator room layout design please ensure you read the guidance notes.

The attenuator dimensions indicated are based on 100mm airways and 200mm acoustic modules.

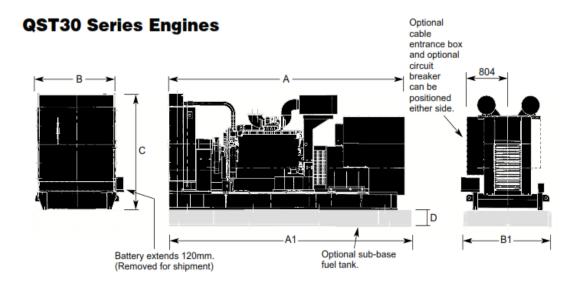
In free field conditions we would expect this treatment to achieve 85dBA at 1 metre.





Search

2. Search for type of engine until you find the page illustrating the engine detailed dimensions.



- ➤ What are additional steps to do that?
 - 2. Now you can draw manually all generator set dimensions based on the below mentioned table.
 - 3. Attenuator, exhaust dimensions can be taken from the
 - I SHAPE room table data mentioned previously.

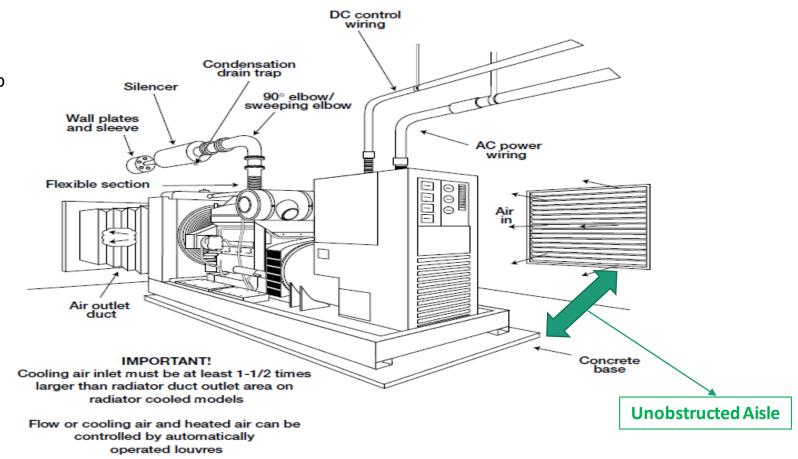
New		Old		Dim	ensions and	Weights (mm	ı/kg)		Set Weight	Set Weight	Tank Weight	Tank Weight
Model	Engine	Model	Α	A1	В	B1	С	D	kg Dry	kg Wet	kg (dry)	kg (wet)
580 DFHA	QST30G1	CP700-5	4297	4460	1442	1640	2092	300	6552	6850	850	2210
640 DFHB	QST30G2	CP800-5	4297	4460	1442	1640	2092	300	6702	7000	850	2210
751 DFHC	QST30G3	CP900-5	4297	4460	1442	1640	2092	300	7152	7450	850	2210
800 DFHD	QST30G4	CP1000-5	4547	4460	1722	1640	2332	300	7712	8000	850	2210

Set weights are without sub-base tank.

Dimensions and weights are for **guidance** only. Do not use for installation design. Ask for certified drawings on your specific application.

Specifications may change without notice.

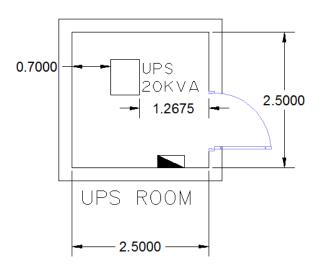
G13

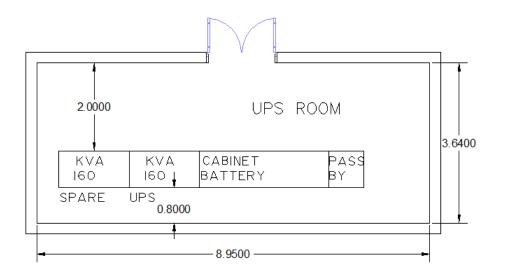


- ➤ What are additional steps to do that?
 - 5. About 1 meter aisle in front of the inlet "air opening or attenuator" must be unobstructed to provide proper space for operators moving through the room and for maintenance activities.

➤ General Note:

 Don't forget to check the technical data of generator set as mentioned previously in TIP. b





UPS Room Design Aspects

- Specify suitable family & UPS type for your application <u>www.se.com</u> search for "UPS" Use filters to easily select UPS suitable for your application.
- Follow data sheet or Catalog of UPS to know dimensions W x D x H & to specify backup period & weight.
- Follow recommendation of clearances about the UPS according to manufacturers catalogues or follow NEC Article 110 as illustrated before.
- You must specify if the UPS batteries will be built-in or external to take this in consideration while designing room spaces if batteries are external.
- You must specify if there is a need to use external maintenance bypass to take this in consideration while designing room spaces.
- Width & Hight of Door required for UPS room must be suitable for equipment maneuvering.
- Weight to be coordinated with Civil Engineer to provide suitable Room structural base.
- Coordination with HVAC is mandatory to maintain required ambient temperature.

