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HIGHLIGHTS

e Data-driven methods in both membrane and thermal desalination systems are reviewed.
o A variety of Al and DOE methods are used in desalination area are analyzed.

o Applications of different methods in various desalination systems are categorized.

o Influential parameters for different methods and desalination systems are reported.

e Research gaps in terms of desalination systems and data-driven models are proposed.

ARTICLE INFO ABSTRACT
Keywords: The substitution of conventional mathematical models with fast and accurate modeling tools can result in the
Desalination further development of desalination technologies and tackling the need for freshwater. Due to the great capa-

Data-driven methods
Artificial intelligence
Machine learning

Design of experiment

bility of data-driven methods in analyzing complex systems, several attempts have been made to study various
desalination systems using data-driven approaches. In this state-of-the-art review, the application of various
artificial intelligence and design of experiment data-driven methods for analyzing different desalination tech-
nologies have been thoroughly investigated. According to the applications of data-driven methods in the field of
desalination, the reviewed investigations are classified into five categories namely performance prediction using
operational parameters, performance prediction using design parameters, optimization and correlation devel-
opment, maintenance, and control of desalination systems. For each category, valuable information about the
data-driven methods such as inputs, outputs, hyper-parameter tuning methods, and size of datasets have been
provided and the main remarks are reported. The findings showed that data-driven methods can play a vital role
in each aforementioned application for both thermal and membrane-based desalination technologies. Eventually,
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the research gaps are highlighted and a roadmap is also provided for future data-driven analysis of various
desalination systems and their further advancement.

1. Introduction

It is anticipated that by the year 2050, the water shortage problem
turns out to be a serious problem and around 5.7 billion people will face
the water shortage [1]. Climate changes, industrialization, and popu-
lation growth are mentioned as main contributors to this worldwide
issue [2,3]. Herein, desalination technologies have started to play a vital
role in mitigating water scarcity mainly due to the fact that around 97%
of available water on earth are found to be saline and brackish [4].

The employment of accurate and fast analytical tools can lead to
significant performance improvement and cost reduction of desalination
systems, paving the way for further development of desalination systems
and alleviating the water scarcity crisis. However, existing conventional
mathematical methods mainly suffer from insufficient accuracy and
high complexity due to simplified assumptions employed in their
development, the existence of several affecting parameters, and complex
phenomena inside the desalination systems [5,6]. In this situation, data-
driven methods as robust black-box analytical tools can result in a more
precise analysis of various desalination technologies and therefore
mitigate the mentioned issues. These methods do not require specific in-
depth knowledge about the desalination systems and are generally based
on the analysis of a set of input/output data [7].

The great benefits of data-driven methods over conventional math-
ematical modeling tools have drawn researchers' attention to the use of
these promising methods in desalination systems. A number of re-
searchers reviewed the application of classical artificial neural networks
(ANN) in membrane-based desalination systems [7-10]. Also, a recent
review article has been conducted on the utilization of machine learning
(ML) models for performance modeling of solar still desalination sys-
tems [11]. To the best of the authors' knowledge, there is a deficiency for
a comprehensive review on the application of various data-driven
methods including design of experiment (DOE) and artificial intelli-
gence (AI) methods in both thermal and filtration-based desalination
systems. Furthermore, the application of data-driven methods for
various purposes including the distribution of applied data-driven
methods in each desalination system, and the size of data sets have
been given insufficient attention in published review studies. Therefore,
this study aims to comprehensively discuss and categorize the state-of-
the-art publications based on the application of data-driven methods
in desalination systems across five categories, including performance
prediction using operational parameters, performance prediction
considering design parameters, optimization and correlation develop-
ment, maintenance, and control (Fig. 1). Moreover, the available liter-
ature are systematically reviewed and summarized to identify the

Application of data-driven
methods in desalination systems

potential research gaps on the application of data-driven techniques in
the desalination area.

2. Overview of desalination technologies and data-driven
methods

2.1. Overview of desalination technologies

As shown in Fig. 2, desalination technologies investigated by data-
driven tools mainly fall under two categories of filtration-based and
thermal processes. The number against each technology represents the
data-driven studies that have been conducted to analyze the mentioned
desalination technologies and have been reported in the current review.
In the case of filtration-based processes, semipermeable membranes are
utilized for freshwater production, except for the capacitive deionization
(CDI) desalination method in which mainly the porous electrodes are
used for salt removal. Furthermore, in the thermal-based process
freshwater is mainly produced by vaporization and condensation. A
brief description of desalination technologies reviewed in this review
paper is provided in Table 1. Readers are referred to cited references for
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RO (23)
~| FO (6)
_|Filtration-based| | MD (29)
process
~| ED (1)
Reviewed desaliantion CDI(2)
technologies
SS (30)
HDH (8)
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Fig. 2. Desalination technologies analyzed using data-driven methods.

—  Performance prediction using design parameters

Optimization and correlation development

Maintenance

Fig. 1. Applications of data-driven methods in desalination systems.
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a more in-depth knowledge about the principle of each desalination

technology.

2.2. Overview of data-driven methods
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systems can be divided into Al and DOE methods as shown in Fig. 3. Al
techniques are capable of estimating the relationship between inputs
and outputs without a need for accurate knowledge about the system
and therefore are considered as black-box analytical methods [30,31].
Generally, an experimental dataset is employed for developing the Al
techniques where the whole dataset is divided into two or three parts

The data-driven methods employed for the analysis of desalination

Table 1

A brief description of reviewed desalination systems.

Ref Desalination technology Type Driving force Key influential Main remarks
parameters
[12-14] Reverse osmosis (RO) Filtration  Pressure e Feed pressure e RO is a water purification process driven by pressure to overcome
gradient e Feed temperature osmotic pressure for producing freshwater with the aid of a partially
e Salt concentration of permeable membrane.
feed flow o Although the RO method is an energy-intensive desalination process, this
e Membrane technology is the most dominant desalination process worldwide due to
characteristics its high efficiency and comparatively low water cost.
[5,15,16] Forward osmosis (FO) Filtration ~ Osmosis e Temperature of draw e FO utilizes the natural energy of osmotic pressure to separate water from
pressure solution dissolved solutes via a semi-permeable membrane. The osmotic pressure
e Osmotic pressure is used to transport water through the membrane while retaining all the
difference dissolved solutes on the other side.
e Feed solution velocity e Concentration polarization and fouling are two main issues of the FO
e Draw solution velocity process.
o Membrane properties
[17,18] Membrane distillation Filtration = Vapor pressure e Feed flow temperature e MD process is a hybrid membrane/thermal process that permits only
(MD) gradient e Mass flow rates water vapor to permeate through the membrane due to the hydrophobic
e Module geometric characteristics of its membrane.
parameters e Based on the method of water vapor collection, MD modules are divided
e Membrane properties into 4 main categories: direct contact membrane distillation (DCMD),
air-gap membrane distillation (AGMD), vacuum membrane distillation
(VMD) and sweep gas membrane distillation (SGMD)
e Wetting/fouling of membrane and temperature/concentration
polarizations are the main issues of MD desalination processes.
e The required energy can be effectively supplied by solar energy.
[19,20] Electrodialysis Filtration  Electrical e Temperature and flow e ED is a low-pressure process that uses ion-selective membranes to
desalination (ED) potential rate of feed flow desalinate water. ED deploys charged membranes and uses electrical
gradient e Applied voltage energy to flow the ions against a concentration gradient causing sepa-
o Initial feed ration and purification.
composition e Membrane fouling is a serious obstacle to scaling up the ED technology.
e Membrane o Solar/wind energies can be integrated well with the ED technology.
characteristics
[21] CDI Filtration  Electrical e Electrode materials e CDI process uses the electrical potential difference applied over two
potential e Salt concentration electrodes to deionize the water.
gradient e Electrode specific e The CDI process comprises two main cell architectures: static electrode
surface area architecture and flow electrode architecture.
e Anion/cation exchange membranes are added for performance
enhancement.
o The CDI technology is still on the laboratory scale.
[22] Solar still (SS) Thermal Heat e Solar intensity e Solar still utilizes direct solar radiation to desalinate saline water based
e Water depth on the evaporation and condensation process.
e Solar still is mainly fallen into active and passive categories.
o Despite low efficiency/freshwater productivity, the solar still technology
is simple and suitable for remote areas.
[23-25] Humidification- Thermal Heat e Mass flow ratio of e HDH is a desalination technology that imitates nature's rain cycle. In the
dehumidification (HDH) water to air humidifier, water is sprayed into the air and then, it condenses to
e Top temperature of the freshwater by passing through the dehumidifier.
cycle o There are several configurations based on the heated fluid (water-heated
e Packing materials and/or air-heated) and the type of fluid circulation (open or close cycles)
e Low-temperature heat sources such as solar energy and waste heat can be
utilized in HDH desalination systems.
[26,27] Multistage stage flash Thermal Heat e Top brine temperature o In the MSF process, feed seawater is pressurized, heated and discharged
(MSF) distillation e Number of stages to a chamber with slightly lower water saturation vapor pressure. Next, a
e Temperature drop in fraction of this water flashes into steam and condenses on the exterior
each stage surface of heat transfer tubing.
e Brine temperatures at e The temperature of each stage is kept under the saturation temperature
inlets and outlets of the water entering each stage and vacuum pressure is mainly applied
to this end.
e Evaporation temperature decreases from the first stage to the last one
using changing the vacuum pressures.
e Top brine temperature is in the range of 80 °C to 125 °C.
[28,29] Adsorption desalination Thermal Heat e Heat source e Adsorption desalination system has the capability of providing both

(AD)

temperature
Preheating time
Adsorption/desorption
time

Heat recovery time

freshwater and cooling effect simultaneously.

AD is a promising method to run with solar and waste energies.
Main performance indicators of the AD system are coefficient of
performance (COP), specific cooling power (SCP), and specific daily
water production (SDWP).
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Fig. 3. Classification of data-driven methods applied in desalination area.

namely training, (validation), and testing sub-datasets. The training
dataset consists of a larger number of data to train the Al model, while
validation and testing datasets are unseen datasets comprised of a lower
number of data that are mainly used to estimate the accuracy and
generalization power of the developed Al methods. The predictive per-
formance of Al models is highly dependent on a number of key factors
including the accurate selection of inputs and outputs, hyper-parameter
tuning methods, and size of datasets [32]. As shown in Fig. 3, Al tech-
niques can be classified into classical ML and deep learning (DL)
methods. The classical ML methods employed for studying desalination
systems consist of Artificial neural network (ANN), Adaptive neuro fuzzy
inference systems (ANFIS), Decision tree (DT), Random forest (RF),
Support vector machine (SVM), and Regression models (RM). Further-
more, DL methods have more complex structures compared to classical
ML methods and mainly require a larger number of data. The great
benefits of DL models over the classical ML methods such as favorable
capability in the analysis of unstructured data (such as photos) and great
ability for analyzing the dynamic systems have recently captured the
researchers' attention working on desalination area [33,34]. DL methods
applied in desalination systems can be categorized into three methods
namely recurrent neural networks (RNN), conventional neural network
(CNN), and deep reinforcement learning (DRL).

DOE method is mainly derived from statistical methods and was
initially proposed by Fisher in the 1930s for the research in agricultural
and biological domains [35]. Compared to the conventional one-factor-
at-a-time experimental method, the DOE approach can significantly
lower the cost and time of the data-acquisition process while providing
the maximum information about the system behavior by wisely
designing the required experimental tests. Moreover, the DOE approach
takes into account the interaction effects of independent variables on
system behavior and can be effectively applied for performance pre-
diction and optimization purposes. Response surface methodology
(RSM), Taguchi method (TM), and factorial design (FD) are the three
main statistical DOE tools that have been widely used to analyze the
performance and optimization of desalination systems. It is also worth
mentioning that the number of reviewed studies for each data-driven
model is reported in Fig. 3. Moreover, a brief description of Al and
DOE methods is summarized in Table 2 and the readers are referred to
corresponding references for more detailed information about each
data-driven method.

Table 2
A brief description of applied data-driven methods in desalination systems.
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Ref

Method

Type

Main remarks

[36-41]

[51]

[32,52]

[52,53]

ANN

ANFIS

DT

RF

ML

ML

ML

ML

.

3

ANNs are comprised of several neurons which
mimic the brain data processing approach. Each
neuron has several inputs from other neurons
corresponding to their weights and employs a non-
linear activation function to produce the output
signal which may transfer to other neurons.
Several activation functions have been used in
ANNSs such as sigmoid, Gaussian radial basis
function, hyperbolic tangent, etc.

