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H I G H L I G H T S  

• Data-driven methods in both membrane and thermal desalination systems are reviewed. 
• A variety of AI and DOE methods are used in desalination area are analyzed. 
• Applications of different methods in various desalination systems are categorized. 
• Influential parameters for different methods and desalination systems are reported. 
• Research gaps in terms of desalination systems and data-driven models are proposed.  
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A B S T R A C T   

The substitution of conventional mathematical models with fast and accurate modeling tools can result in the 
further development of desalination technologies and tackling the need for freshwater. Due to the great capa
bility of data-driven methods in analyzing complex systems, several attempts have been made to study various 
desalination systems using data-driven approaches. In this state-of-the-art review, the application of various 
artificial intelligence and design of experiment data-driven methods for analyzing different desalination tech
nologies have been thoroughly investigated. According to the applications of data-driven methods in the field of 
desalination, the reviewed investigations are classified into five categories namely performance prediction using 
operational parameters, performance prediction using design parameters, optimization and correlation devel
opment, maintenance, and control of desalination systems. For each category, valuable information about the 
data-driven methods such as inputs, outputs, hyper-parameter tuning methods, and size of datasets have been 
provided and the main remarks are reported. The findings showed that data-driven methods can play a vital role 
in each aforementioned application for both thermal and membrane-based desalination technologies. Eventually, 
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the research gaps are highlighted and a roadmap is also provided for future data-driven analysis of various 
desalination systems and their further advancement.   

1. Introduction 

It is anticipated that by the year 2050, the water shortage problem 
turns out to be a serious problem and around 5.7 billion people will face 
the water shortage [1]. Climate changes, industrialization, and popu
lation growth are mentioned as main contributors to this worldwide 
issue [2,3]. Herein, desalination technologies have started to play a vital 
role in mitigating water scarcity mainly due to the fact that around 97% 
of available water on earth are found to be saline and brackish [4]. 

The employment of accurate and fast analytical tools can lead to 
significant performance improvement and cost reduction of desalination 
systems, paving the way for further development of desalination systems 
and alleviating the water scarcity crisis. However, existing conventional 
mathematical methods mainly suffer from insufficient accuracy and 
high complexity due to simplified assumptions employed in their 
development, the existence of several affecting parameters, and complex 
phenomena inside the desalination systems [5,6]. In this situation, data- 
driven methods as robust black-box analytical tools can result in a more 
precise analysis of various desalination technologies and therefore 
mitigate the mentioned issues. These methods do not require specific in- 
depth knowledge about the desalination systems and are generally based 
on the analysis of a set of input/output data [7]. 

The great benefits of data-driven methods over conventional math
ematical modeling tools have drawn researchers' attention to the use of 
these promising methods in desalination systems. A number of re
searchers reviewed the application of classical artificial neural networks 
(ANN) in membrane-based desalination systems [7–10]. Also, a recent 
review article has been conducted on the utilization of machine learning 
(ML) models for performance modeling of solar still desalination sys
tems [11]. To the best of the authors' knowledge, there is a deficiency for 
a comprehensive review on the application of various data-driven 
methods including design of experiment (DOE) and artificial intelli
gence (AI) methods in both thermal and filtration-based desalination 
systems. Furthermore, the application of data-driven methods for 
various purposes including the distribution of applied data-driven 
methods in each desalination system, and the size of data sets have 
been given insufficient attention in published review studies. Therefore, 
this study aims to comprehensively discuss and categorize the state-of- 
the-art publications based on the application of data-driven methods 
in desalination systems across five categories, including performance 
prediction using operational parameters, performance prediction 
considering design parameters, optimization and correlation develop
ment, maintenance, and control (Fig. 1). Moreover, the available liter
ature are systematically reviewed and summarized to identify the 

potential research gaps on the application of data-driven techniques in 
the desalination area. 

2. Overview of desalination technologies and data-driven 
methods 

2.1. Overview of desalination technologies 

As shown in Fig. 2, desalination technologies investigated by data- 
driven tools mainly fall under two categories of filtration-based and 
thermal processes. The number against each technology represents the 
data-driven studies that have been conducted to analyze the mentioned 
desalination technologies and have been reported in the current review. 
In the case of filtration-based processes, semipermeable membranes are 
utilized for freshwater production, except for the capacitive deionization 
(CDI) desalination method in which mainly the porous electrodes are 
used for salt removal. Furthermore, in the thermal-based process 
freshwater is mainly produced by vaporization and condensation. A 
brief description of desalination technologies reviewed in this review 
paper is provided in Table 1. Readers are referred to cited references for 

Application of data-driven 
methods in desalination systems

Performance prediction using operational parameters

Performance prediction using design parameters

Optimization and correlation development

Maintenance

Control

Fig. 1. Applications of data-driven methods in desalination systems.  

Reviewed desaliantion 
technologies

Filtration-based 
process

RO (23)

FO (6)

MD (29)

ED (1)

CDI (2)

Thermal 
process

SS (30)

HDH (8)

MSF (3)

AD (1)

Fig. 2. Desalination technologies analyzed using data-driven methods.  
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a more in-depth knowledge about the principle of each desalination 
technology. 

2.2. Overview of data-driven methods 

The data-driven methods employed for the analysis of desalination 

systems can be divided into AI and DOE methods as shown in Fig. 3. AI 
techniques are capable of estimating the relationship between inputs 
and outputs without a need for accurate knowledge about the system 
and therefore are considered as black-box analytical methods [30,31]. 
Generally, an experimental dataset is employed for developing the AI 
techniques where the whole dataset is divided into two or three parts 

Table 1 
A brief description of reviewed desalination systems.  

Ref Desalination technology Type Driving force Key influential 
parameters 

Main remarks 

[12–14] Reverse osmosis (RO) Filtration Pressure 
gradient  

• Feed pressure  
• Feed temperature  
• Salt concentration of 

feed flow  
• Membrane 

characteristics  

• RO is a water purification process driven by pressure to overcome 
osmotic pressure for producing freshwater with the aid of a partially 
permeable membrane.  

• Although the RO method is an energy-intensive desalination process, this 
technology is the most dominant desalination process worldwide due to 
its high efficiency and comparatively low water cost. 

[5,15,16] Forward osmosis (FO) Filtration Osmosis 
pressure  

• Temperature of draw 
solution  

• Osmotic pressure 
difference  

• Feed solution velocity  
• Draw solution velocity  
• Membrane properties  

• FO utilizes the natural energy of osmotic pressure to separate water from 
dissolved solutes via a semi-permeable membrane. The osmotic pressure 
is used to transport water through the membrane while retaining all the 
dissolved solutes on the other side.  

• Concentration polarization and fouling are two main issues of the FO 
process. 

[17,18] Membrane distillation 
(MD) 

Filtration Vapor pressure 
gradient  

• Feed flow temperature  
• Mass flow rates  
• Module geometric 

parameters  
• Membrane properties  

• MD process is a hybrid membrane/thermal process that permits only 
water vapor to permeate through the membrane due to the hydrophobic 
characteristics of its membrane.  

• Based on the method of water vapor collection, MD modules are divided 
into 4 main categories: direct contact membrane distillation (DCMD), 
air-gap membrane distillation (AGMD), vacuum membrane distillation 
(VMD) and sweep gas membrane distillation (SGMD)  

• Wetting/fouling of membrane and temperature/concentration 
polarizations are the main issues of MD desalination processes.  

• The required energy can be effectively supplied by solar energy. 
[19,20] Electrodialysis 

desalination (ED) 
Filtration Electrical 

potential 
gradient  

• Temperature and flow 
rate of feed flow  

• Applied voltage  
• Initial feed 

composition  
• Membrane 

characteristics  

• ED is a low-pressure process that uses ion-selective membranes to 
desalinate water. ED deploys charged membranes and uses electrical 
energy to flow the ions against a concentration gradient causing sepa
ration and purification.  

• Membrane fouling is a serious obstacle to scaling up the ED technology.  
• Solar/wind energies can be integrated well with the ED technology. 

[21] CDI Filtration Electrical 
potential 
gradient  

• Electrode materials  
• Salt concentration  
• Electrode specific 

surface area  

• CDI process uses the electrical potential difference applied over two 
electrodes to deionize the water.  

• The CDI process comprises two main cell architectures: static electrode 
architecture and flow electrode architecture.  

• Anion/cation exchange membranes are added for performance 
enhancement.  

• The CDI technology is still on the laboratory scale. 
[22] Solar still (SS) Thermal Heat  • Solar intensity  

• Water depth  
• Solar still utilizes direct solar radiation to desalinate saline water based 

on the evaporation and condensation process.  
• Solar still is mainly fallen into active and passive categories.  
• Despite low efficiency/freshwater productivity, the solar still technology 

is simple and suitable for remote areas. 
[23–25] Humidification- 

dehumidification (HDH) 
Thermal Heat  • Mass flow ratio of 

water to air  
• Top temperature of the 

cycle  
• Packing materials  

• HDH is a desalination technology that imitates nature's rain cycle. In the 
humidifier, water is sprayed into the air and then, it condenses to 
freshwater by passing through the dehumidifier.  

• There are several configurations based on the heated fluid (water-heated 
and/or air-heated) and the type of fluid circulation (open or close cycles)  

• Low-temperature heat sources such as solar energy and waste heat can be 
utilized in HDH desalination systems. 

[26,27] Multistage stage flash 
(MSF) distillation 

Thermal Heat  • Top brine temperature  
• Number of stages  
• Temperature drop in 

each stage  
• Brine temperatures at 

inlets and outlets  

• In the MSF process, feed seawater is pressurized, heated and discharged 
to a chamber with slightly lower water saturation vapor pressure. Next, a 
fraction of this water flashes into steam and condenses on the exterior 
surface of heat transfer tubing.  

• The temperature of each stage is kept under the saturation temperature 
of the water entering each stage and vacuum pressure is mainly applied 
to this end.  

• Evaporation temperature decreases from the first stage to the last one 
using changing the vacuum pressures.  

• Top brine temperature is in the range of 80 ◦C to 125 ◦C. 
[28,29] Adsorption desalination 

(AD) 
Thermal Heat  • Heat source 

temperature  
• Preheating time  
• Adsorption/desorption 

time  
• Heat recovery time  

• Adsorption desalination system has the capability of providing both 
freshwater and cooling effect simultaneously.  

• AD is a promising method to run with solar and waste energies.  
• Main performance indicators of the AD system are coefficient of 

performance (COP), specific cooling power (SCP), and specific daily 
water production (SDWP).  
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namely training, (validation), and testing sub-datasets. The training 
dataset consists of a larger number of data to train the AI model, while 
validation and testing datasets are unseen datasets comprised of a lower 
number of data that are mainly used to estimate the accuracy and 
generalization power of the developed AI methods. The predictive per
formance of AI models is highly dependent on a number of key factors 
including the accurate selection of inputs and outputs, hyper-parameter 
tuning methods, and size of datasets [32]. As shown in Fig. 3, AI tech
niques can be classified into classical ML and deep learning (DL) 
methods. The classical ML methods employed for studying desalination 
systems consist of Artificial neural network (ANN), Adaptive neuro fuzzy 
inference systems (ANFIS), Decision tree (DT), Random forest (RF), 
Support vector machine (SVM), and Regression models (RM). Further
more, DL methods have more complex structures compared to classical 
ML methods and mainly require a larger number of data. The great 
benefits of DL models over the classical ML methods such as favorable 
capability in the analysis of unstructured data (such as photos) and great 
ability for analyzing the dynamic systems have recently captured the 
researchers' attention working on desalination area [33,34]. DL methods 
applied in desalination systems can be categorized into three methods 
namely recurrent neural networks (RNN), conventional neural network 
(CNN), and deep reinforcement learning (DRL). 

DOE method is mainly derived from statistical methods and was 
initially proposed by Fisher in the 1930s for the research in agricultural 
and biological domains [35]. Compared to the conventional one-factor- 
at-a-time experimental method, the DOE approach can significantly 
lower the cost and time of the data-acquisition process while providing 
the maximum information about the system behavior by wisely 
designing the required experimental tests. Moreover, the DOE approach 
takes into account the interaction effects of independent variables on 
system behavior and can be effectively applied for performance pre
diction and optimization purposes. Response surface methodology 
(RSM), Taguchi method (TM), and factorial design (FD) are the three 
main statistical DOE tools that have been widely used to analyze the 
performance and optimization of desalination systems. It is also worth 
mentioning that the number of reviewed studies for each data-driven 
model is reported in Fig. 3. Moreover, a brief description of AI and 
DOE methods is summarized in Table 2 and the readers are referred to 
corresponding references for more detailed information about each 
data-driven method. 

Reviewed data-driven 
methods

AI techniques

Classical ML models

ANN (62)

ANFIS (6)

DT (1)

RF (4)

SVM (8)

RM (10)

Deep learning models

RNN (3)

CNN (2)

DRL (1)

DOE methods

RSM (32)

TM (4)

FD (3)

Fig. 3. Classification of data-driven methods applied in desalination area.  

Table 2 
A brief description of applied data-driven methods in desalination systems.  

Ref Method Type Main remarks 

[36–41] ANN ML  • ANNs are comprised of several neurons which 
mimic the brain data processing approach. Each 
neuron has several inputs from other neurons 
corresponding to their weights and employs a non- 
linear activation function to produce the output 
signal which may transfer to other neurons.  

• Several activation functions have been used in 
ANNs such as sigmoid, Gaussian radial basis 
function, hyperbolic tangent, etc.  

• Different types of ANN models have been 
employed to study desalination systems including 
multi-layer perceptron artificial neural network 
(MLPANN), radial basis function artificial neural 
network (RBFANN), bootstrap aggregated neural 
networks (BANN), nonlinear Autoregressive 
Exogenous (NARX), Elman neural network (ENN), 
and random vector functional link network 
(RVFL)  

• The developed ANN models in the field of 
desalination have used different training 
algorithms including Levenberg Marquardt (LM) 
[42], Imperialist competition algorithm (ICA) 
[43], genetic algorithm (GA) [44], one step secant 
(OSS) algorithm [45], conjugate gradient Powell- 
Beale restarts (CGP) [46], scaled conjugate 
gradient (SCG) [46], resilient backpropagation 
(RB) [47], gradient descent algorithm [48], 
Broyden–Fletcher–Goldfarb–Shanno algorithm 
(BFGS) [49], and Bayesian optimization method 
[50].  

• Type of activation function, number of hidden 
layers, and number of neurons in hidden layers are 
three main hyper-parameters which optimized via 
trial and error method or optimization techniques. 