Cutsheet Example

APC "MGE Galaxy 5000" – By Schneider Electric

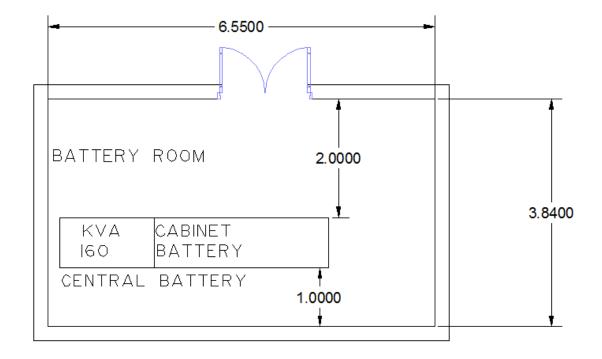
Cutsheet Example

APC "MGE Galaxy 5000"

By Schneider Electric

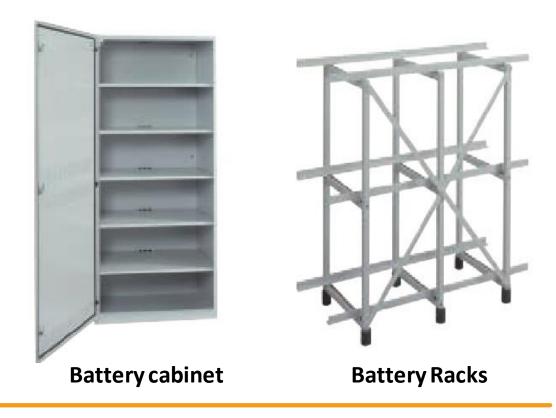
- 80KVA
- From 5 minutes to 35 minutes
 - 1. With built-in batteries.
 - 2. With external battery cubicles.

UPS Rating kVA/KW (PF = 0.8)	20/16	30/24	40/32	60/48	80/64	100/80	120/96
Normal AC supply Input	20010	00124	70.02	00,40		Tourse	120/30
Input voltage range (V)	T		2	50V to 470V 3-pt	350		
Inputs Mains 1 and Mains 2				Separate or comm			
Frequency			•	50Hz / 60Hz +- 8			
				> 0.99	76		
Input Power Factor				> 0.99			
Input current total harmonic distortion (THDI)				< 3%			
Bypass system Input							
Nominal input voltage			340V	to 470V 3-phase	+ neutral		
Frequency				50Hz / 60Hz ± 8			
Output							
Output Voltages (V)			380V - 400V	/ - 415V +-3% 3-p	hase + neutral		
Frequency (Hz)				50Hz / 60Hz			
Voltage Regulation				+- 1%			
Overload			150%	1 minute, 125% 1	0 minutes		
Output voltage total harmonic distortion			10070	THDU < 2%	o minutes		
Max load crest factor				3:1			
Overall efficiency				0.1			
Double conversion mode	T			up to 94%			
Economy mode				up to 97%			
Environmental				0510 to 11510			
Storage temperature				-25°C to +45°C			
Operating temperature				up to 40°C (2)			
Operating altitude				1000 m			
Parallel-connection							
Modular				up to 6 module	6		
Standards and approvals							
Performance and safety			IEC/E	N 62040-1, IEC/E			
Performance and design				IEC/EN 62040-			
Design and manufacturing				001, ISO 9001, I			
EMC Immunity				IEC 61000-4 - 2 t			
EMC emissions				IEC 62040-2 C			
Approvals			TŪV	- LCIE - CEM - C	E Mark		
Dimensions and weights (depth = 850 mm an	d height = 1	1900 mm)					
	20	30	40	60	80	100	120
UPS without batteries (width in mm)				710			
Weight		4	100 kg			520 kg	
UPS + built-in batteries (width in mm)				1010			
From 5 minutes to 35 minutes (3)			738 kg	888 kg	1050 kg		
From 10 minutes to 50 minutes (3)	1	732 kg	888 kg	975 kg			-
From 15 minutes to 90 minutes (3)			975 kg				
From 20 minutes to 110 minutes (3)	738 kg	888 kg					
From 30 minutes to 120 minutes (3)	888 kg	975 kg					
Battery cubicles (width and weight)							
From 5 minutes to 35 minutes (3) (width in							
mm)				710			
From 5 minutes to 35 minutes (3) (weight)			3	385 kg			980 kg
From 10 minutes to 50 minutes (3) (weight)				ood and			300 Kg
			710			101	10
mm) From 10 minutes to 50 minutes (3) (weight)	 		885 kg				
From 10 minutes to 50 minutes (3) (weight)			000 KQ			1142 kg	1307 kg
From 15 minutes to 80 minutes (3) (width in			740		4040	4545	0=1010
mm)			710		1010	1010	2x1010
From 15 minutes to 80 minutes (3) (weight)			185 kg		1142 kg	1307 kg	1764 kg
From 30 minutes to 120 minutes (3) (width in	1						1
	1	710		1010	2x710	710+1010	2x1010
mm)	1						



