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a b s t r a c t 

With growing concerns toward heavy metal pollution in wastewater due to their negative effects on human 
health and also the environment, a lot of effort has been put to find some novel and efficient methods in order to 
reduce or eliminate such hazardous elements. Chlorella vulgaris microalgae has been successful in heavy metal 
removal hence, the current study tries to develop an effective nickel removal technique using the combination 
of membrane separation along with microalgae dynamic membrane (DM) plus Chlorella vulgaris suspension 
in order to treat the synthetic vegetable oil wastewater. The experiments were divided into three phases. First 
phase was to comprehend the effect of microalgae’s dry weight (DW) on nickel removal efficiency. With nickel’s 
initial concentration being 10 mg. L − 1 , the results indicated that by tripling the concentration of microalgae, the 
removal efficiency increases by more than 66% within the first hour of treatment. There was no significance 
increase in treatment efficiency by increasing the treatment time from 1 h to 24 h. In phase 2, by initializing the 
nickel concentration to 10,12.5,17.5 and 20 mg. L − 1 , the experiments were done in a continuous mode inside 
a DM bioreactor (DMBR) after the microalgae DM was formed, which led to nickel’s removal efficiency being 
reduced from 60% of previous phase to 22% after 1 h. In the third and last phase, fluidized microalgae inside a 
photobioreactor (PBR) plus micro-algae DM (DMPBR) were put in use. Comparing the results of this phase with 
last two phases, this phase with 72% removal compared to 63.6, 52 of previous phases, had the best results yet. 
To conclude, forming a dynamic membrane, not only preserves the primary membrane but also enhances the 
heavy metal removal efficiency. 
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. Introduction 

Vast quantities of organic and inorganic compounds are released into
he environment annually because of human activities. Among these
ompounds are heavy metals, which are discharged from domestic plus
ndustrial wastewaters into the water resources and will cause some
rastic changes in those aquatic systems and their living organisms
 1 , 2 ]. Heavy metals like nickel, cadmium, copper etc, have become the
lobal concern in recent years because of their toxicity, accumulation
nd concentration in living organisms [1–3] . Also, at higher concentra-
ions, heavy metal ions released from unspecific complex compounds in
he cell, will lead to toxic effects [ 4 , 5 ]. 

Nickel is used in many industries and large amounts of nickel can be
ound in their effluents. The recommended standard for Ni in industrial
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ffluents by WHO is 0.02 mg. L − 1 , while US-EPA suggested 0.01 mg.
 

− 1 for this element. The average concentration of Ni in Netherland’s
round water ranges from 7.9 μg. L − 1 (in urban areas) up to 16.6 μg.
 

− 1 (in rural areas) [ 2 , 6 ]. 
The World Health Organization (WHO) has declared that the amount

f nickel metal ions in human-consumable water should not exceed 0.02
. L − 1 . High concentration of nickel in aqueous solutions may cause
evere damages to human health, which include, but are not limited to,
amages to lungs and kidneys, skin dermatitis, and renal edema [7–9] . 

Certain food items contain high percentages of nickel, such as cocoa
up to 8.2 -12 mg.kg − 1 fresh wet weight), dark chocolate, soya beans,
atmeal, nuts, and almonds, to name a few. From this, it can be con-
luded that industries using such items may have some amount of nickel
n their wastewater [10] . 
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Table 1 

Common heavy metal treatments systems. 

Treatment system Heavy metal concentration (mg.L − 1 ) Heavy metal removal efficiency (%) Refs. 

Ion exchange 200 Co (III): 100Ni (II): 100Cr (III): 100 [15] 
Reverse osmosis 50 to 200 Cu(II): 96Pb(II): 97.5Ni(II): 98.5 [24] 
Electrochemical treatment Cu: 3810Ni: 3520 Cu: 98Ni: 45 [25] 
Electrodialysis 22.4 and 24.4 Cu (II): > 99 Ni (II): > 99 [26] 

Table 2 

Some common biological systems for heavy metal removal. 

Treatment system 

Heavy metal concentration 

(mg. L − 1 ) 

Heavy metal removal 

efficiency (%) Refs. 

