VALVE & TESTING

What is a valve?

Valve (valv/)

Noun: a device for controlling the passage of fluid or air through a pipe, duct, etc., especially an automatic device allowing movement in one direction only.

Reference Codes and Standards

- API STD 598: Valve inspection and testing
- API STD 600: Steel gate valve
- API STD 594: Check valve
- API 608: Ball valve
- API 609: Butterfly valve
- API RP 621: Valve repair
- ASME 16.34: Valves (flanged, threaded and welding end)

Classification by Mechanism

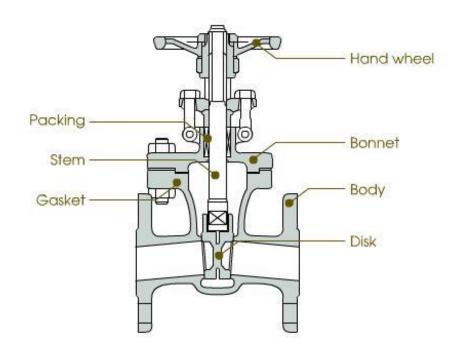

BASIC VALVE MECHANISMS FLUID CONTROL ELEMENTS (DISCS)

CHART 3.1

IN THESE SCHEMATIC DIAGRAMS, THE DISC IS SHOWN WHITE, THE SEAT IN SOLID COLOR, & THE CONVEYED FLUID SHADED.

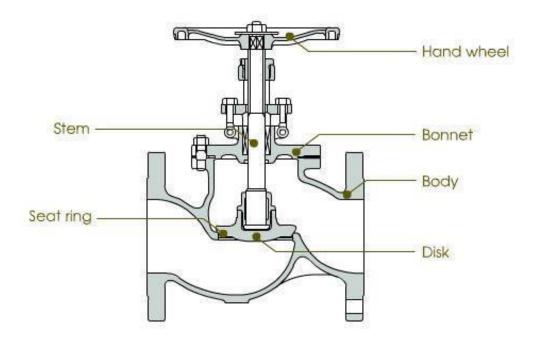
	OPERA	TED VALVES		SELF-OPERA	TED VALVES
GATE	GLOBE	ROTARY	DIAPHRAGM	CHECK	REGULATING
	W		DIAPHRAGM		
SOLID-WEDGE GATE	GLOBE	ROTARY-BALL	(SAUNDERS TYPE)	SWING CHECK	PRESSURE REGULATOR
	W. T.				
SPLIT-WEDGE GATE	ANGLE GLOBE	BUTTERFLY	PINCH	BALL CHECK	PISTON CHECK
SINGLE-DISC SINGLE-SEAT GATE	NEEDLE	PLUG or COCK	*Central seat is optional	TILTING DISC CHECK	STOP CHECK

Gate Valve

A gate valve consists of a body that contains a gate that interrupts flow. This type of valve is normally used in a fully open or fully closed position. Gate valves are generally used in systems where low flow resistance for a fully open valve is desired and there is no need to throttle the flow.

Gate Valve

Advantages:


- It has **good shutoff** characteristics.
- The *pressure loss* through the valve is *minimal*.

Gate Valve

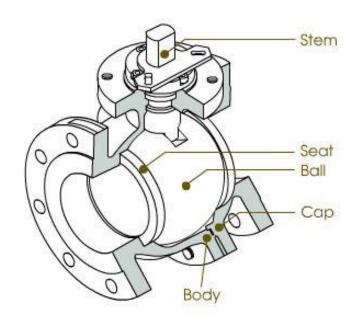
Disadvantage

- It is *not suitable for throttling applications*.
- It is *prone to vibration* in the partially open state.
- It is *more subject to seat and disk wear* than a globe valve.
- *Repairs*, such as lapping and grinding, are generally *more difficult* to accomplish.

Globe Valve

A globe valve, which is commonly used to regulate fluid flow, consists of a valve body that contains a circular disc that moves parallel to the disc axis and contacts the seat. The stream flows upward generally, except for vacuum service or when required by system design (e.g. fail closed), through the seat area against the disc, and then changes direction to flow through the body to the outlet disc. The seating surface can be flat or tapered.

Globe Valve


Advantages:

- **Good shut-off** capability.
- Moderate to good throttling capability.
- **Shorter stroke** (compared to a gate valve)
- Available in tee, wye, and angle patterns, each offering unique capabilities
 - **Easy** to machine or **resurface the seats**

Globe Valve

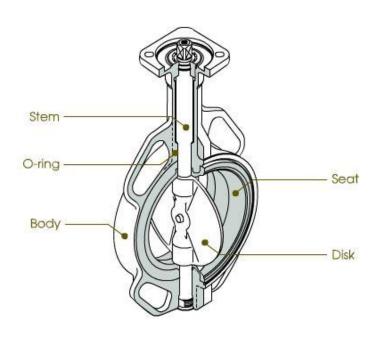
- Disadvantages:
 - *Higher pressure drop* (compared to a gate valve)
- **Requires greater force** or a larger actuator **to seat** the valve (with pressure under the seat)

Ball Valve

A ball valve is another one-quarter turn valve similar to a plug valve except that the plug in a ball valve is spherical instead of tapered or cylindrical. Ball valves usually function as block valves to close off flow. They are well suited for conditions that require quick on/off or bubble tight service. A ball valve is typically equipped with an elastomeric seating material that provides good shut off characteristics; however, all-metal, high-pressure ball valves are available.

Ball Valve

Advantages:


- **Quick** to **open** and **close**.
- **Smaller** in size than a gate valve.
- **Several designs** of ball valves offer flexibility of selection.
- High-quality ball valves provide *reliable service* in high-pressure and high-temperature applications.
- *Force* required *to actuate* the valve is *smaller* than that required for a gate or a globe valve.

Ball Valve

■ Disadvantages:

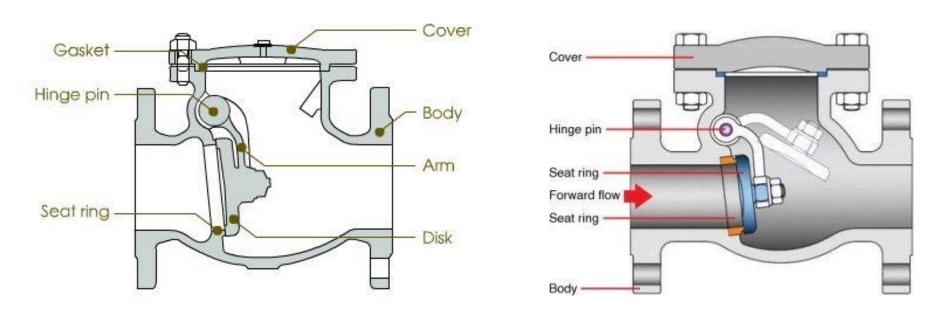
- Conventional ball valves have relatively *poor throttling* characteristics. In a *throttling position*, the partially exposed seat *rapidly erodes because* of the *impingement* of high velocity flow.

Butterfly Valve

■ A butterfly valve consists of a disc mounted on a stem in the flow path within the valve body. The body is usually flanged and of the lug or wafer type. A one-quarter turn of the stem changes the valve from fully closed to completely open. Butterfly valves are most often used in low-pressure service for coarse flow control.

Butterfly Valve

Advantage


- The compact design requires considerably *less space*, compared to gate, globe, or other valves.
 - *Light* in weight.
- **Quick acting**; as a quarter-turn valve, it requires less time to open or close.
- It is *available in large sizes*, ranging from NPS $1^{1}/_{2}$ (DN 40) to over NPS 200 (DN 5000).
 - It has *low-pressure drop* and high-pressure recovery.

Butterfly Valve

Disadvantage

- *Throttling service* is limited to *low differential pressure*.
- Cavitation and choked flow are two potential concerns.
- The **disc movement** is unguided and affected by **flow turbulence**.

Check Valve

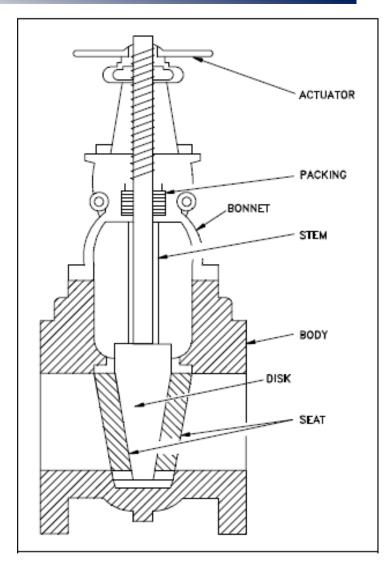
■ Check valves are designed to prevent the reversal of flow in a piping system. These valves are activated by the flowing material in the pipeline. The pressure of the fluid passing through the system opens the valve, while any reversal of flow will close the valve. Closure is accomplished by the weight of the check mechanism, by back pressure, by a spring, or by a combination of these means.

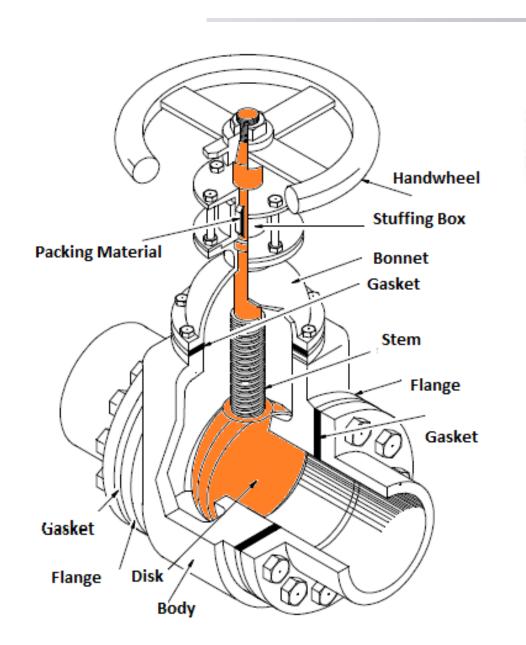
Check Valve

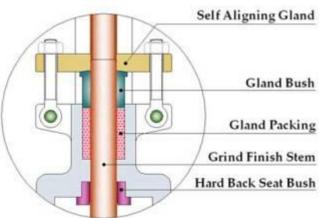
Advantages:

- It is **self-actuated** and requires no external means to actuate the valve either to open or close. It is **fast acting**.
- It allows flow in one direction only
- Pressure drop is very low

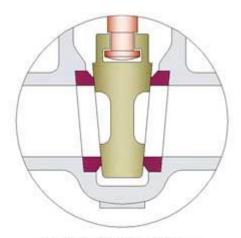
Check Valve

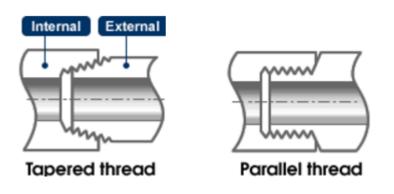

Disadvantage

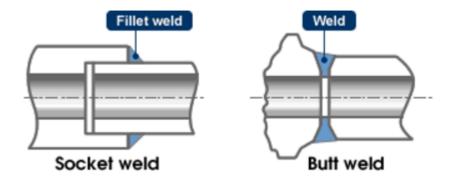

The major disadvantages to the use of a check valve are:


- Since all moving parts are enclosed, it is *difficult to determine* whether the valve is *open or closed*. Furthermore, the condition of internal parts cannot be assessed.
- Each type of check valve has *limitations on its installation* configurations.
 - Valve *disc* can *stick in open position*.

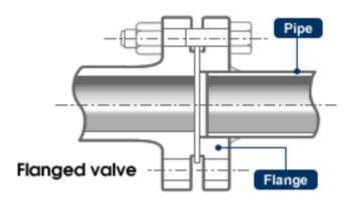
Valve Component


- **Body**: is the primary pressure boundary of a valve. It serves as the principal element of a valve assembly because it is the framework that holds everything together.
- **Bonnet**: A valve body closure component that contains an opening for the stem.
- **Trim**: The internal elements of a valve are collectively referred to as a valve's trim. The trim typically includes
 - **Disc**: The part of the valve which is positioned in the flow stream to permit or to obstruct flow
 - **Seat**: The portion of the valve against which the closure member presses to effect shutoff.
 - **Stem**: which connects the actuator and disk, is responsible for positioning the disk.
- **Actuator**: A device that operates a valve by utilizing electricity, pneumatics, hydraulics, or a combination of one or more of these energies.
- **Packing**: to prevent leakage from the space between the stem and the bonnet.


Bonnet Assembly



Solid Wedge Gate


Common valve connections

■Threaded Connection
■Welded Connection

■ Flanged Connection

Trim Chart

Trim		Seat Surface Hardness	Seat Surface	Seat S	Surface Typical Specific	ations Grade		Stem/Bushing		Backseat
Number	Nominal Trim	(HB) Minimum ^a	Material Type b	Cast	Forged	Welded ^m	Material Type ^b	Typical Specifications Type	Stem Hardness (HB)	Bushing Hardness (HB)
1	F6	Note °	13Cr	ASTM A217(CA15)	ASTM A105 (F6a)	AWS A5.9 ER410	13Cr	ASTM A276-T410 or T420	200 min 275 max	250 min.
2	304	Note ^d	18Cr-8Ni	ASTM A351 (CF8)	ASTM A182 (F304)	AWS A5.9 ER308	18Cr-8Ni	ASTM A276-T304	Note ^d	Note ^d
3	F310	Note d	25Cr-20Ni	NA	ASTM A182 (F310)	AWS A5.9 ER310	25Cr-20Ni	ASTM A276-T310	Note d	Note d
4	Hard F6	750 °	Hard 13Cr	NA	Note ^f	NA	13Cr	ASTM A276-T410 or T420	200 min 275 max	250 min.
5	Hardfaced	350°	Co-Cr A ^g	NA	NA	AWS A5.13 E or R CoCrA	13Cr	ASTM A276 T410 or T420	200 min 275 max	250 min.
5A	Hardfaced	350 °	Ni-Cr	NA	NA	Note h	13Cr	ASTM A276 T410 or T420	200 min 275 max	250 min.
6	F6 and	250 i	13Cr and	ASTM A 217 (CA 15)	ASTM A182 (F6a)	AWS A5.9 ER410	13Cr	ASTM A276 T410 or T420	200 min 275 max	250 min.
	Cu-Ni	175 ⁱ	Cu-Ni	NA	Note ^k	NA	NA	NA	NA	NA
7	F6 and	250 i	13Cr and	ASTM A 217 (CA 15)	ASTM A182 (F6a)	AWS A5.9 ER410	13Cr	ASTM A276 T410 or T420	200 min 275 max	250 min.
	Hard F6	750 ⁱ	Hard 13Cr	NA	Note ^f	NA	NA	NA	NA	NA
8	F6 and	250 ⁱ	13Cr and	ASTM A 217 (CA 15)	ASTM A182 (F6a)	AWS A5.9 ER410	NA	ASTM A276 T410 or T420	200 min 275 max	250 min.
	Hardfaced	350 ⁱ	Co-Cr A ^g	NA	NA	AWS A5.13 E or R CoCrA		NA	NA	NA
8A	F6 and	250 ⁱ	13Cr and	ASTM A 217 (CA 15)	ASTM A182 (F6a)	AWS A5.9 ER410	13Cr	ASTM A276 T410 or T420	200 min 275 max	250 min.
\perp	Hardfaced	350 i	Ni-Cr	NA	NA	Note h	NA	NA	NA	NA
9	Monel	Note ^d	Ni-Cu Alloy	NA	MFG Standard	NA	Ni-Cu Alloy	MFG Standard	Note ^d	Note ^d
10	316	Note ^d	18Cr-8Ni	ASTM A351 (CF8M)	ASTM A182 (F316)	AWS A5.9 ER316	18Cr-8Ni-Mo	ASTM A276-T316	Note ^d	Note ^d
11	Monel and	Note d	Ni-Cu Alloy and	NA	MFG Standard	NA	Ni-Cu Alloy	MFG Standard	Note ^d	Note ^d
	Hardfaced	350 ⁱ	Trim 5 or 5A			See Trim 5 or 5A	NA	NA	NA	NA
12	316 and	Note d	18Cr-8Ni-Mo	ASTM A351 (CF8M)	ASTM A182 (F316)	AWS A5.9 ER316	18Cr-8Ni-Mo	ASTM A276-T316	Note ^d	Note ^d
	Hardfaced	350 ⁱ	Trim 5 or 5A			See Trim 5 or 5A	NA	NA	NA	NA
13	Alloy 20	Note ^d	19Cr-29Ni	ASTM A351 (CN7M)	ASTM B473	AWS A5.9 ER320	19Cr-29Ni	ASTM B473	Note ^d	Note ^d
14	Alloy 20 and	Note ^d	19Cr-29Ni and	ASTM A351 (CN7M)	ASTM B473	AWS A5.9 ER320	19Cr-29Ni	ASTM B473	Note d	Note ^d
	Hardfaced	350 ⁱ	Trim 5 or 5A	NA	NA	See Trim 5 or 5A	NA	NA	NA	NA
15	Hardfaced	350 °	Co-Cr A ^g	NA	NA	AWS A5.13 E or R CoCrA	18Cr-8Ni	ASTM A276-T304	Note ^d	Note ⁿ
16	Hardfaced	350 °	Co-Cr A ^g	NA	NA	AWS A5.13 E or R CoCrA	18Cr-8Ni-Mo	ASTM A276-T316	Note ^d	Note ⁿ
17	Hardfaced	350 °	Co-Cr A ⁹	NA	NA	AWS A5.13 E or R CoCrA	18Cr-10Ni-Cb	ASTM A276-T347	Note ^d	Note ⁿ
18	Hardfaced	350 °	Co-Cr A ⁹	NA	NA	AWS A5.13 E or R CoCrA	19Cr-29Ni	ASTM B473	Note ^d	Note ⁿ
NOTE (Cr = Chromium; Ni	= Nickel; Co = Cobalt; Cu = Co	pper; NA = Not Applica	able.						

Trim Chart

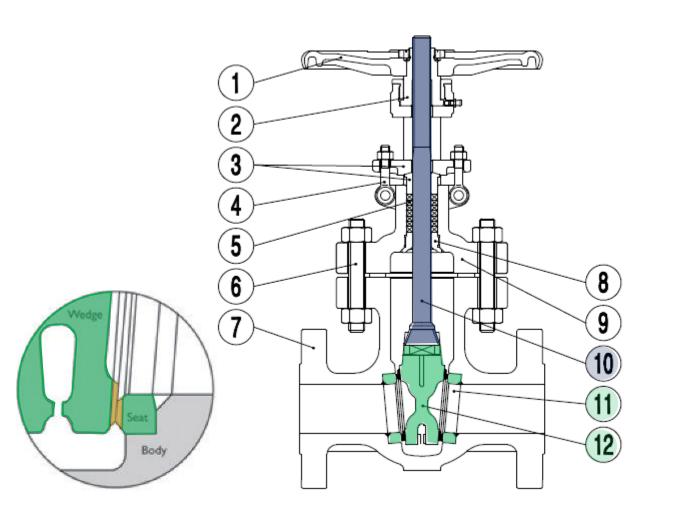
ľ	Trim		Seat Surface Hardness	Seat Surface	Seat Surface Typical Specifications Grade Stem/Bushing					Backseat	
	Number	Nominal Trim	(HB) Minimum ^a	Material Type b	Cast	Forged	Welded ^m	Material Type ^b	Typical Specifications Type	Stem Hardness (HB)	Bushing Hardness (HB)
ſ	8	F6 and	250 '	13Cr and	ASTM A 217 (CA 15)	ASTM A182 (F6a)	AWS A5.9 ER410	NA	ASTM A276 T410 or T420	200 min 275 max	250 min.
L		Hardfaced	350 ⁱ	Co-Cr A g	NA	NA	AWS A5.13 E or R CoCrA	INA	NA	NA	NA

■Example:

■Trim #8

■ Nominal trim: F6 (SS410) + Hard Faced

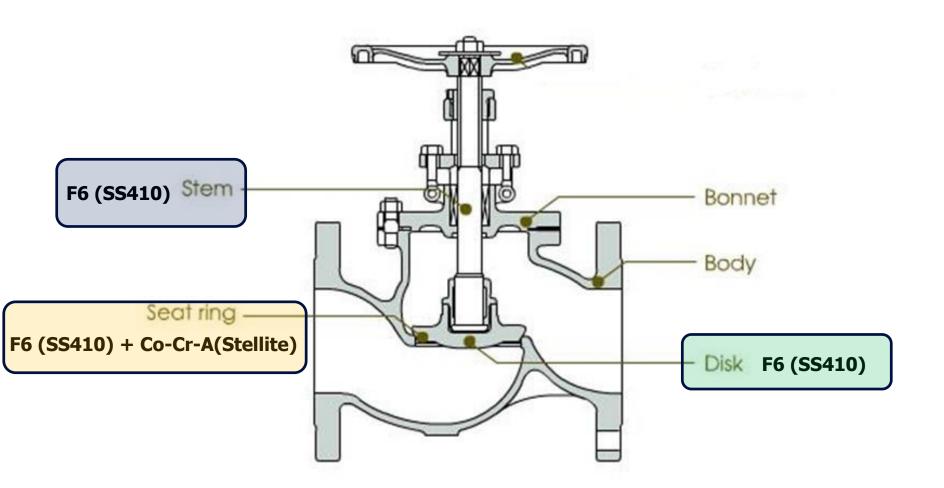
■ Seat surface material: F6 (SS410) + Co-Cr-A(Stellite)


■ Stem: F6 (SS410)

■ Disc: F6 (SS410)

■ Application: General service up to 593C, medium pressure and more corrosive service

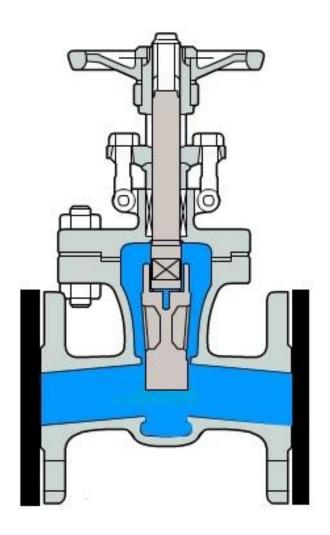
Valve Trim


Trim	Trim Seat Surface Hardness Seat Surface		Seat S	Surface Typical Specifica	ations Grade	(Stem/Bushing		Backseat	
Number	Nominal Trim	(HB) Minimum ^a	Material Type b	Cast	Forged	Welded ^m	Material Type ^b	Typical Specifications Type	Stem Hardness (HB)	Bushing Hardness (HB)
8	F6 and	250 1	13Cr and	ASTM A 217 (CA 15)	ASTM A182 (F6a)	AWS A5.9 ER410	NA	ASTM A276 T410 or T420	200 min 275 max	250 min.
	Hardfaced	350 ⁱ	Co-Cr A ^g	NA	NA	AWS A5.13 E or R CoCrA	INA	NA	NA	NA

IT.	DESCRIPTION
1	HANDWHEEL
2	YOKE SLEEVE
3	GLAND FLANGE
4	GLAND EYE BOLT
5	PACKING
6	BONNET BOLT
7	BODY
8	BONNET
9	BACK SEAT
10	STEM
11	SEAT RING
12	WEDGE

Valve Trim

Trin	rim Seat Surface Hardness Seat Surface		Seat S	Surface Typical Specific	ations Grade	Stem/Bushing		Backseat		
Numb	Nominal Trim	(HB) Minimum ^a	Material Type b	Cast	Forged	Welded ^m	Material Type ^b	Typical Specifications Type	Stem Hardness (HB)	Bushing Hardness (HB)
8	F6 and	250	13Cr and	ASTM A 217 (CA 15)	ASTM A182 (F6a)	AWS A5.9 ER410	NA	ASTM A276 T410 or T420	200 min 275 max	250 min.
	Hardfaced	350 ⁱ	Co-Cr A g	NA	NA	AWS A5.13 E or R CoCrA	INA	NA	NA	NA

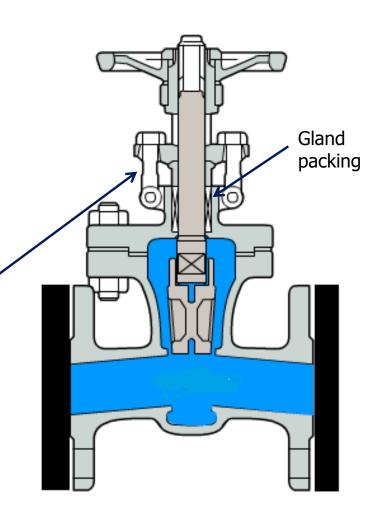


Valve Testing

- ■API 598 Valve inspection and testing
- Pressure Tests
 - Shell test
 - Backseat test
 - Low pressure closure
 - High pressure closure
- Requirement of each pressure test is varied by type of valve, size, and flange rating

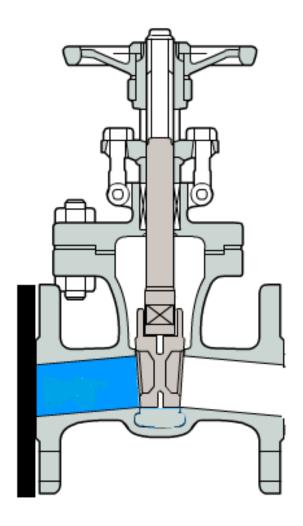
Shell Test

- The valve is **partially** opened and valve's ends completely closed.
- Not a single valve component shall be removed.
- The valve body shall be completely filled with test fluid.

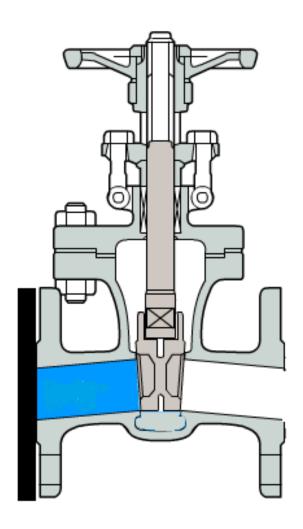

Backseat Test

 The valve is **fully** opened and valve's ends completely closed.

 Gland packing shall be either loosened or removed.


 The valve body shall be completely filled with test fluid.