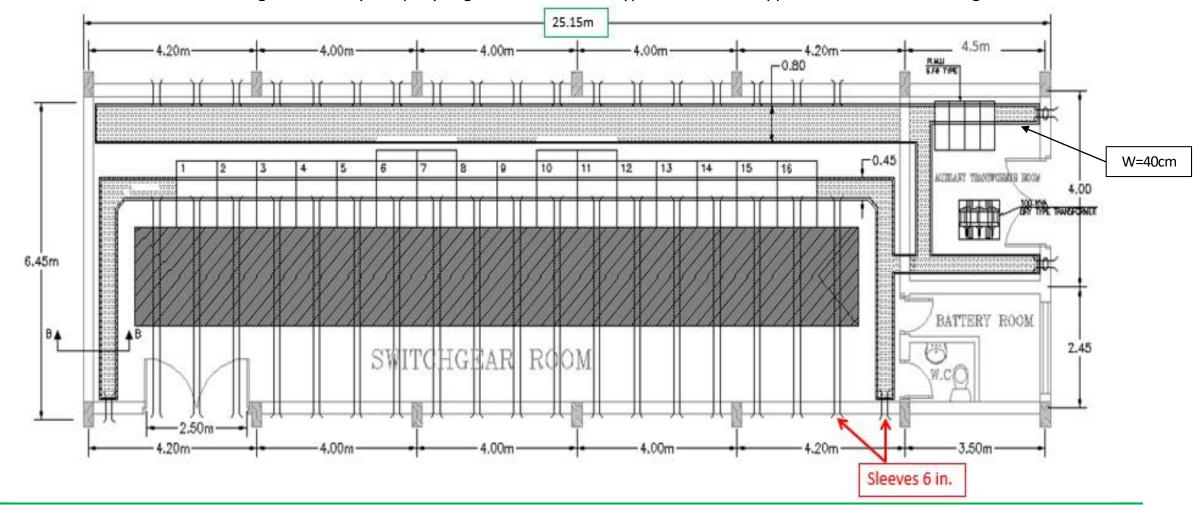
Central Battery Room Design Aspects

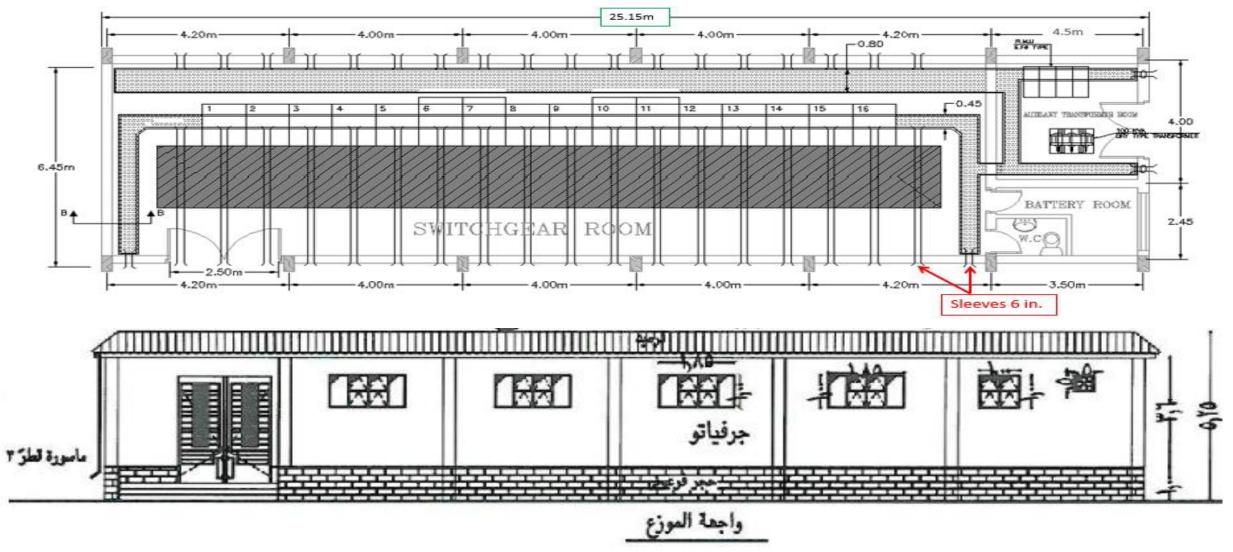
- Specify "Ampere hour" needed for your network and no of circuits that will be supplied by central battery to select the proper dimensions.
- specify if the Central Battery's batteries will be built-in or external to take this in consideration while designing room spaces if batteries are external.
- Width & Hight of Door required for Central Battery room must be suitable for equipment maneuvering.
- Weight to be coordinated with Civil Engineer to provide suitable Room structural base.