[51] ANFIS ML  • ANFIS model is a combination of ANN and Takagi- 
Sugeno fuzzy systems which is benefited from the 
learning capability of the ANN model and the 
reasoning ability of the fuzzy system.  

• ANFIS is mainly a 5-layer network comprised of 
five layers namely fuzzification, product, 
normalization, defuzzification, and output layers.  

• Different membership functions can be used such 
as Pi-shaped, sigmoidal, triangular-shaped and 
trapezoidal-shaped.  

• Grid partitioning and clustering methods are used 
to generate the fuzzy system.  

• Hyper-parameters include types of membership 
functions and the number of clusters. 

[32,52] DT ML  • DT is a supervised ML method that uses if-then- 
else decision rules to predict the target.  

• The data split process begins from the top node of 
the tree called the “root node” and ends up at leaf 
nodes.  

• Data is split at each node appropriately 
considering the best input feature and 
corresponding threshold which leads to the lowest 
error.  

• DT method does not require input normalizations 
before developing the tree.  

• DT is highly vulnerable to overfitting and needs 
accurate hyper-parameter tuning.  

• The maximum depth of the tree, the minimum 
number of samples required for splitting, and the 
number of maximum features are the three main 
hyper-parameters for the DT model. 

[52,53] RF ML  • RF model is an ensemble of trees and the 
averaging method is used to predict the final 
target.  

• Each tree in the forest is created by a subset of 
training dataset called “bootstrapped dataset”. A 
random subset of features is also selected to build 
the trees. 

(continued on next page) 
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3. Applications of data-driven methods in desalination systems 

3.1. Performance prediction using operational parameters 

Table 3 summarizes the studies that employed data-driven methods 
to predict the performance of different desalination systems using 
operational parameters (listed as inputs in Table 3). The details of the 
data-driven methods, input and output parameters, and main remarks of 
each study are presented in Table 3. It can be seen that the most of 
studies were concentrated on RO and SS desalination systems, and only a 
few investigators have used data-driven methods to predict the perfor
mance of MD, MSF and CDI systems. The most important highlights 
drawn from Table 3 are presented below. 

3.1.1. Use of classical ML models 
It can be seen from Table 3 that most of the studies used ANNs to 

predict the performance of various desalination systems [37,63–78]. 
This lies in the fact that the ANN model has the privilege of performance 
anticipation of non-linear systems with high generalization capability 
and accuracy. In addition to ANNs, there are a couple of classical ML 
models that have been used to predict the performance of various 
desalination systems. Pascual et al. [79] used support vector regression 
(SVR) to predict the performance of a RO plant. It was concluded that 
the SVR model has the capability of predicting the flowrate and con
ductivity of both permeate and retentate flows, with average absolute 
relative errors of 0.70%–2.46%. Bahiraei et al. [80] used ANFIS to 
predict the energy efficiency of a SS system. It was shown that R2 values 
for the training and test sets reached 0.9884 and 0.9906, respectively. 
Also, it was shown that ANFIS can be used to predict the water pro
ductivity in SS systems with 99.99% correlation coefficient [81]. 

3.1.2. Comparison of ML models and conventional methods 
Conventional methods like empirical/statistical models, mathemat

ical methods, and thermodynamic analysis are becoming substituted by 
ML models in different applications including the field of desalination in 
recent years. Therefore, some researchers aimed at comparing the per
formance of ML models with conventional methods in performance 
prediction of various desalination systems. ML models are usually 
trained and tested with experimental data to assure their predictive 
performance. It was reported that there was approximately 5% deviation 
between the predictions by ANN models and the actual experimental 
data gathered from a SS system [63]. Also, the ANN prediction for SS 
processes using the experimental dataset showed better results 
compared to the mathematical modeling [64]. The performance analysis 
of a heat pump assisted HDH system indicated that the MLPANN out
performed the conventional compressor polynomials method in pre
dicting the heat transfer rates [37]. For a RO system, both ANNMLP and 
ANNRBF networks outperformed the conventional statistical models 
[65]. Similarly, it was reported that in MSF desalination plants, RBFANN 

Table 2 (continued ) 

Ref Method Type Main remarks  

• The applied randomness in developing the forest 
results in a better generalization capability in 
comparison with the DT model.  

• There is no need for the input normalization 
process prior to training the RF model.  

• RF method can inherently determine the most 
influential inputs.  

• Four hyper-parameters exist in the RF model: The 
maximum depth of the tree, the minimum number 
of samples required for splitting, the number of 
maximum features, and the number of trees. 

[32,52] SVM ML  • The development of SVM model is based on a 
subset of the training dataset and the cost of close 
predictions to their targets is neglected, resulting 
in training the SVM model even with a small-sized 
training dataset.  

• The radial basis kernel function is often used to 
add non-linearity and mapping data to the feature 
space.  

• The SVM regression method needs tuning four 
hyper-parameters including the type of kernel 
function, kernel coefficient, penalty parameter, 
and radius. 

[54,55] RM ML  • Linear RMs include simple linear regression 
models, multiple-linear regression models, and 
step-wise regression models.  

• Multiple-linear RM considers the effects of 
multiple independent variables on a dependent 
variable.  

• Step-wise RM follows an iterative procedure in 
which independent variables and coefficients are 
appropriately selected to develop the linear RM 
method. 

[56] RNN DL  • RNN is capable of memorizing the fed inputs and 
therefore is suitable for analyzing the sequential 
data and specifically for analyzing the time- 
related systems.  

• Long short term memory (LSTM) is a type of RNN 
model which solved the gradient vanishing 
problem of the RNN model. 

[56] CNN DL  • CNN model is a kind of ANN model which is 
composed of several hidden layers including 
convolutional, fully connected, flatten, 
normalization and dropout layers.  

• CNN model is suitable for pattern recognition and 
image processing applications. 

[57] DRL DL  • Reinforcement learning utilizes an agent that 
learns to make appropriate decisions by trial and 
error. There is a reward for each decision that 
leads to the best training state.  

• DRL is a combination of reinforcement learning 
and DL methods which DL methods are used to 
assist the agent to reach the goal. 

[35,58] RSM DOE  • The RSM method is comprised of both 
mathematical and statistical approaches.  

• The RSM method establishes a linear or quadratic 
polynomial function where the least square 
method is utilized to determine the regression 
coefficients.  

• Different designs such as central composite design 
(CCD), Box-Behnken design (BBD), face-centered 
central composite design (FCCD), and quadratic 
rotation-orthogonal composite design (QRCD) are 
used in the RSM method.  

• The CCD is the most popular design for developing 
the quadratic polynomial function. 

[59,60] TM DOE  • TM method is a fractional factorial design that 
requires the lowest number of experiments among 
DOE methods.  

• Orthogonal array and signal-to-noise ratio are two 
main tools for applying the TM design.  

• Orthogonal array is a matrix allowing the 
selection of subsets of a combination of 
independent factors at several factors.  

• Signal-to-noise ratio is defined as the ratio of 
sensitivity to variability and depending on the  

Table 2 (continued ) 

Ref Method Type Main remarks 

objective function should be minimized, nominal, 
or maximized. 

[61,62] FD DOE  • FD design is comprised of full factorial design and 
fractional factorial design.  

• The full factorial design considers the total 
possible combinations of inputs and therefore 
2number of factors (inputs) experimental test is 
required.  

• The fractional factorial design is used to reduce 
the number of experiments compared to the full 
factorial design. This design can be applied when 
the high order interactions among inputs are 
assumed unimportant. 2number of factors (inputs)- 

number of reduced factors experimental tests is needed 
for the fractional factorial design.  
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Table 3 
Summary of studies on the performance prediction of desalination systems using operational parameters.  

Ref Year System type Data-driven 
method 

Dataset 
size 

Inputs Outputs Main remark 

[63] 2020 SS (solar earth still) MLPANN 48  • Solar radiation  
• Water, glass and ambient 

air temperature  

• Water productivity  • ANN architecture: 4–10–10-1  
• Hyper-parameter tuning method: Trial and 

error  
• Data split ratio: train: 70%, 

validation:15%, and test: 15%  
• LM method is used for training.  
• There was approximately a 5% deviation 

between the predictions by developed 
models and the actual experimental data. 

[64] 2020 SS integrated with 
solar panels and 
cylindrical parabolic 
collectors 

MLPANN 256  • Water, glass cover, 
insulation, ambient air and 
basin temperature  

• Solar Intensity  
• Wind speed  

• Water productivity  • ANN architecture: 7-7-1  
• Hyper-parameter tuning method: Trial and 

error  
• Data split ratio: train: 70%, valid:15%, test: 

15%  
• LM and hyperbolic tangent sigmoid 

transfer are used for training method and 
transfer function, respectively.  

• The ANN prediction was in good 
agreement with experimental data and also 
it was more accurate than the 
mathematical model. 

[37] 2021 HDH integrated with 
a heat pump 

ANFIS, 
MLPANN, 
RBFANN 

180  • Saturation temperature of 
the evaporator and 
evaporative condenser  

• Spraying saline water 
temperature  

• Refrigerant and air mass 
flow rates  

• Dry-bulb and wet-bulb 
temperatures of ambient 
air  

• Gain output ratio  
• Heat transfer rate of 

the evaporator and 
evaporative 
condenser  

• MLPANN model showed the best 
generalization capability compared to 
ANFIS and RBFANN models.  

• MLPANN outperformed the conventional 
compressor polynomials method. 

[65] 2015 RO MLPANN, 
RBFANN 

–  • Temperature  
• Pressure  
• pH  
• Conductivity  

• Permeate flowrate  
• Permeate TDS  

• Data split ratio: train: 70%, and test: 30%  
• Both developed networks were better than 

the conventional statistical model.  
• The MLP network had gained better 

performance when trained by LM 
algorithm, having the tangent hyperbolic 
function as the activation function in the 
hidden layer neurons.  

• The RBF network is trained using the 
backpropagation OLS algorithm by 
considering the Gaussian radial basis 
function as the activation function in the 
hidden layer. 

[66] 2010 MSF RBFANN 380  • Boiling point temperature  
• Salinity  

• Temperature 
elevation  

• ANN architecture: 2-12-1  
• Data split ratio: train:70%, validation: 

15%, and test: 15%  
• It was mentioned that top brine 

temperature plays a key role in 
performance of MSF desalination method 
and a suitable temperature elevation can 
control this parameter.  

• Accurate prediction of temperature 
elevation can pave the way for lowering 
the danger of corrosion and energy 
consumption in the MSF desalination 
method.  

• The developed RBFANN model had better 
predictive performance compared to the 
MLPANN model, empirical correlations, 
and thermodynamic models. 

[67] 2020 SS with Cu2O–water 
nanofluid and 
thermoelectric cooler 

MLPANN 48  • Time  
• Solar radiation  
• Fan power  
• Ambient temperature  
• Glass temperature  
• Water temperature  
• Basin temperature  
• Nanoparticle 

concentration  

• Water productivity  • ANN architecture: 8–6-1  
• Hyper-parameter tuning method: trial and 

error  
• Data split ratio: train: 80% and test: 20%  
• ICA and GA were used for training the 

MLPANN model.  
• Both GA-MLP and ICA-MLP models 

showed better predictive performance than 
common MLP model. Further, ICA-MLP 
had an enhanced performance compared 
with GA-MLP model. 

(continued on next page) 
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Table 3 (continued ) 

Ref Year System type Data-driven 
method 

Dataset 
size 

Inputs Outputs Main remark  

• The root mean square error decreased 
40.49% and 62.01% compared to the 
MLPANN by using the GA and ICA 
algorithms, respectively. 

[68] 2016 RO MLPANN 97–129  • Influent concentration  
• Temperature  
• Recovery percentage  
• Influent flow  

• Effluent TDS  • A model was developed to simulate eight 
types of RO membranes.  

• Levenberg–Marquardt and Tansig are used 
as training method and transfer function, 
respectively.  

• ANN models can be adapted with new data 
and upgraded with them.  

• Neurons were varied from 4 to 6 and 8–13 
for the first and second hidden layers.  

• The most important uncertainty would be 
caused by uncertainty of input data. 

[69] 2013 RO ANN 9  • Silicon oxide inlet 
concentration  

• TDS inlet  
• Time  

• Permeate flow  • Data split ratio: train: 33.3%, 
validation:33.3%, and test: 33.3%  

• First and second hidden layers were 
consisted of four and three neurons, 
respectively.  

• It was reported that the ANN with fitness 
approximation network resulted in lowest 
MSE and the highest determination 
coefficient. 

[70] 2005 RO ANN 63  • Feed pressure  
• Temperature  
• Salt concentration  

• Water permeate 
rate  

• Number of neurons in first and second 
hidden layers: 3,5,10,15 

[71] 2020 RO MLPANN 
with GA 

70  • Inlet flow rate  
• Inlet pressure  
• Inlet temperature  
• Inlet concentration  

• Response parameter 
of chlorophenol 
rejection  

• Data split ratio: train: 68.57%, validation: 
15.71%, and test: 15.71%  

• Model performance was tested by 
considering 2 and 8 neurons in hidden 
layers. 

[72] 2020 RO MLPANN 1806  • Plant location  
• Plant capacity  
• Project award year  
• Raw water salinity  
• Plant type  
• Project financing type  

• Capital cost of the 
plant  

• The proposed model can be used to make a 
reasonable estimate of investment costs of 
upcoming RO plant projects. 

[73] 2015 SS (single stage) MLPANN 160  • Relative humidity  
• Wind speed  
• Solar radiation  
• Temperature of feed water, 

brine, ambient air  
• TDS of feed water and 

brine  

• Water productivity  • ANN architecture: 9–20-1  
• Hyper-parameter tuning method: Trial and 

error  
• Data split ratio: Train: 70%, 

validation:15%, and test: 15%  
• Different training methods were used 

namely LM, CGF, and RBP.  
• Results revealed that LM method had the 

best performance compared to other 
training methods. 

[74] 2020 SS (single stage) MLPANN 159  • Water temperature  
• Inner glass cover 

temperature  

• Thermal 
conductivity  

• Partial vapor 
pressure  

• Volumetric 
expansivity  

• Specific heat  
• Latent heat of 

vaporization  
• Dynamic viscosity  

• ANN architecture: 2–20-8  
• Hyper-parameter tuning method: trial and 

error  
• Data split ratio: train: 70%, 

validation:15%, and test: 15%  
• Six different training methods including 

OSS, CGP, CGF, RBP, SCG, and LM were 
used for training the ANN model.  

• Results showed that the ANN model 
trained by the LM method had the best 
accuracy for the prediction of 
thermophysical properties of moist air in a 
SS. 