Different types of ANN models have been
employed to study desalination systems including
multi-layer perceptron artificial neural network
(MLPANN), radial basis function artificial neural
network (RBFANN), bootstrap aggregated neural
networks (BANN), nonlinear Autoregressive
Exogenous (NARX), Elman neural network (ENN),
and random vector functional link network
(RVFL)

The developed ANN models in the field of
desalination have used different training
algorithms including Levenberg Marquardt (LM)
[42], Imperialist competition algorithm (ICA)
[43], genetic algorithm (GA) [44], one step secant
(0SS) algorithm [45], conjugate gradient Powell-
Beale restarts (CGP) [46], scaled conjugate
gradient (SCG) [46], resilient backpropagation
(RB) [47], gradient descent algorithm [48],
Broyden-Fletcher-Goldfarb-Shanno algorithm
(BFGS) [49], and Bayesian optimization method
[50].

Type of activation function, number of hidden
layers, and number of neurons in hidden layers are
three main hyper-parameters which optimized via
trial and error method or optimization techniques.
ANFIS model is a combination of ANN and Takagi-
Sugeno fuzzy systems which is benefited from the
learning capability of the ANN model and the
reasoning ability of the fuzzy system.

ANFIS is mainly a 5-layer network comprised of
five layers namely fuzzification, product,
normalization, defuzzification, and output layers.
Different membership functions can be used such
as Pi-shaped, sigmoidal, triangular-shaped and
trapezoidal-shaped.

Grid partitioning and clustering methods are used
to generate the fuzzy system.

Hyper-parameters include types of membership
functions and the number of clusters.

DT is a supervised ML method that uses if-then-
else decision rules to predict the target.

The data split process begins from the top node of
the tree called the “root node” and ends up at leaf
nodes.

Data is split at each node appropriately
considering the best input feature and
corresponding threshold which leads to the lowest
error.

DT method does not require input normalizations
before developing the tree.

DT is highly vulnerable to overfitting and needs
accurate hyper-parameter tuning.

The maximum depth of the tree, the minimum
number of samples required for splitting, and the
number of maximum features are the three main
hyper-parameters for the DT model.

RF model is an ensemble of trees and the
averaging method is used to predict the final
target.

Each tree in the forest is created by a subset of
training dataset called “bootstrapped dataset”. A
random subset of features is also selected to build
the trees.

(continued on next page)
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Table 2 (continued)
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Table 2 (continued)

Ref Method  Type  Main remarks

Ref Method  Type  Main remarks

The applied randomness in developing the forest
results in a better generalization capability in
comparison with the DT model.

There is no need for the input normalization
process prior to training the RF model.

RF method can inherently determine the most
influential inputs.

Four hyper-parameters exist in the RF model: The
maximum depth of the tree, the minimum number
of samples required for splitting, the number of
maximum features, and the number of trees.

The development of SVM model is based on a
subset of the training dataset and the cost of close
predictions to their targets is neglected, resulting
in training the SVM model even with a small-sized
training dataset.

The radial basis kernel function is often used to
add non-linearity and mapping data to the feature
space.

The SVM regression method needs tuning four
hyper-parameters including the type of kernel
function, kernel coefficient, penalty parameter,
and radius.

Linear RMs include simple linear regression
models, multiple-linear regression models, and
step-wise regression models.

Multiple-linear RM considers the effects of
multiple independent variables on a dependent
variable.

Step-wise RM follows an iterative procedure in
which independent variables and coefficients are
appropriately selected to develop the linear RM
method.

RNN is capable of memorizing the fed inputs and
therefore is suitable for analyzing the sequential
data and specifically for analyzing the time-
related systems.

Long short term memory (LSTM) is a type of RNN
model which solved the gradient vanishing
problem of the RNN model.

CNN model is a kind of ANN model which is
composed of several hidden layers including
convolutional, fully connected, flatten,
normalization and dropout layers.

CNN model is suitable for pattern recognition and
image processing applications.

Reinforcement learning utilizes an agent that
learns to make appropriate decisions by trial and
error. There is a reward for each decision that
leads to the best training state.

DRL is a combination of reinforcement learning
and DL methods which DL methods are used to
assist the agent to reach the goal.

The RSM method is comprised of both
mathematical and statistical approaches.

The RSM method establishes a linear or quadratic
polynomial function where the least square
method is utilized to determine the regression
coefficients.

Different designs such as central composite design
(CCD), Box-Behnken design (BBD), face-centered
central composite design (FCCD), and quadratic
rotation-orthogonal composite design (QRCD) are
used in the RSM method.

The CCD is the most popular design for developing
the quadratic polynomial function.

TM method is a fractional factorial design that
requires the lowest number of experiments among
DOE methods.

Orthogonal array and signal-to-noise ratio are two
main tools for applying the TM design.
Orthogonal array is a matrix allowing the
selection of subsets of a combination of
independent factors at several factors.
Signal-to-noise ratio is defined as the ratio of
sensitivity to variability and depending on the

[32,52] SVM ML

[54,55] RM ML

[56] RNN DL

[56] CNN DL

[57] DRL DL

[35,58] RSM DOE

[59,60] ™ DOE

objective function should be minimized, nominal,
or maximized.

FD design is comprised of full factorial design and
fractional factorial design.

The full factorial design considers the total
possible combinations of inputs and therefore
gnumber of factors (inputs) experimental test is

[61,62] FD DOE

required.

The fractional factorial design is used to reduce
the number of experiments compared to the full
factorial design. This design can be applied when
the high order interactions among inputs are
assumed unimportant. onumber of factors (inputs)-
number of reduced factors oy herimental tests is needed
for the fractional factorial design.

3. Applications of data-driven methods in desalination systems
3.1. Performance prediction using operational parameters

Table 3 summarizes the studies that employed data-driven methods
to predict the performance of different desalination systems using
operational parameters (listed as inputs in Table 3). The details of the
data-driven methods, input and output parameters, and main remarks of
each study are presented in Table 3. It can be seen that the most of
studies were concentrated on RO and SS desalination systems, and only a
few investigators have used data-driven methods to predict the perfor-
mance of MD, MSF and CDI systems. The most important highlights
drawn from Table 3 are presented below.

3.1.1. Use of classical ML models

It can be seen from Table 3 that most of the studies used ANNs to
predict the performance of various desalination systems [37,63-78].
This lies in the fact that the ANN model has the privilege of performance
anticipation of non-linear systems with high generalization capability
and accuracy. In addition to ANNS, there are a couple of classical ML
models that have been used to predict the performance of various
desalination systems. Pascual et al. [79] used support vector regression
(SVR) to predict the performance of a RO plant. It was concluded that
the SVR model has the capability of predicting the flowrate and con-
ductivity of both permeate and retentate flows, with average absolute
relative errors of 0.70%-2.46%. Bahiraei et al. [80] used ANFIS to
predict the energy efficiency of a SS system. It was shown that R? values
for the training and test sets reached 0.9884 and 0.9906, respectively.
Also, it was shown that ANFIS can be used to predict the water pro-
ductivity in SS systems with 99.99% correlation coefficient [81].

3.1.2. Comparison of ML models and conventional methods
Conventional methods like empirical/statistical models, mathemat-
ical methods, and thermodynamic analysis are becoming substituted by
ML models in different applications including the field of desalination in
recent years. Therefore, some researchers aimed at comparing the per-
formance of ML models with conventional methods in performance
prediction of various desalination systems. ML models are usually
trained and tested with experimental data to assure their predictive
performance. It was reported that there was approximately 5% deviation
between the predictions by ANN models and the actual experimental
data gathered from a SS system [63]. Also, the ANN prediction for SS
processes using the experimental dataset showed better results
compared to the mathematical modeling [64]. The performance analysis
of a heat pump assisted HDH system indicated that the MLPANN out-
performed the conventional compressor polynomials method in pre-
dicting the heat transfer rates [37]. For a RO system, both ANNMLP and
ANNRBF networks outperformed the conventional statistical models
[65]. Similarly, it was reported that in MSF desalination plants, RBFANN
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Table 3

Summary of studies on the performance prediction of desalination systems using operational parameters.
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Ref Year System type Data-driven Dataset Inputs Outputs Main remark
method size
[63] 2020 SS (solar earth still) MLPANN 48 e Solar radiation e Water productivity e ANN architecture: 4-10-10-1
e Water, glass and ambient e Hyper-parameter tuning method: Trial and
air temperature error

e Data split ratio: train: 70%,
validation:15%, and test: 15%

e LM method is used for training.

o There was approximately a 5% deviation
between the predictions by developed
models and the actual experimental data.

[64] 2020  SS integrated with MLPANN 256 e Water, glass cover, e Water productivity e ANN architecture: 7-7-1
solar panels and insulation, ambient air and e Hyper-parameter tuning method: Trial and
cylindrical parabolic basin temperature error
collectors e Solar Intensity o Data split ratio: train: 70%, valid:15%, test:
e Wind speed 15%

e LM and hyperbolic tangent sigmoid
transfer are used for training method and
transfer function, respectively.

e The ANN prediction was in good
agreement with experimental data and also
it was more accurate than the
mathematical model.

[371 2021 HDH integrated with ANFIS, 180 e Saturation temperature of e Gain output ratio e MLPANN model showed the best
a heat pump MLPANN, the evaporator and e Heat transfer rate of generalization capability compared to
RBFANN evaporative condenser the evaporator and ANFIS and RBFANN models.
e Spraying saline water evaporative o MLPANN outperformed the conventional
temperature condenser compressor polynomials method.
e Refrigerant and air mass
flow rates
e Dry-bulb and wet-bulb
temperatures of ambient
air
[65] 2015 RO MLPANN, - e Temperature e Permeate flowrate e Data split ratio: train: 70%, and test: 30%
RBFANN e Pressure e Permeate TDS e Both developed networks were better than
e pH the conventional statistical model.
e Conductivity e The MLP network had gained better
performance when trained by LM
algorithm, having the tangent hyperbolic
function as the activation function in the
hidden layer neurons.

o The RBF network is trained using the
backpropagation OLS algorithm by
considering the Gaussian radial basis
function as the activation function in the
hidden layer.

[66] 2010  MSF RBFANN 380 e Boiling point temperature o Temperature e ANN architecture: 2-12-1
o Salinity elevation e Data split ratio: train:70%, validation:
15%, and test: 15%

o It was mentioned that top brine
temperature plays a key role in
performance of MSF desalination method
and a suitable temperature elevation can
control this parameter.

e Accurate prediction of temperature
elevation can pave the way for lowering
the danger of corrosion and energy
consumption in the MSF desalination
method.

e The developed RBFANN model had better
predictive performance compared to the
MLPANN model, empirical correlations,
and thermodynamic models.

[671] 2020  SS with Cu20-water MLPANN 48 e Time e Water productivity e ANN architecture: 8-6-1
nanofluid and e Solar radiation e Hyper-parameter tuning method: trial and
thermoelectric cooler e Fan power error

Ambient temperature
Glass temperature
Water temperature
Basin temperature
Nanoparticle
concentration

Data split ratio: train: 80% and test: 20%
ICA and GA were used for training the
MLPANN model.

Both GA-MLP and ICA-MLP models
showed better predictive performance than
common MLP model. Further, ICA-MLP
had an enhanced performance compared
with GA-MLP model.

(continued on next page)
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Table 3 (continued)
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Ref Year System type Data-driven Dataset Inputs Outputs Main remark
method size

e The root mean square error decreased
40.49% and 62.01% compared to the
MLPANN by using the GA and ICA
algorithms, respectively.

[68] 2016 RO MLPANN 97-129 o Influent concentration o Effluent TDS e A model was developed to simulate eight
e Temperature types of RO membranes.
e Recovery percentage e Levenberg-Marquardt and Tansig are used
o Influent flow as training method and transfer function,
respectively.

e ANN models can be adapted with new data
and upgraded with them.

e Neurons were varied from 4 to 6 and 8-13
for the first and second hidden layers.

e The most important uncertainty would be
caused by uncertainty of input data.

[69] 2013 RO ANN 9 e Silicon oxide inlet e Permeate flow e Data split ratio: train: 33.3%,
concentration validation:33.3%, and test: 33.3%
e TDS inlet e First and second hidden layers were
e Time consisted of four and three neurons,
respectively.

e It was reported that the ANN with fitness
approximation network resulted in lowest
MSE and the highest determination
coefficient.

