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•  Brayton Cycle Basics

•  Flow Parameter

•  Cycle Deck

•  Firing Temperature

•  Control Curve
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Ideal Brayton Cycle
Four Thermodynamic Processes
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Ideal Brayton Cycle
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Yields Cycle Efficiency = f ( P2/P1 ):
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Brayton Cycle

• Maximum Allowable Cycle Temperature
 - Material Limitations
 - Cooling Technologies

• Optimum Work Output
 - Selection of Design Pressure Ratio

• Non-Ideal Cycle Effects
- Compression/Expansion Inefficiencies
- Pressure Losses
- Parasitic Flows

Other Considerations



Ideal Brayton Cycle

Differentiate with respect to T2:

Work Output:

Set to Zero and Solve for T2:
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Ideal Brayton Cycle
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Ideal Brayton Cycle
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Brayton Cycle
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Brayton Cycle
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Brayton Cycle
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Flow Parameter - Defined
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Starting from basic continuity equation:

Through substitution of thermo & compressible 
flow principles, then re-arranging terms:



Flow Parameter - Applied
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Setting M = 1 (Choked Flow at Station 3)

Given: 
Machine Size  W
Technology   T3 
Max Output   P3 
A3 is set to hold continuity



• For Ideal Cycle
• Cycle efficiency increases with P2/ P1, and not dependent on 

T3

• For given P2/ P1, as T3 increases, all additional energy input 
becomes work output

• For Real Cycle
• ( T3 at Zero Work )Real > ( T3 at Zero Work )Ideal
• As T3 increases, both cycle efficiency & work output 

increase
• Therefore, general conclusion is higher T3 is good

Brayton Cycle General Observations



Customers can register and then download 
GTP Estimator by going to:

http://www.gepower.com/home/index.htm 

Gas Turbine Performance Estimator 
(Cycle Deck)

http://www.gepower.com/home/index.htm
http://www.gepower.com/home/index.htm


• An aero-thermal math model of the entire GT cycle 
(Thermodynamics, Aerodynamics, Compressible Flow, Heat 
Transfer)

• Built & maintained by Systems Engineering
• Uses:

– Boundary conditions for component designers

– Performance prediction (Guarantees, Correction Curves, Studies)

– Control schedule development (Tx Control, IGV Control, etc.)

– Data reduction/analysis

– Core of performance monitoring programs

GTP (Cycle Deck) - The Primary Gas 
Turbine Thermodynamic Tool



GTP (Cycle Deck) - Modular
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Parasitic Flows

Combustor
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• Ambient Conditions
• Inlet P
• IBH Functionality

• Rotational Speed
• Pressure Ratio
• IGV Angle

• Compressor Flow Conditions
• Design Cooling Flow Fractions
• Flow Parameter Characteristic

• Compressor Exit Conditions
• Fuel  & Diluent Flow & Composition
• Design Point P/P

• Combustor Exit Conditions
• Dilution Air Proportions

• Turbine Exit Conditions
• Design Point P

• Shaft Power
• Power Factor

• Flows, Enthalpies Throughout Cycle

• Compressor Inlet Conditions

• Inlet/Exit Flow Rate
• Overall Efficiency
• Compressor Exit & Extraction Point Conditions

• Flow Rate Down Each Circuit

• P/P
• Combustor Exit Gas Conditions & Composition
• Nox & CO

• Stage by Stage Exit Conditions
• Bucket Relative Temperatures

• P/P

• Generator Electrical Losses
• Electrical Power Output

• Power Output, Heat Rate, Cycle Efficiency
Cycle Performance
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GTP (Cycle Deck)
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GTP (Cycle Deck)
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GTP (Cycle Deck)
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• Defined as gas temp at point in cycle where 
initiation of turbine work begins   (N1 trailing 
edge / B1 leading edge)

• Highest temp point in cycle for thermal 
performance, but not hottest point in cycle

• Not possible to measure precisely

• Usually the “target parameter” for Tx control 
curve generation, but not always

Firing Temperature



Firing Temperature
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Expansion Line

B3 Cooling
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• Tx control used to regulate fuel flow such that 
gas temps/parts lives conform to design basis

• Subject to knowledge of turbine efficiency, 
turbine cooling flows, back pressure

• Can have separate curves for base load, part 
load

• Can be tailored to achieve variable firing 
temperature, simultaneously meeting 
performance, emissions, & parts life goals

Temperature Control Curve



T'

T
  turbine 




Temperature Control Curve

Starting From Basic Efficiency Equation:

Through substitution of thermo & compressible 
flow principles, then re-arranging terms:
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Temperature Control Curve

Process Inputs:

1) Current Cycle Deck
2) Target Firing Temperature
3) Expected Site Ambients
4) Expected Fuel
5) Target NOX

6) TX Limit
7) “Special” Considerations

- Tilted Curves
- 1, 2, 3 Piece
- Humidity
- Dry vs Wet
- DLN TRISE Criteria
- Base Load vs Part Load
- Compressor Temp Bias

Process Output:
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Temperature Control Curve
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Temperature Control Curve
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Temperature Control Curve
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Wrap - Up

• Brayton Cycle Analysis
 Higher P/P is Good
 Higher Firing Temp is Good
 Cycle Inefficiencies, DP’s, Turbine Cooling are Bad

•Cycle Deck
 Modular Design, Evolves Over Time
 #1 Performance Tool (Design, Ratings, Control, Monitors)

• Firing Temperature
 Controlled via Exhaust Temperature
 Sensitive to hT , Turbine Cooling, Backpressure
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