[75] 2012 SS (single basin) MLPANN 312, 453  • Insolation  
• Ambient temperature  
• Distillant volume  
• Wind speed  
• Wind direction  
• Daily average cloud cover  

• Total daily distillate 
production  

• ANN architecture: 6-20-1  
• Hyper-parameter tuning method: trial and 

error  
• Data split ratio: SS A: train: 80%, 

validation: 5%, and test: 15%, SS B: 
train:80%, validation: 6%, and test: 14%  

• Two SS systems (A and B) were operated 
for a year and a half.  

• The minimum number of inputs for 
developing the ANN model was estimated.  

• It was concluded that the developed ANN 
model can effectively be used for 
performance prediction of other SS systems 
in different climate conditions, by using 

(continued on next page) 
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Table 3 (continued ) 

Ref Year System type Data-driven 
method 

Dataset 
size 

Inputs Outputs Main remark 

large experimental dataset for developing 
the ANN model. 

[76] 2015 SS (single stage) MLPANN 316  • Number of day (Julian day)  
• Relative humidity  
• Wind speed  
• Solar radiation  
• Ultra violet index  
• Feed, brine and ambient air 

temperature  
• TDS of feed and brine  

• Water productivity  
• Operational 

recovery ratio  
• Thermal efficiency  

• ANN architecture: 10-15-3  
• Hyper-parameter tuning method: trial and 

error  
• Data split ratio: train: 70%, 

validation:10%, and test: 20%  
• The effect of each input parameter on the 

outputs was determined by the ANN 
model.  

• Temperature of the feed had the highest 
contribution for the prediction of water 
productivity and thermal efficiency of the 
SS. However, ultra violet index had the 
largest share in the prediction of 
operational recovery ratio. 

[77] 2012 MD (VMD) ANN 252  • Vacuum pressure  
• Feed inlet temperature  
• Feed salt concentration  
• Feed flow rate  

• Permeate flux  • ANN architecture: 4-5-1  
• Hyper parameter tuning method: GA  
• Data split ratio: train: 66%, validation: 

17%, and test: 17% 
[78] 2016 MD (VMD) ANN 38  • Feed inlet temperature  

• Vacuum pressure  
• Feed flow rate  
• Feed salt concentration  

• Permeate flux  • ANN architecture:4-3-1  
• Hyper parameter tuning method: trial and 

Error  
• Data split ratio: train:70%, validation: 

15%, and test: 15%  
• Parametric study using the developed ANN 

model showed that vacuum pressure and 
feed inlet temperature had the largest 
effect on the permeate flux, respectively. 

[79] 2013 RO SVR 3990  • Conductivity  
• Flow rate  
• Pressure  

• Permeate flow rate  
• Permeate 

conductivity  
• Retentate flow rate  
• Retentate 

conductivity  

• Data split ratio: train: 60%, and test: 40%  
• Steady state and transient models of a RO 

plant were constructed.  
• A time forecasting approach was proposed 

to show the temporal change in 
conductivity in transient operation. 

• It was concluded that the short-term per
formance forecasting models, could be 
used for process optimization, plant con
trol algorithms, and fault tolerant control. 

[80] 2021 SS integrated with 
thermoelectric 
modules 

ANFIS-PSO, 
ANN-PSO 

54  • Time  
• Fan power  
• Solar radiation  
• Ambient air, water, glass, 

and basin temperatures  
• Nanoparticle volume 

fraction  

• Energy efficiency  • ANN architecture, ANFIS clusters: 8-3-1, 9  
• Hyper-parameter tuning method: Trial and 

error  
• Data split ratio: train: 80% and test: 20%  
• Cu2O nanoparticles were used in the SS 

basin.  
• PSO method enhanced the prediction 

performance significantly. 
• The ANFIS-PSO method had better perfor

mance compared to the ANN-PSO model. 
[81] 2017 SS (single stage) ANFIS 160  • Solar radiation  

• Relative humidity  
• TDS of feed  
• TDS of brine  
• Feed flow rate  

• Water productivity  • Data split ratio: train: 70%, validation: 
10%, and test: 20%  

• Sugeno-type fuzzy inference system was 
employed as the fuzzy interface system.  

• The grid partition method was applied for 
classification of the input data and creating 
the rules.  

• The Pi-shaped curve membership function 
outperformed the models with sigmoidal, 
triangular-shaped and trapezoidal-shaped 
MFs.  

• It was shown that solar radiation was the 
most influencing parameter on the SS 
productivity. 

[38] 2016 RO ANN 436  • Molecular weight  
• Compound hydrophobicity  
• Dipole moment  
• Molecular length  
• Molecular width  
• Salt rejection  
• Surface membrane charge  
• Membrane hydrophobicity  
• pH  
• Pressure  
• Temperature  
• Recovery  

• Rejection rate  • The training dataset was re-sampled by a 
bootstrap method to form different 
training datasets.  

• Number of neurons in hidden layer were 
changed from three to 25.  

• Data split ratio: train: 80%, validation: 
10%, and test: 10%  

• The BANN model outperformed the single 
neural network and BAMLR methods. 

(continued on next page) 
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Table 3 (continued ) 

Ref Year System type Data-driven 
method 

Dataset 
size 

Inputs Outputs Main remark 

[82] 2018 RO ANN, SVR, 
RF   

• Feed temperature  
• Feed conductivity  
• Electrical power  

• Pressure  
• Feed flow rate  
• Permeate flow rate  
• Permeate 

conductivity  

• SVR and RF are significantly (5% 
significance level) better predictors of the 
plant's performances than ANN. 

[83] 2020 SS (passive, active, 
and active SS 
integrated with a 
condenser) 

ANN, ANN 
with HHO, 
SVR 

72  • Solar irradiance  
• Ambient temperature  
• Time  
• Wind speed  
• Vapor velocity  

• Water productivity  • ANN architecture: 5-5-15-1  
• Hyper-parameter tuning method: Trial and 

error  
• Data split ratio: train: 70%, test: 30%  
• HHO-ANN showed the best accuracy 

compared to other models. 
[39] 2013 Triple SS ANN 46  • Time  

• Glass, plate and ambient 
air temperatures  

• Water temperature in the 
upper, middle and lower 
basins  

• Distillate volume  
• Solar intensity 

Thermal efficiency  • ANN architecture: 9-10-1  
• Hyper-parameter tuning method: Trial and 

error  
• Data split ratio: Train: 40%, 

validation:30%, and test: 30%  
• MLPANN showed the best predictive 

performance in comparison with NARX 
and ENN models. 

[85] 2021 SS (stepped and 
conventional) 

RNN (LSTM) 88  • Time Hourly freshwater 
productivity  

• Data split ratio: train: 72 datasets (9 days) 
and test: 16 datasets (2 days)  

• The freshwater production was used in a 
time series form to train the proposed 
model.  

• The accuracy of the proposed predictive 
model was compared with those obtained 
by conventional ARIMA and was evaluated 
using different statistical assessment 
measures.  

• The coefficient of determination of the 
predicted results has a high value of 0.99 
and 0.97 for the stepped and conventional 
SS systems, respectively. 

[86] 2020 RO MLPANN- 
PSO, SVM, 
DT 

150  • pH  
• Feed pressure  
• Temperature  
• Conductivity 

Permeate TDS 
Permeate flow rate  

• ANN architecture: 4-3-1 
• The hybrid MLPANN-PSO model out

performed the SVM and DT (m5tree) 
models.  

• The hybrid model reached lower 
uncertainty for the simulated data. 

[87] 2009 RO ANN, SVR 10 min 
steps 
during 3 
months  

• Feed flow rate  
• Feed conductivity  
• Feed pressure  
• PH  
• Feed temperature  
• Permeate flow rate  
• Permeate conductivity  
• Permeate pressure 

Permeate flux 
Salt passage  

• Data split ratio: train: 40%, validation: 
10%, and test: 50%  

• Various model architectures, memory 
time-intervals and forecasting times were 
used during the training process.  

• The concept of plant “short-term memory” 
time-interval was introduced to capture 
the time-variability of plant performance.  

• An actual state-of-the-plant model and two 
types of forecasting models (sequential 
forecasting and matching forecast) were 
studied using real-time RO plant perfor
mance data.  

• Results indicated good predictive accuracy 
for short-term memory time-intervals in 
the range of 8–24 h for permeate flux and 
salt passage for forecasting times up to 24 
h. 

[88] 2020 CDI ANN, RF 600  • Physical structure related 
inputs (Specific surface 
area, pore volume, average 
pore size, channel pore 
volume)  

• Chemical structure related 
inputs (atomic content of 
nitrogen and oxygen)  

• Operational inputs 
(Applied voltage window, 
stream flow rate, NaCl salt 
concentration) 

Electrosorption 
capacity of CDI  

• ANN architecture: 9-10-1  
• The contribution and relative importance 

of each feature were determined and 
validated. 

[89] 2021 AD ANFIS 15  • Cycle time  
• Switching time  

• COP  
• SCP  
• SDWP  

• Data split ratio: train: 66.66%, and test: 
33.34%  

• The average RMSE value is decreased from 
8.607 to 1.46 by using ANFIS instead of 
ANOVA. 

[90] 2021 SS (double slope) 100  • Ambient air temperature  • Yield 

(continued on next page) 
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model had better performance compared to the empirical correlations, 
and thermodynamic models [66]. 

3.1.3. Comparison between different classical ML models 
Choosing an appropriate ML model is highly important as there is no 

specific ML model that outperforms others in predicting the perfor
mance of desalination systems. Therefore, researchers have sought to 
compare the performance of different ML models developed by a similar 
dataset to achieve the best predictor. Khaouane et al. [38] reported that 
for a RO unit, the BANN model indicated better performance than the 
single neural network and bootstrap aggregated multiple linear re
gressions (BAMLR) methods. Also, it was shown that SVM and RF 
models were better predictors (5% significance level) of the RO plant's 
performance than neural networks [82]. However, for SS desalination 
systems, SVR models indicated weaker performance compared to the 
ANN Harris Hawks Optimizer (HHO) [83]. For MSF plants, it was re
ported that the RBFANN model performed better than the MLPANN 
model [66]. Similarly, RBFANN had a better forecasting performance 
compared to the ANN feedforward backpropagation model in evaluating 
the basin water temperature of SS systems [84]. Hamdan et al. [39] 
reported that the MLPANN had the best predictive performance for a SS 
system in comparison with NARX and ENN models. Moreover, Kandeal 
et al. [90] reported that RF outperformed the MLPANN and SVR 
methods in predicting the performance of double slope solar stills. 

3.1.4. Use of DL models 
Recently, LSTM, which is an RNN, was used in the DL field to predict 

the performance of stepped and conventional SS systems [85]. In this 
study, freshwater production was used in a time series form to train the 
proposed model. The accuracy of the proposed predictive model was 
compared with those obtained by conventional autoregressive inte
grated moving average (ARIMA) and was evaluated using different 
statistical assessment measures. It was shown that the predictive model 
for stepped-corrugated still has an R2 value of 0.9752 and can be 
developed at a commercial scale to provide freshwater in remote areas. 

These studies show that there is no single model that outperforms 
others under all conditions. This is due to the fact that the behavior of 
models is dependent on various factors from the hyper-parameters 
tuning and training methods to dataset size and split ratios, which are 
summarized below. 

3.1.5. Training models and built-in functions 
For ANNs, the training model and activation functions must be 

chosen appropriately. Aish et al. [65] reported that for a dataset ob
tained from a RO desalination unit, the MLPANN and RBFANN models 
have performed better when trained by the LM training method and 
backpropagation orthogonal least squares (OLS) algorithms, respec
tively. It was reported that the tangent hyperbolic and Gaussian radial 
basis activation functions in the hidden layer were led to the best per
formance in the MLPANN and RBFANN models. Also, different training 
methods were tested on performance prediction of SS processes and it 
was concluded that the LM method outperforms the conjugate gradient 
backpropagation with Fletcher Reeves restarts, and the RB training 
methods [73]. In another study on modeling SS process with ANNs, six 
different training methods of OSS, CGP, conjugate gradient Fletcher 
reeves update (CGF), RB, SCG, and LM were compared. Results indicated 

that training the ANN model with LM method led to the highest accuracy 
in predicting the thermophysical properties of moist air in a SS system 
[74]. For ANFIS model, the application of different membership func
tions (MF) was studied in [81]. It was reported that the Pi-shaped curve 
MF provides better and higher prediction accuracy than models with 
sigmoidal, triangular-shaped and trapezoidal-shaped MFs. In addition, 
the grid partition method was used for the classification of the input data 
and creating the rules. 

3.1.6. Optimal training 
Bahiraei et al. [67] used ICA and GA to train the MLPANN model in 

predicting the freshwater production of a SS system. It was shown that 
by using the GA and ICA algorithms, the root mean square error for test 
data decreased by 40.49% and 62.01%, respectively. In the continuation 
of the previous study [67], the ANFIS and ANN modeling of a SS desa
lination system fitted with thermoelectric modules was enhanced by 
particle swarm optimization (PSO) [80]. It was concluded that applying 
the PSO significantly enhances the energy efficiency prediction of the SS 
system. For water quality data obtained from three RO plants in Iran, it 
was shown that the hybrid MLP-PSO model outperformed the SVM and 
M5T models when predicting the permeate flowrate and total dissolved 
solids (TDS) [86]. 

3.1.7. Hyper-parameter tuning 
Tuning the different hyper-parameters of the model is one of the 

important steps that affect the prediction performance. It can be seen 
from Table 3 that the majority of researchers used the trial and error 
approach for selecting the hyper-parameters, due to its simplicity and 
acceptable accuracy. The alternative method is applying optimization 
tools for the detection of the optimal hyper-parameters. Tavakolmog
hadam and Safavi [77] used GA to optimize the ANN model parameters 
in predicting the performance of a VMD desalination system. The co
efficients of the model, number of neurons and epochs were optimized 
by setting the population size of 80, crossover fraction of 0.9 and 
migration fraction of 0.1. It was observed that the network optimized by 
the GA, had the least errors (less than 1%) compared to the case with 
non-optimal parameters. 

3.1.8. Dataset split ratio 
It can be inferred from Table 3 that the majority of studies allocated 

60–80% of the dataset to be used in training the models, while the 
remaining data is distributed between validation (0–33.3%) and test 
(5–40%) stages. This lies in the fact that without having an appropriate 
training dataset, the model will be faced with the underfitting problem. 
Therefore, a larger share of data is usually used to train the model. It is 
worth mentioning that further increase in the split ratio of the training 
stage has the risk of overfitting. On the other hand, it was reported that a 
RO unit [69] and a SS [39] trained with 33.3% and 40% of the dataset, 
also reached a determination coefficient of 0.97–0.99% and 
90.36–99.87%, respectively. Libotean et al. [87] split the dataset ob
tained from a RO unit with a ratio of 40–10-50 percentages for train, 
validation and test stages, respectively. It was shown that the plant 
performance could be modeled with a reasonable level of accuracy, with 
a short-term memory interval of up to about 24 h. 