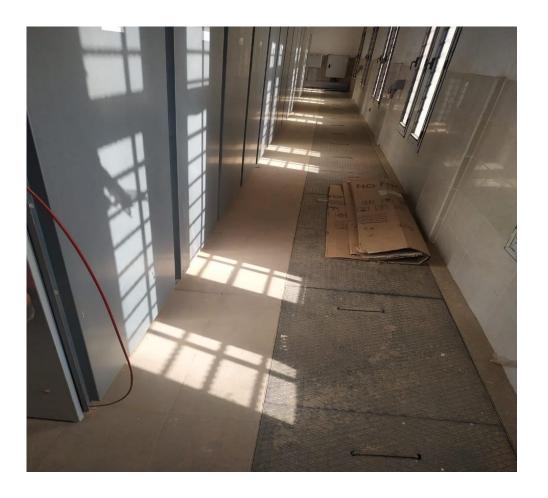
• Exiway Central Battery Configuration

Electronics cabinet

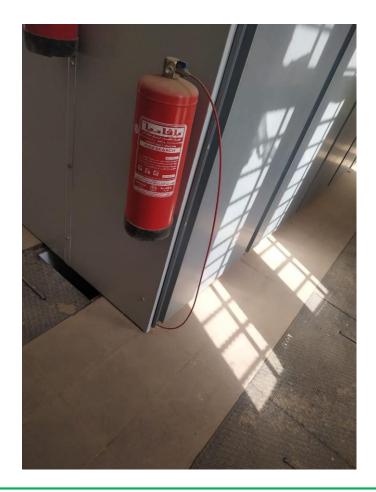

Exiway Catalog Overview


MVSG "Distributor Building" Design Aspects

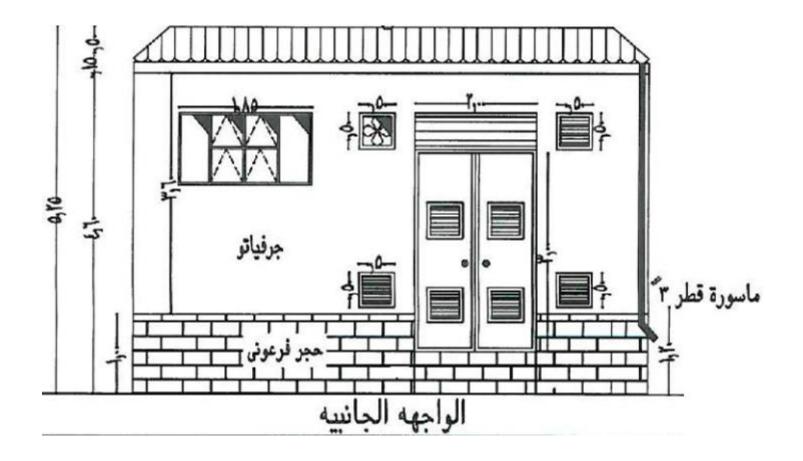
Standard Room details are according to Electricity company Regulation. The below typical is for 22KV Approved Distributor Building.