Activated sludge 10 to 100 at 100 mg. L − 1 metal 
concentration: 
Cu (II): 100 
Cr (III): 85 
Co (II): 80 
Zn(II): 100 
Cd(II): 90 
Ni(II): 25 

[28] 

Cu(II): 96 
Pb(II): 97.5 

MBR + eggshell Diatoms Al (III): 6 
Fe (II): 6.5 
Zn (II): 12 
As (III): 5.27 
Ag(I): 4.28 
Ni(II): 3.95 Cr(VI): 4.09 
Pb (II): 4.081 

Al (III): 97 
Fe (II): 74 
Zn (II): 59 
As (III): 96.67 / 96.48 
Ag(I): 98.52 / 98.46 
Ni(II): 95.24 / 95.44 
Cr(VI): 7.33 / 9.29 
Pb (II): 98.82 / 98.80 

[29] 
[30] 

Biochar 200 mg. L − 1 Ni (II): 45 to 87 [31] 
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To add to the above-mentioned cases in the food industries, edible
egetable oils undergo a hydrogenation process, which is one of the most
mportant parts of edible oil processing in order to achieve products
ith predetermined physical properties and chemical stability beyond

he liquid form in the earlier phase, and hydrogenation needs nickel as
 catalyst [ 11 , 12 ]. It has been declared that the amount of nickel used
nnually is 500,000 to 1,000,000 pounds for making 2.5 billion pounds
f vegetable oil [13] . 

Several methods have been developed in order to remove nickel over
he years which have been commonly used, methods such as chemi-
al precipitation [14] , Ion exchange [15] , activated carbon adsorbents
 16 , 17 ], electro dialysis [18] , electrochemical treatment [19] and re-
erse osmosis [20] . However, these techniques have many drawbacks
uch as having high operating costs, being dangerous to the environ-
ent and energy consuming [21–23] . Table 1 represents some of the
ost common wastewater treatment systems used for heavy metal re-
oval. 

On the other hand, many living microorganisms (e.g., algae, fungi,
acteria and yeast) have been widely studied because of low operating
ost, and being ecofriendly, metal bio sorption from polluted waters are
ecoming more popular. Among them, micro algae have proved to have
he highest metal bio adsorption capacities, this is because of their cell
alls, which are made of a fiber-like structure, plus from their shapeless

mbedding matrix of various polysaccharides [27] . 
Table 2 shows some of the most common biological methods for

eavy metal removal. 
Plus, heavy metal removal by algal biomass is not only comparable

ith but also sometimes even higher than that of chemical sorbents [32] .
It is known that biological nutrient removal is one of the most effi-

ient ways for wastewater treatment [33–35] . 
Microalgae are photosynthetic microorganisms which wield energy

rom the sun or artificial light sources to grow and consume inorganic
utrients and CO 2 [ 36 , 37 ]. 

Wastewater treatment using microalgae, can offer ecologically safe,
elatively inexpensive, and more effective ways to remove nutrients
2 
nd metals from wastewater than the conventional methods [38] . Also,
atamifard et al. have proved that algae are more effective in heavy
etal removal than the activated sludge [39] . 

Table 3 is a brief summary of several microalgal treatment systems
ontaminated by wastewaters containing heavy metals. 

Compared to most water treatment technologies, membranes have
 competitive advantage in treating alternative nutrient streams due to
implicity of automation, relatively small footprint required, and low
ensitivity to many influent water quality parameters (e.g., pH, temper-
ture, dissolved nutrients) [44–46] . Submerged membrane technology
as been chosen due to a lower energetic consumption compared to tan-
ential filtration. Submerged membranes are already used in membrane
ioreactor (MBR) for wastewater treatment [ 47 , 48 ]. 

As combination of membrane separation and wastewater treatment
sing microalgae goes, membrane photobioreactor (MPBR) has shown a
ood performance both in microalgae biomass production and nutrients
emoval [39] . In addition, the generated algal biomass, can be used to
roduce biofuel [36] , lipid and protein production [49] , CO 2 capturing
50] etc. Therefore, it can be deduced that MPBR is a competitive tech-
ology for the treatment of wastewater [51] . Plus, MPBRs have shown to
rovide a high controllability on microalgae retention inside the opera-
ion system because of a strict regulation in solid and hydraulic retention
ime (HRT and SRT) [52] . 