[70]1 2005 RO ANN 63 o Feed pressure e Water permeate e Number of neurons in first and second
e Temperature rate hidden layers: 3,5,10,15
e Salt concentration
[71] 2020 RO MLPANN 70 o Inlet flow rate e Response parameter e Data split ratio: train: 68.57%, validation:
with GA e Inlet pressure of chlorophenol 15.71%, and test: 15.71%
e Inlet temperature rejection e Model performance was tested by
e Inlet concentration considering 2 and 8 neurons in hidden
layers.
[72] 2020 RO MLPANN 1806 e Plant location e Capital cost of the e The proposed model can be used to make a
e Plant capacity plant reasonable estimate of investment costs of
e Project award year upcoming RO plant projects.
e Raw water salinity
e Plant type
e Project financing type
[73] 2015  SS (single stage) MLPANN 160 o Relative humidity e Water productivity e ANN architecture: 9-20-1
e Wind speed e Hyper-parameter tuning method: Trial and
e Solar radiation error
e Temperature of feed water, e Data split ratio: Train: 70%,
brine, ambient air validation:15%, and test: 15%
e TDS of feed water and e Different training methods were used
brine namely LM, CGF, and RBP.

e Results revealed that LM method had the
best performance compared to other
training methods.

[74] 2020  SS (single stage) MLPANN 159 e Water temperature e Thermal e ANN architecture: 2-20-8
e Inner glass cover conductivity e Hyper-parameter tuning method: trial and
temperature o Partial vapor error
pressure e Data split ratio: train: 70%,
e Volumetric validation:15%, and test: 15%
expansivity o Six different training methods including
e Specific heat 0SS, CGP, CGF, RBP, SCG, and LM were
e Latent heat of used for training the ANN model.
vaporization e Results showed that the ANN model
e Dynamic viscosity trained by the LM method had the best
accuracy for the prediction of
thermophysical properties of moist air in a
SS.
[75] 2012  SS (single basin) MLPANN 312, 453 Insolation o Total daily distillate e ANN architecture: 6-20-1

Ambient temperature
Distillant volume
Wind speed

e Wind direction
o Daily average cloud cover

production

e Hyper-parameter tuning method: trial and
error

Data split ratio: SS A: train: 80%,
validation: 5%, and test: 15%, SS B:
train:80%, validation: 6%, and test: 14%
Two SS systems (A and B) were operated
for a year and a half.

The minimum number of inputs for
developing the ANN model was estimated.
It was concluded that the developed ANN
model can effectively be used for
performance prediction of other SS systems
in different climate conditions, by using

(continued on next page)
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Ref Year System type Data-driven Dataset Inputs Outputs Main remark
method size
large experimental dataset for developing
the ANN model.
[76] 2015  SS (single stage) MLPANN 316 e Number of day (Julian day) e Water productivity e ANN architecture: 10-15-3

e Relative humidity e Operational e Hyper-parameter tuning method: trial and

e Wind speed recovery ratio error

e Solar radiation o Thermal efficiency e Data split ratio: train: 70%,

e Ultra violet index validation:10%, and test: 20%

e Feed, brine and ambient air o The effect of each input parameter on the

temperature outputs was determined by the ANN

e TDS of feed and brine model.

e Temperature of the feed had the highest
contribution for the prediction of water
productivity and thermal efficiency of the
SS. However, ultra violet index had the
largest share in the prediction of
operational recovery ratio.

[77] 2012 MD (VMD) ANN 252 e Vacuum pressure e Permeate flux e ANN architecture: 4-5-1

e Feed inlet temperature e Hyper parameter tuning method: GA

e Feed salt concentration e Data split ratio: train: 66%, validation:

o Feed flow rate 17%, and test: 17%

[78] 2016 MD (VMD) ANN 38 e Feed inlet temperature e Permeate flux e ANN architecture:4-3-1

e Vacuum pressure e Hyper parameter tuning method: trial and

o Feed flow rate Error

e Feed salt concentration e Data split ratio: train:70%, validation:
15%, and test: 15%

e Parametric study using the developed ANN
model showed that vacuum pressure and
feed inlet temperature had the largest
effect on the permeate flux, respectively.

[79] 2013 RO SVR 3990 e Conductivity e Permeate flow rate e Data split ratio: train: 60%, and test: 40%

e Flow rate e Permeate e Steady state and transient models of a RO

e Pressure conductivity plant were constructed.

e Retentate flow rate e A time forecasting approach was proposed
e Retentate to show the temporal change in
conductivity conductivity in transient operation.

o It was concluded that the short-term per-
formance forecasting models, could be
used for process optimization, plant con-
trol algorithms, and fault tolerant control.

[80] 2021 SS integrated with ANFIS-PSO, 54 e Time e Energy efficiency e ANN architecture, ANFIS clusters: 8-3-1, 9
thermoelectric ANN-PSO e Fan power e Hyper-parameter tuning method: Trial and
modules e Solar radiation error

e Ambient air, water, glass, e Data split ratio: train: 80% and test: 20%

and basin temperatures e Cu,0 nanoparticles were used in the SS

e Nanoparticle volume basin.

fraction e PSO method enhanced the prediction
performance significantly.

e The ANFIS-PSO method had better perfor-
mance compared to the ANN-PSO model.

[81] 2017  SS (single stage) ANFIS 160 e Solar radiation e Water productivity e Data split ratio: train: 70%, validation:

o Relative humidity 10%, and test: 20%

o TDS of feed e Sugeno-type fuzzy inference system was

e TDS of brine employed as the fuzzy interface system.

o Feed flow rate e The grid partition method was applied for
classification of the input data and creating
the rules.

e The Pi-shaped curve membership function
outperformed the models with sigmoidal,
triangular-shaped and trapezoidal-shaped
MFs.

o It was shown that solar radiation was the
most influencing parameter on the SS
productivity.

[38] 2016 RO ANN 436 e Molecular weight e Rejection rate e The training dataset was re-sampled by a

Compound hydrophobicity
Dipole moment

Molecular length
Molecular width

Salt rejection

Surface membrane charge
Membrane hydrophobicity
pH

Pressure

Temperature

Recovery

bootstrap method to form different
training datasets.

Number of neurons in hidden layer were
changed from three to 25.

Data split ratio: train: 80%, validation:
10%, and test: 10%

The BANN model outperformed the single
neural network and BAMLR methods.

(continued on next page)
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Ref Year System type Data-driven Dataset Inputs Outputs Main remark
method size
[82] 2018 RO ANN, SVR, e Feed temperature e Pressure e SVR and RF are significantly (5%
RF e Feed conductivity o Feed flow rate significance level) better predictors of the
e Electrical power e Permeate flow rate plant's performances than ANN.
e Permeate
conductivity
[83] 2020 SS (passive, active, ANN, ANN 72 e Solar irradiance e Water productivity e ANN architecture: 5-5-15-1
and active SS with HHO, e Ambient temperature e Hyper-parameter tuning method: Trial and
integrated with a SVR e Time error
condenser) e Wind speed e Data split ratio: train: 70%, test: 30%
e Vapor velocity e HHO-ANN showed the best accuracy
compared to other models.
[39] 2013 Triple SS ANN 46 e Time Thermal efficiency e ANN architecture: 9-10-1
e Glass, plate and ambient e Hyper-parameter tuning method: Trial and
air temperatures error
e Water temperature in the e Data split ratio: Train: 40%,
upper, middle and lower validation:30%, and test: 30%
basins e MLPANN showed the best predictive
o Distillate volume performance in comparison with NARX
e Solar intensity and ENN models.
[85] 2021 SS (stepped and RNN (LSTM) 88 e Time Hourly freshwater e Data split ratio: train: 72 datasets (9 days)
conventional) productivity and test: 16 datasets (2 days)

o The freshwater production was used in a
time series form to train the proposed
model.

e The accuracy of the proposed predictive
model was compared with those obtained
by conventional ARIMA and was evaluated
using different statistical assessment
measures.

o The coefficient of determination of the
predicted results has a high value of 0.99
and 0.97 for the stepped and conventional
SS systems, respectively.

[86] 2020 RO MLPANN- 150 e pH Permeate TDS e ANN architecture: 4-3-1
PSO, SVM, e Feed pressure Permeate flow rate e The hybrid MLPANN-PSO model out-
DT e Temperature performed the SVM and DT (mb5tree)
e Conductivity models.

e The hybrid model reached lower

uncertainty for the simulated data.
[87] 2009 RO ANN, SVR 10 min e Feed flow rate Permeate flux e Data split ratio: train: 40%, validation:
steps e Feed conductivity Salt passage 10%, and test: 50%
during 3 o Feed pressure e Various model architectures, memory
months e PH time-intervals and forecasting times were
e Feed temperature used during the training process.
e Permeate flow rate e The concept of plant “short-term memory”
e Permeate conductivity time-interval was introduced to capture
e Permeate pressure the time-variability of plant performance.

e An actual state-of-the-plant model and two
types of forecasting models (sequential
forecasting and matching forecast) were
studied using real-time RO plant perfor-
mance data.

e Results indicated good predictive accuracy
for short-term memory time-intervals in
the range of 8-24 h for permeate flux and
salt passage for forecasting times up to 24
h.

[88] 2020 CDI ANN, RF 600 e Physical structure related Electrosorption e ANN architecture: 9-10-1
inputs (Specific surface capacity of CDI e The contribution and relative importance
area, pore volume, average of each feature were determined and
pore size, channel pore validated.
volume)
e Chemical structure related
inputs (atomic content of
nitrogen and oxygen)
e Operational inputs
(Applied voltage window,
stream flow rate, NaCl salt
concentration)
[89] 2021 AD ANFIS 15 e Cycle time e COP e Data split ratio: train: 66.66%, and test:
e Switching time e SCP 33.34%
e SDWP o The average RMSE value is decreased from
8.607 to 1.46 by using ANFIS instead of
ANOVA.
[90] 2021 SS (double slope) 100 e Ambient air temperature e Yield

(continued on next page)
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Ref Year System type Data-driven Dataset Inputs Outputs Main remark
method size
RF, e Wind speed e Data split ratio: train: 70%, validation:
MLPANN, e Solar radiation 10%, and test: 20%
SVR, Linear e Glass temperature e Hyper-parameter tuning method: Bayesian
SVR e Vapor temperature optimization algorithm
e Basin water temperature e RF outperformed other models with the

lowest absolute error percentage of 2.95%.

model had better performance compared to the empirical correlations,
and thermodynamic models [66].

3.1.3. Comparison between different classical ML models

Choosing an appropriate ML model is highly important as there is no
specific ML model that outperforms others in predicting the perfor-
mance of desalination systems. Therefore, researchers have sought to
compare the performance of different ML models developed by a similar
dataset to achieve the best predictor. Khaouane et al. [38] reported that
for a RO unit, the BANN model indicated better performance than the
single neural network and bootstrap aggregated multiple linear re-
gressions (BAMLR) methods. Also, it was shown that SVM and RF
models were better predictors (5% significance level) of the RO plant's
performance than neural networks [82]. However, for SS desalination
systems, SVR models indicated weaker performance compared to the
ANN Harris Hawks Optimizer (HHO) [83]. For MSF plants, it was re-
ported that the RBFANN model performed better than the MLPANN
model [66]. Similarly, RBFANN had a better forecasting performance
compared to the ANN feedforward backpropagation model in evaluating
the basin water temperature of SS systems [84]. Hamdan et al. [39]
reported that the MLPANN had the best predictive performance for a SS
system in comparison with NARX and ENN models. Moreover, Kandeal
et al. [90] reported that RF outperformed the MLPANN and SVR
methods in predicting the performance of double slope solar stills.

3.1.4. Use of DL models

Recently, LSTM, which is an RNN, was used in the DL field to predict
the performance of stepped and conventional SS systems [85]. In this
study, freshwater production was used in a time series form to train the
proposed model. The accuracy of the proposed predictive model was
compared with those obtained by conventional autoregressive inte-
grated moving average (ARIMA) and was evaluated using different
statistical assessment measures. It was shown that the predictive model
for stepped-corrugated still has an R? value of 0.9752 and can be
developed at a commercial scale to provide freshwater in remote areas.

These studies show that there is no single model that outperforms
others under all conditions. This is due to the fact that the behavior of
models is dependent on various factors from the hyper-parameters
tuning and training methods to dataset size and split ratios, which are
summarized below.

3.1.5. Training models and built-in functions

For ANNs, the training model and activation functions must be
chosen appropriately. Aish et al. [65] reported that for a dataset ob-
tained from a RO desalination unit, the MLPANN and RBFANN models
have performed better when trained by the LM training method and
backpropagation orthogonal least squares (OLS) algorithms, respec-
tively. It was reported that the tangent hyperbolic and Gaussian radial
basis activation functions in the hidden layer were led to the best per-
formance in the MLPANN and RBFANN models. Also, different training
methods were tested on performance prediction of SS processes and it
was concluded that the LM method outperforms the conjugate gradient
backpropagation with Fletcher Reeves restarts, and the RB training
methods [73]. In another study on modeling SS process with ANNs, six
different training methods of OSS, CGP, conjugate gradient Fletcher
reeves update (CGF), RB, SCG, and LM were compared. Results indicated
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that training the ANN model with LM method led to the highest accuracy
in predicting the thermophysical properties of moist air in a SS system
[74]. For ANFIS model, the application of different membership func-
tions (MF) was studied in [81]. It was reported that the Pi-shaped curve
MF provides better and higher prediction accuracy than models with
sigmoidal, triangular-shaped and trapezoidal-shaped MFs. In addition,
the grid partition method was used for the classification of the input data
and creating the rules.