Table 3 (continued ) 

Ref Year System type Data-driven 
method 

Dataset 
size 

Inputs Outputs Main remark 

RF, 
MLPANN, 
SVR, Linear 
SVR  

• Wind speed  
• Solar radiation  
• Glass temperature  
• Vapor temperature  
• Basin water temperature  

• Data split ratio: train: 70%, validation: 
10%, and test: 20%  

• Hyper-parameter tuning method: Bayesian 
optimization algorithm  

• RF outperformed other models with the 
lowest absolute error percentage of 2.95%.  
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3.1.9. Feature importance analysis (influential input and output 
parameters) 

As different operational parameters affect the performance of desa
lination systems, selecting the most influential features as inputs and 
outputs are highly important. In modeling RO systems, parameters like 
temperature, pressure, conductivity, flow rate are the most common 
inputs, while some additional input parameters as recovery percentage 
[68], concentration [69], pH [65], membrane properties [38], and 
electrical power [82] were also considered. According to Table 3, the 
outputs in RO models have usually been selected among permeate 
flowrate, TDS and rejection rate. Kizhisser et al. [72] studied an RO 
plant from the economic viewpoint in which the parameters including 
the plant location, capacity, project financial type, and raw water 
salinity were considered as inputs to predict the capital cost of the plant. 
It was concluded that the proposed model provides a perspective to 
estimate the investment costs of the future RO plants. Saffarimiandoab 
et al. [88] studied a CDI desalination system by considering 9 opera
tional and physical/chemical structure inputs and Electrosorption ca
pacity of CDI as the single output. ANNs and RF models were examined 

and the contribution and relative importance of each feature was 
determined and validated. Regarding the SS systems, the inputs are 
mainly selected from parameters like solar radiation, wind speed, water 
depth, temperatures of water and glass, and ambient air. It was reported 
that solar radiation [81] and water temperature [76] had the highest 
contribution to the prediction of freshwater production. The minimum 
number of input parameters for developing the ANN model was esti
mated in [75] and it was concluded that the developed ANN model can 
effectively be used for performance prediction of other SS systems in 
different climate conditions with the aid of a large experimental dataset. 
Cao et al. [78] conducted a parametric study on a VMD desalination 
process by considering the vacuum pressure, feed inlet temperature, 
flow rate and salt concentration as inputs of the ANN model. Results 
revealed that the vacuum pressure and feed inlet temperature had the 
largest effect in predicting the permeate flux. 

3.2. Performance prediction using design parameters 

Unlike the studies in Table 3 that only considered operational 

Table 4 
Summary of studies on the performance prediction of desalination systems using design parameters.  

Ref Year System type Data- 
driven 
method 

Dataset 
size 

Inputs Outputs Main remarks 

[91] 2015 RO RBFANN 304  • Membrane properties (pore 
radius, friction constants between 
solute, solvent and membrane)  

• Model parameters (potential 
parameter, fractional pore area, 
average pore length)  

• Operational parameters (average 
longitude concentration of solute 
in membrane, pressure, and 
temperature)  

• Separation factor  
• Pure solvent flux  
• Total flux  

• ANN architecture: 9-20-1  
• Hyper parameter tuning method: Trial and error  
• Data split ratio: train: 80%, and test: 20%  
• RBFANN outperformed the previous 

mathematical and mechanism base models. 

[92] 2019 HDH (solar 
seawater 
greenhouse) 

ANN 66  • Width, length, the height of the 
front evaporator  

• Roof transparency  

• Desalinated 
water production 
rate  

• ANN architecture: 4-9-1  
• Hyper parameter tuning method: Trial and error  
• Data split: train: 70%, validation: 15%, and test: 

5%  
• Different algorithms such as the conjugate 

gradient algorithm, the gradient descent 
algorithm, the BFGS algorithm, Bayesian, and 
the LM algorithm were used to train the ANN 
model.  

• The best training algorithm was the LM 
algorithm. 

[40] 2020 HDH (seawater 
greenhouse 
system) 

MLPANN 30  • Width, length, the height of the 
front evaporator  

• Roof transparency  

• Power 
consumption    

• Water 
productivity  

• Data split: train: 70% and test: 30%  
• The performance of the RVFL network, which is 

a MLPANN, integrated with artificial ecosystem- 
based optimization (AEO) algorithm was 
compared with that of the conventional RVFL 
model.  

• RVFL-AEO showed a better performance 
compared with RVFL, indicating the role of AEO 
in obtaining the optimal RVFL parameters that 
enhances the accuracy of the model. 

[93] 2018 HDH (seawater 
greenhouse 
system) 

SVR 66  • Greenhouse width and length  
• First evaporator height  
• Roof transparency  

• Water 
production    

• Energy 
consumption  

• Data split: train: 70% and test: 30%  
• The effect of each input parameter on water 

production and energy consumption was 
studied using the developed model. 

[94] 2020 MD (VMD) ANN 36  • Feed inlet temperature  
• Feed flow rate  
• Membrane length  

• Permeate flux  
• Specific heat 

energy 
consumption  

• ANN architecture: 3-7-1  
• Hyper-parameter tuning: Trial and error  
• Data split ratio: train:70%, validation: 10%, and 

test: 20%  
• As feed inlet temperature and feed flow rate 

increased, the permeate flux increased. Further, 
with an increase in membrane length, the 
permeate flux decreased.  

• Specific heat energy consumption increased for 
longer membranes and declined with and an 
increase in temperature and mass flow rate of 
feed flow.  
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parameters, Table 4 shows the studies that have also included design 
parameters in their model inputs when predicting the performance of 
desalination systems. It can be seen that only a limited number of in
vestigations have used the design parameters to predict the performance 
of desalination systems. Iranmanesh et al. [91] compared the perfor
mance of the RBFANN method with the mathematical surface force pore 
flow model to predict the performance of the RO system. By using 
different membrane properties, model parameters, and operational pa
rameters, their results showed that the RBFANN method had better ac
curacy than the mathematical approach. In the case of HDH systems, 
three studies can be found in the literature that aimed to employ the 
ANN and SVR methods to anticipate the performance of the seawater 
greenhouse systems by considering geometrical parameters as model 
inputs [40,92,93]. Zarei and Behyad [92] studied the accuracy of 
different training algorithms for the ANN model. It was concluded that 
the Levenberg-Marquardt training algorithm had superiority over the 
other training methods. The results reported by Essa et al. [40] high
lighted the important role of accurate hyper-parameter tuning methods 
in ML methods for performance analysis of HDH systems. The results 
showed that coupling the RVFL model with the artificial ecosystem- 
based optimization algorithm enhanced the accuracy of the model. In 
another study [93], the application of the SVR model for performance 
analysis of a seawater greenhouse system was analyzed and results 
showed the great capability of the developed model to predict the 
freshwater production rate as well as energy consumption. In the case of 
MD systems, the membrane length of VMD configuration along with 
operational parameters of feed flow (mass flow rate and temperature) 
were taken into account as the inputs for developing the ANN model 
[94]. This study revealed that the membrane length had a significant 
effect on both permeate flux and energy consumption, thus the vital 
importance of considering the membrane length as an input for devel
oping the data-driven methods. 

3.3. Optimization and correlation development 

Table 5 indicates the studies that employed data-driven methods for 
optimization and correlation generation in desalination systems. In 
these studies, either operational/design or both of these parameter types 
were considered as inputs. Compared to Sections 3.1 and 3.2, the opti
mization and correlation development is also taken into account in this 
section. The main remarks of Table 5 can be summarized as follows:  

• Among different desalination systems, data-driven methods have 
been mostly used to optimize and generate correlations in SS and MD 
desalination methods.  

• Water productivity was mainly considered as the output target for 
optimization and correlation generation in desalination systems.  

• To optimize the performance of various desalination systems using 
data-driven methods, design parameters as the inputs have been 
received less attention compared to the operational parameters. 
Limited studies confirmed that the interaction of operational and 
design parameters has a significant effect on the performance of 
desalination systems [59,95–99].  

• The RSM method has been broadly employed for the optimization of 
desalination systems compared to ML models. The main reason is 
that the RSM method mainly requires a lower number of data than 
ML methods to optimize the performance of the system. However, it 
can be seen in a few comparative studies that ML models mainly 
enjoyed better performance prediction than the RSM method 
[14,100]. This shows that coupling the ML models with optimization 
methods such as GA, PSO, and Monte Carlo can lead to enhanced 
optimization results.  

• Minitab, Design expert and Statistica software have been used for 
developing the RSM method whereas MATLAB was the most 
commonly used software to optimize the desalination systems using 
ML methods. 

• Correlations have been mostly generated using the quadratic poly
nomial model obtained by RSM and linear regression models such as 
stepwise and multiple linear regression methods. However, it can be 
inferred from Table 5 that ML models outperformed these correla
tions for performance prediction of desalination systems [101–106].  

• Limited studies have been conducted on the application of data- 
driven methods for optimization and correlation development of 
solar-driven HDH and MD systems. In the case of HDH desalination 
systems, RSM method was employed to optimize the freshwater 
generation of vacuum humidification dehumidification (VHD) sys
tems [107,108]. Moreover, design parameters only were considered 
in limited studies for optimization of HDH systems [109,110].  

• The accuracy of the developed correlations for SS systems was 
compared with the estimated values by the computational fluid dy
namics (CFD) method. The results showed a close agreement be
tween the obtained values and confirmed the robustness of the 
developed correlations [111,112]. 

3.4. Maintenance 

Table 6 shows a summary of studies that have applied data-driven 
methods to analyze the fouling and wetting phenomena in membrane- 
based desalination systems. Fouling is a serious issue in all membrane 
desalination technologies and its accurate prediction plays a vital role in 
performance improvement, cost reduction, and sustainability of these 
systems. Fouling mechanism is generally defined as the deposition of 
undesired materials (solid particles in the feed stream, ions, and bio
logical materials) on the membrane surface and inside the pores, 
resulting in lowering the permeate flux over time [143] which increases 
the cost of produced water [144]. The conventional mechanistic 
modeling methods have failed to accurately predict the fouling mecha
nism in different membrane-based desalination technologies mainly due 
to the dynamic nature of the fouling phenomenon, the complexity 
involved in the mathematical approach, and developing the models 
based on several simplified assumptions [6,145,146]. As a result, data- 
driven methods have gained more attention and researchers have 
sought to employ these methods for precise prediction of the fouling 
mechanism. Liu and Kim [147] compared the performance of ANN and 
mathematical models (blocking laws) to foresee the transmembrane 
pressure drop in the MD system due to the fouling effect. The results 
showed a great superiority of the ANN model over the blocking laws 
approach. Recently, Mittal et al. [6] showed the viability of the ANN 
model to analyze the effects of operational parameters of the VMD 
module on the permeate flux decline as a result of membrane fouling. 
The robustness of the ANN model for membrane fouling analysis has also 
been supported for RO [148] and electrodialysis [149] desalination 
systems. 

The possibility of employing the CNN model for studying the fouling 
mechanism in desalination systems has also been investigated in several 
studies. The performance of the CNN model for studying the fouling 
effect in a RO desalination system was compared with that of the 
mathematical model by Park et al. [145]. They used 4000 images for 
testing the performance of the developed CNN model and the results 
showed that the CNN model had better performance than the mathe
matical model. In another study, fouling characteristics of a membrane 
used for the FO desalination method was comprehensively analyzed by 
the CNN model and results showed great performance of CNN model for 
the prediction of thickness, porosity, roughness, and density of the 
fouling layer. 

Membrane wetting is another serious issue with the MD desalination 
technology and this mainly stems from membrane fouling and high 
liquid entry pressures [150]. Due to the interaction effects of operational 
parameters and membrane characteristics on the wetting problem, ac
curate prediction of membrane wetting using mathematical models is 
complex and tedious. Recently, Kim et al. [151] examined the predictive 
performance of RSM and ANN models to investigate the wetting issue of 
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Table 5 
Summary of studies on the application of data-driven methods for optimization and correlation development.  

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark 

[95] 2020 ✓ ✓ SS (different 
configurations 
of active SS) 

FD Not 
mentioned 
(n.m.)  

• Basin area  
• Depth of saline 

water  
• External power  
• Air blowing system  
• Condenser 

material  
• Condenser 

thickness  
• Condenser area  
• Insulation 

thickness  
• Insulation material  
• Ambient air 

temperature  
• Make-up water 

system  

• Distilled water  
• Saline water 

temperature  
• Condenser cover 

temperature  

• Design method: 
factorial  

• The most 
influencing input 
parameters on the 
distilled water were 
the external power, 
the depth of the 
saline water, and the 
basin area of the 
active still, 
respectively. 

[96] 2021 ✓ ✓ SS (Single 
stage) 

RSM 30  • Solar radiation  
• Ambient 

temperature  
• Water depth  
• Thickness of 

insulation  

• Daily freshwater 
productivity  

• Design method: CCD  
• Water depth, solar 

radiation, ambient 
temperature, and 
thickness of 
insulation had the 
largest effect on the 
daily freshwater 
productivity, 
respectively. 

[97] 2016 ✓ ✓ MD (DCMD) RSM 36  • Inlet temperatures 
of feed and 
permeate  

• Flow velocity of 
feed  

• Module packing 
density  

• Length-diameter 
ratio of module  

• Permeate flux  
• Water 

productivity per 
unit volume of 
module  

• water production 
per unit energy 
consumption  

• Comprehensive 
index to find out a 
balance among 
high water flux, 
high production, 
and low energy 
consumption  

• Design method: 
QRCD  

• Multi-objective 
optimization was 
also performed to 
maximize the 
permeate flux and 
minimize energy 
consumption.  

• The permeate flux 
was mainly affected 
by feed inlet 
temperature and its 
interactions with 
length-diameter 
ratio of module. 

[98] 2020 ✓ ✓ MD (DCMD) RSM 36  • Inlet temperatures 
of feed and 
permeate  

• Flow velocity of 
feed solution  

• Module packing 
density  

• Length-diameter 
ratio of module  

• Feed/permeate 
side heat transfer 
coefficients  

• Temperature 
polarization 
coefficient  

• Permeate flux  
• Water 

productivity per 
module volume  

• Thermal 
efficiency  

• Design method: 
QRCD  

• Multi-objective 
optimization was 
also made using the 
RSM method.  