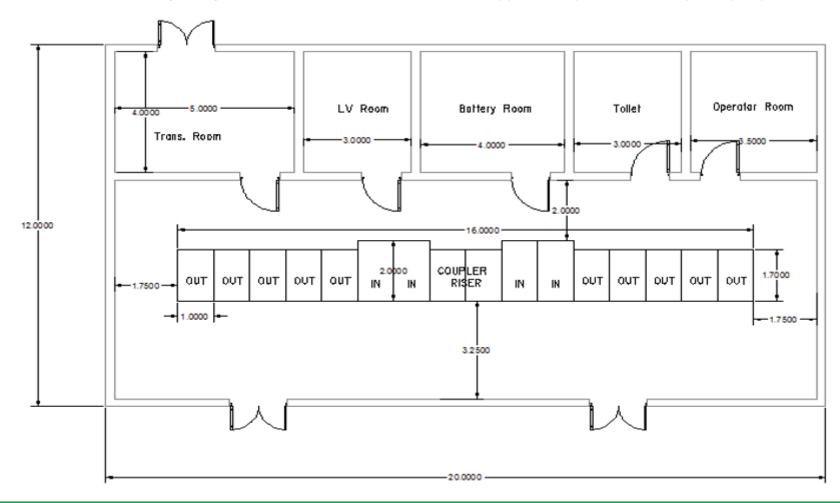


• Shots from Site

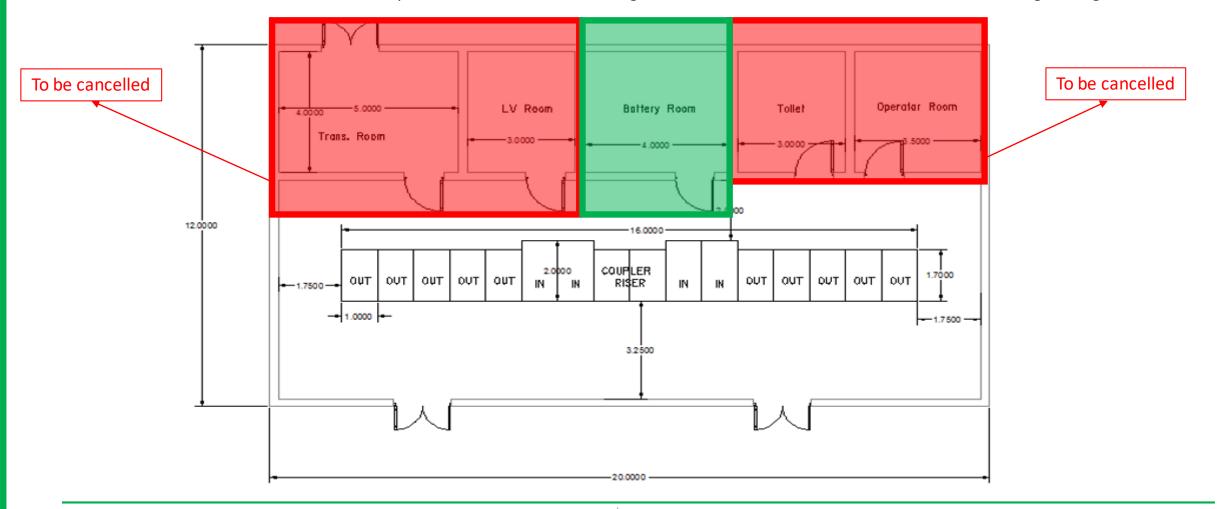


• Shots from Site




• Standard Room details are according to Electricity company Regulation.

• In some special cases, MVSG building design can be customized but should be approved by the Electricity company.

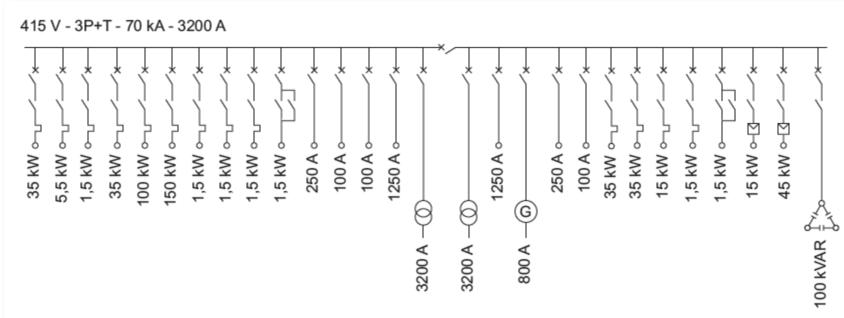


MVSG Room "inside building" Design.

- Battery Room can be removed from this layout if there is availability to feed DC circuits via Building UPS.
- Dimensions of this room will be based on required no. of cells and according to NEC Article 110 recommendations + considering routing

LV Switchgears Room Design Aspects

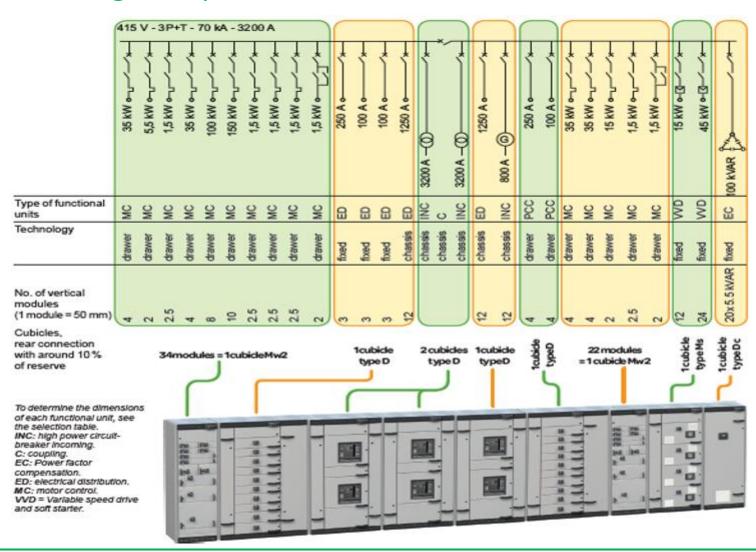
- Approximate dimensions Sizing of LV switchgears basically depends on:
 - ✓ Ratings of circuit breakers.
 - ✓ Quantity of each rating of required circuit breakers.
 - ✓ Capacitor Banks if required.
 - ✓ Detuning reactors with capacitor Banks if required.
 - ✓ Complexity of control required from the switchgear.
 - ✓ Drawability: Withdrawable or fixed?
 - ✓ Accessibility: Front or Rear?
 - ✓ There are some other important aspects will affect sizing of LV switchgear which will be implemented in shop drawings phase by the switchgear manufacturer. These shop drawings must be revised with the designed electrical rooms to know if the room dimensions will be suitable or not. Below mentioned, some of these factors:
 - Form
 - IP
 - Temperature
 - No of cables entering the switchgear ... etc.