Loosen bolt to relax gland packing


Low Pressure Closure

- The valve is fully closed with one end subjected for testing and the other end opened for detection of leakage
- Not a single valve component shall be removed.
- Both ends shall be subjected for testing

High Pressure Closure

- Same as Low Pressure
 Closure, except that in the
 case of a liquid test, leakage
 shall be detected when drops,
 not bubbles
- Both ends shall be subjected for testing

Tests Required

Table 1—Pressure Tests

Valves: DN (NPS) ≤ DN 100 (NPS 4) and ASME Class ≤ 1500 DN (NPS) > DN 100 (NPS 4) and ASME Class ≤ 600

			Val	ve Type						
Test Description	Gate	Globe	Plug	Check	Floating Ball	Butterfly and Trunnion Mounted Ball				
shell	required	required	required	required	required	required				
backseat ^a	required	required	NA	NA	NA	NA				
low-pressure closure	required	optional ^C	required ^b	optional ^c	required	required				
high-pressure closure ^d	optional ^{c f}	required ^e	optional ^{b c f}	required	optional ^{cf}	optional ^{c f}				
NOTE NA = Not applicable	NOTE NA = Not applicable.									

Tests Required

Table 2—Pressure Tests

Valves: DN (NPS) ≤ DN 100 (NPS 4) and ASME Class > 1500 DN (NPS) > DN 100 (NPS 4) and ASME Class > 600

			Val	ve Type							
Test Description	Gate	Globe	Plug	Check	Floating Ball	Butterfly and Trunnion Mounted Ball					
shell	required	required	required	required	required	required					
backseat ^a	required	required	NA	NA	NA	NA					
low-pressure closure	optional ^b	optional ^b	optional ^b	optional ^b	required	optional ^b					
high-pressure closure ^C	required	required ^d	required	required	optional ^{b e}	required					
NOTE NA = Not applicable.											

Test Pressure

Table 3—Shell Test Pressures

		Shell Test Pres	ssure (Minimum)		
Valve Type	Class	Bar Gauge	Pounds per Square Inch Gauge (psig)		
ductile iron	150	26	400		
ductile Iron	300	66	975		
cast iron	125				
DN 50 to 300 (NPS 2 to 12)	125	25	350		
DN 350 to 1200 (NPS 14 to 48)		19	265		
cast iron					
DN 50 to 300 (NPS 2 to 12)	250	61	875		
DN 350 to 600 (NPS 14 to 24)		37	525		
steel					
flanged	150 to 2500	b	b		
butt weld	150 to 4500	b	b		
threaded ^a and socket weld	800	С	c		
urreaded * and socket weld	150 to 4500	b	b		

For other materials, the test pressure shall be 1.5 times of the working pressure varying by class (ASME B16.34).

Test Fluid

- The test fluid shall be done with water or with other suitable fluid.
- ■For testing of austenitic stainless steel valves, water with chloride content not exceeding 30 ppm shall be used

Test Duration

Table 5—Duration of Required Test Pressure

Valve	Size	Minimum Test Duration (Seconds) ^a					
DN	NPS	Shell	Backseat (for Valves with Backseat Feature)	Closure Check Valves (API 594)	Closure Other Valves		
≤ 50	≤ (2)	15	15	60	15		
65 to 150	(2 ¹ /2 to 6)	60	60	60	60		
200 to 300	(8 to 12)	120	60	120	120		
≥ 350	≥ (14)	300	60	120	120		

The test duration is the period of inspection after the valve is fully prepared and is under full pressure.

Acceptance Criteria

- ■The valve shall be visually examined for leakage after it has been fully prepared and is under full test pressure.
- ■No leakage or pressure drop.
- ■For valves with **adjustable** stem seals, leakage through the stem seals or stem packing shall not be cause for rejection.

Allowable Leakage Rates

The following table shows maximum allowable leakage rates for closure tests

Valv	e Size	Metal Seated Valves
DN (mm)	NPS (in.)	Liquid Test (drops/minute)
≤ 50	≤ 2	0
65	2 1/2	5
80	3	6
100	4	8
125	5	10
150	6	12
200	8	16
250	10	20
300	12	24
350	14	28
400	16	32
450	18	26
500	20	40
600	24	48
650	26	52
700	28	56
750	30	60
800	32	64
900	36	72
1000	40	80
1050	42	84
1200	48	96