However, the main disadvantage of membrane separation is a phe-
omenon called membrane fouling, which is due to the algal cake layer
ormed on the membrane’s surface, which can lead to an increase in
nergy demand as flow decreases and hydraulic resistance increases
 53 , 54 ]. However, this issue can be taken advantage of by forming a
econdary algal membrane as a DM on the static membrane in order
o increase the separation efficiency [55] . In this system, in addition to
iological nutrient degradation, physical separation will take place si-
ultaneously with the help of DM, as microalgae have been shown to be

ery good at removing heavy metals from wastewater. Other benefits of
M include improving separation efficiency and reducing the high cost
f membrane recovery [39] . It is worth noting that DM can be easily
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Table 3 

A brief summary of the methods for heavy metals removal using microalgae. 

Microalgae species Treatment system 

Heavy metal concentration 

(mg. L − 1 ) 

Heavy metal removal 

efficiency (%) Refs. 

Scenedesmus acutus / 
chlorella vulgaris 
Scenedesmus acutus / 
Chlorella vulgaris 

Kappa-carrageenan 
(Fluidized bed) 
Polyurethane foam 

(Packed bed) 

Cd: 5 
Zn: 300 
Cr: 1 

Cd: 73 / 66 
Zn: 91 / 85 
Cr: 36 / 48 
Cd: 69 / 57 
Zn: 84 / 78 
Cr: 31 / 34 

[40] 

Chlorella vulgaris Erlenmeyer (batch 
system) 

nNiO: 10-50 nNiO to nNi 
bio-reduction: 85 

[41] 

Chlorella vulgaris Dynamic membrane 
photo bioreactor 

Hg: 0.4-0.8 Hg: 78.16 [39] 

Fucus vesiculosus Continuous system using 
A-PEI material 

25-30 Cd(II): 56.22 
Ni(II): 47.85 
Pb(II): 74.76 
Cu (II): 55.60 

[42] 

Chlorella vulgaris Membrane photo 
bioreactor 

Cr: 0.5-5 Cr: 41.9, 50 [43] 

Fig. 1. Schematic diagram of dynamic MBPR. 
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emoved from the membrane, either by simple washing or by washing
n the reverse flow of air or water [56] . 

Some investigations have been made on heavy metal removal using
lgal suspension but, as no investigation has been made on nickel re-
oval using both algae DM and algal suspension inside a DMPBR, it

ecame the purpose of this study to investigate and compare nickel’s
emoval efficiency from synthetic vegetable oil wastewater using this
echnique in three different phases including removal efficiency using
icroalgae suspension, microalgae DMBR and DMPBR. 

. Materials and method 

.1. DMPBR setup 

The DMPBR was made of plexiglass with the height of 60 cm, length
f 15 cm, width of 10 cm, and the working volume of 4 liters which is
chematically illustrated in Fig. 1 . A sparger was installed at the bottom
f the DMPBR, which was connected to an air pump with aeration rate
f 4.5 lit.min − 1 . A polymer membrane was used in the experiment as the
tatic membrane with pore size of approximately 0.4 𝜇m and effective
urface area of 0.048 m 

2 . The membrane’s distance from the sparger
as 5 cm. A computer and a Trans-Membrane Pressure (TMP) gauge
3 
ere employed. Fig. 2 represents the formation of a microalgae-dynamic
embrane on a static membrane. 

.2. Microalgae and nickel suspension preparation 

The microalgae used in this experiment were Chlorella vulgaris , which
s a kind of green algae well known for its heavy metal adsorption and
ound shape. For microalgae cultivation, BG 11 culture medium was
sed [57] . 5% of microalgae were inoculated to the 10-liter bubble col-
mn photobioreactor and transferred to the MPBR after the biomass
rowth. All experiments were performed under laboratory conditions
t 25°C. Also, the microalgae light/dark regime was 24:0 under 27
mol.m 

− 2 s − 1 white LED illuminating the MPBR. Moreover, the initial
W of the microalgae was set to 0.206 g. L − 1 . 

As nickel removal has been the main objective of this study, and
egetable oil wastewater has many other components besides nickel, it
as decided to synthesize one instead of using the real one. The nickel
as obtained from Nickel nitrate hexahydrate salt with the chemical

ormula of Ni (NO 2 ) 3 .6H NiO and molar mass of 290.81 mol. g − 1 (Merck
Germany) Nickel concentrations were 10, 12.5, 17.5 and 20 mg. L − 1 

hich was similar to that in Kant Mehta’s study [58] . 
To investigate the most efficient method in this study, three different

hases were designed, first phase was about investigating nickel removal
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Fig. 2. formation of microalgae-dynamic 
membrane. 

Table 4 

A summary of taken steps. 

Row Phase Description 

1 Suspension (phase 1) Investigating nickel removal using microalgae 
suspension within an Erlenmeyer flask 

2 DMPBR (phase 2) Investigating nickel removal using algal dynamic 
membrane within the membrane photo bioreactor 

3 DMPBR and suspension 
(phase 3) 

Investigating nickel removal using algal dynamic 
membrane and microalgae suspension within the 
membrane photo bioreactor simultaneously 
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sing microalgae suspension, phase two put algae DM in use for this
urpose and lastly phase three was the combination of these two phases.
able 4 represents a summary of the mentioned steps. 

In phase 1, Four Erlenmeyer flasks each with volume of 250 ml were
sed to observe the removal of nickel using micro algae suspension. 

As for phase 2 a DMBR was used to witness the same procedure
s in phase 1 but with microalgae DM. Firstly, a micro-algae dynamic
as formed elsewhere and then, it was put inside the photobioreactor.
his is done by measuring Trans Membrane Pressure (TMP). As algae-
ynamic membrane forms, TMP steadily rises which shows the quantity
f microalgae on the membrane’s surface. It was concluded that if TMP
s in the range of 300 mbar then algae DM has been formed [39] . 

In phase 3, just as phase 2, soon after the microalgae DM’s formation
as completed, it was placed within the DMPBR however, for this phase

he biological treatment was not only up to microalgae DM, but also to
he suspension of the living microalgae. 

The removed nickel was analyzed by atomic adsorption test using
arian’s SpectrAA-200 model. 

. Results and discussion 

.1. The effect of microalgae suspension on nickel removal 

In this phase of experiments, an investigation of the effect of microal-
ae suspension on nickel removal efficiency was made. Two times were
ssumed (1 h and 24 h). Moreover, a constant concentration of nickel
10 mg. L − 1 ) and two DWs of microalgae (0.062, 0.206 g. L − 1 ) were
onsidered in order to find the most efficient time and DW for nickel
emoval, this is shown in Fig. 3 . 

As it is comprehendible from the results, there is a significant differ-
nce between the results, for DW = 0.062 g. L − 1 a 36% of nickel removal
4 
fficiency was reached and for the DW = 0.206 g. L − 1 a 60% of nickel
emoval efficiency at first hour of microalgal treatment was reached. In
ther words, by tripling the concentration of microalgae nickel removal
fficiency increases by more than 66% in the first hour of the treatment.
lso, there is no significant increase in treatment efficiency by increas-

ng the treatment time from 1 h to 24 h and the greatest amount of heavy
etal removal occurs in the first hour of the biological treatment pro-

ess meaning that the rate of removal in the next hours of the process
an be ignored. This result is regarded in Pahlevanzadeh et al. report
59] . 

.2. The effect of microalgae DM on nickel removal 

In the second phase of the experiments, after the DM had been
ormed, it had to begin the treatment of 4 liters of vegetable oil syn-
hetic wastewater in the DMBR and after 30 and 60 min, the samples
ere collected. This time, nickel concentrations were between the initial
alue of 10 mg. L − 1 to 12.5 mg. L − 1 , reaching 17.5 mg. L − 1 , and 20 mg.
 

− 1 . The samples were collected from the permeate stream from DM.
ig. 4 represents the results for microalgae DMBR efficiency in nickel
emoval. 

Comparing the first and second phase, at DW = 0.206 g. L − 1 , nickel
oncentration was 10 g.L − 1 , it is clear that nickel removal efficiency is
educed from 60% in phase 1 to 22% in phase 2. compared to phase
, the nickel removal efficiency has decreased more than 63%. Since in
hase 1, biological nickel removal has been occurred by Chlorella vulgaris

uspension in 250 ml Erlenmeyer in batch mode. On the other hand, in
hase 2, nickel was eliminated in continuous mode in 4 Liters DMBR in
he absence of microalgae suspension resulting in nickel separation only
y microalgae DM from vegetable oil synthetic wastewater. 
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Fig. 3. Nickel removal efficiency vs. DW. 

Fig. 4. Microalgae DMBR nickel removal effi- 
ciency vs. nickel influent concentration. 

5 
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Fig. 5. Nickel removal efficiency vs. using mi- 
croalgae DMPBR and microalgae suspension 
and nickel influent concentration. 

Fig. 6. Nickel effluent vs. nickel influent con- 
centration after 30 min of treatment in DMPBR. 
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It is a common fact that Fluidized (suspended) sorbents not only
rovide a superb mixing, but also maintain the phases fully mixed at
ll times in addition to all the mentioned items, mass transfer rate is
mproved among the phases [60–63] . As in this condition, sorbents are
n a constant movement through the photo bioreactor, moving and mi-
6 
rating within it thoroughly and contacting the pollutants in high rate
 62 , 64 ]. 

On the other hand, there is immobilization or fixing the sorbents
ethods. Such methods are done in a way that will limit the practical’s
ovement of atoms, molecules, and substances of biological material
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Fig. 7. Nickel effluent vs. nickel influent 
concentration after 60 min of treatment in 
DMPBR. 

Table 5 

A comparison of nickel effluent between phase 2 and phase 3. 

Treatment 
phase 

Ni influent 
(mg. L − 1 ) 

Ni effluent in microalgae 
suspension(mg. L − 1 )30 / 60 
min 

Ni effluent in membrane 
permeate(mg. L − 1 )30 / 60 
min 

Microalgae DMBR 
efficiency (%)30 / 
60 min 

Chlorella vulgaris 
suspension efficiency 
(%)30 / 60 min 

Microalgae DMBPR 
efficiency (%)30 / 
60min 

2 10 
12.5 
17.5 
20 

- 
- 
- 
- 

8.5 / 7.8 
10.2 / 9.2 
15.48 / 14.76 
17 / 16.2 

15 / 22 
18.4 / 26.4 
11.5 / 18 
15 / 19 

- 
- 
- 
- 

- 
- 
- 
- 

3 10 
12.5 
17.5 
20 

5.7 / 5.4 
7.6 / 7 
7.7 / 10 
11.6 / 11 

4.3 / 3.64 
6.7 / 6 
5.25 / 4.9 
10.5 / 9.8 

14 / 14 
7.2 / 8 
14 / 12 
5.5 / 6 

43 / 46 
39.2 / 44 
56 / 60 
42 / 45 

57 / 63.6 
46.4 / 52 
70 / 72 
47.5 / 51 
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artially or entirely on a solid base or within some unique construc-
ions. Comparing fixed methods to fluidized methods, there is a much
igher risk of clogging and also lower adsorption efficiency since flu-
dization maximizes the surface contact between bio-sorbents and pol-
utants [ 60 , 65 ]. 

Same goes for this experiment. Meaning that, this is the reason be-
ind more nickel removal efficiency in the first phase than the second.
t can be argued that mobilized bio-sorbents offer much higher absorp-
ion efficiency than immobilized microalgae on the surface of membrane
dynamic membrane). As microalgae is able to move freely throughout
he photo bioreactor, there is much higher chance of contacting between
ickel and microalgae plus there is no clogging occurrence. 

This result is essential as it shows the position of the next phase. For
he next phase all the considerations will not be changed except one, in
he following stage a microalgae DM along with algal suspension will
ace the same concentrations of nickel. It is anticipated that in the next
hase, more nickel would be removed. 

.3. The effect of combination of microalgae DM and microalgae 

uspension in DMPBR system on nickel removal 

This peculiar phase was probably the most complex and the hardest
ne in which by the same PBR, the maximum removal percentage was
7 
argeted. This phase was in fact a combination of the first and the second
hases. After forming the DM, it was put inside the DMPBR. However,
ickel contaminated wastewater was added to the algae suspension. This
as because, as observed in the first phase, Chlorella vulgaris itself had

he potential to remove nickel. Hence, combining microalgae DM and
icroalgae suspension could be a very promising capability. Fig. 5 il-

ustrates the results for this phase. The concentration of microalgae in
his phase was similar to previous phases (DW = 0.206 g.L − 1 ), since the
bjective of this phase was to determine the removal efficiency of al-
al dynamic membrane along with microalgae suspension. It is obvious
hat by changing the microalgae’s concentration, whether suspension’s
r DMPBR’s, the yielded results would be untrustworthy. 

As expected, combining the first two phases provided the best re-
ults. Reaching the maximum level of nickel removal, at 72%, was quite
atisfying. Like in the previous experiment, we observed that there was a
ignificant difference between the 30 min and 60 min samples, whether
hey were obtained from microalgae DM or algae suspension. 

Notice how much higher nickel removal percentage was achieved
y using DMPBR. It is an astonishing result, proving that the method is
otally effective. The final outcome is that using both microalgae DM and
icroalgae suspension can be the most effective method of removing
ickel from industrial wastewater. 



M.M. Emamshoushtari, S. Helchi, F. Pajoum Shariati et al. Energy Nexus 7 (2022) 100116 

 

6  

t  

c
 

a  

b  

s  

e  

s  

i

4

 

l  

a  

n  

u  

m  

e  

e  

a  

r  

w  

s  

c  

u  

a  

a  

w

A

 

f

R

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

[  

 

[  

[  

[  

 

[  

 

[  

 

[  

 

[  

[  

 

[  

 

[  

 

[  

 

[  

[  

 

[  

[  

 

[  

[  

 

[  

 

[  

[  

 

 

 

[  

 

[  

 

[  

 

[  

 

 

 

[  

 

 

[  

 

[  

 

[  

 

[  

 

[  
Figs. 6 and 7 illustrate the nickel influent and effluent after 30 and
0 min treatment in DMPBR, respectively. The illustrations vividly show
hat in phase 3, microalgae DMPBR had the best nickel removal results
ompared with two previous phases. 

Table 5 represents a comparison of nickel effluent between phase 2
nd phase 3. This chart shows that in phase 3 much more nickel has
een removed. This is because of the existence of micro algae’s suspen-
ion. After three times of repetition, the average difference between the
ffluents in 30 min is 6.10 mg. L − 1 and in 60 min is 5.81 mg. L − 1 , which
hows that in 30 min of treatment time more nickel will be treated than
n 60 min of treatment time. 

. Conclusion 

Concerning heavy metal removal, MPBRs have shown to be an excel-
ent method for this purpose. Using Chlorella micro algae’s suspension
long with its formed DM proved to be the most fruitful combination in
ickel elimination reaching 72% of its removal within an hour, while
sing suspended microalgae or algae-dynamic membrane led to maxi-
um 60% and 22% of nickel removal respectively. Managing the water-

nergy nexus has become a major challenge in many parts of the world,
specially in the Middle East. Due to limited water and energy resources
nd climate change, it is time to consider water as a reusable resource
ather than a consumable one. In addition, the energy consumption of
astewater systems should also be considered, as many of them con-

ume a large amount of energy to treat wastewater, which is not a logi-
al trade-off between water and energy. This has led scientists to come
p with an effective, and green method to treat wastewater. This novel
lgal dynamic MPBR, being eco-friendly, and low energy demanding is
n ideal technique for commercial practice in nickel elimination from
astewater. 
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