1. Free Stand Switchgear Sizing Example

Family Name: Blokset

single-wire diagramm of the installation



1. Free Stand Switchgear Sizing Example

Family Name: Blokset

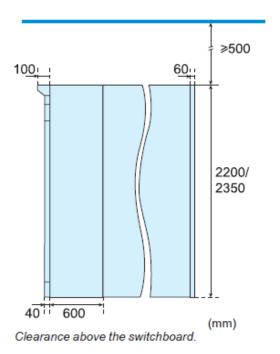
- Guidance Notes for Blokset family are stated below for approximate dimensions sizing:
 - Consisting of 40 vertical modules.
 - Each Module is 50 mm which means the total height of the functional units space = 2000 mm (2 m).
 - Standard front or rear access "cable compartment" is 400 mm width.
 - Standard vertical "Busbar compartment" is W = 200 mm ,
 D = 600 mm if panel is front access or = 1000 mm if panel is rear access.
 - Standard "functional unit compartment" is W = 700 mm except if there will be 4000A or larger C.B (NW40b, NW50, NW63): Width will be 1200 mm.
- Follow <u>Blokset Solution guide</u> to make approximate LV Free stand switchgear dimensions sizing.

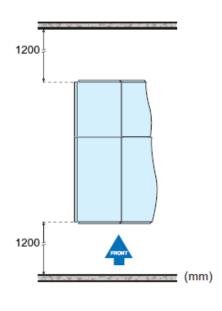
Capacitor Bank Cells approximate Dimensions guidance table:

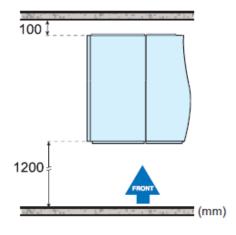
Capacitor Bank KVAR	No of cells	Cell Width configuration (mm)	Total Diemsnions Required (mm)
Up to 300 KVAR without Detuning Reactors	1	(200 + 700)	900
Up to 300 KVAR with Detuning Reactors	1	(200 + 700 + 400)	1300
More than 300 KVAR up to 600 KVAR without Detuning Reactors	2	(700) + (200 + 700)	1600
More than 300 KVAR up to 600 KVAR with Detuning Reactors	2	(400 + 700) + (200 + 700 + 400)	2600

• Notes:

- The Required No of steps affects cells dimensions, Varlogic type "VPL6N / VPL12N" & the cost.
- The above mentioned approximated table is based on 6 Step x 50 KVAR for each "total required 300 KVAR".
- The above mentioned approximated table is based on Temperature = 40 degrees Celsius.
- If Temperature is more than 40 degrees Celsius & capacitor Banks are "with Detuning Reactors": all a/m "400 mm" will be "700 mm"
- Capacitor Bank Circuit Breaker isn't considered in the a/m dimensions.



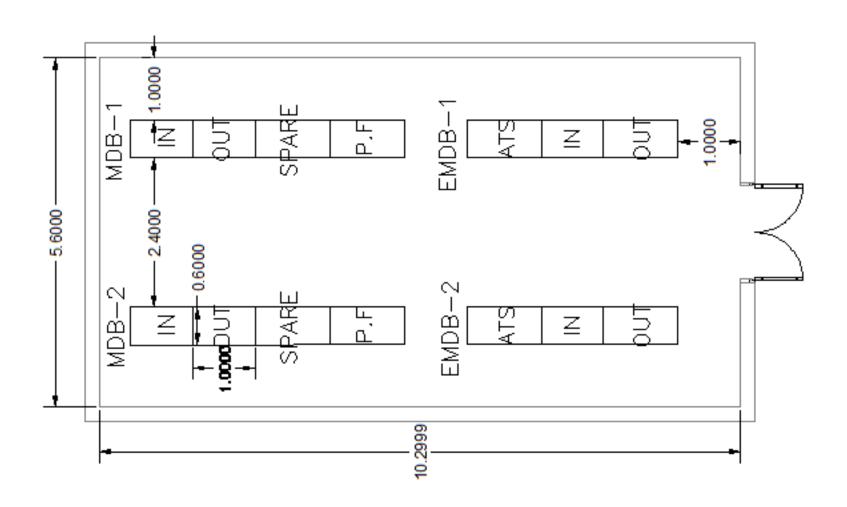


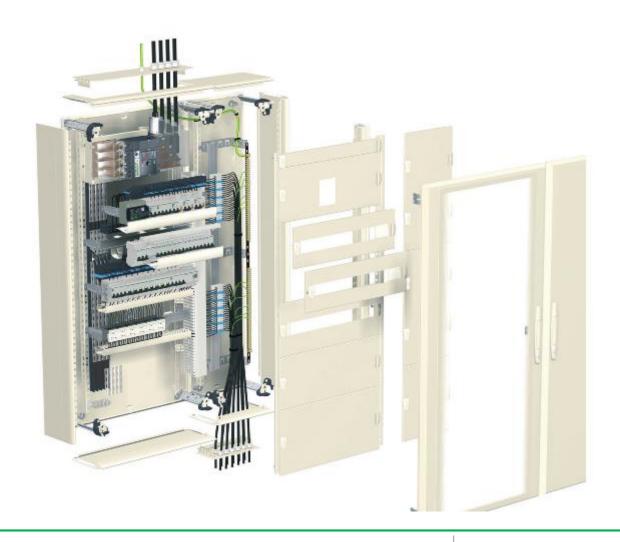

- Recommended Clearances about the switchgear stated by Manufacturer can be followed.
 - ✓ Below shot is Schneider Electric Recommendation regarding clearances about BLOKSET.
- NEC Article 110 to be applied.