3.1.6. Optimal training

Bahiraei et al. [67] used ICA and GA to train the MLPANN model in
predicting the freshwater production of a SS system. It was shown that
by using the GA and ICA algorithms, the root mean square error for test
data decreased by 40.49% and 62.01%, respectively. In the continuation
of the previous study [67], the ANFIS and ANN modeling of a SS desa-
lination system fitted with thermoelectric modules was enhanced by
particle swarm optimization (PSO) [80]. It was concluded that applying
the PSO significantly enhances the energy efficiency prediction of the SS
system. For water quality data obtained from three RO plants in Iran, it
was shown that the hybrid MLP-PSO model outperformed the SVM and
M5T models when predicting the permeate flowrate and total dissolved
solids (TDS) [86].

3.1.7. Hyper-parameter tuning

Tuning the different hyper-parameters of the model is one of the
important steps that affect the prediction performance. It can be seen
from Table 3 that the majority of researchers used the trial and error
approach for selecting the hyper-parameters, due to its simplicity and
acceptable accuracy. The alternative method is applying optimization
tools for the detection of the optimal hyper-parameters. Tavakolmog-
hadam and Safavi [77] used GA to optimize the ANN model parameters
in predicting the performance of a VMD desalination system. The co-
efficients of the model, number of neurons and epochs were optimized
by setting the population size of 80, crossover fraction of 0.9 and
migration fraction of 0.1. It was observed that the network optimized by
the GA, had the least errors (less than 1%) compared to the case with
non-optimal parameters.

3.1.8. Dataset split ratio

It can be inferred from Table 3 that the majority of studies allocated
60-80% of the dataset to be used in training the models, while the
remaining data is distributed between validation (0-33.3%) and test
(5-40%) stages. This lies in the fact that without having an appropriate
training dataset, the model will be faced with the underfitting problem.
Therefore, a larger share of data is usually used to train the model. It is
worth mentioning that further increase in the split ratio of the training
stage has the risk of overfitting. On the other hand, it was reported that a
RO unit [69] and a SS [39] trained with 33.3% and 40% of the dataset,
also reached a determination coefficient of 0.97-0.99% and
90.36-99.87%, respectively. Libotean et al. [87] split the dataset ob-
tained from a RO unit with a ratio of 40-10-50 percentages for train,
validation and test stages, respectively. It was shown that the plant
performance could be modeled with a reasonable level of accuracy, with
a short-term memory interval of up to about 24 h.
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3.1.9. Feature importance analysis (influential input and output
parameters)

As different operational parameters affect the performance of desa-
lination systems, selecting the most influential features as inputs and
outputs are highly important. In modeling RO systems, parameters like
temperature, pressure, conductivity, flow rate are the most common
inputs, while some additional input parameters as recovery percentage
[68], concentration [69], pH [65], membrane properties [38], and
electrical power [82] were also considered. According to Table 3, the
outputs in RO models have usually been selected among permeate
flowrate, TDS and rejection rate. Kizhisser et al. [72] studied an RO
plant from the economic viewpoint in which the parameters including
the plant location, capacity, project financial type, and raw water
salinity were considered as inputs to predict the capital cost of the plant.
It was concluded that the proposed model provides a perspective to
estimate the investment costs of the future RO plants. Saffarimiandoab
et al. [88] studied a CDI desalination system by considering 9 opera-
tional and physical/chemical structure inputs and Electrosorption ca-
pacity of CDI as the single output. ANNs and RF models were examined

Table 4
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and the contribution and relative importance of each feature was
determined and validated. Regarding the SS systems, the inputs are
mainly selected from parameters like solar radiation, wind speed, water
depth, temperatures of water and glass, and ambient air. It was reported
that solar radiation [81] and water temperature [76] had the highest
contribution to the prediction of freshwater production. The minimum
number of input parameters for developing the ANN model was esti-
mated in [75] and it was concluded that the developed ANN model can
effectively be used for performance prediction of other SS systems in
different climate conditions with the aid of a large experimental dataset.
Cao et al. [78] conducted a parametric study on a VMD desalination
process by considering the vacuum pressure, feed inlet temperature,
flow rate and salt concentration as inputs of the ANN model. Results
revealed that the vacuum pressure and feed inlet temperature had the
largest effect in predicting the permeate flux.

3.2. Performance prediction using design parameters

Unlike the studies in Table 3 that only considered operational

Summary of studies on the performance prediction of desalination systems using design parameters.

Ref Year System type Data- Dataset Inputs Outputs Main remarks
driven size
method
[91] 2015 RO RBFANN 304 e Membrane properties (pore e Separation factor e ANN architecture: 9-20-1
radius, friction constants between e Pure solvent flux e Hyper parameter tuning method: Trial and error
solute, solvent and membrane) e Total flux e Data split ratio: train: 80%, and test: 20%

e Model parameters (potential e RBFANN outperformed the previous
parameter, fractional pore area, mathematical and mechanism base models.
average pore length)

e Operational parameters (average
longitude concentration of solute
in membrane, pressure, and
temperature)

[92] 2019 HDH (solar ANN 66 e Width, length, the height of the e Desalinated e ANN architecture: 4-9-1
seawater front evaporator water production e Hyper parameter tuning method: Trial and error
greenhouse) e Roof transparency rate e Data split: train: 70%, validation: 15%, and test:

5%

o Different algorithms such as the conjugate
gradient algorithm, the gradient descent
algorithm, the BFGS algorithm, Bayesian, and
the LM algorithm were used to train the ANN
model.

e The best training algorithm was the LM
algorithm.

[40] 2020  HDH (seawater MLPANN 30 o Width, length, the height of the e Power e Data split: train: 70% and test: 30%
greenhouse front evaporator consumption e The performance of the RVFL network, which is
system) e Roof transparency a MLPANN, integrated with artificial ecosystem-

based optimization (AEO) algorithm was
e Water compared with that of the conventional RVFL
productivity model.

e RVFL-AEO showed a better performance
compared with RVFL, indicating the role of AEO
in obtaining the optimal RVFL parameters that
enhances the accuracy of the model.

[93] 2018 HDH (seawater SVR 66 e Greenhouse width and length o Water e Data split: train: 70% and test: 30%
greenhouse o First evaporator height production e The effect of each input parameter on water
system) e Roof transparency production and energy consumption was

studied using the developed model.
e Energy
consumption
[94] 2020 MD (VMD) ANN 36 e Feed inlet temperature e Permeate flux e ANN architecture: 3-7-1

Feed flow rate
Membrane length

Specific heat
energy
consumption

Hyper-parameter tuning: Trial and error

Data split ratio: train:70%, validation: 10%, and
test: 20%

As feed inlet temperature and feed flow rate
increased, the permeate flux increased. Further,
with an increase in membrane length, the
permeate flux decreased.

Specific heat energy consumption increased for
longer membranes and declined with and an
increase in temperature and mass flow rate of
feed flow.
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parameters, Table 4 shows the studies that have also included design
parameters in their model inputs when predicting the performance of
desalination systems. It can be seen that only a limited number of in-
vestigations have used the design parameters to predict the performance
of desalination systems. Iranmanesh et al. [91] compared the perfor-
mance of the RBFANN method with the mathematical surface force pore
flow model to predict the performance of the RO system. By using
different membrane properties, model parameters, and operational pa-
rameters, their results showed that the RBFANN method had better ac-
curacy than the mathematical approach. In the case of HDH systems,
three studies can be found in the literature that aimed to employ the
ANN and SVR methods to anticipate the performance of the seawater
greenhouse systems by considering geometrical parameters as model
inputs [40,92,93]. Zarei and Behyad [92] studied the accuracy of
different training algorithms for the ANN model. It was concluded that
the Levenberg-Marquardt training algorithm had superiority over the
other training methods. The results reported by Essa et al. [40] high-
lighted the important role of accurate hyper-parameter tuning methods
in ML methods for performance analysis of HDH systems. The results
showed that coupling the RVFL model with the artificial ecosystem-
based optimization algorithm enhanced the accuracy of the model. In
another study [93], the application of the SVR model for performance
analysis of a seawater greenhouse system was analyzed and results
showed the great capability of the developed model to predict the
freshwater production rate as well as energy consumption. In the case of
MD systems, the membrane length of VMD configuration along with
operational parameters of feed flow (mass flow rate and temperature)
were taken into account as the inputs for developing the ANN model
[94]. This study revealed that the membrane length had a significant
effect on both permeate flux and energy consumption, thus the vital
importance of considering the membrane length as an input for devel-
oping the data-driven methods.

3.3. Optimization and correlation development

Table 5 indicates the studies that employed data-driven methods for
optimization and correlation generation in desalination systems. In
these studies, either operational/design or both of these parameter types
were considered as inputs. Compared to Sections 3.1 and 3.2, the opti-
mization and correlation development is also taken into account in this
section. The main remarks of Table 5 can be summarized as follows:

e Among different desalination systems, data-driven methods have
been mostly used to optimize and generate correlations in SS and MD
desalination methods.

e Water productivity was mainly considered as the output target for
optimization and correlation generation in desalination systems.

e To optimize the performance of various desalination systems using
data-driven methods, design parameters as the inputs have been
received less attention compared to the operational parameters.
Limited studies confirmed that the interaction of operational and
design parameters has a significant effect on the performance of
desalination systems [59,95-99].

e The RSM method has been broadly employed for the optimization of

desalination systems compared to ML models. The main reason is

that the RSM method mainly requires a lower number of data than

ML methods to optimize the performance of the system. However, it

can be seen in a few comparative studies that ML models mainly

enjoyed better performance prediction than the RSM method

[14,100]. This shows that coupling the ML models with optimization

methods such as GA, PSO, and Monte Carlo can lead to enhanced

optimization results.

Minitab, Design expert and Statistica software have been used for

developing the RSM method whereas MATLAB was the most

commonly used software to optimize the desalination systems using

ML methods.
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e Correlations have been mostly generated using the quadratic poly-

nomial model obtained by RSM and linear regression models such as

stepwise and multiple linear regression methods. However, it can be
inferred from Table 5 that ML models outperformed these correla-

tions for performance prediction of desalination systems [101-106].

Limited studies have been conducted on the application of data-

driven methods for optimization and correlation development of

solar-driven HDH and MD systems. In the case of HDH desalination
systems, RSM method was employed to optimize the freshwater
generation of vacuum humidification dehumidification (VHD) sys-
tems [107,108]. Moreover, design parameters only were considered

in limited studies for optimization of HDH systems [109,110].

e The accuracy of the developed correlations for SS systems was
compared with the estimated values by the computational fluid dy-
namics (CFD) method. The results showed a close agreement be-
tween the obtained values and confirmed the robustness of the
developed correlations [111,112].

3.4. Maintenance

Table 6 shows a summary of studies that have applied data-driven
methods to analyze the fouling and wetting phenomena in membrane-
based desalination systems. Fouling is a serious issue in all membrane
desalination technologies and its accurate prediction plays a vital role in
performance improvement, cost reduction, and sustainability of these
systems. Fouling mechanism is generally defined as the deposition of
undesired materials (solid particles in the feed stream, ions, and bio-
logical materials) on the membrane surface and inside the pores,
resulting in lowering the permeate flux over time [143] which increases
the cost of produced water [144]. The conventional mechanistic
modeling methods have failed to accurately predict the fouling mecha-
nism in different membrane-based desalination technologies mainly due
to the dynamic nature of the fouling phenomenon, the complexity
involved in the mathematical approach, and developing the models
based on several simplified assumptions [6,145,146]. As a result, data-
driven methods have gained more attention and researchers have
sought to employ these methods for precise prediction of the fouling
mechanism. Liu and Kim [147] compared the performance of ANN and
mathematical models (blocking laws) to foresee the transmembrane
pressure drop in the MD system due to the fouling effect. The results
showed a great superiority of the ANN model over the blocking laws
approach. Recently, Mittal et al. [6] showed the viability of the ANN
model to analyze the effects of operational parameters of the VMD
module on the permeate flux decline as a result of membrane fouling.
The robustness of the ANN model for membrane fouling analysis has also
been supported for RO [148] and electrodialysis [149] desalination
systems.

The possibility of employing the CNN model for studying the fouling
mechanism in desalination systems has also been investigated in several
studies. The performance of the CNN model for studying the fouling
effect in a RO desalination system was compared with that of the
mathematical model by Park et al. [145]. They used 4000 images for
testing the performance of the developed CNN model and the results
showed that the CNN model had better performance than the mathe-
matical model. In another study, fouling characteristics of a membrane
used for the FO desalination method was comprehensively analyzed by
the CNN model and results showed great performance of CNN model for
the prediction of thickness, porosity, roughness, and density of the
fouling layer.

Membrane wetting is another serious issue with the MD desalination
technology and this mainly stems from membrane fouling and high
liquid entry pressures [150]. Due to the interaction effects of operational
parameters and membrane characteristics on the wetting problem, ac-
curate prediction of membrane wetting using mathematical models is
complex and tedious. Recently, Kim et al. [151] examined the predictive
performance of RSM and ANN models to investigate the wetting issue of
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Table 5

Summary of studies on the application of data-driven methods for optimization and correlation development.

Desalination 532 (2022) 115744

Ref Year Optimization  Correlation  System type Data-driven Dataset size  Inputs Outputs Main remark
method
[95] 2020 v v SS (different FD Not e Basin area e Distilled water e Design method:
configurations mentioned e Depth of saline e Saline water factorial
of active SS) (n.m.) water temperature e The most
e External power e Condenser cover influencing input
e Air blowing system temperature parameters on the
e Condenser distilled water were
material the external power,
e Condenser the depth of the
thickness saline water, and the
e Condenser area basin area of the
e Insulation active still,
thickness respectively.
e Insulation material
e Ambient air
temperature
e Make-up water
system
[96] 2021 v v SS (Single RSM 30 e Solar radiation e Daily freshwater e Design method: CCD
stage) e Ambient productivity e Water depth, solar
temperature radiation, ambient
e Water depth temperature, and
o Thickness of thickness of
insulation insulation had the
largest effect on the
daily freshwater
productivity,
respectively.
[97] 2016 v v MD (DCMD) RSM 36 o Inlet temperatures e Permeate flux e Design method:
of feed and e Water QRCD
permeate productivity per e Multi-objective
o Flow velocity of unit volume of optimization was
feed module also performed to
e Module packing e water production maximize the
density per unit energy permeate flux and
o Length-diameter consumption minimize energy
ratio of module e Comprehensive consumption.
index to findouta e The permeate flux
balance among was mainly affected
high water flux, by feed inlet
high production, temperature and its
and low energy interactions with
consumption length-diameter
ratio of module.
[98] 2020 v v MD (DCMD) RSM 36 o Inlet temperatures e Feed/permeate e Design method:
of feed and side heat transfer QRCD
permeate coefficients e Multi-objective
o Flow velocity of e Temperature optimization was
feed solution polarization also made using the
e Module packing coefficient RSM method.
density e Permeate flux e Theoretical heat and
o Length-diameter e Water mass transfer
ratio of module productivity per models were
module volume coupled with the
e Thermal RSM technique to
efficiency determine the
complex interaction
effects of inputs on
the outputs.

o Higher feed
temperatures,
shorter membranes,
and higher feed
velocities led to a
significant increase
in the heat transfer
coefficients, thereby
enhancement of
permeate flux and
thermal efficiency.

[99] 2018 v v MD (VMD) RSM 36 e Temperature e Water permeate e Feed inlet
e Velocity flux temperature and its
e Concentration of e Water interaction had a
feed flow productivity per significant effect on

13
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Ref Year

Optimization

Correlation

System type

Data-driven
method

Dataset size

Inputs

Outputs

Main remark

[59] 2016 v

[14] 2010 v

MD (AGMD)

RO

RSM and TM

MLPANN &
RSM

27

26

14

e Membrane packing
density

o Length-diameter
ratio of module

Feed flow rate
Feed temperature
e Coolant
temperature
Coolant flow rate
Air gap width

Sodium chloride
concentration in
feed solution
Feed temperature
Feed flow rate
Operating
hydrostatic
pressure

unit volume of
module

¢ GOR

e Comprehensive
index

e Permeate flux

e RO performance
index (=salt
rejection factor
times the
permeate flux)

VMD module
performance.

As module packing
density increases,
water productivity
per unit of the
module rises, but
GOR remained
relatively
unchanged.

The increase in
packing density led
to a decrease in
water permeate flux,
whereas resulted in
an increase in water
productivity per
unit of the module,
which is a more
important index for
practical
applications.
Design method:
FCCD

Optimization was
also performed
using RSM and
Taguchi techniques.
Air gap width and
temperature of feed
flow had significant
effect on the
permeate flux of
AGMD system.
Compared to other
input variables,
coolant flow rate
had insignificant
effect on the
permeate flux.
Both RSM and
Taguchi techniques
provided an
accurate prediction
of permeate flux.
However, RSM
outperformed the
Taguchi method and
was recommended
as a better tool for
performance
prediction and
optimization of the
AGMD system.
ANN architecture: 4-
5-3-1

Data split ratio:
train: 66%,
validation: 17%,
and test: 17%

Two empirical
polynomial RSM
models valid for
different ranges of
feed salt
concentrations were
performed (in
MATLAB).
However, the
developed ANN
model was valid
over the whole
range of feed salt
concentration.

(continued on next page)
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Ref Year

Optimization

Correlation

System type

Data-driven
method

Dataset size Inputs

Outputs

Main remark

[100] 2018 v

[101] 2017 X

[102] 2019 X

Permeate gap
membrane
distillation
(PGMD)

SS (single stage)

SS (single stage)

RSM & ANN RSM: 26 e Condenser inlet
ANN: 88 temperature
Evaporator inlet
temperature
Feed flow rate

e Feed water salt

concentration

ANN & RM 160 Ambient
temperature
Relative humidity
Wind speed

Solar radiation
Feed flow rate
Temperature of
feed water

Total dissolved
solids in feed water

ANN, ANFIS, 160
and RM

Relative humidity
Solar radiation
Feed flow rate
Total dissolved
solids of feed and
brine

15

e Permeate flux

e Specific Thermal
Energy
Consumption

e Water
productivity

e Water
productivity

ANN has the ability
to overcome the
limitation of the
quadratic
polynomial model
obtained by RSM.
Analysis of variance
(ANOVA) has been
used to test the
significance of
response surface
polynomials and
ANN model.

The optimum
operating conditions
were found by
Monte Carlo
simulations.

e ANN architecture:
4-7-2-2
Hyper-parameter
tuning method: Trial
and error

Data split ratio:
train: 75%,
validation: 20%,
and test 5%

Design method:
FCCD
Multi-objective
optimization was
made using non-
dominated sorting
genetic algorithm
(NSGA-II).

The ANN model
outperformed RSM
for performance
prediction of the
PGMD module.
Developing the ANN
model required
more experimental
data compared to
the RSM.

ANN architecture: 7-
81
Hyper-parameter
tuning method: Trial
and error

Data split ratio:
train: 70%,
validation:10%, and
test: 20%
Compared with the
stepwise regression
model, the ANN
model showed a
greater performance
for the prediction of
water productivity.
ANN architecture: 5-
10-1
Hyper-parameter
tuning method: Trial
and error

Data split ratio:
train: 70%,
validation:10%, and
test: 20%

Results showed that
ANN, ANFIS, and
multiple regression
models could
accurately predict

(continued on next page)
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Ref Year

Optimization

Correlation

System type

Data-driven
method

Dataset size

Inputs

Outputs

Main remark

[103] 2016 X

[104] 2021 X

[105] 2017 X

SS (single stage)

Tubular SS

SS (single stage)

ANN and RM

ANN, RF, RM

ANN & RM

160

16 days

56

16

Julian day

e Ambient air
temperature
Relative humidity
Wind speed

Solar radiation
Temperature of
feed water
Temperature of
brine water

Total dissolved
solids (TDS) of feed
water

Total dissolved
solids (TDS) of
brine water

Solar radiation
intensity

Wind speed
Temperatures of
basin plate, salt
water, cover, and
ambient air

Ambient air
temperature
Relative humidity
Wind speed

Solar radiation

e Flow rate

o Temperature

e Thermal
efficiency

e Hourly freshwater
Production

e Instantaneous
thermal efficiency

the water
productivity, but the
ANN model
outperformed the
other models.

ANN architecture: 9-
12-1
Hyper-parameter
tuning method: Trial
and error

Data split ratio:
train: 70%,
validation:10%, and
test: 20%

The ANN model
showed a better
predictive
performance
compared to multi-
variate regression
and stepwise regres-
sion models.

e ANN architecture: 6-
56-202-681-1
Hyper-parameter
tuning method:
Bayesian
optimization
algorithm

Data split ratio:
train: 80% and test:
20%

A comparison was
made among ANN,
RF, and traditional
multilinear
regression models.
Application of
Bayesian
optimization
algorithm for hyper-
parameter tuning
process enhanced
the performance of
the ANN model by
35%.

RF model was less
sensitive to hyper-
parameter tuning
compared to the
ANN model.

Feature importance
analysis revealed
that saltwater
temperature, basin
temperature, and
solar radiation were
the most influencing
parameters,
respectively.

The RF model was
recommended as the
ML model for
performance
prediction of tubular
SS mainly due to its
high accuracy and
robustness.

e ANN architecture: 7-
6-1
Hyper-parameter
tuning method: Trial
and error

Data split ratio:
train: 70%,

(continued on next page)
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Ref

Year Optimization ~ Correlation  System type

Data-driven

method

Dataset size

Inputs Outputs

Main remark

[106]

[107]

[108]

[109]

2018 X v MD (PGMD)

2018 v X HDH (solar

VHD)

2021 v X HDH (three

stage VHD)

2011 v/ v HDH (C/

OAOW-AWH)

ANN & RM

RSM

RSM

FD

Electric
test: 372
Solar test:
11272
Both:
11644

15

20

2k=6=
64

3k=6=
729

17

e Total dissolved
solids of feed water

e Permeate flux

Temperatures at
the condenser and
evaporator inlets
Feed seawater flow

e Desalinated water
production rate

Humidifier
pressure

Inlet water
temperature

Ratio of water to
air mass flow rates

e Desalinated water
production rate

Air temperature
Water to air mass
flow rate
Humidifiers
pressure

e Freshwater
production

Inlet water
temperature

Inlet air
temperature
Input heat flux

® AcondUcond

Water mass flow
rate

Air mass flow rate

validation:10%, and
test: 20%
Agricultural
drainage water as a
non-conventional

source of water was
used as the feed
water into the SS
system.

Results showed that
the ANN model had
a better
performance than
multiple linear
regression for the
prediction of
thermal efficiency.
ANN architecture: 3-
10-1

Hyper —parameter
tuning method: Trial
and Error

Data split ratio:
train: 90%,
validation: 5%, and
test: 5%

Three datasets for
training the ANN
were considered: 1.
electrical test, 2.
Solar test. 3. Both
electrical and solar
tests

ANN outperformed
linear regression.

e To increase the
water productivity,
the pressure of the
humidifier was
lower than
atmospheric
pressure using a
vacuum pump.
Optimum values of
inputs were
determined by the
RSM analysis

e Design method:
FCCD

Optimum values of
inputs were
achieved by the
RSM analysis.

The freshwater
productivity of a
three-stage vacuum
HDH was compared
with a single-stage
vacuum HDH sys-
tem. Three-stage
system had higher
productivity and
lower energy
consumption.
Design method:
factorial
Thermodynamic
model was used and
DOE analysis was
performed for
sensitivity analysis
and optimization
purposes.

A correlation was
developed for the

(continued on next page)
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Ref Year Optimization

System type

Data-driven Dataset size

method

Inputs Outputs

Main remark

[110] 2016 v

[111] 2016 v

[112] 2018 v

[113] 2009 vV

HDH (solar
humidifier and
a subsurface
condensation
mechanism)

SS (single stage)

Stepped SS with
nanofluids in
basin

MSF-RO

RSM 282

RSM 13

RSM 13

ANN 200

18

o Freshwater
productivity

Inflowing air
temperature
Length of
condenser tube
Relative humidity
of inflowing air
Inflowing air
velocity
Cross-section of
inflowing air
Height of water in
evaporation still
Solar radiation
Temperature of
water in
evaporation still

Position and size of
the partition

Height and length
of the steps inside
the cascade SS

e Hourly
productivity

Feed temperature e Permeate TDS
Feed total e Permeate flow
dissolved solids rate
Trans-membrane

pressure

Feed flow rate

Time

e Nusselt number

prediction of
freshwater
productivity based
on the input
variables.

Design method: CCD
Solar energy was the
main heat source
and a set of tubes
buried in the soil
acted as condensers
Water temperature
variation of solar
humidifier had the
most contribution to
freshwater
productivity.
Correlation was
developed for
forecasting
freshwater
productivity.

Design method: CCD
Both CFD and RSM
methods were
employed.

The partition was
placed at the bottom
surface and glass
cover of the still for
performance
improvement of the
SS.

The RSM provided
great predictive
performance as
compared to the
CFD model. The
maximum error for
the prediction of
bottom and top
normalized Nusselt
numbers were 1.3%.
Design method: CCD
Both RSM and CFD
analyses were used
to predict the hourly
productivity of the
SS system.

The RSM showed a
great predictive
performance, only a
2.1% difference was
reported between
the estimated values
by RSM and CFD
methods.

ANN architecture:
5-15-1

Data split ratio:
train: 60%,
validation: 20%,
and test: 20%

A framework for
developing an ANN
model was proposed
to predict the
performance and
optimizing the
operation of SWRO
desalination plants.
It was concluded
that ANNs could be
combined with

deterministic

(continued on next page)
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Ref Year Optimization ~ Correlation  System type Data-driven Dataset size  Inputs Outputs Main remark
method

models that include
physical laws as a
hybrid model for
studying fouling/
scaling and process
optimization in RO

systems.
[114] 2019 v X RO RNN Historical e Ambient o Freshwater o RNN was used to
data from temperature production predict the future
2015 to e Solar radiation energy supply from
2017 e Wind speed renewable sources,
e Water demand and water demand

Multi-criteria
optimization was
done using extended
mathematical
programming to
minimize the total
annual costs and
greenhouse gas
emission.
The potential loss of
power supply
probability was
introduced as a tool
to illustrate the
sustainability of the
proposed scenarios.
It was concluded
that the advanced
forecasting
algorithms could
address future
uncertainties in the
energy supply chain.
Feed solution e Maximum reverse e ANOVA was used to
velocity solute flux detect the main
Draw solution selectivity parameters that
Velocity could affect FO
Feed solution quality
temperature characteristics.
Draw solution MINITAB software
temperature version 16 was used
to solve Taguchi and
ANOVA methods
and the STATISTICA
12 software was
used to carry out
training, validation,
and testing of the
neural network.
[115] 2014 b 4 v RO ANN 370 e Time o Water ANN architecture: 4-
o Concentration permeability 4-1
Operating pressure constant Data split ratio:
e Membrane type train: 50%,
validation: 25%,
and test: 25%
The proposed time
dependent neural
network based
correlation can
predict the water
permeability
constant.
For the first time,
the effect of feed
salinity on water
permeability
constant values at
low-pressure opera-
tion is reported.
[116] 2021 v/ v RO RSM & ANN 30 e Feed concentration e Permeate flux RSM and ANN
e Temperature e Water recovery models were
e pH o Salt rejection statistically studied
e Pressure using ANOVA.

[15] 2016 v X FO Taguchi-neural 16

(continued on next page)
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Ref Year Optimization ~ Correlation  System type Data-driven Dataset size  Inputs Outputs Main remark
method

e Specific energy e Numerical
consumption optimization of NF
and RO pilot plant
was done to attain

the optimum

conditions.

e By using the
optimum
conditions, three
hybrid
configurations of NF
and RO were
analyzed to
determine the best
mode for the
treatment of
brackish
groundwater.

[117] 2021 v v FO ANFIS, ANN, 50 e Draw e Water flux e Data split ratio:
RSM concentration e Reverse salt flux train: 70%,
e Feed concentration validation: 15%,
e Time and test: 15%
e Feed pH e ANN and RSM
e Feed temperature models were
considerably better
than ANFIS.
[16] 2021 v v FO ANN & RSM 76 e Osmotic pressure e Membrane flux e A BBD is used to
difference develop a response
o Feed solution surface design
velocity where the ANN
e Draw solution model evaluates the
velocity responses.
o Feed solution o The weights of the
temperature ANN model and the
e Draw solution response surface
temperature plots were used to
optimize and study
the influence of the
operating conditions
on the membrane
flux.
[118] 2016 v v FO RSM 16 o Feed flow rate e Permeate flux e A Monte Carlo
e Permeate flow rate e FO specific Simulation method
e Permeate performance has been conducted
temperature index to determine the
optimum operating
conditions of the FO
pilot plant.
[119] 2020 X v FO ANN and RM 709 e Membrane type e Permeate flux e ANN architecture: 9-
e Orientation of 25-25-40-1
membrane e Data split ratio:
e Molarity of feed train: 70%,
solution validation: 15%,
e Molarity of draw and test: 15%
solution e ANN formed a better
o Type of feed relationship
solution between inputs and
e Type of draw output than
solution multiple-linear
e Crossflow velocity regression model.
of the feed solution e The performance of
e Draw solution the ANN model is
e Temperature of the compared with a
feed solution transport-based
e Temperature of the model in the
draw solution literature.
[120] 2020 Vv X SS (single and ™ 9 e Basin liner design e Water production e Design method: L9

stepped basin
type)

Heat storage
material

Wick material
Basin water depth

20

orthogonal array
Optimum values of
inputs were
determined using
the Taguchi method.
Compared to the
conventional single
and stepped basin SS

(continued on next page)
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Ref Year Optimization System type Data-driven Dataset size Inputs Outputs Main remark
method

systems, water
productivity
increased by
175.2% and 132.2%
for the single basin
and stepped basin SS
when the TM was
employed.

[121] 2016 v SS (single stage RSM 29 e Latent heat o Freshwater e Design method: BBD

active type) materials productivity e Biomass heat source

o Different sensible o Efficiency was used as the
materials main heat source.

e Evaporation
surfaces

o Different types of
heat transfer in the
still

[122] 2020 X SS (single stage) ~ MLPANN 48 e Time e Energy efficiency e ANN architecture: 6-

o Solar radiation o Exergy efficiency 5-3

e Ambient air, glass, e Water e Hyper-parameter
basin and water productivity tuning method: Trial
temperatures and error

o Data split ratio:
train:80% and
test:20%

e ICA as an
optimization
algorithm was
employed for
minimization of cost
function of ANN
model.

e Applying the ICA
optimization for
ANN model
enhanced the
predictive
performance of ANN
model significantly.

[123] 2019 X SS (double slope  FD 24 e Glass temperature e Water e Bottom temperature
single basin in e Bottom temperature had the largest
active and temperature contribution to
passive mode) increasing the water

temperature in the
basin.

e The interaction of
inputs had an
insignificant effect
on the water
temperature.

[124] 2018 b 4 Stepped SS ANN & RM n.m. e Solar radiation o Water e ANN architecture:

e Ambient productivity 12-27-1
temperature e Hyper-parameter

e Month number tuning method:

e Day number Iterative

e Number of hours optimization
per day e Data split ratio:

e Wind speed train: 70% and test:

e Humidity 30%

e Cloud cover e Hourly

e Vapor temperature experimental data

e Water and basin for three months
temperatures was collected.

e Difference between e Results showed that
the inner and outer cascaded forward
surface of glass neural network
temperature model had

superiority over the
linear regression
and multiple-linear
regression models.

[125] 2020 v SS RSM n.m. e Saline water and e Water e Design method: BBD
(conventional glass cover productivity e Principal

type integrated
with a parabolic

21

temperatures

component analysis
was initially

(continued on next page)
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Ref Year Optimization ~ Correlation  System type Data-driven
method

Dataset size

Inputs

Outputs

Main remark

trough
collector)

[126] 2020 b 4 v Concave type RM
Stepped SS

[127] 2014 v v MD (AGMD) RSM

[128] 2020 vV v MD RSM and TM
(AGMD)

[129] 2007 Vv v MD RSM
(DCMD)

n.m.

20

16

16

22

Dry bulb
temperature
Wet bulb
temperature inside
the conventional
SS

Ambient air
temperature

Oil inlet
temperature
Solar intensity

e Solar radiation

e Basin, glass, water,
and ambient air
temperature

and

e Cold & hot feed
inlet temperature
e Feed-in flow rate

Feed temperature
Feed flow rate
Salinity

Stirring rate

Feed temperature
NaCl concentration
in the feed solution

e Hourly water
production

e Permeate flux
¢ GOR

e Permeate flux
e Energy
consumption

e Permeate flux

performed to
decrease the number
of inputs for
conducting the RSM
analysis.

Principal
component analysis
showed that three
groups of inputs had
the largest effect on
water productivity:
1: (saline water
temperature, wet
bulb temperature,
and dry bulb
temperature), 2:
(solar intensity,
ambient air
temperature, and
glass cover
temperature), 3:
(ambient air
temperature, oil
inlet temperature,
and solar intensity).
These three
categories of inputs
were then used for
the RSM analysis.
Results showed that
solar intensity,
ambient air
temperature, and
glass cover
temperature had a
significant effect on
water productivity.
Locally available
material such as
bricks, sand, and
concrete pieces were
used in SS to extend
the time of water
productivity and
therefore increasing
water productivity.
Linear regression
model was used.
Design method: CCD
Optimal operating
parameters were
determined by
NSGA-IIL.

Results showed that
hot feed inlet
temperature had the
largest positive
effect on both
permeate flux and
GOR.

Lower feed
temperatures and
higher feed flow
rates resulted in
higher permeate
flux with a lower
energy cost.

Design method: CCD
Canonical analysis
was used for
optimization
purposes.

A gradient method
was employed to
find the response

(continued on next page)
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Ref Year Optimization ~ Correlation  System type

Data-driven
method

Dataset size

Inputs

Outputs

Main remark

[130] 2018 v v MD

(AGMD)

[131] 2017 v MD (PGMD)

[132] 2012 v/ v MD (SGMD)

[133] 2012 v MD

(AGMD)

2014 v v MD
(DCMD)

RSM

RSM

RSM

RSM

RSM

16

16

26

16

28

23

e Evaporator inlet
temperature

e Condenser inlet
temperature

o Feed flow rate

e Evaporator and
condenser inlet
temperatures

e Feed flow rate

Liquid and gas
temperatures
Liquid and gas flow
rates

Feed inlet
temperature
Cooling inlet
temperature
Feed flow rate

Vapor pressure
difference
Feed flow rate

e Permeate flux

e Specific thermal
energy
consumption

e GOR

e Permeate flux

e Specific thermal
energy
consumption

e Permeate flux

Permeate flux
Salt rejection
factor

Energy
consumption

Permeate flux

surface within the
domain of
experimentation.
Design method:
FCCD
Multi-objective
optimization was
performed.

Two modules with
different areas were
used: 7.2 m? and 24
m2

In the case of the
longer module,
there was an
optimum condition
that led to highest
productivity and the
highest thermal
efficiency. However,
for the shorter
module, there was a
trade-off between
reaching the highest
productivity and the
highest thermal
efficiency.

Design method:
FCCD
Multi-objective
optimization was
performed.
Evaporator inlet
temperature had the
largest effect on
permeate flux and
specific thermal
energy
consumption.
However, condenser
inlet temperature
had insignificant
effects on both
permeate flux and
specific thermal
energy
consumption.
Design method: CCD
Monte Carlo method
was used for the
optimization
purpose.

The interaction
effect of the air
circulating velocity
and the air inlet
temperature was
highlighted.

A higher permeate
flux was obtained by
lower air inlet
temperatures and
higher air flow rates.
Design method: CCD
The Monte Carlo
technique was used
for optimization.
Feed inlet
temperature had the
largest effect on
performance of
AGMD system.
Design method: CCD

e For the optimum

working condition,

(continued on next page)
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method

e Permeate flow rate there was a 3.9%

e Feed ionic strength deviation between
the prediction and
the actual
experimental value,
which showed the
validity of the
developed model.

[135] 2017 v/ v MD RSM 25 e Hot and cold feed e Permeate flux e Design method: CCD
(AGMD) inlet temperatures e Specific e Hot feed inlet

o Feed flow rate performance ratio temperature had the

e Feed conductivity largest positive
effect on the
permeate flux of the
AGMD module
followed by the feed
flow rate.

[58] 2016 v v MD RSM 28 e Feed temperature e Permeate flux e Design method: CCD
(DCMD) e Cold flow e Feed temperature,
temperature feed flow rate, and

o Feed flow rate cold flow rate had a

e Cold flow rate positive effect on
permeate flux.
However, increasing
the cold flow
temperature
resulted in a
decrease in
permeate flux.

[136] 2015 Vv v MD RSM 27 e Feed temperature e Permeate flux e Design method:
(VMD) e Vacuum pressure Box-Behnken

o Feed flow rate e Vacuum pressure

e Feed concentration has the largest effect
on the permeate flux
followed by feed
temperature and
feed concentration.

e Feed flow rate had
relatively no effect
on the permeate
flux.

[137] 2017 v MD Genetic 154 e Feed temperature e Permeate flux e Data split ratio:

(AGMD & water ~ programming e Feed concentration train: 75% and test:

gap membrane & ANN o Feed flow rate 25%

distillation) e Coolant flow rate e Feed temperature
was the most
influencing
parameter on the
permeate flux.

e Generic programing
had a better
predictive
performance than
ANN according to
the coefficient of the
determination
index.

[138] 2020 v v MD RSM 20 e Feed inlet e Permeate flux e Design method: CCD
(VMD) temperature e Energy e Solar thermal-
o Feed flow rate consumption photovoltaic VMD
e Vacuum pressure system was studied.
[139] 2009 v v MD RSM DCMD:25 DCMD: o The rate of water e Design method: CCD
(DCMD & AGMD:9 produced per unit e Optimization was
AGMD) e Hot fluid flowrate hot liquid feed performed using

e Hot fluid rate Aspen Plus software

temperature o Auxiliary heat and RSM technique.

e Cold fluid flowrate input

e Membrane

thickness

AGMD:

o Hot fluid flowrate

e Hot fluid

temperature
[140] 2012 v X ANN 72 e Air gap thickness o Distillate flux

24
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Optimization

System type

Data-driven

method

Dataset size

Inputs Outputs

Main remark

[141]

[142]

2013

2021

v

v

MD

(AGMD)

MD
(SGMD)

CDI

ANN

ANN & RF

53

2364

25

Condensation e Salt rejection
temperature factor

Feed inlet

temperature

Feed flow rate of

salt aqueous

solutions

Feed inlet o Distillate flux
temperature o Salt rejection
Feed flow rate factor

Air flow rate

e Operational e Desalination

features capacity
(electrolyte NaCl o Speed
concentration, o Time

electrolyte flow
rate, applied
voltage window)
Electrode features
(Electrode specific
surface area,
micropore volume,
channel pore
volume)

e ANN architecture: 4-
10-1

e Hyper-parameter
tuning: Trial and
Error

e Data split ratio:
train:75%,
validation: 16%,
and test: 9%

e Monte Carlo
simulation was
employed for
optimization.

Feed inlet
temperature had the
largest effect on the
AGMD module
performance.

e ANN architecture:
3-9-1

e Hyper-parameter
tuning: trial and
error

e Data split: train:
80%, validation:
10%, and test:10%

e Monte Carlo
simulation was
employed for
optimization.

e Parametric study

using the ANN

model showed that
the inlet feed
temperature and
sweeping air flow
were the most
influencing
parameters.

However, the liquid

flow rate had

insignificant effect
on the SGMD
performance.

Data split: train:

90%, and test:10%

Activation function:

rectified linear unit
A 10-fold grid-
search cross-valida-
tion was performed
for every model to
optimize the
network structure
and hyper-
parameters with
respect to the
models' accuracy in
terms of an objective
function.

The number of
decision trees and
their maximum
depth were
optimized by 10-
fold grid-search
cross-validation.
Every instance of the
features was
analyzed using
latest model
interpretation
techniques (the
SHapley Additive
exPlanations, the

(continued on next page)
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Year Optimization ~ Correlation  System type
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Individual
Conditional
Expectation, the
Partial Dependence
Plots, and the Mean
Decrease Impurity)
to determine the
time variation of
features
contribution.

the DCMD system and the findings showed that both models can be
effectively applied for analysis of the wetting phenomenon in the DCMD
configuration.

3.5. Control

Table 7 summarizes the studies on the application of data-driven
methods for controlling the performance of various desalination sys-
tems. It can be seen that the ANN model as a great performance pre-
dictive modeling tool of non-linear systems, has received researchers'
attention for controlling purposes. Moreover, the obtained results re-
ported in [34] showed that the LSTM deep learning model can be
effectively applied for the dynamic control of RO desalination systems.
As can be seen from Table 7, despite the intermittent nature of wind and
solar energies, insufficient investigations have been conducted on the
application of data-driven controlling methods for performance
improvement and cost reduction of renewable-based desalination sys-
tems. Cabrera et al. [152] showed the excellent capability of the ANN
model in controlling the variable operation of a standalone wind-driven
RO desalination plant. In another study [153], applying the reinforce-
ment learning model led to a 14% cost decline in a renewable-based RO
desalination technology. Similarly, Gandhi et al. [154] reported that the
sequential extreme learning method can be successfully applied for
performance improvement and cost reduction of the SS desalination
system. With adapting control of feed mass flow rate using the ANN
model, Porrazzo et al. [155] enhanced the daily freshwater productivity
of the PGMD desalination system by approximately 17%.

4. Summary and scope for future work

In this section, the reviewed studies are summarized and potential
research gaps for future studies on the application of data-driven tech-
niques in the desalination area are also presented. Fig. 4 illustrates the
number of reviewed studies in which data-driven methods have been
employed across five different applications, including performance
prediction using operational parameters, performance prediction using
design parameters, optimization and correlation development, mainte-
nance, and control of desalination technologies.

It can be seen from Fig. 4 that investigations on optimization and
correlation development of desalination systems have been received
more attention compared to the remaining four applications. In this
application, the performance of desalination systems was optimized
considering operational/design parameters or correlations were devel-
oped based on these parameters. It is shown that MD is the most studied
desalination method in the optimization or correlation development
category having 22 publications, while the SS is in the second rank with
15 publications. Nonetheless, optimization and correlation development
of solar-driven MD technologies as a promising environmentally-
friendly desalination method has received limited attention and seems
a potential future study. A limited number of researchers have also
sought to employ data-driven methods for optimization and correlation
development in solar-powered HDH desalination systems. It is expected
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that the use of data-driven optimization techniques by considering both
operational and design parameters can play a significant role in
enhancing the thermal efficiency and lowering the freshwater cost of
these solar-driven desalination systems. Furthermore, Fig. 4 shows that
the literature lacks investigations on optimization and correlation
development of CDI and ED desalination systems using data-driven
tools. Where optimization of CDI desalination method is a complex
problem due to joint effect of electrode feature and operational pa-
rameters on the salt removal [142,158], application of data-driven
optimization techniques such as the RSM method is a promising tech-
nique that requires more consideration in the future studies.

Fig. 4 illustrates that the investigations predicting the performance of
desalination systems only based on operational parameters ranked sec-
ond and a vast majority of investigations have been performed on SS and
RO desalination systems. Despite a large number of experimental studies
on HDH desalination systems in the literature, the development of
predictive data-driven models using operational parameters for HDH
desalination systems has been received less attention. However, the
robustness of various ANN models for the performance prediction of a
combined heat pump and HDH desalination system has recently been
demonstrated [37]. Likewise, the development of data-driven tech-
niques based on operational parameters for performance prediction of
MSF desalination method has been studied only in one investigation
[66]. The findings then demonstrated the superiority of the ANN model
over the conventional thermodynamic models and conventional exper-
imental correlations for temperature elevation prediction in the MSF
desalination system. With respect to the wide application of MSF desa-
lination plants worldwide and therefore data availability, the imple-
mentation of ML predictive models can lead to significant energy saving
and cost reduction in MSF desalination plants. As shown in Fig. 4, the
review of the literature show that a limited number of researchers
applied data-driven methods for the performance prediction of CDI
desalination process. Due to the dynamic nature of CDI desalination
process over the charging period [142], the implementation of the RNN
model as an advanced sequential-based predictive model can signifi-
cantly pave the way for the industrialization of CDI desalination process.

With reference to Fig. 4, compared to investigations on the devel-
opment of data-driven models based on operational parameters, there
are not a significant number of data-driven methods considering design
parameters. For instance, design parameters have been taken into ac-
count only for developing the data-driven methods in HDH seawater
greenhouse systems. However, the application of data-driven methods
for analyzing the effects of design parameters on the performance of
various HDH configurations has not been investigated yet. Moreover,
design parameters have not been considered for performance prediction
and optimization of ED, CDI, and MSF desalination systems using data-
driven techniques.

Also, a few researchers employed data-driven methods for the
maintenance analysis of different desalination systems. Although the
literature lacks an accurate modeling tool for wetting prediction in MD
desalination systems [150], the application of data-driven methods in
this area received insufficient attention. Developing further data-driven
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Table 6

Summary of studies on the application of data-driven methods for maintenance purposes.

Desalination 532 (2022) 115744

Ref

Year System
type

Data-
driven
method

Dataset
size/split
ratio

Inputs

Outputs

Main remark

[145]

(6]

[147]

[148]

[149]

2019 RO

2021 MD
(VMD)

2008 MD

2018 RO

2020 ED

2020 MD
(DCMD)

CNN

ANN

ANN

ANN

ANN

RSM &
ANN

13,708

149

229

A six-year
process
database

22

RSM: 31
ANN: 57

e Image

Time

Feed side temperature
Permeate side pressure
Feed flow rate

Solute concentration in
the feed stream

Permeate flowrate
Raw water turbidity
Operating time

Hydraulic parameters
(flow rates and pressures)
Water quality parameters
(turbidity, total chlorine,
and ammonia)

Crossflow velocity
Current
Salt concentration

The concentrations of
NaCl, CaSO4, alginate and
Sodium dodecyl sulfate
(SDS)
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e Fouling growth
o Flux decline

e Permeate flux

o Transmembrane pressure drop

e A new calculated pressure index

e Stack resistance

e Time required to observe the

wetting and the maximum
recovery of the permeate

6000 images were used for training and 4000
images were used for validation and testing
the developed CNN model.

A comparison was made between the
predictive performance of mathematical
methods with the CNN model for fouling
modeling.

CNN had better performance than the
mathematical methods.

ANN architecture: 5-10-1

Hyper-parameter tuning method: Trial and
Error

Data split: train: 75%, validation: 15%, and
test: 15%

Effects of operating parameters on
membrane fouling were investigated.

The developed ANN model was coupled with
GA optimization method to determine the
optimum values of operational parameters.
High membrane fouling happened at higher
feed temperatures and lower vacuum
pressures. Further, higher feed solute
concentrations were also led to higher
membrane fouling.

ANN architecture: 3-5-1

Hyper-parameter tuning method: Trial and
Error

A comparison was made between the
predictive performance of mathematical
(blocking laws) and ANN models for
membrane fouling analysis.

ANN showed a great superiority over
blocking laws to predict the TMP for all
experimental periods.

Various hydraulic and water quality
parameters (59 parameters) were used to
quantify the cause of membrane fouling in a
RO system.

A large big dataset was used to assure the
validity of the developed model for the first
time.

The best predictors of fouling were
determined by the aid of ANN. It was shown
how the model could be used to reduce
fouling rates.

A neural differential equation is fit to
experimental data of an ED pilot undergoing
humic acid fouling.

It was reported that this model can predict
the fouling rate even when using a limited set
of experimental data.

It was shown that neural differential
equations can extrapolate well to new inputs
in simulating colloidal fouling in ED.

By utilizing a Sobol sensitivity analysis, the
direct, linear effect of the crossflow velocity
is reported as 41% compared to 18.6% and
13.1% for the current and the salt
concentration, respectively.

ANN architecture: 4-6-2

Hyper-parameter tuning method: trial and
error

Design method: CCD

Due to the unpredictable behavior of
membrane wetting, data-driven methods
have been used to predict the wetting
phenomena.

Experiments were performed at various
concentrations of NaCl, CaSO4, humic acid,
alginate, and SDS to examine their effects on
the wetting.

(continued on next page)
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Table 6 (continued)

Desalination 532 (2022) 115744

Ref Year System Data- Dataset Inputs Outputs Main remark
type driven size/split
method ratio
o It was shown by data-driven methods that
the concentration of NaCl and SDS had the
largest effect on the outputs.
[33] 2021 FO CNN 21 days e Image e Fouling characteristics of the e The CNN model was successfully developed
membrane (thickness, porosity, for fouling prediction.
roughness, and density of the e Thickness, porosity, roughness, and density

of the fouling layer were completely
analyzed using the CNN method.

Fouling morphology was visualized by real-
time optical coherence tomography
monitoring.

Dominant fouling characteristics were
studied and reported.

fouling layer)

models for accurate prediction of the wetting phenomenon in MD
modules, particularly for VMD configuration, can lay the foundation for
performance enhancement and facilitate the commercialization of this
promising technology. Further, it can be inferred from the literature that
despite great efforts made by researchers, the fouling phenomenon is
still a huge barrier to the industrialization of ED and FO desalination
systems [5,19]. Hence, fouling characteristics can be properly analyzed
in these desalination technologies with the aid of the CNN deep learning
model in which real images are used to develop the model. It is expected
this novel fouling analysis method can take big steps in mitigating the
fouling issues in membrane-based desalination technologies which
deserve more attention in future studies.

It can be also inferred from Fig. 4 that further studies should be
carried out on controlling the performance of desalination systems using
data-driven methods. Adaptive control of desalination systems with the
aid of data-driven techniques can play a key role in performance
enhancement and cost reduction of various desalination systems and
appears a promising research topic. As shown in Fig. 4, compared to
other desalination systems, more investigations have been dedicated to
the application of data-driven methods for controlling the performance
of the RO system. This can be attributed to the importance of accurate
control of industrialized desalination methods such as the RO desali-
nation system. Therefore, the development of advanced controlling tools
using data-driven techniques for adaptive control of solar-driven desa-
lination systems such as MD and HDH systems can lay the foundation for
the industrialization of these technologies and is a promising future
study. By way of illustration, controlling the key operational parameters
of HDH desalination system such as the mass ratio of water to air in
accordance with the solar radiation intensity seems a viable future
study.

Fig. 5 provides information on a breakdown of applied data-driven
methods for studying desalination technologies from five different
viewpoints. As shown in Fig. 5, among ML models, the ANN method has
mostly been applied and researchers placed significant attention on ANN
models developed by operational parameters for performance predic-
tion of desalination systems. The statistical methods including TM, RM,
FD, and RSM have been mainly employed for optimization and corre-
lation development purposes and the RSM method was the most popular
statistical method. Fig. 5 also reveals that DL models have received
limited attention despite their vital role in performance enhancement as
well as cost reduction of desalination technologies. Hence, the applica-
tion of RNNs and specifically the LSTM method for adaptive control of
solar/wind-driven desalination systems is a promising research poten-
tial and requires more extensive attempts. Further, more studies should
be carried on assessing the capability of the CNN method to predict
complex phenomena such as wetting and fouling issues in membrane-
based desalination systems.

The number of times each data-driven method has been applied for
analysis of each desalination system is illustrated as a heat map plot in
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Fig. 6. ANN and RSM methods have received more attention compared
to other ML and statistical methods. Researchers also employed the ANN
method 20 times for analysis of RO desalination method and the RSM
method has been applied 19 times for studying the MD systems. A large
area in Fig. 6 is intact indicating no investigation has been conducted
which highlights the importance of future studies in these regions. By
way of illustration, the classical ML methods including ANFIS, DT, RF,
and SVM have not received enough attention. This highlights the di-
rection for future studies on analyzing the performance of these methods
compared with the ANN model for investigating different desalination
systems. Further studies should also be carried out to compare the
performance of classical ML models with conventional thermodynamic
and mathematical models in terms of important indicators such as ac-
curacy and computational time. Moreover, Fig. 6 demonstrates that DL
methods have been employed only in five investigations. Future studies
on the application of DL models as a robust predictor/control tool can
facilitate industrialization and decrease the cost of desalination
technologies.

Apart from the aforementioned observations, there exist several
research points in terms of the effective application of ML methods in
desalination systems that require further considerations in future
studies. The performance of ML methods is mainly affected by a number
of key factors such as appropriate selection of inputs and outputs,
concise hyper-parameter tuning, and dataset sizes. In the case of inputs
selection, the literature shows that the feature selection analysis has
been performed only in a few investigations for the wise inputs selec-
tions [75,88,104,142]. Moreover, researchers mainly tended to develop
ML models based on operational parameter inputs compared to the
design parameters. Regarding outputs, freshwater productivity has been
mostly chosen as the output whereas other important outputs such as
thermal efficiency, exergy efficiency, and freshwater cost have gained
much less attention. With respect to the hyper-parameter tuning
method, the findings obtained from our comprehensive literature review
revealed that optimization techniques have been applied in a few in-
vestigations [77,104,124], and the trial and error method has been
widely opted to tune the hyper-parameters. Overall, placing more
attention on the mentioned research areas can play a crucial role in
increasing the accuracy, generalization capability, as well as lowering
the computational time of ML methods. Consequently, this can pave the
way for more efficient application of ML models in the desalination
region, resulting in performance enhancement and cost reduction of
various desalination technologies.

Although collecting a large number of data can be beneficial for data-
driven analyses, the data acquisition procedure is often time-consuming
and costly. Hence, there should be a trade-off concerning the appro-
priate number of data for developing accurate data-driven models while
taking into account the time and cost of the data collection procedure.
To this end, Fig. 7 provides a summary of the whole reviewed papers in
terms of the size of the dataset. In Fig. 7, the dataset size with respect to
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Table 7

Desalination 532 (2022) 115744

Summary of studies on the application of data-driven methods for control purposes.

Ref Year System Data- Dataset
type driven size

method

Inputs

Outputs Main remark

RNN
(LSTM)

1871

[34] 2020 RO Feed pressure

[152 Power
Temperature

Conductivity

2017 RO 1197

[153] 2021 RO DRL 8760

One year of load
demand

Water demand
Electricity price
Wind turbine output
PV output

e o o o

[154] 2021  SS

(stepped)

ANN n.m. e n.m.

[155] 2013  MD (solar Feed flow rate

PGMD)

ANN 540

ANN and 474
GA

[156] 2015 RO Time
Transmembrane
pressure
Conductivity

Flow rate

Mass flow rate of the
heater vapor

Blow down flow rate

Set point

.

[157] 2014  MSF ANN 4500

3

Flow rate of
permeate
Permeate
concentration

LSTM model was used as a powerful predictive controller
model.

The LSTM predictive model showed a great performance on
the validation dataset and was nominated as a robust
predictive controller for RO desalination systems.

ANN architecture for predicting the flow: 3:38:4:1, 3:69:13:1
ANN architecture for predicting the pressure: 3:56:9:1,
3:71:17:1

e ANNs were used to manage the variable operation of a RO
plant.

For the first time the use of ANNs as control system tools for
RO units has been studied with a view to enabling a continuous
adaptation of the plant's energy consumption to the simulated
variable electrical energy generation of a stand-alone wind
turbine.

e ANNs were able to successfully manage the random and
widely varying available electrical power.

The ANN models were used to generate feed flow and
operating pressure set points.

Data split ratio: train: 90% and test: 10%

The energy management of a hybrid energy system is studied
as an optimal control objective, and multi-targets are consid-
ered along with constraints.

The information entropy theory is used to calculate the weight
factor for the trade-off between different targets. Next, a deep
reinforcement-learning algorithm is developed to solve this
problem and get the optimal control policy.

It was reported that a well-trained agent could provide a better
control policy and reduce costs by up to 14.17% compared to
other methods.

Online Sequential Extreme Learning Machine neural network
adaptive controller was tested on a stepped SS with Si02/Ti02
nanoparticles in its basin.

Temperature values were stored in a dynamic Binary Search
Tree data structure and storage in the memory.

It was concluded that adaptive control of SS process can lead to
the optimal cost for the SS with higher performances.

ANN architecture: 1-5-1

Hyper-parameter tuning method: trial and error

Data split: train: 80%, validation: 15%, and test: 5%

A control system based on dynamic ANN was developed to
maximize the distillate flow rate. The control system functions
based on adjusting the feed flow rate in accordance with
variances in solar radiation and temperature of permeate fluid.
The daily productivity was increased by 17.2% with the
application of the adaptive control system.

Data split ratio: train: 60%, validation: 20%, and test: 20%
Long-term forecasting and controlling the RO system were
studied for the next 5000 h of operation.

By implementing control strategies, permeate conductivity
declined for both experimental and model prediction.

ANN architecture: 3-12-1

Hyper-parameter tuning method: Trial and error

Data split: train 75% and test: 25%

Three controllers based on ANN model were considered for
controlling the top brine temperature, the level of last stage
and salinity.

Results showed that control strategy is viable to be
implemented in MSF desalination systems.

Pressure

Flow

Operating cost
Cost of battery
storage system
Pollution cost

e n.m.

o Distillate flow rate

Permeate flow
Permeate
conductivity

Top brine
temperature
Level of last stage
Brine salinity

the type of desalination system (Fig. 7(a)), and type of data-driven
method (Fig. 7(b)) is shown based on various applications: perfor-
mance prediction using operational parameters, performance prediction
using design parameters, optimization and correlation development,
maintenance and control. This is evident that a wide range of dataset
sizes have been used to develop data-driven methods for analyzing
various desalination systems. Among five categories, except for the
control category which mainly larger datasets have been used (with
minimum and mean of 474 and 3497, respectively), data-driven models
exhibited appropriate accuracy in the other four groups with less than

500 data. Furthermore, according to Fig. 7(a), a broad spectrum of data
has been used for MD and RO desalination systems compared to other
desalination systems. Regarding data-driven models as shown in Fig. 7
(b), the ANN model developed by less than 500 data is the most popular
ML method. Moreover, statistical methods including TM, RM, FD, and
RSM methods are generally applied using small-sized datasets, with
maximum 200 data. The largest dataset size (13708) can be also seen in
terms of the application of the CNN model for studying maintenance in
the RO desalination system. Overall, Fig. 7 reveals that a wide range of
dataset sizes have been applied in various data-driven methods for the
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Fig. 5. The number of reviewed studies versus data-driven methods for different applications.

analysis of different desalination systems. Therefore, the accuracy of
data-driven methods developed by a different number of data should be
investigated in future studies that can lead to a significant saving on time
and cost of the data acquisition procedure.

5. Conclusions

This paper comprehensively reviewed the application of data-driven
methods (both AI and DOE methods) in thermal and membrane desali-
nation systems. The reviewed studies have been thoroughly categorized
based on the type of desalination system, type of data-driven method,
and the application of data-driven methods for the analysis of various
desalination systems. The literature review showed that data-driven
methods have been mainly applied for the analysis of desalination sys-
tems for five different applications namely performance prediction using
operational parameters, performance prediction considering design
parameters, optimization and correlation development, maintenance,
and control. Compared to the complexity involved in mathematical
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modeling of desalination systems, data-driven methods exhibited great
performance with much lower complexity and maintaining high accu-
racy. However, a review of a large number of investigations indicated
that despite great efforts made by researchers, there are extensive un-
explored and potential research areas concerning the data-driven anal-
ysis of desalination technologies. The following main conclusions can be
drawn from the current review:

o Regarding membrane-based desalination systems, a vast majority of
studies were carried out on RO and MD desalination systems. How-
ever, there are several unexplored research areas in terms of the
application of data-driven techniques for control and maintenance
analysis of these systems, including adaptive control of solar-driven
MD system, adaptive control of wind-powered RO technology, and
fouling/wetting analysis in MD desalination systems. Further, the
review of literature reveals that data-driven methods can play a key
role in performance prediction, optimization, and maintenance
analysis of CDI, ED, and FO desalination systems. More data-driven
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investigations should be conducted on performance analysis and using the CNN deep learning model can significantly facilitate
optimization of CDI systems considering the combined effect of fouling diagnosis in ED and FO desalination technologies.
operational and electrode features. Furthermore, image processing e With respect to thermal desalination systems, researchers mostly

applied data-driven methods to analyze the SS desalination system.
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However, AD technology as a novel desalination method has not
been studied sufficiently via data-driven approaches. A limited
number of investigations conducted on HDH and MSF desalination
technologies proved the enhanced predictive performance of ML
models compared to mathematical models and experimental corre-
lations. Nonetheless, this review paper showed that other applica-
tions of data-driven methods for in-depth analysis of HDH and MSF
systems require more attention, including performance prediction
based on both operational and design parameters, and control of
solar-driven systems.

In the case of data-driven methods, it can be concluded that among
ML and DOE methods, ANN and RSM were the most popular
methods, respectively. Moreover, the results reported by a few in-
vestigations prove the robustness of other ML methods such as
ANFIS, SVM, and RF methods for accurate analysis of desalination
systems, which highlights performing more studies on developing
other classical ML methods for the analysis of different desalination
technologies. Further, a limited number of investigations performed
on the application of DL models in the desalination area confirmed
the reliability of DL models for accurate analysis of desalination
technologies. It appears that DL models have the potential to open
new research directions in terms of different applications in thermal
and membrane desalination systems, including prediction of the
dynamic behavior of desalination systems, maintenance analysis of
membrane-based systems, and adaptive control of renewable-based
desalination systems.

Compared to operational parameters, design parameters have
received insufficient attention for developing data-driven methods.
Furthermore, freshwater productivity was frequently chosen as the
output of data-driven models, and other important outputs such as
energy and exergy efficiencies and freshwater cost should be given
more attention.

The review of literature from the dataset size viewpoint shows that
analyzing the effect of dataset sizes on the performance of data-
driven methods can pave the path for lowering the cost and time
of the data collection.

It is expected that data-driven methods can play a vital role in
overcoming the obstacles to the industrialization of several desali-
nation systems such as HDH, CDI, AD, ED, MD, and FO technologies.
Further, ML and DL methods can be effectively employed for in-
depth analysis of industrialized desalination technologies, resulting
in performance enhancement and cost reduction.
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