• Theoretical heat and 
mass transfer 
models were 
coupled with the 
RSM technique to 
determine the 
complex interaction 
effects of inputs on 
the outputs.  

• Higher feed 
temperatures, 
shorter membranes, 
and higher feed 
velocities led to a 
significant increase 
in the heat transfer 
coefficients, thereby 
enhancement of 
permeate flux and 
thermal efficiency. 

[99] 2018 ✓ ✓ MD (VMD) RSM 36  • Temperature  
• Velocity  
• Concentration of 

feed flow  

• Water permeate 
flux  

• Water 
productivity per  

• Feed inlet 
temperature and its 
interaction had a 
significant effect on 

(continued on next page) 
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Table 5 (continued ) 

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark  

• Membrane packing 
density  

• Length–diameter 
ratio of module 

unit volume of 
module  

• GOR  
• Comprehensive 

index 

VMD module 
performance.  

• As module packing 
density increases, 
water productivity 
per unit of the 
module rises, but 
GOR remained 
relatively 
unchanged.  

• The increase in 
packing density led 
to a decrease in 
water permeate flux, 
whereas resulted in 
an increase in water 
productivity per 
unit of the module, 
which is a more 
important index for 
practical 
applications. 

[59] 2016 ✓ ✓ MD (AGMD) RSM and TM 27  • Feed flow rate  
• Feed temperature  
• Coolant 

temperature  
• Coolant flow rate  
• Air gap width  

• Permeate flux  • Design method: 
FCCD  

• Optimization was 
also performed 
using RSM and 
Taguchi techniques.  

• Air gap width and 
temperature of feed 
flow had significant 
effect on the 
permeate flux of 
AGMD system.  

• Compared to other 
input variables, 
coolant flow rate 
had insignificant 
effect on the 
permeate flux.  

• Both RSM and 
Taguchi techniques 
provided an 
accurate prediction 
of permeate flux. 
However, RSM 
outperformed the 
Taguchi method and 
was recommended 
as a better tool for 
performance 
prediction and 
optimization of the 
AGMD system. 

[14] 2010 ✓ ✓ RO MLPANN & 
RSM 

26  • Sodium chloride 
concentration in 
feed solution  

• Feed temperature  
• Feed flow rate  
• Operating 

hydrostatic 
pressure  

• RO performance 
index (=salt 
rejection factor 
times the 
permeate flux)  

• ANN architecture: 4- 
5-3-1  

• Data split ratio: 
train: 66%, 
validation: 17%, 
and test: 17%  

• Two empirical 
polynomial RSM 
models valid for 
different ranges of 
feed salt 
concentrations were 
performed (in 
MATLAB). 
However, the 
developed ANN 
model was valid 
over the whole 
range of feed salt 
concentration. 

(continued on next page) 

P. Behnam et al.                                                                                                                                                                                                                                



Desalination 532 (2022) 115744

15

Table 5 (continued ) 

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark  

• ANN has the ability 
to overcome the 
limitation of the 
quadratic 
polynomial model 
obtained by RSM.  

• Analysis of variance 
(ANOVA) has been 
used to test the 
significance of 
response surface 
polynomials and 
ANN model.  

• The optimum 
operating conditions 
were found by 
Monte Carlo 
simulations. 

[100] 2018 ✓ ✓ Permeate gap 
membrane 
distillation 
(PGMD) 

RSM & ANN RSM: 26 
ANN: 88  

• Condenser inlet 
temperature  

• Evaporator inlet 
temperature  

• Feed flow rate  
• Feed water salt 

concentration  

• Permeate flux  
• Specific Thermal 

Energy 
Consumption  

• ANN architecture: 
4–7–2-2  

• Hyper-parameter 
tuning method: Trial 
and error  

• Data split ratio: 
train: 75%, 
validation: 20%, 
and test 5%  

• Design method: 
FCCD  

• Multi-objective 
optimization was 
made using non- 
dominated sorting 
genetic algorithm 
(NSGA-II).  

• The ANN model 
outperformed RSM 
for performance 
prediction of the 
PGMD module.  

• Developing the ANN 
model required 
more experimental 
data compared to 
the RSM. 

[101] 2017 ✘ ✓ SS (single stage) ANN & RM 160  • Ambient 
temperature  

• Relative humidity  
• Wind speed  
• Solar radiation  
• Feed flow rate  
• Temperature of 

feed water  
• Total dissolved 

solids in feed water  

• Water 
productivity  

• ANN architecture: 7- 
8-1  

• Hyper-parameter 
tuning method: Trial 
and error  

• Data split ratio: 
train: 70%, 
validation:10%, and 
test: 20%  

• Compared with the 
stepwise regression 
model, the ANN 
model showed a 
greater performance 
for the prediction of 
water productivity. 

[102] 2019 ✘ ✓ SS (single stage) ANN, ANFIS, 
and RM 

160  • Relative humidity  
• Solar radiation  
• Feed flow rate  
• Total dissolved 

solids of feed and 
brine  

• Water 
productivity  

• ANN architecture: 5- 
10-1  

• Hyper-parameter 
tuning method: Trial 
and error  

• Data split ratio: 
train: 70%, 
validation:10%, and 
test: 20%  

• Results showed that 
ANN, ANFIS, and 
multiple regression 
models could 
accurately predict 

(continued on next page) 
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Table 5 (continued ) 

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark 

the water 
productivity, but the 
ANN model 
outperformed the 
other models. 

[103] 2016 ✘ ✓ SS (single stage) ANN and RM 160  • Julian day  
• Ambient air 

temperature  
• Relative humidity  
• Wind speed  
• Solar radiation  
• Temperature of 

feed water  
• Temperature of 

brine water  
• Total dissolved 

solids (TDS) of feed 
water  

• Total dissolved 
solids (TDS) of 
brine water  

• Thermal 
efficiency  

• ANN architecture: 9- 
12-1  

• Hyper-parameter 
tuning method: Trial 
and error  

• Data split ratio: 
train: 70%, 
validation:10%, and 
test: 20%  

• The ANN model 
showed a better 
predictive 
performance 
compared to multi- 
variate regression 
and stepwise regres
sion models. 

[104] 2021 ✘ ✓ Tubular SS ANN, RF, RM 16 days  • Solar radiation 
intensity  

• Wind speed  
• Temperatures of 

basin plate, salt 
water, cover, and 
ambient air  

• Hourly freshwater 
Production  

• ANN architecture: 6- 
56-202-681-1  

• Hyper-parameter 
tuning method: 
Bayesian 
optimization 
algorithm  

• Data split ratio: 
train: 80% and test: 
20%  

• A comparison was 
made among ANN, 
RF, and traditional 
multilinear 
regression models.  

• Application of 
Bayesian 
optimization 
algorithm for hyper- 
parameter tuning 
process enhanced 
the performance of 
the ANN model by 
35%.  

• RF model was less 
sensitive to hyper- 
parameter tuning 
compared to the 
ANN model.  

• Feature importance 
analysis revealed 
that saltwater 
temperature, basin 
temperature, and 
solar radiation were 
the most influencing 
parameters, 
respectively.  

• The RF model was 
recommended as the 
ML model for 
performance 
prediction of tubular 
SS mainly due to its 
high accuracy and 
robustness. 

[105] 2017 ✘ ✓ SS (single stage) ANN & RM 56  • Ambient air 
temperature  

• Relative humidity  
• Wind speed  
• Solar radiation  
• Flow rate  
• Temperature  

• Instantaneous 
thermal efficiency  

• ANN architecture: 7- 
6-1  

• Hyper-parameter 
tuning method: Trial 
and error  

• Data split ratio: 
train: 70%, 

(continued on next page) 

P. Behnam et al.                                                                                                                                                                                                                                



Desalination 532 (2022) 115744

17

Table 5 (continued ) 

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark  

• Total dissolved 
solids of feed water 

validation:10%, and 
test: 20%  

• Agricultural 
drainage water as a 
non-conventional 
source of water was 
used as the feed 
water into the SS 
system.  

• Results showed that 
the ANN model had 
a better 
performance than 
multiple linear 
regression for the 
prediction of 
thermal efficiency. 

[106] 2018 ✘ ✓ MD (PGMD) ANN & RM Electric 
test: 372 
Solar test: 
11272 
Both: 
11644  

• Temperatures at 
the condenser and 
evaporator inlets  

• Feed seawater flow  

• Permeate flux  • ANN architecture: 3- 
10-1  

• Hyper –parameter 
tuning method: Trial 
and Error  

• Data split ratio: 
train: 90%, 
validation: 5%, and 
test: 5%  

• Three datasets for 
training the ANN 
were considered: 1. 
electrical test, 2. 
Solar test. 3. Both 
electrical and solar 
tests  

• ANN outperformed 
linear regression. 

[107] 2018 ✓ ✘ HDH (solar 
VHD) 

RSM 15  • Humidifier 
pressure  

• Inlet water 
temperature  

• Ratio of water to 
air mass flow rates  

• Desalinated water 
production rate  

• To increase the 
water productivity, 
the pressure of the 
humidifier was 
lower than 
atmospheric 
pressure using a 
vacuum pump.  

• Optimum values of 
inputs were 
determined by the 
RSM analysis 

[108] 2021 ✓ ✘ HDH (three 
stage VHD) 

RSM 20  • Air temperature  
• Water to air mass 

flow rate  
• Humidifiers 

pressure  

• Desalinated water 
production rate  

• Design method: 
FCCD  

• Optimum values of 
inputs were 
achieved by the 
RSM analysis.  

• The freshwater 
productivity of a 
three-stage vacuum 
HDH was compared 
with a single-stage 
vacuum HDH sys
tem. Three-stage 
system had higher 
productivity and 
lower energy 
consumption. 

[109] 2011 ✓ ✓ HDH (C/ 
OAOW-AWH) 

FD 2 k = 6 =
64 
And 
3 k = 6 =
729  

• Inlet water 
temperature  

• Inlet air 
temperature  

• Input heat flux  
• AcondUcond  

• Water mass flow 
rate  

• Air mass flow rate  

• Freshwater 
production  

• Design method: 
factorial  

• Thermodynamic 
model was used and 
DOE analysis was 
performed for 
sensitivity analysis 
and optimization 
purposes.  

• A correlation was 
developed for the 

(continued on next page) 
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Table 5 (continued ) 

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark 

prediction of 
freshwater 
productivity based 
on the input 
variables. 

[110] 2016 ✓ ✓ HDH (solar 
humidifier and 
a subsurface 
condensation 
mechanism) 

RSM 282  • Inflowing air 
temperature  

• Length of 
condenser tube  

• Relative humidity 
of inflowing air  

• Inflowing air 
velocity  

• Cross-section of 
inflowing air  

• Height of water in 
evaporation still  

• Solar radiation  
• Temperature of 

water in 
evaporation still  

• Freshwater 
productivity  

• Design method: CCD  
• Solar energy was the 

main heat source 
and a set of tubes 
buried in the soil 
acted as condensers  

• Water temperature 
variation of solar 
humidifier had the 
most contribution to 
freshwater 
productivity.  

• Correlation was 
developed for 
forecasting 
freshwater 
productivity. 

[111] 2016 ✓ ✓ SS (single stage) RSM 13  • Position and size of 
the partition  

• Nusselt number  • Design method: CCD  
• Both CFD and RSM 

methods were 
employed.  

• The partition was 
placed at the bottom 
surface and glass 
cover of the still for 
performance 
improvement of the 
SS.  

• The RSM provided 
great predictive 
performance as 
compared to the 
CFD model. The 
maximum error for 
the prediction of 
bottom and top 
normalized Nusselt 
numbers were 1.3%. 

[112] 2018 ✓ ✓ Stepped SS with 
nanofluids in 
basin 

RSM 13  • Height and length 
of the steps inside 
the cascade SS  

• Hourly 
productivity  

• Design method: CCD  
• Both RSM and CFD 

analyses were used 
to predict the hourly 
productivity of the 
SS system.  

• The RSM showed a 
great predictive 
performance, only a 
2.1% difference was 
reported between 
the estimated values 
by RSM and CFD 
methods. 

[113] 2009 ✓ ✘ MSF-RO ANN 200  • Feed temperature  
• Feed total 

dissolved solids  
• Trans-membrane 

pressure  
• Feed flow rate  
• Time  

• Permeate TDS  
• Permeate flow 

rate  

• ANN architecture: 
5–15–1  

• Data split ratio: 
train: 60%, 
validation: 20%, 
and test: 20%  

• A framework for 
developing an ANN 
model was proposed 
to predict the 
performance and 
optimizing the 
operation of SWRO 
desalination plants.  

• It was concluded 
that ANNs could be 
combined with 
deterministic 
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Table 5 (continued ) 

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark 

models that include 
physical laws as a 
hybrid model for 
studying fouling/ 
scaling and process 
optimization in RO 
systems. 

[114] 2019 ✓ ✘ RO RNN Historical 
data from 
2015 to 
2017  

• Ambient 
temperature  

• Solar radiation  
• Wind speed  
• Water demand  

• Freshwater 
production  

• RNN was used to 
predict the future 
energy supply from 
renewable sources, 
and water demand  

• Multi-criteria 
optimization was 
done using extended 
mathematical 
programming to 
minimize the total 
annual costs and 
greenhouse gas 
emission.  

• The potential loss of 
power supply 
probability was 
introduced as a tool 
to illustrate the 
sustainability of the 
proposed scenarios.  

• It was concluded 
that the advanced 
forecasting 
algorithms could 
address future 
uncertainties in the 
energy supply chain. 

[15] 2016 ✓ ✘ FO Taguchi–neural 16  • Feed solution 
velocity  

• Draw solution  
• Velocity  
• Feed solution 

temperature  
• Draw solution 

temperature  

• Maximum reverse 
solute flux 
selectivity  

• ANOVA was used to 
detect the main 
parameters that 
could affect FO 
quality 
characteristics.  

• MINITAB software 
version 16 was used 
to solve Taguchi and 
ANOVA methods 
and the STATISTICA 
12 software was 
used to carry out 
training, validation, 
and testing of the 
neural network. 

[115] 2014 ✘ ✓ RO ANN 370  • Time  
• Concentration  
• Operating pressure  
• Membrane type  

• Water 
permeability 
constant  

• ANN architecture: 4- 
4-1  

• Data split ratio: 
train: 50%, 
validation: 25%, 
and test: 25%  

• The proposed time 
dependent neural 
network based 
correlation can 
predict the water 
permeability 
constant.  

• For the first time, 
the effect of feed 
salinity on water 
permeability 
constant values at 
low-pressure opera
tion is reported. 

[116] 2021 ✓ ✓ RO RSM & ANN 30  • Feed concentration  
• Temperature  
• pH  
• Pressure  

• Permeate flux  
• Water recovery  
• Salt rejection  

• RSM and ANN 
models were 
statistically studied 
using ANOVA. 
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Table 5 (continued ) 

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark  

• Specific energy 
consumption  

• Numerical 
optimization of NF 
and RO pilot plant 
was done to attain 
the optimum 
conditions.  

• By using the 
optimum 
conditions, three 
hybrid 
configurations of NF 
and RO were 
analyzed to 
determine the best 
mode for the 
treatment of 
brackish 
groundwater. 

[117] 2021 ✓ ✓ FO ANFIS, ANN, 
RSM 

50  • Draw 
concentration  

• Feed concentration  
• Time  
• Feed pH  
• Feed temperature  

• Water flux  
• Reverse salt flux  

• Data split ratio: 
train: 70%, 
validation: 15%, 
and test: 15%  

• ANN and RSM 
models were 
considerably better 
than ANFIS. 

[16] 2021 ✓ ✓ FO ANN & RSM 76  • Osmotic pressure 
difference  

• Feed solution 
velocity  

• Draw solution 
velocity  

• Feed solution 
temperature  

• Draw solution 
temperature  

• Membrane flux  • A BBD is used to 
develop a response 
surface design 
where the ANN 
model evaluates the 
responses.  

• The weights of the 
ANN model and the 
response surface 
plots were used to 
optimize and study 
the influence of the 
operating conditions 
on the membrane 
flux. 

[118] 2016 ✓ ✓ FO RSM 16  • Feed flow rate  
• Permeate flow rate  
• Permeate 

temperature  

• Permeate flux  
• FO specific 

performance 
index  

• A Monte Carlo 
Simulation method 
has been conducted 
to determine the 
optimum operating 
conditions of the FO 
pilot plant. 

[119] 2020 ✘ ✓ FO ANN and RM 709  • Membrane type  
• Orientation of 

membrane  
• Molarity of feed 

solution  
• Molarity of draw 

solution  
• Type of feed 

solution  
• Type of draw 

solution  
• Crossflow velocity 

of the feed solution  
• Draw solution  
• Temperature of the 

feed solution  
• Temperature of the 

draw solution  

• Permeate flux  • ANN architecture: 9- 
25-25-40-1  

• Data split ratio: 
train: 70%, 
validation: 15%, 
and test: 15%  

• ANN formed a better 
relationship 
between inputs and 
output than 
multiple-linear 
regression model.  

• The performance of 
the ANN model is 
compared with a 
transport-based 
model in the 
literature. 

[120] 2020 ✓ ✘ SS (single and 
stepped basin 
type) 

TM 9  • Basin liner design  
• Heat storage 

material  
• Wick material  
• Basin water depth  

• Water production  • Design method: L9 
orthogonal array  

• Optimum values of 
inputs were 
determined using 
the Taguchi method.  

• Compared to the 
conventional single 
and stepped basin SS 
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Table 5 (continued ) 

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark 

systems, water 
productivity 
increased by 
175.2% and 132.2% 
for the single basin 
and stepped basin SS 
when the TM was 
employed. 

[121] 2016 ✓ ✘ SS (single stage 
active type) 

RSM 29  • Latent heat 
materials  

• Different sensible 
materials  

• Evaporation 
surfaces  

• Different types of 
heat transfer in the 
still  

• Freshwater 
productivity  

• Efficiency  

• Design method: BBD  
• Biomass heat source 

was used as the 
main heat source. 

[122] 2020 ✘ ✓ SS (single stage) MLPANN 48  • Time  
• Solar radiation  
• Ambient air, glass, 

basin and water 
temperatures  

• Energy efficiency  
• Exergy efficiency  
• Water 

productivity  

• ANN architecture: 6- 
5-3  

• Hyper-parameter 
tuning method: Trial 
and error  

• Data split ratio: 
train:80% and 
test:20%  

• ICA as an 
optimization 
algorithm was 
employed for 
minimization of cost 
function of ANN 
model.  

• Applying the ICA 
optimization for 
ANN model 
enhanced the 
predictive 
performance of ANN 
model significantly. 

[123] 2019 ✘ ✓ SS (double slope 
single basin in 
active and 
passive mode) 

FD 24  • Glass temperature  
• Bottom 

temperature  

• Water 
temperature  

• Bottom temperature 
had the largest 
contribution to 
increasing the water 
temperature in the 
basin.  

• The interaction of 
inputs had an 
insignificant effect 
on the water 
temperature. 

[124] 2018 ✘ ✓ Stepped SS ANN & RM n.m.  • Solar radiation  
• Ambient 

temperature  
• Month number  
• Day number  
• Number of hours 

per day  
• Wind speed  
• Humidity  
• Cloud cover  
• Vapor temperature  
• Water and basin 

temperatures  
• Difference between 

the inner and outer 
surface of glass 
temperature  

• Water 
productivity  

• ANN architecture: 
12-27-1  

• Hyper-parameter 
tuning method: 
Iterative 
optimization  

• Data split ratio: 
train: 70% and test: 
30%  

• Hourly 
experimental data 
for three months 
was collected.  

• Results showed that 
cascaded forward 
neural network 
model had 
superiority over the 
linear regression 
and multiple-linear 
regression models. 

[125] 2020 ✓ ✓ SS 
(conventional 
type integrated 
with a parabolic 

RSM n.m.  • Saline water and 
glass cover 
temperatures  

• Water 
productivity  

• Design method: BBD  
• Principal 

component analysis 
was initially 

(continued on next page) 

P. Behnam et al.                                                                                                                                                                                                                                



Desalination 532 (2022) 115744

22

Table 5 (continued ) 

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark 

trough 
collector)  

• Dry bulb 
temperature  

• Wet bulb 
temperature inside 
the conventional 
SS  

• Ambient air 
temperature  

• Oil inlet 
temperature  

• Solar intensity 

performed to 
decrease the number 
of inputs for 
conducting the RSM 
analysis.  

• Principal 
component analysis 
showed that three 
groups of inputs had 
the largest effect on 
water productivity: 
1: (saline water 
temperature, wet 
bulb temperature, 
and dry bulb 
temperature), 2: 
(solar intensity, 
ambient air 
temperature, and 
glass cover 
temperature), 3: 
(ambient air 
temperature, oil 
inlet temperature, 
and solar intensity).  

• These three 
categories of inputs 
were then used for 
the RSM analysis.  

• Results showed that 
solar intensity, 
ambient air 
temperature, and 
glass cover 
temperature had a 
significant effect on 
water productivity. 

[126] 2020 ✘ ✓ Concave type 
Stepped SS 

RM n.m.  • Solar radiation  
• Basin, glass, water, 

and ambient air 
temperature     

and  

• Hourly water 
production  

• Locally available 
material such as 
bricks, sand, and 
concrete pieces were 
used in SS to extend 
the time of water 
productivity and 
therefore increasing 
water productivity.  

• Linear regression 
model was used. 

[127] 2014 ✓ ✓ MD (AGMD) RSM 20  • Cold & hot feed 
inlet temperature  

• Feed-in flow rate  

• Permeate flux  
• GOR  

• Design method: CCD  
• Optimal operating 

parameters were 
determined by 
NSGA-II.  

• Results showed that 
hot feed inlet 
temperature had the 
largest positive 
effect on both 
permeate flux and 
GOR. 

[128] 2020 ✓ ✓ MD 
(AGMD) 

RSM and TM 16  • Feed temperature  
• Feed flow rate  
• Salinity  

• Permeate flux  
• Energy 

consumption  

• Lower feed 
temperatures and 
higher feed flow 
rates resulted in 
higher permeate 
flux with a lower 
energy cost. 

[129] 2007 ✓ ✓ MD 
(DCMD) 

RSM 16  • Stirring rate  
• Feed temperature  
• NaCl concentration 

in the feed solution  

• Permeate flux  • Design method: CCD  
• Canonical analysis 

was used for 
optimization 
purposes.  

• A gradient method 
was employed to 
find the response 

(continued on next page) 

P. Behnam et al.                                                                                                                                                                                                                                



Desalination 532 (2022) 115744

23

Table 5 (continued ) 

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark 

surface within the 
domain of 
experimentation. 

[130] 2018 ✓ ✓ MD 
(AGMD) 

RSM 16  • Evaporator inlet 
temperature  

• Condenser inlet 
temperature  

• Feed flow rate  

• Permeate flux  
• Specific thermal 

energy 
consumption  

• GOR  

• Design method: 
FCCD  

• Multi-objective 
optimization was 
performed.  

• Two modules with 
different areas were 
used: 7.2 m2 and 24 
m2  

• In the case of the 
longer module, 
there was an 
optimum condition 
that led to highest 
productivity and the 
highest thermal 
efficiency. However, 
for the shorter 
module, there was a 
trade-off between 
reaching the highest 
productivity and the 
highest thermal 
efficiency. 

[131] 2017 ✓ ✓ MD (PGMD) RSM 16  • Evaporator and 
condenser inlet 
temperatures  

• Feed flow rate  

• Permeate flux  
• Specific thermal 

energy 
consumption  

• Design method: 
FCCD  

• Multi-objective 
optimization was 
performed.  

• Evaporator inlet 
temperature had the 
largest effect on 
permeate flux and 
specific thermal 
energy 
consumption. 
However, condenser 
inlet temperature 
had insignificant 
effects on both 
permeate flux and 
specific thermal 
energy 
consumption. 

[132] 2012 ✓ ✓ MD (SGMD) RSM 26  • Liquid and gas 
temperatures  

• Liquid and gas flow 
rates  

• Permeate flux  • Design method: CCD  
• Monte Carlo method 

was used for the 
optimization 
purpose.  

• The interaction 
effect of the air 
circulating velocity 
and the air inlet 
temperature was 
highlighted.  

• A higher permeate 
flux was obtained by 
lower air inlet 
temperatures and 
higher air flow rates. 

[133] 2012 ✓ ✓ MD 
(AGMD) 

RSM 16  • Feed inlet 
temperature  

• Cooling inlet 
temperature  

• Feed flow rate  

• Permeate flux  
• Salt rejection 

factor  
• Energy 

consumption  

• Design method: CCD  
• The Monte Carlo 

technique was used 
for optimization.  

• Feed inlet 
temperature had the 
largest effect on 
performance of 
AGMD system. 

[134] 2014 ✓ ✓ MD 
(DCMD) 

RSM 28  • Vapor pressure 
difference  

• Feed flow rate  

• Permeate flux  • Design method: CCD  
• For the optimum 

working condition, 

(continued on next page) 
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Table 5 (continued ) 

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark  

• Permeate flow rate  
• Feed ionic strength 

there was a 3.9% 
deviation between 
the prediction and 
the actual 
experimental value, 
which showed the 
validity of the 
developed model. 

[135] 2017 ✓ ✓ MD 
(AGMD) 

RSM 25  • Hot and cold feed 
inlet temperatures  

• Feed flow rate  
• Feed conductivity  

• Permeate flux  
• Specific 

performance ratio  

• Design method: CCD  
• Hot feed inlet 

temperature had the 
largest positive 
effect on the 
permeate flux of the 
AGMD module 
followed by the feed 
flow rate. 

[58] 2016 ✓ ✓ MD 
(DCMD) 

RSM 28  • Feed temperature  
• Cold flow 

temperature  
• Feed flow rate  
• Cold flow rate  

• Permeate flux  • Design method: CCD  
• Feed temperature, 

feed flow rate, and 
cold flow rate had a 
positive effect on 
permeate flux. 
However, increasing 
the cold flow 
temperature 
resulted in a 
decrease in 
permeate flux. 

[136] 2015 ✓ ✓ MD 
(VMD) 

RSM 27  • Feed temperature  
• Vacuum pressure  
• Feed flow rate  
• Feed concentration  

• Permeate flux  • Design method: 
Box–Behnken  

• Vacuum pressure 
has the largest effect 
on the permeate flux 
followed by feed 
temperature and 
feed concentration.  

• Feed flow rate had 
relatively no effect 
on the permeate 
flux. 

[137] 2017 ✓ ✓ MD 
(AGMD & water 
gap membrane 
distillation) 

Genetic 
programming 
& ANN 

154  • Feed temperature  
• Feed concentration  
• Feed flow rate  
• Coolant flow rate  

• Permeate flux  • Data split ratio: 
train: 75% and test: 
25%  

• Feed temperature 
was the most 
influencing 
parameter on the 
permeate flux.  

• Generic programing 
had a better 
predictive 
performance than 
ANN according to 
the coefficient of the 
determination 
index. 

[138] 2020 ✓ ✓ MD 
(VMD) 

RSM 20  • Feed inlet 
temperature  

• Feed flow rate  
• Vacuum pressure  

• Permeate flux  
• Energy 

consumption  

• Design method: CCD  
• Solar thermal- 

photovoltaic VMD 
system was studied. 

[139] 2009 ✓ ✓ MD 
(DCMD & 
AGMD) 

RSM DCMD:25 
AGMD:9 

DCMD:   

• Hot fluid flowrate  
• Hot fluid 

temperature  
• Cold fluid flowrate  
• Membrane 

thickness 
AGMD:   

• Hot fluid flowrate  
• Hot fluid 

temperature  

• The rate of water 
produced per unit 
hot liquid feed 
rate  

• Auxiliary heat 
input  

• Design method: CCD  
• Optimization was 

performed using 
Aspen Plus software 
and RSM technique. 

[140] 2012 ✓ ✘ ANN 72  • Air gap thickness  • Distillate flux 
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Table 5 (continued ) 

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark 

MD 
(AGMD)  

• Condensation 
temperature  

• Feed inlet 
temperature  

• Feed flow rate of 
salt aqueous 
solutions  

• Salt rejection 
factor  

• ANN architecture: 4- 
10-1  

• Hyper-parameter 
tuning: Trial and 
Error  

• Data split ratio: 
train:75%, 
validation: 16%, 
and test: 9%  

• Monte Carlo 
simulation was 
employed for 
optimization. 

Feed inlet 
temperature had the 
largest effect on the 
AGMD module 
performance. 

[141] 2013 ✓ ✘ MD 
(SGMD) 

ANN 53  • Feed inlet 
temperature  

• Feed flow rate  
• Air flow rate  

• Distillate flux  
• Salt rejection 

factor  

• ANN architecture: 
3–9-1  

• Hyper-parameter 
tuning: trial and 
error  

• Data split: train: 
80%, validation: 
10%, and test:10%  

• Monte Carlo 
simulation was 
employed for 
optimization.  

• Parametric study 
using the ANN 
model showed that 
the inlet feed 
temperature and 
sweeping air flow 
were the most 
influencing 
parameters. 
However, the liquid 
flow rate had 
insignificant effect 
on the SGMD 
performance. 

[142] 2021 ✓ ✘ CDI ANN & RF 2364  • Operational 
features 
(electrolyte NaCl 
concentration, 
electrolyte flow 
rate, applied 
voltage window)  

• Electrode features 
(Electrode specific 
surface area, 
micropore volume, 
channel pore 
volume)  

• Desalination 
capacity  

• Speed  
• Time  

• Data split: train: 
90%, and test:10%  

• Activation function: 
rectified linear unit  

• A 10-fold grid- 
search cross-valida
tion was performed 
for every model to 
optimize the 
network structure 
and hyper- 
parameters with 
respect to the 
models' accuracy in 
terms of an objective 
function.  

• The number of 
decision trees and 
their maximum 
depth were 
optimized by 10- 
fold grid-search 
cross-validation.  

• Every instance of the 
features was 
analyzed using 
latest model 
interpretation 
techniques (the 
SHapley Additive 
exPlanations, the 

(continued on next page) 
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the DCMD system and the findings showed that both models can be 
effectively applied for analysis of the wetting phenomenon in the DCMD 
configuration. 

3.5. Control 

Table 7 summarizes the studies on the application of data-driven 
methods for controlling the performance of various desalination sys
tems. It can be seen that the ANN model as a great performance pre
dictive modeling tool of non-linear systems, has received researchers' 
attention for controlling purposes. Moreover, the obtained results re
ported in [34] showed that the LSTM deep learning model can be 
effectively applied for the dynamic control of RO desalination systems. 
As can be seen from Table 7, despite the intermittent nature of wind and 
solar energies, insufficient investigations have been conducted on the 
application of data-driven controlling methods for performance 
improvement and cost reduction of renewable-based desalination sys
tems. Cabrera et al. [152] showed the excellent capability of the ANN 
model in controlling the variable operation of a standalone wind-driven 
RO desalination plant. In another study [153], applying the reinforce
ment learning model led to a 14% cost decline in a renewable-based RO 
desalination technology. Similarly, Gandhi et al. [154] reported that the 
sequential extreme learning method can be successfully applied for 
performance improvement and cost reduction of the SS desalination 
system. With adapting control of feed mass flow rate using the ANN 
model, Porrazzo et al. [155] enhanced the daily freshwater productivity 
of the PGMD desalination system by approximately 17%. 

4. Summary and scope for future work 

In this section, the reviewed studies are summarized and potential 
research gaps for future studies on the application of data-driven tech
niques in the desalination area are also presented. Fig. 4 illustrates the 
number of reviewed studies in which data-driven methods have been 
employed across five different applications, including performance 
prediction using operational parameters, performance prediction using 
design parameters, optimization and correlation development, mainte
nance, and control of desalination technologies. 

It can be seen from Fig. 4 that investigations on optimization and 
correlation development of desalination systems have been received 
more attention compared to the remaining four applications. In this 
application, the performance of desalination systems was optimized 
considering operational/design parameters or correlations were devel
oped based on these parameters. It is shown that MD is the most studied 
desalination method in the optimization or correlation development 
category having 22 publications, while the SS is in the second rank with 
15 publications. Nonetheless, optimization and correlation development 
of solar-driven MD technologies as a promising environmentally- 
friendly desalination method has received limited attention and seems 
a potential future study. A limited number of researchers have also 
sought to employ data-driven methods for optimization and correlation 
development in solar-powered HDH desalination systems. It is expected 

that the use of data-driven optimization techniques by considering both 
operational and design parameters can play a significant role in 
enhancing the thermal efficiency and lowering the freshwater cost of 
these solar-driven desalination systems. Furthermore, Fig. 4 shows that 
the literature lacks investigations on optimization and correlation 
development of CDI and ED desalination systems using data-driven 
tools. Where optimization of CDI desalination method is a complex 
problem due to joint effect of electrode feature and operational pa
rameters on the salt removal [142,158], application of data-driven 
optimization techniques such as the RSM method is a promising tech
nique that requires more consideration in the future studies. 

Fig. 4 illustrates that the investigations predicting the performance of 
desalination systems only based on operational parameters ranked sec
ond and a vast majority of investigations have been performed on SS and 
RO desalination systems. Despite a large number of experimental studies 
on HDH desalination systems in the literature, the development of 
predictive data-driven models using operational parameters for HDH 
desalination systems has been received less attention. However, the 
robustness of various ANN models for the performance prediction of a 
combined heat pump and HDH desalination system has recently been 
demonstrated [37]. Likewise, the development of data-driven tech
niques based on operational parameters for performance prediction of 
MSF desalination method has been studied only in one investigation 
[66]. The findings then demonstrated the superiority of the ANN model 
over the conventional thermodynamic models and conventional exper
imental correlations for temperature elevation prediction in the MSF 
desalination system. With respect to the wide application of MSF desa
lination plants worldwide and therefore data availability, the imple
mentation of ML predictive models can lead to significant energy saving 
and cost reduction in MSF desalination plants. As shown in Fig. 4, the 
review of the literature show that a limited number of researchers 
applied data-driven methods for the performance prediction of CDI 
desalination process. Due to the dynamic nature of CDI desalination 
process over the charging period [142], the implementation of the RNN 
model as an advanced sequential-based predictive model can signifi
cantly pave the way for the industrialization of CDI desalination process. 

With reference to Fig. 4, compared to investigations on the devel
opment of data-driven models based on operational parameters, there 
are not a significant number of data-driven methods considering design 
parameters. For instance, design parameters have been taken into ac
count only for developing the data-driven methods in HDH seawater 
greenhouse systems. However, the application of data-driven methods 
for analyzing the effects of design parameters on the performance of 
various HDH configurations has not been investigated yet. Moreover, 
design parameters have not been considered for performance prediction 
and optimization of ED, CDI, and MSF desalination systems using data- 
driven techniques. 

Also, a few researchers employed data-driven methods for the 
maintenance analysis of different desalination systems. Although the 
literature lacks an accurate modeling tool for wetting prediction in MD 
desalination systems [150], the application of data-driven methods in 
this area received insufficient attention. Developing further data-driven 

Table 5 (continued ) 

Ref Year Optimization Correlation System type Data-driven 
method 

Dataset size Inputs Outputs Main remark 

Individual 
Conditional 
Expectation, the 
Partial Dependence 
Plots, and the Mean 
Decrease Impurity) 
to determine the 
time variation of 
features 
contribution.  
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Table 6 
Summary of studies on the application of data-driven methods for maintenance purposes.  

Ref Year System 
type 

Data- 
driven 
method 

Dataset 
size/split 
ratio 

Inputs Outputs Main remark 

[145] 2019 RO CNN 13,708  • Image  • Fouling growth  
• Flux decline  

• 6000 images were used for training and 4000 
images were used for validation and testing 
the developed CNN model.  

• A comparison was made between the 
predictive performance of mathematical 
methods with the CNN model for fouling 
modeling.  

• CNN had better performance than the 
mathematical methods. 

[6] 2021 MD 
(VMD) 

ANN 149  • Time  
• Feed side temperature  
• Permeate side pressure  
• Feed flow rate  
• Solute concentration in 

the feed stream  

• Permeate flux  • ANN architecture: 5-10-1  
• Hyper-parameter tuning method: Trial and 

Error  
• Data split: train: 75%, validation: 15%, and 

test: 15%  
• Effects of operating parameters on 

membrane fouling were investigated.  
• The developed ANN model was coupled with 

GA optimization method to determine the 
optimum values of operational parameters.  

• High membrane fouling happened at higher 
feed temperatures and lower vacuum 
pressures. Further, higher feed solute 
concentrations were also led to higher 
membrane fouling. 

[147] 2008 MD ANN 229  • Permeate flowrate  
• Raw water turbidity  
• Operating time  

• Transmembrane pressure drop  • ANN architecture: 3-5-1  
• Hyper-parameter tuning method: Trial and 

Error  
• A comparison was made between the 

predictive performance of mathematical 
(blocking laws) and ANN models for 
membrane fouling analysis.  

• ANN showed a great superiority over 
blocking laws to predict the TMP for all 
experimental periods. 

[148] 2018 RO ANN A six-year 
process 
database  

• Hydraulic parameters 
(flow rates and pressures)  

• Water quality parameters 
(turbidity, total chlorine, 
and ammonia)  

• A new calculated pressure index  • Various hydraulic and water quality 
parameters (59 parameters) were used to 
quantify the cause of membrane fouling in a 
RO system.  

• A large big dataset was used to assure the 
validity of the developed model for the first 
time.  

• The best predictors of fouling were 
determined by the aid of ANN. It was shown 
how the model could be used to reduce 
fouling rates. 

[149] 2020 ED ANN 22  • Crossflow velocity  
• Current  
• Salt concentration  

• Stack resistance  • A neural differential equation is fit to 
experimental data of an ED pilot undergoing 
humic acid fouling.  

• It was reported that this model can predict 
the fouling rate even when using a limited set 
of experimental data.  

• It was shown that neural differential 
equations can extrapolate well to new inputs 
in simulating colloidal fouling in ED.  

• By utilizing a Sobol sensitivity analysis, the 
direct, linear effect of the crossflow velocity 
is reported as 41% compared to 18.6% and 
13.1% for the current and the salt 
concentration, respectively. 

[151] 2020 MD 
(DCMD) 

RSM & 
ANN 

RSM: 31 
ANN: 57  

• The concentrations of 
NaCl, CaSO4, alginate and 
Sodium dodecyl sulfate 
(SDS)  

• Time required to observe the 
wetting and the maximum 
recovery of the permeate  

• ANN architecture: 4-6-2  
• Hyper-parameter tuning method: trial and 

error  
• Design method: CCD  
• Due to the unpredictable behavior of 

membrane wetting, data-driven methods 
have been used to predict the wetting 
phenomena.  

• Experiments were performed at various 
concentrations of NaCl, CaSO4, humic acid, 
alginate, and SDS to examine their effects on 
the wetting. 
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models for accurate prediction of the wetting phenomenon in MD 
modules, particularly for VMD configuration, can lay the foundation for 
performance enhancement and facilitate the commercialization of this 
promising technology. Further, it can be inferred from the literature that 
despite great efforts made by researchers, the fouling phenomenon is 
still a huge barrier to the industrialization of ED and FO desalination 
systems [5,19]. Hence, fouling characteristics can be properly analyzed 
in these desalination technologies with the aid of the CNN deep learning 
model in which real images are used to develop the model. It is expected 
this novel fouling analysis method can take big steps in mitigating the 
fouling issues in membrane-based desalination technologies which 
deserve more attention in future studies. 

It can be also inferred from Fig. 4 that further studies should be 
carried out on controlling the performance of desalination systems using 
data-driven methods. Adaptive control of desalination systems with the 
aid of data-driven techniques can play a key role in performance 
enhancement and cost reduction of various desalination systems and 
appears a promising research topic. As shown in Fig. 4, compared to 
other desalination systems, more investigations have been dedicated to 
the application of data-driven methods for controlling the performance 
of the RO system. This can be attributed to the importance of accurate 
control of industrialized desalination methods such as the RO desali
nation system. Therefore, the development of advanced controlling tools 
using data-driven techniques for adaptive control of solar-driven desa
lination systems such as MD and HDH systems can lay the foundation for 
the industrialization of these technologies and is a promising future 
study. By way of illustration, controlling the key operational parameters 
of HDH desalination system such as the mass ratio of water to air in 
accordance with the solar radiation intensity seems a viable future 
study. 

Fig. 5 provides information on a breakdown of applied data-driven 
methods for studying desalination technologies from five different 
viewpoints. As shown in Fig. 5, among ML models, the ANN method has 
mostly been applied and researchers placed significant attention on ANN 
models developed by operational parameters for performance predic
tion of desalination systems. The statistical methods including TM, RM, 
FD, and RSM have been mainly employed for optimization and corre
lation development purposes and the RSM method was the most popular 
statistical method. Fig. 5 also reveals that DL models have received 
limited attention despite their vital role in performance enhancement as 
well as cost reduction of desalination technologies. Hence, the applica
tion of RNNs and specifically the LSTM method for adaptive control of 
solar/wind-driven desalination systems is a promising research poten
tial and requires more extensive attempts. Further, more studies should 
be carried on assessing the capability of the CNN method to predict 
complex phenomena such as wetting and fouling issues in membrane- 
based desalination systems. 

The number of times each data-driven method has been applied for 
analysis of each desalination system is illustrated as a heat map plot in 

Fig. 6. ANN and RSM methods have received more attention compared 
to other ML and statistical methods. Researchers also employed the ANN 
method 20 times for analysis of RO desalination method and the RSM 
method has been applied 19 times for studying the MD systems. A large 
area in Fig. 6 is intact indicating no investigation has been conducted 
which highlights the importance of future studies in these regions. By 
way of illustration, the classical ML methods including ANFIS, DT, RF, 
and SVM have not received enough attention. This highlights the di
rection for future studies on analyzing the performance of these methods 
compared with the ANN model for investigating different desalination 
systems. Further studies should also be carried out to compare the 
performance of classical ML models with conventional thermodynamic 
and mathematical models in terms of important indicators such as ac
curacy and computational time. Moreover, Fig. 6 demonstrates that DL 
methods have been employed only in five investigations. Future studies 
on the application of DL models as a robust predictor/control tool can 
facilitate industrialization and decrease the cost of desalination 
technologies. 

Apart from the aforementioned observations, there exist several 
research points in terms of the effective application of ML methods in 
desalination systems that require further considerations in future 
studies. The performance of ML methods is mainly affected by a number 
of key factors such as appropriate selection of inputs and outputs, 
concise hyper-parameter tuning, and dataset sizes. In the case of inputs 
selection, the literature shows that the feature selection analysis has 
been performed only in a few investigations for the wise inputs selec
tions [75,88,104,142]. Moreover, researchers mainly tended to develop 
ML models based on operational parameter inputs compared to the 
design parameters. Regarding outputs, freshwater productivity has been 
mostly chosen as the output whereas other important outputs such as 
thermal efficiency, exergy efficiency, and freshwater cost have gained 
much less attention. With respect to the hyper-parameter tuning 
method, the findings obtained from our comprehensive literature review 
revealed that optimization techniques have been applied in a few in
vestigations [77,104,124], and the trial and error method has been 
widely opted to tune the hyper-parameters. Overall, placing more 
attention on the mentioned research areas can play a crucial role in 
increasing the accuracy, generalization capability, as well as lowering 
the computational time of ML methods. Consequently, this can pave the 
way for more efficient application of ML models in the desalination 
region, resulting in performance enhancement and cost reduction of 
various desalination technologies. 

Although collecting a large number of data can be beneficial for data- 
driven analyses, the data acquisition procedure is often time-consuming 
and costly. Hence, there should be a trade-off concerning the appro
priate number of data for developing accurate data-driven models while 
taking into account the time and cost of the data collection procedure. 
To this end, Fig. 7 provides a summary of the whole reviewed papers in 
terms of the size of the dataset. In Fig. 7, the dataset size with respect to 

Table 6 (continued ) 

Ref Year System 
type 

Data- 
driven 
method 

Dataset 
size/split 
ratio 

Inputs Outputs Main remark  

• It was shown by data-driven methods that 
the concentration of NaCl and SDS had the 
largest effect on the outputs. 

[33] 2021 FO CNN 21 days  • Image  • Fouling characteristics of the 
membrane (thickness, porosity, 
roughness, and density of the 
fouling layer)  

• The CNN model was successfully developed 
for fouling prediction.  

• Thickness, porosity, roughness, and density 
of the fouling layer were completely 
analyzed using the CNN method.  

• Fouling morphology was visualized by real- 
time optical coherence tomography 
monitoring.  

• Dominant fouling characteristics were 
studied and reported.  
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the type of desalination system (Fig. 7(a)), and type of data-driven 
method (Fig. 7(b)) is shown based on various applications: perfor
mance prediction using operational parameters, performance prediction 
using design parameters, optimization and correlation development, 
maintenance and control. This is evident that a wide range of dataset 
sizes have been used to develop data-driven methods for analyzing 
various desalination systems. Among five categories, except for the 
control category which mainly larger datasets have been used (with 
minimum and mean of 474 and 3497, respectively), data-driven models 
exhibited appropriate accuracy in the other four groups with less than 

500 data. Furthermore, according to Fig. 7(a), a broad spectrum of data 
has been used for MD and RO desalination systems compared to other 
desalination systems. Regarding data-driven models as shown in Fig. 7 
(b), the ANN model developed by less than 500 data is the most popular 
ML method. Moreover, statistical methods including TM, RM, FD, and 
RSM methods are generally applied using small-sized datasets, with 
maximum 200 data. The largest dataset size (13708) can be also seen in 
terms of the application of the CNN model for studying maintenance in 
the RO desalination system. Overall, Fig. 7 reveals that a wide range of 
dataset sizes have been applied in various data-driven methods for the 

Table 7 
Summary of studies on the application of data-driven methods for control purposes.  

Ref Year System 
type 

Data- 
driven 
method 

Dataset 
size 

Inputs Outputs Main remark 

[34] 2020 RO RNN 
(LSTM) 

1871  • Feed pressure  • Flow rate of 
permeate  

• Permeate 
concentration  

• LSTM model was used as a powerful predictive controller 
model.  

• The LSTM predictive model showed a great performance on 
the validation dataset and was nominated as a robust 
predictive controller for RO desalination systems. 

[152] 2017 RO ANN 1197  • Power  
• Temperature  
• Conductivity  

• Pressure  
• Flow  

• ANN architecture for predicting the flow: 3:38:4:1, 3:69:13:1  
• ANN architecture for predicting the pressure: 3:56:9:1, 

3:71:17:1  
• ANNs were used to manage the variable operation of a RO 

plant.  
• For the first time the use of ANNs as control system tools for 

RO units has been studied with a view to enabling a continuous 
adaptation of the plant's energy consumption to the simulated 
variable electrical energy generation of a stand-alone wind 
turbine.  

• ANNs were able to successfully manage the random and 
widely varying available electrical power.  

• The ANN models were used to generate feed flow and 
operating pressure set points. 

[153] 2021 RO DRL 8760  • One year of load 
demand  

• Water demand  
• Electricity price  
• Wind turbine output  
• PV output  

• Operating cost  
• Cost of battery 

storage system  
• Pollution cost  

• Data split ratio: train: 90% and test: 10%  
• The energy management of a hybrid energy system is studied 

as an optimal control objective, and multi-targets are consid
ered along with constraints.  

• The information entropy theory is used to calculate the weight 
factor for the trade-off between different targets. Next, a deep 
reinforcement-learning algorithm is developed to solve this 
problem and get the optimal control policy.  

• It was reported that a well-trained agent could provide a better 
control policy and reduce costs by up to 14.17% compared to 
other methods. 

[154] 2021 SS 
(stepped) 

ANN n.m.  • n.m.  • n.m.  • Online Sequential Extreme Learning Machine neural network 
adaptive controller was tested on a stepped SS with SiO2/TiO2 
nanoparticles in its basin.  

• Temperature values were stored in a dynamic Binary Search 
Tree data structure and storage in the memory.  

• It was concluded that adaptive control of SS process can lead to 
the optimal cost for the SS with higher performances. 

[155] 2013 MD (solar 
PGMD) 

ANN 540  • Feed flow rate  • Distillate flow rate  • ANN architecture: 1-5-1  
• Hyper-parameter tuning method: trial and error  
• Data split: train: 80%, validation: 15%, and test: 5%  
• A control system based on dynamic ANN was developed to 

maximize the distillate flow rate. The control system functions 
based on adjusting the feed flow rate in accordance with 
variances in solar radiation and temperature of permeate fluid.  

• The daily productivity was increased by 17.2% with the 
application of the adaptive control system. 

[156] 2015 RO ANN and 
GA 

474  • Time  
• Transmembrane 

pressure  
• Conductivity  
• Flow rate  

• Permeate flow  
• Permeate 

conductivity  

• Data split ratio: train: 60%, validation: 20%, and test: 20%  
• Long-term forecasting and controlling the RO system were 

studied for the next 5000 h of operation.  
• By implementing control strategies, permeate conductivity 

declined for both experimental and model prediction. 
[157] 2014 MSF ANN 4500  • Mass flow rate of the 

heater vapor  
• Blow down flow rate  
• Set point  

• Top brine 
temperature  

• Level of last stage  
• Brine salinity  

• ANN architecture: 3-12-1  
• Hyper-parameter tuning method: Trial and error  
• Data split: train 75% and test: 25%  
• Three controllers based on ANN model were considered for 

controlling the top brine temperature, the level of last stage 
and salinity.  

• Results showed that control strategy is viable to be 
implemented in MSF desalination systems.  
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analysis of different desalination systems. Therefore, the accuracy of 
data-driven methods developed by a different number of data should be 
investigated in future studies that can lead to a significant saving on time 
and cost of the data acquisition procedure. 

5. Conclusions 

This paper comprehensively reviewed the application of data-driven 
methods (both AI and DOE methods) in thermal and membrane desali
nation systems. The reviewed studies have been thoroughly categorized 
based on the type of desalination system, type of data-driven method, 
and the application of data-driven methods for the analysis of various 
desalination systems. The literature review showed that data-driven 
methods have been mainly applied for the analysis of desalination sys
tems for five different applications namely performance prediction using 
operational parameters, performance prediction considering design 
parameters, optimization and correlation development, maintenance, 
and control. Compared to the complexity involved in mathematical 

modeling of desalination systems, data-driven methods exhibited great 
performance with much lower complexity and maintaining high accu
racy. However, a review of a large number of investigations indicated 
that despite great efforts made by researchers, there are extensive un
explored and potential research areas concerning the data-driven anal
ysis of desalination technologies. The following main conclusions can be 
drawn from the current review:  

• Regarding membrane-based desalination systems, a vast majority of 
studies were carried out on RO and MD desalination systems. How
ever, there are several unexplored research areas in terms of the 
application of data-driven techniques for control and maintenance 
analysis of these systems, including adaptive control of solar-driven 
MD system, adaptive control of wind-powered RO technology, and 
fouling/wetting analysis in MD desalination systems. Further, the 
review of literature reveals that data-driven methods can play a key 
role in performance prediction, optimization, and maintenance 
analysis of CDI, ED, and FO desalination systems. More data-driven 
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investigations should be conducted on performance analysis and 
optimization of CDI systems considering the combined effect of 
operational and electrode features. Furthermore, image processing 

using the CNN deep learning model can significantly facilitate 
fouling diagnosis in ED and FO desalination technologies.  

• With respect to thermal desalination systems, researchers mostly 
applied data-driven methods to analyze the SS desalination system. 

Fig. 6. Heat map illustration of applied data-driven methods in different desalination systems.  

Fig. 7. Size of datasets with respect to (a) desalination systems and (b) data-driven methods for different applications.  
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However, AD technology as a novel desalination method has not 
been studied sufficiently via data-driven approaches. A limited 
number of investigations conducted on HDH and MSF desalination 
technologies proved the enhanced predictive performance of ML 
models compared to mathematical models and experimental corre
lations. Nonetheless, this review paper showed that other applica
tions of data-driven methods for in-depth analysis of HDH and MSF 
systems require more attention, including performance prediction 
based on both operational and design parameters, and control of 
solar-driven systems.  

• In the case of data-driven methods, it can be concluded that among 
ML and DOE methods, ANN and RSM were the most popular 
methods, respectively. Moreover, the results reported by a few in
vestigations prove the robustness of other ML methods such as 
ANFIS, SVM, and RF methods for accurate analysis of desalination 
systems, which highlights performing more studies on developing 
other classical ML methods for the analysis of different desalination 
technologies. Further, a limited number of investigations performed 
on the application of DL models in the desalination area confirmed 
the reliability of DL models for accurate analysis of desalination 
technologies. It appears that DL models have the potential to open 
new research directions in terms of different applications in thermal 
and membrane desalination systems, including prediction of the 
dynamic behavior of desalination systems, maintenance analysis of 
membrane-based systems, and adaptive control of renewable-based 
desalination systems.  

• Compared to operational parameters, design parameters have 
received insufficient attention for developing data-driven methods. 
Furthermore, freshwater productivity was frequently chosen as the 
output of data-driven models, and other important outputs such as 
energy and exergy efficiencies and freshwater cost should be given 
more attention.  

• The review of literature from the dataset size viewpoint shows that 
analyzing the effect of dataset sizes on the performance of data- 
driven methods can pave the path for lowering the cost and time 
of the data collection.  

• It is expected that data-driven methods can play a vital role in 
overcoming the obstacles to the industrialization of several desali
nation systems such as HDH, CDI, AD, ED, MD, and FO technologies. 
Further, ML and DL methods can be effectively employed for in- 
depth analysis of industrialized desalination technologies, resulting 
in performance enhancement and cost reduction. 
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[17] D. González, J. Amigo, F. Suárez, Membrane distillation: perspectives for 
sustainable and improved desalination, Renew. Sust. Energ. Rev. 80 (2017) 
238–259. 

[18] A. Anvari, A. Azimi Yancheshme, K.M. Kekre, A. Ronen, State-of-the-art methods 
for overcoming temperature polarization in membrane distillation process: a 
review, J. Membr. Sci. 616 (2020), 118413. 

[19] S. Al-Amshawee, M.Y.B.M. Yunus, A.A.M. Azoddein, D.G. Hassell, I.H. Dakhil, H. 
A. Hasan, Electrodialysis desalination for water and wastewater: a review, Chem. 
Eng. J. 380 (2020), 122231. 

[20] L. Karimi, A. Ghassemi, How operational parameters and membrane 
characteristics affect the performance of electrodialysis reversal desalination 
systems: the state of the art, J. Membr. Sci. Res. 2 (3) (2016) 111–117. 

[21] M. Suss, S. Porada, X. Sun, P. Biesheuvel, J. Yoon, V. Presser, Water desalination 
via capacitive deionization: what is it and what can we expect from it? Energy 
Environ. Sci. 8 (8) (2015) 2296–2319. 

[22] V.P. Katekar, S.S. Deshmukh, Techno-economic review of solar distillation 
systems: a closer look at the recent developments for commercialisation, J. Clean. 
Prod. 294 (2021), 126289. 

[23] G.P. Narayan, M.H. Sharqawy, J.H. Lienhard V, S.M. Zubair, Thermodynamic 
analysis of humidification dehumidification desalination cycles, Desalin. Water 
Treat. 16 (1-3) (2010) 339–353. 

[24] D.U. Lawal, N.A. Qasem, Humidification-dehumidification desalination systems 
driven by thermal-based renewable and low-grade energy sources: a critical 
review, Renew. Sust. Energ. Rev. 125 (2020), 109817. 

[25] F.A. Essa, A.S. Abdullah, Z.M. Omara, A.E. Kabeel, W.M. El-Maghlany, On the 
different packing materials of humidification–dehumidification thermal 
desalination techniques – a review, J. Clean. Prod. 277 (2020), 123468. 

[26] M. Prajapati, M. Shah, B. Soni, A review of geothermal integrated desalination: a 
sustainable solution to overcome potential freshwater shortages, J. Clean. Prod. 
326 (2021), 129412. 

[27] H. Baig, M.A. Antar, S.M. Zubair, Performance characteristics of a once-through 
multi-stage flash distillation process, Desalin. Water Treat. 13 (1–3) (2010) 
174–185. 

[28] K. Sztekler, et al., Experimental study of three-bed adsorption chiller with 
desalination function, Energies 13 (21) (2020) 5827. 

[29] K. Sztekler, et al., Performance evaluation of a single-stage two-bed adsorption 
chiller with desalination function, J. Energy Resour. Technol. 143 (8) (2021). 

[30] A.H. Elsheikh, S.W. Sharshir, M. Abd Elaziz, A. Kabeel, W. Guilan, Z. Haiou, 
Modeling of solar energy systems using artificial neural network: a 
comprehensive review, Sol. Energy 180 (2019) 622–639. 

[31] K.S. Garud, S. Jayaraj, M.Y. Lee, A review on modeling of solar photovoltaic 
systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid 
models, Int. J. Energy Res. 45 (1) (2021) 6–35. 

[32] P. Behnam, M. Faegh, M.B. Shafii, M. Khiadani, A comparative study of various 
machine learning methods for performance prediction of an evaporative 
condenser, Int. J. Refrig. 126 (2021) 280–290. 

[33] S.J. Im, N.D. Viet, A. Jang, Real-time monitoring of forward osmosis membrane 
fouling in wastewater reuse process performed with a deep learning model, 
Chemosphere 275 (2021), 130047. 

[34] D. Karimanzira, T. Rauschenbach, Deep learning based model predictive control 
for a reverse osmosis desalination plant, J. Appl. Math. Phys. 8 (12) (2020) 
2713–2731. 
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