Minimum distances around switchboard

■ Provide a minimum space of 500 mm above the switchboard for connection by cables or for fishplating the horizontal busbar.

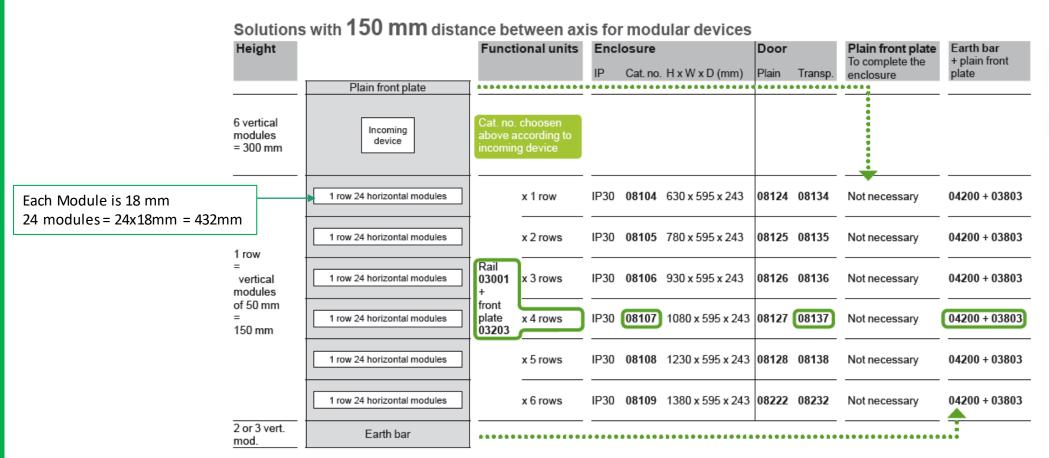
Rear connection.


Front connection.


LV Switchgears Room Layout Sample

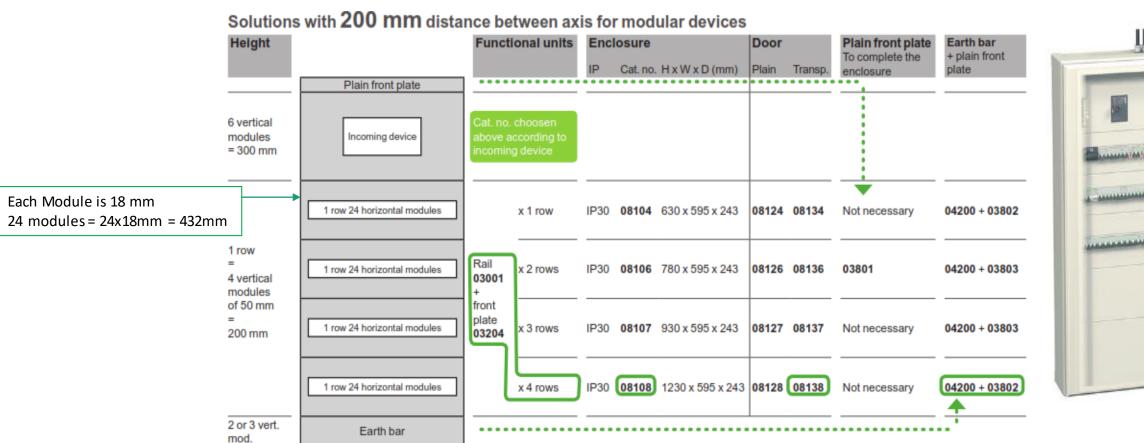
2. Surface Mounted

Product Name: Prisma Plus G



2. Surface Mounted

Product Name: Prisma Plus G



2. Surface Mounted

Product Name: Prisma Plus G

Approximated estimation for no of MCBs inside panel

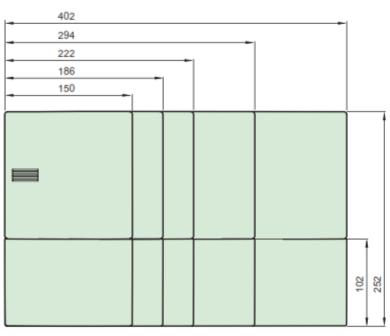
Product Name: Prisma Plus G

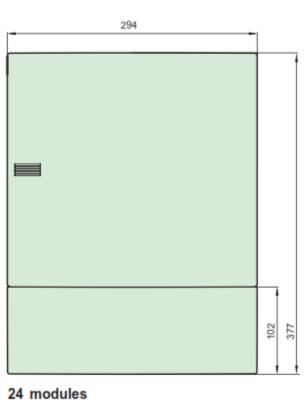
Maxii	Maximum permissible 24 Modules for one Row - Each Module is 18 mm - hence; One row = 24 x 18mm = 432 mm						
CB type	Family NAME	No of poles	No of poles Width in 18-mm (1-module) Maximum quantity of MCBs p				
МСВ	IC60	1P	1	24 / 1 = 24 MCBs			
МСВ	IC60	2P	2	24 / 2 = 12 MCBs			
МСВ	IC60	3P	3	24 / 3 = 8 MCBs			
МСВ	IC60	4P	4	24 / 4 = 6 MCBs			

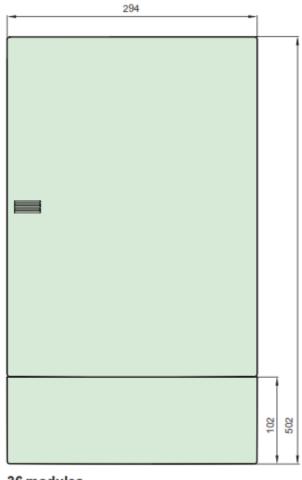
Plain front plate Incoming device 1 row 24 horizontal modules Earth bar

> H x W x D (mm) 1380 x 595 x 243

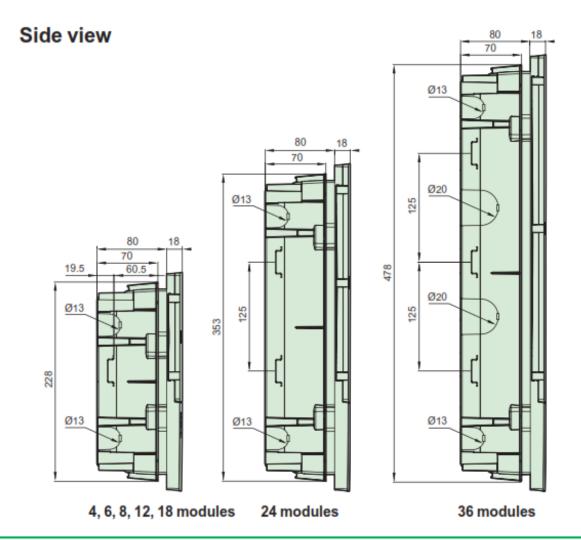
• Product Name: Mini Pragma






Product Name: Mini Pragma

Front view



36 modules

Schneider Electric

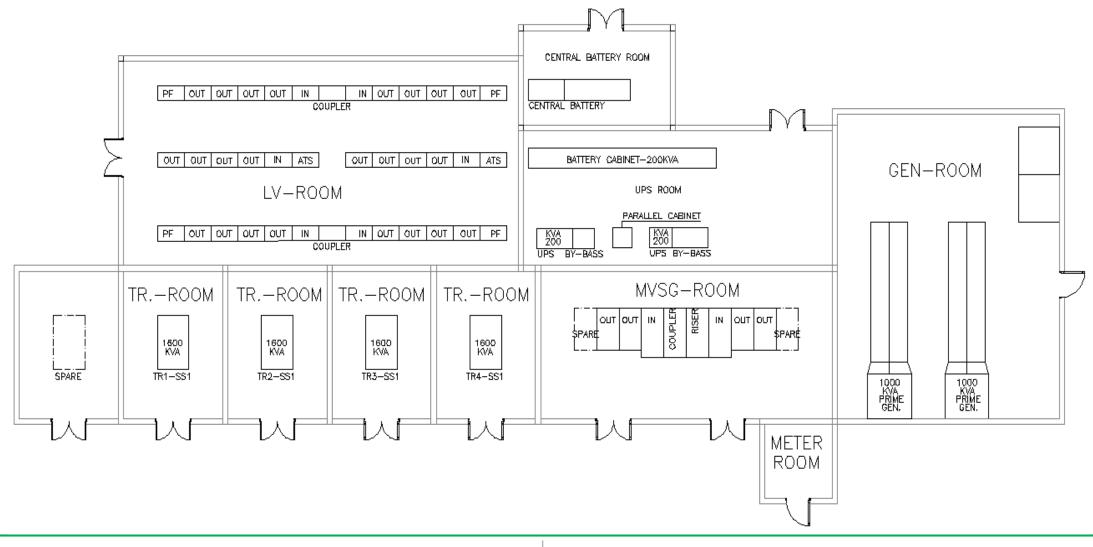
Product Name: Mini Pragma

• Product Name: Mini Pragma

Ma	Maximum permissible 18 Modules for one Row - Each Module is 18 mm - hence; One row = 18 x 18mm = 324 mm					
CB type	Family NAME	No of poles	Width in 18-mm (1-module)	Maximum quantity of MCBs per 18 modules in 1 row		
МСВ	IC60	1P	1	18 / 1 = 18 MCBs		
МСВ	IC60	2P	2	18 / 2 = 9 MCBs		
МСВ	IC60	3P	3	18 / 3 = 6 MCBs		
МСВ	IC60	4P	4	18 / 4 : can contain max. 4 MCBs		

ont view		294	1	207	
402 294 222 186 150					
				=	
	102		377		102
4, 6, 8, 12, 18 modules	1 1	24 modules	<u> </u>	36 modules	

White enclosures						
		Rated current In (A)				
4	4	50				
6	6	63				
8	8	63				
12	12	63				
18	18	63				
12	24	63				
12	36	63				
	Number of modules per row 4 6 8 12 18	Number of modules per row Capacity in 18 mm modules 4 4 6 6 8 8 12 12 18 18 12 24				



Full Combined Electrical Rooms layout:

