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Abstract: This paper reports on the experience in the course of development of an adaptive
control strategy for an 18-stage multistage flash (MSF) desalination plant presently operating in
the Arabian Gulf region. The parameter-scheduling strategy maintains optimality of PID
controllers over the operating region and is derived by simulation using a detailed
phenomenological dynamic model. An optimal method of reducing the model into first-order-
dead-time (FODT) form and a non-parametric model-based simulation facility are presented.
Based on a relative gain array analysis, an appropriate control structure has been established. A
number of integral performance criteria have been used, without resorting to the use of a reduced
model, directly with the non-parametric simulation facility for optimal controller tuning. The
controller parameters are given as a vector function of the top brine temperature (TBT) and the
brine recycle flow rate, which are key variables for the TBT control.

Keywords: Relative gain analysis, PID control, nonparametric models, simulation, adaptive

control, parameter scheduling, nonlinear control, MSF desalination.

1. PROCESS DESCRIPTION, LINEARISED
DYNAMIC MODEL AND ITS FEATURES

1.1 Multistage Flash Desalination Process (MSFDP).

The multistage flash desalination process (MSFDP)
is an evaporation-condensation process which is a
major means of desalting seawater at present. It is
almost similar to the process (sans flashing) of evapo-
ration, cloud formation and precipitation that occurs
in nature, giving rain. In view of this similarity, it is a
process in close harmony with nature. While being
instrumental in serving one of the basic needs of
humanity, it is considered as one which causes little
environmental pollution or ecological imbalance.

The MSF process basically consists of evaporation
and condensation of water successively in a series of
flash stages. These stages are maintained under
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progressively reduced pressure. The brine entering a
particular stage is superheated with respect to the
conditions inside that stage, as a result of which
flashing occurs. The vapour generated is then
condensed on the outside surface of a tube bundle
provided in the upper portion of the stage, and the
distillate falls into the product trough placed below
the tube bundle. The heat released due to
condensation is recovered by the incoming brine
flowing through the tubes as a coolant. Thus, the
multistage process shown in Fig. 1 consists of three
streams, namely, the first of flashing brine flowing
from stage 1 to stage N, secondly of cooling brine
flowing inside the tubes countercurrently and the last
of distillate product flowing in the same direction as
that of the flashing brine.

The MSF evaporator comprises three main sections
viz., the heat recovery sections, heat rejection
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sections and a brine heater (Fig. 1). In the recovery
stages 1 to NR, heat is recovered from the
condensation of vapour by the recycle stream (i.e.
cooling brine) flowing countercurrently inside the
tubes from stage to stage. The recycled brine coming
out from stage 1 is further heated to the maximum
temperature in the process (known as “top brine
temperature” or TBT) in the brine heater by low
pressure steam, before it enters the first stage for
flashing. Thus, the brine heater is the primary source
of energy in the whole process. In the rejection
stages, which are usually three in number, the fresh
seawater flows as the coolant on the tube side, and
part of the heat recovered in these stages is ejected to
the sea. The remaining seawater after deaeration and
the necessary chemical treatment enters as “makeup”
into the last stage, N.
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Fig. 1. Schematic flow diagram of MSF process
plant.

Each flash stage includes:

flash chamber in which the flashing occurs,

tube bundle on which the condensation takes
place,

tray to receive the distillate, and

the vapour space in between.

Figure 2 shows a cross-section of the chamber of a
flash evaporator. Between the flash chamber and the
vapour space are placed the demisters to remove
entrained droplets from the vapour. Brine flows from
one flash chamber to the next through a weir box or
orifice which regulates the brine level in each stage
in order to prevent blowthrough between the stages
as well as pressure equalization. The last stage level
is controlled by manipulating the blow-down flow,
which is the ultimate discharge of concentrated brine
to the sea.

A few stages are directly connected to the vacuum
line for removing noncondensable gases and air leaks,
while the others are cascaded for the same purpose.

The distillate similarly flows from stage to stage in
the distillate trough and leaves from the final stage as
the product, where its level in the trough is
controlled.

The MSF plant works as part of a dual-purpose plant,
utilizing low-pressure steam exhaust from the turbine
as the heat source. Its efficiency mainly depends upon
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Fig. 2. Cross section of the chamber of a flash
evaporator.

the “flash range”, which is the difference between the
TBT and the discharge temperature. The efficiency is
measured in terms of a “Performance Ratio” (PR),
which is approximately equal to Kg of product per
Kg of steam condensed in the brine heater.

1.2 MSF desalination plant control systems.

Several closed-loop control systems are typical of a
modern MSFDP (Fig. 3). The controlled systems are
as follows (Al-Gobaisi et al., 1991, 1993; Al-Gobaisi,
1995):

Brine heater section

1. Top brine temperature

2. Temperature of low-pressure steam

3. Pressure of LP steam

4. Level of brine heater condensate

5. Conductivity of brine heater condensate.

Condenser section (recirculation and make up flow)

6. Flowrate of brine recirculation

7. Make-up flowrate

8. pH-value of recirculating brine feed

9. Antiscale dosing (or antiscale/make-up ratio)

10. Sodium sulphite injection into brine recirculation
stream.

Evaporator section

11. Brine level in the last stage

12. Distillate level in the last stage

13. Flowrate of flow down

14. Conductivity of distillate

15. Chloride injection into distillate

16. pH-value of output distillate (lime/caustic soda
injection into distillate).

Cooling section

17. Flow of seawater to heat reject section

18. Inlet temperature of cooling water

19. Minimum flow of seawater.

Ejector and venting section

20. Level of condensate in ejector

21. Conductivity of ejector condensate

22. Vacuum pressure of the last stage of the evaporator.
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Fig. 3. MSF desalination process.
1.3 Modelling and simulation

Modelling refers to formulating a set of equations
that mathematically describe any industrial process
under consideration (Barba et al., 1973). In the
simulation phase, the formulated model is solved
using a suitable solution procedure, as well as
entering the values of input process parameters.
Modelling and simulation in the process industry
may have different goals, such as improving and
optimizing designs, developing better insight into the
working of the process, and ultimately leading to the
optimal operation and control of the process.

The following are the salient features of modelling
and simulation carried out on an 18-stage MSFDP
(Husain, et al., 1993). The brine heater is divided into
10 sections and each flash stage is considered as one
lump. The various subsystems are described by
appropriate mass and energy balance equations. The
interstage orifices are described by the related
hydraulic models. The control valves, and other
subsystems and components, have been modelled
similarly. The design parameters of these, as in the
actual plant given by plant designers, are inserted in
a flowsheet simulator. Table 1 shows the result of
steady-state simulation with the given operating
conditions. The result shows the temperatures of the
brine, distillate and cooling tubes in the 18 flash
stages. Table 2 compares summer temperature
profiles in the flash chambers, by simulation, with
those obtained by actual measurement on the plant.
The good agreement between the temperature
profiles of the model and the actual plant should be
viewed only as a partial success in model validation.

1.4 Dynamic simulation and model verification
The model of the MSF plant is simulated under the

following conditions of dynamic run with all loops
closed for comparison with the plant test response.

The model response is shown in Fig. 4, together with
the actual plant response to a TBT setpoint change as
indicated.

Table 1 Steady-state performance of the MSF plant

Operating conditions:

Steam Flow 165.733 [t/hr]
Reject Flow 6297.182 ft/hr]
Recycle Flow 14419.995 [t/hr]
Make Up Flow 6142.800 [t/hr]
Blowdown Flow 4919.913 [t/hr]
Top Brine Temperature 95.000 [C]
Product Flow 1219.131 [t/hr]
Seawater Flow 12439.982 [t/hr]
Performance Ratio 7.312 [kg/540 kcal]
Sta- TF_IN D_OUT TD OUT B OUT TB_OUT
ges
1 85102 1323 90.640 238977 91.712
2 81.897 2.628 87.432  237.666  88.502
3 78702 3915 84.242 236377 85313
4 75524 5.183 81.056 235.107 82.137
5 72360 6.432 77.894 233.856 78.979
6 69214 7.662 74.744 232625 75.839
7 66.087 8.873 71.615 231412 72.716
8 62981 10.063 68.502  230.220 69.616
9 59900 11.234 65412 229.048 66.541
10 56.845 12383 62.344 227897 63.491
11 53.822 13.509 59.296 226.769  60.475
12 50.837 14.612 56.279 225666 57.497
13 47.893 15689  53.296 224.587 54.560
14 44994 16.740 50.348 223535 51.670
15 42134 17769 47452 222505 48.820
16 40.651 18.554 45282 221.719  46.625
17 38.039 19.363 42908 220.908 44.348
18 35000 20319 40.751 81.999 42.134

(TF_IN, TD_OUT and TB_OUT represent the
temperature profile in the cooling brine, distillate and
brine chamber respectively. D_OUT is the distillate
output and B_OUT the flow in a brine chamber).
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Table 2 Comparison of Summer Temperature
Observed (Obs) in Steady-State
Simulated  Observed
Make up flow 5520 5516 [t/hr]
Blowdown flow 4383 4376 [t/hr]
Product flow 1133 1140 [t/hr]
Reject flow 8988 8983 [t/hr]

Top Brine Temperature ~ 90°C 90° [C]
Performance Ratio 7.20 7.02[kg/540 cal]

Flash Brine Distillate Cooling Tube
Stage §9) &9 o)

No. Sim  Obs Sim Obs Sim  Obs
8695 87.03 8588 8593 80.71 80.70
8397 8411 8290 83.03 7773 77.79
81.00 81.20 7993 80.12 7476 74.89
78.06 7823 7697 77.15 7181 7193
7513 7528 74.04 7418 68.88 68.98
7222 7235 71.12 7124 6596 66.06
6932 69.44 6821 6832 63.06 63.16
66.45 6656 6533 6541 60.18 60.28
63.60 63.71 6246 6254 5733 5743
60.78 60.89 59.62 59.67 5450 54.62
5798 58.09 56.79 5687 5170 51.82
5523 5533 5399 5406 4894 49.07
5251 52,62 51.23 5129 4621 46.35
49.83 4995 4850 48.56 4353 43.69
4720 4733 4581 4588 40.88f 41.07
45.03 45.16 43.61 43.68 3929 3924
4291 43.02 4144 4153 3721 37.13
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Fig. 4. Model and actual plant response to a TBT
setpoint change.

The model is acceptable in view of its satisfactory
agreement in dynamic behaviour with the actual
plant, for further considerations such as analysis and
control-system design.

1.5 Model linearization

A process is generally described by a set of nonlinear
ordinary differential and algebraic equations of the
form:

0 = f [, u()] )

@) =g[x@), u®)] @

where

x(0) =[x, x® PRO) )

yO=p.o y.0 70 @

uO=[u ) w@ .. vOf ©
and fand g are n and m vector valued functions of
the state x(z) and the inputs (). Equations (1) and
(2) are known as the state and output equations
respectively.

Consider a steady-state operating condition X, U
and le.t the process be perturbed by small signals x (¢)
and u (1) such that

x(f) = F+x ()
e (6)
ul®) = u+u ().
Equation (1) is linearized to appear in the form
() = Ax'()+Bu'(®) @)
where
9/, 2/,
0 x, Ox,
4 - . . . ®)
of, of,
| 0x, " ox, Jez
and
of  Of]
du, = du,
B - . . . ©)
af,  of,
| Ou, Ou, |«
Similarly, Equation (2) is linearized into the form
y' (@) = Cx'(t)+Du' (t) (10)
where
(08 0a]
ox, = Ox,
Cc = ’ ’ ’ (11)
2g.  Og,
Ox, Ox, |rz

and
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o8, s
du, Ou,
D = ' ' ' 12)
g, 02
| Ou, Ou, |rs

For notational simplicity, Eqs (7) and (10) are written
without the asterisk as

Ax + Bu (13)

®.
il

y = Cx+Du. (14)

These are the linearized state-space equations about
(x,u). Control-system design is based on these
equations. The linear model and the related controller
are valid in the close neighbourhood of the operating
point x,% .

1.6 Linearized model of an MSF plant

The model of the present MSF plant is set up in a
SPEEDUP  flow-sheet  simulator.  Operating
conditions i.e. TBT - 95°C, and Recycle Flow of
14420 t/hr have been chosen and the model is
linearized at this condition using a dynamic run and
invoking the control design interface (CDI) of
SPEEDUP with the following 6 inputs and 6 outputs:

Manipulated variables (inputs)

u; :  Culvert controller output

u, :  Makeup controller output

Uz : Brine recycle controller output

u, : Seawater recirculation controller output
Us 1 Reject controller output

ug : Steam controller output
Controlled variables (outputs)

Vi :  Top brine temperature

¥, :  Culvert flow

V3 :  F18.Flow (seawater flow to reject section)
V4 . F18.Recycle flow (brine recycle)

Vs :  Seawater recirculation flow (temperature)
Vs :  Makeup flow.

CDI generates the matrices A,B,C and D of the state
space and computes the steady-state gain matrix

G(0).

The resulting linearized model has 155 state
variables (7 per stage, the rest from the brine heater
and integrals of controller errors).

From the linear state-space description of a multi-
input-multi-output (MIMO) process in Eqs (13) and
(14), the transfer function matrix between the inputs
(manipulated variables) and the outputs (controlled
variables) is given as

G(s) = C(sI-A)"'B+D. (15)

The steady-state gain matrix or the d.c. gain matrix
for non-integrating processes can be computed at s=0
in the above as

G(0) = -CA4'B. (16)

In the case of integrating processes, i.e., those having
poles at the origin of the s-plane (usually due to
level-control systems), A" does not exist. Such
situations will not be considered here.

The following is the d.c. gain matrix for a particular
point of operation:

0000 -2188 -82.032 0106 -2801 54.002
6170 176243 0.0000 0000 183301 0.000
0000 176243 00000 9670 183301 0.000
0000 00000 541002 0000 00000 0.000
0000 00000 00000 3497 00000 0.000
0.000 176243 00000 0.000 0.0000 0.000

Gys1442(0) =

Figure 5 shows the Bode diagrams of G,¢, in six
different operating conditions, the most important of
all elements in G(s). Cases 1-3 are TBT-95°C, 100°C,
105°C respectively, keeping the brine recycle flow
fixed at 14420 t/hr, and Cases 4-6 correspond to a
brine recycle flow of 11500 t/hr, 12500 t/hr, 13500
t/hr with TBT 105°C fixed respectively

Bode Plot (U6 -> y1)
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2. CONTROL STRUCTURE, OPTIMAL PID
TUNING BASED ON OPTIMAL FIRST ORDER
PLUS DEAD TIME (FODT) APPROXIMATION

In this section the linearized model of the plant is
considered for six inputs and six outputs. The
transfer function matrix of the resulting model is
subjected to interaction analysis by the well known
relative gain array (RGA) method and an appropriate
control structure has been established. The design of
an optimal PID controller for one of the most
important loops, namely the top brine temperature
(TBT) loop is considered in detail. The model is then
optimally approximated to the standard first-order
plus dead time (FODT) form.

2.1 Control structure.

The relative gain array A is a square matrix (for an
equal number of manipulated and controller
variables) whose columns refer to the manipulated
variables and the rows to the controlled variables.
That is

A'll A'12 A'ln
21 }"22 A A'er
A =
_k", A, . 7»,",_

Some important properties of A are:

a) DA, =1,foralli

i=i
b) 2, is dimensionless.

From the d.c. gain matrix, A can be computed by
using the relation

A=G(0)*[G(o)T
where * denotes element by element multiplication.
The manipulated and the controlled variables are so
paired that the relative gains A, are as close to unity
as possible. That is, pair

(Controlled variable); with (manipulated variable);

if A; is closest to 1. In all the six cases here

(000001'
100000
000010

A =
001000
000100
0100 0 0

clearly suggesting that the pairings are as follows
(W—>y2), (WYe), (Us—Y4), (UsYs), (us—ys) and
(us—y1)-

RGA analysis should also take into account the
Niederlinski test for stability and is better done with
G(jo) over a range of ® around the Nyquist
crossover point.. Since the RGA analysis in all the
cases here indicates a very clear pairing strategy, no
further tests are needed.

2.2 Model approximation for P1D control design.

Reduced or approximated modelling of controlled
processes in simple forms such as first-order or
second-order with delay largely arises out of the
widely prevailing PID control practice with
possibilities for advanced features like optimization
and adaptability. The multitude of model-reduction
methods aimed at such simple forms, that are
available in the literature varies in the degree of
complexity and precision and ranges from crude
rules of thumb (Smith and Corripio, 1985) and
simple graphical schemes (Unbehauen and Rao,
1987) to optimization techniques (Seborg et al,
1989). Notwithstanding the effectiveness of the
chosen optimization scheme, whether systematic or
random-search-based, the need to account for
fractional values (in terms of the sampling time
interval) of delay in the desired model forms,
necessitates an examination of the manner in which
the objective function in the optimization method has
to be computed. This seemingly trivial aspect is over-
looked in most of the existing methods. An important
contribution here lies in the proper handling of a
possible fractional delay without rounding it into an
integral multiple of the sampling time.

2.3 Problem statement and method of approach.

The present problem of model reduction may be stated
as follows:

“Given the step response 4, () of a large linear time
invariant type zero asymptotically stable single-input/

single-output system, find the transfer function G.p,s)
of a reduced model G, such that

J = [ [po-0 {6 @)«

is minimised subject to

h () = G, (p,0)
p >0

for some specified i (parameters related to poles), and

p, =2 0
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where p is an #-vector of parameters of G,(p,s) and the
nth element of p corresponds to a time delay.”

In the computation of J, the common practice is to get
the Z-transform G,(q,z) of G,(p,s) and then use the
related difference equation to compute the step
response of the reduced model as

nkT) = {6 @2)}

where 7 is the sampling time. This procedure implies a
rounding error when p,/T is not an integer. In discretiz-
ing the continuous-time model, a zero order hold
assumption is also required. Of course, this assumption
is valid for the step input case. However, fractional
delay may sometimes render the discrete time transfer
function nonminimum phase. Furthermore, in general,
when no information is available regarding input
signals between the sampling instants, it is not possible
to relate it to a continuous-time version.

k=012,...,

In the present method, in view of the simplicity of the
forms chosen for G,(p,s) namely,

Ke®:

(1+rs)

K(+7,s)

(l+r,s)(l+‘rzs)

h{t) may be analytically provided, avoiding the
sampling process on the model. The continuous-time
function corresponding to the delay-free portion of the
chosen model can be shifted as desired and then
sampled, to get the response of the continuous-time
model with delay exactly at the required sampling
instants for comparison with the given system response

hof®).

a) G, (p,s)

or b) G, (p,s)

Next, minimization of J can be performed with the
help of any standard routine. If an unconstrained
minimization routine is available, the constraints can
be applied externally. General routines for the time
response of linear systems with a rigid vector of time
instants should be avoided, because it will imply the
same problem with fractional delays as mentioned
above.

The matrices A, B, C, and D with the usual notation
are obtained by linearization. The steady-state or dc
gain matrix is easily computed as G0) = - C A1 B
when the matrix A is nonsingular, ie., if the
integrating loops of the level control are closed and not
considered in the input-output description. The
minimal-realisation algorithm could remove only two
redundant states out of the total of 155. Standard
system-theoretic methods of model reduction could not
reduce this minimal model to a tractably simple lower-

order form, since the system states (153 in number) are
uniformly scattered, making the elimination procedure
unsuccessful even with heavy tolerances. However, the
step response of the large model could easily be com-
puted and stored for reference in the present reduction
procedure in which MATLAB was employed.

2.4 Application of the present method.

The matrices A, B, C and D are first used to compute
the dc gain matrix G(o). The step response of the
original plant model is obtained by using the routine
STEP of MATLAB at an adequate number of points in
time until the response settles in steady-state. Figure 9
shows the step response matrices under the chosen
conditions of operation (TBT, 95°C Brine Recyc
14420 t/hr). This data is used as reference. The
algorithm is initiated with a parameter vector in the
reduced model. The step response of the reduced
model for this parameter vector is computed and used
in the computation of the objective function J. The
MATLAB routine FMINS is employed with external
constraints to minimize J. Both the first- and second-
order forms with delay are fitted, and the results are
shown for G,s in Fig. 6. Even the first-order
approximation is quite impressive, but the second-
order approximation is excellent, indeed being able to
capture the overshoot in the original step response.

60 T ——————

50+
QO
[
g-m"
2
10 J
/
0 1 B i -
o} 10 20 0 40 50
Time in min
80 T v
Model. 5 e
s0l .
40} /
/
@ ,
g%
&
o0 /
/
10}/
0 R R A —
0 10 20 30 40 50

Time in min

Fig. 6. Reduction of Gys 14 4, (1,6) (With Recycle flow
14220 t/hr).
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The corresponding frequency response functions are
shown in Fig. 7 to give an idea of the approximation in
the frequency domain as well. In the frequency band
of interest, there is an excellent match both in
magnitude and phase. The time scale is in units of
minutes and the corresponding frequency is in radians
per minute.

Bode Pict
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Fig. 7. Gys 1442(1,6). An approximation of first- and
second-order in the frequency domain.

The transfer function matrices reduced to two levels of
approximation, namely first and second, are given in
Fig. 8 (aand b).

2.5 Optimal PID tuning with FODT approximated
plant models

The RGA analysis has shown that simple SISO
approach based control design is adequate for the
plant as is evident from Section 1.1. Well established
design methods (Zhuang and Atherton, 1993) can be
applied to design controllers based on the FODT
approximated model. The PID parameters can be
read from precalculated tables if the parameters of
the FODT model lie within the range of values for
which the ready-made tables are available. There are
situations in which the tables are not directly helpful,
due to the model parameter values falling outside the
limits. Moreover, the design is as good or as bad as
the approximation itself. The repetition will avoid
this obvious exercise and proceed further to avoid the
approximation itself. Therefore, the aim here is to
ensure optimal PID design without resorting to
FODT approximation, which will be considered in
Section 3.

3. PARAMETER SCHEDULING BASED ON
OPTIMAL PID TUNING WITH AN UNREDUCED
PLANT MODEL IN NONPARAMETRIC FORM

Optimal tuning of PID controllers based on integral
performance criteria is by now well established, but
the design relies on the standard first-order plus dead
time (FODT) approximation of the plant model
whose adequacy is not always guaranteed, and

u; U, U3 U, Us Ug
¥ 0 -2.1884¢™7 (1 + 28.81355) | -82.032¢0.03335(1 + 24.8785) 0 -28 635 | 540187
(1 +17.5225X1 + 17.5225) (1 +8.576sX1 + 8.460s) (I+1098s) | (1+5.765)
Y2 61.7 176.2433 0 0 183.3005 0
Vs 0 176.2433 0 96.7 183.3005 0
(1+0.1s)
\ 0 0 541.0021 0 0 0
vs 0 0 0 3.496 0 0
(+0.1s)
Y6 0 176.2433 0 0 0 0

Fig. 8 (a). Transfer function matrix with first-order plus delay approximation for G, 5 & G .

u L) Us Uy Us Ug
Yi 0 -2.1884¢7146765(1+ 28.8135s) | -82.032¢0-93335(1+ 24.8785) 0 -28¢655 | 54(1+20.325)
(1+17.5225)1+17.522s) (1+8.576s)1+8.460s) 1+10.98s | (1+18.3sX1+7.25)
Y2 61.7 176.2433 0 0 183.3005 0
¥ 0 176.2433 0 9.7 |183.3005 0
1+0.1s
Ya 0 0 541.0021 0 0 0
¥s 0 0 0 3.496 0 0
1+0.1s
Ye 0 176.2433 0 0 0 0

Fig. 8 (b). Transfer function matrix with second-order plus delay approximation for G, .
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Fig. 9. TBT 95°C.and recycle flow 14420 t/hr.

consequently the existing design methods can only
be termed as sub-optimal. In this section, the need to
approximate the plant model is removed and a truly
optimal design scheme using the unreduced plant
model in its nonparametric form is established. Based
on this design, a parameter scheduling scheme for
adaptive (optimal) control is proposed. The
optimality of performance of the control system is
maintained over a range of operating conditions
against the variation in the linearized plant behaviour
due to its -nonlinear character. The scheme is
illustrated with reference to the top brine temperature
(TBT) control of the desalination plant.

This section outlines two aspects:

a- A nonparametric model-based simulation facility
has been developed in the MATLAB framework.
This facility has been used in the design of
optimal PID controls without involving model
reduction or approximation.

b- A parameter-scheduling scheme for a range of
operating conditions has been developed to
handle the problem of control of a nonlinear
plant by an adaptive control strategy. The
method of approach is based on linear designs
corresponding to an adequate number of points
in the operating region, obtained by extensive
simulations and characterizing the resulting
controller parameter space as a mapping of the
space of plant operating conditions.

3.1 PID control system simulation and optimization
with unreduced plant model in nonparametric
Jorm.

Simulation of PID loops with finite-dimensional or
parametric models can lead to problems related to
dimensionality, numerical conditioning, computa-
tional accuracy and stability, etc. This work was in
fact motivated by the disappointing experience in the
course of simulation attempts in the case of the
present model in closed-loop with a PID controller.

The results of MATLAB SIMULINK PID control
using this full model (155-dimensional) was quite
time-consuming with no consistency. Some were
unstable (such as Euler, Runge-Kutta-3 and Runge-
Kutta-5).

A nonparametric model such as an impulse response
(IR) or step response (SR) model can be obtained
either from the original linearized model from
MATLAB or more commonly from plant tests. A
recursive algorithm, based on discretised convolution
using such a model, is proposed here. The burden
then is only due to the discretization of these
functions. Simple trapezoidal rules of integration
would render the algorithm robust to deal with
nonparametric models such as IR or SR which pose
few problems due to their inherently good behaviour
in the case of physical systems. Such an algorithm,
that treats the unreduced or unapproximated model as
a valuable means by which to design PID control, is
given below.
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Consider a SISO feedback system with PID
controller, as shown in Fig. 10.

r{t) + e(t) |Controller|u(t) | Process y(t)
C P

Fig. 10. A SISO feedback control system.

Let the process be described by the sequence
[pl, Das Pis Di» -+ ] of samples at intervals of
[O, T,2T, 3T, ] of the impulse response function
p(1). Define the matrix

B O

P
2
P
2 2
D b
P=T|% a
2 P 5
p p
T oA —2—‘
b, p
'2_ P.., P2 P, D, 71

T

and the vectors of samples of the loop signals

r = [rl [ A A r”]T
e = [el e, e € .. e,,]T
u = [ul u, u, u, - un]T
y = by oyvovo o0t
Then,
y = Pu
€ = r-y
u = Cy

where C is a matrix like P containing the controller
information.

3.2 PID Controller.

The output of the controller

1 p de
Hd+T —
[ dw]

u(t) = K, [e(t) + }‘—

In terms of the operational matrices (Rao 1983),

K, |+7—E—+1‘1D e.
L T

Therefore, for the PID controller
C = K, l+—7-E—+ED .
T, T
Based on the trapezoidal rule for integration and the
backward difference formula for derivative

05
05 05 O
E = T7/05 1 05
05 1 1 05
05 1 1 05
and
(-1 1 i
o1 O
D =1p 0 -11
0 0 0 -1 1]
respectively.

The above give
y = [t+pCc]' PCr
where I is an identity matrix.
The above algorithm can be written in the following

recursive form for implementation in the desired
simulation routine:

T
T
=g RKonlp
€& = h-J
u, = K.oae
T T T T T
(El’z v+ R c[z—z—“#Je. +EPchaer
W= B
& = h=»n
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T
-2— TZP Ll

j=2

[lT .-Z } ~ PK.ar,

B

"

Vi

e, = r -u

[e +2T(e +e )+ ,-Ze“

k ekl]

If the plant model data is available in the form of a
sequence of values of the step response function

{s,,i=12,...}, the sequence of impulse response
values required for the proposed algorithm can be
computed as

k=1,2,...}

{pk - sk+lT_sk’

Alternatively the sequence {p,} may be replaced
with {s} and the plant may be driven with the
sequence {Au,} where Au, ={u, -u_}/T.
With either of these modifications, the algorithm can
work with the sequence of a step response function.

The proposed non-parametric model simulation
method is referred to as NONPSIM.

3.3 Comparison with other methods with reference
to an example.

The results of the present method NONPSIM in the
case of the example from (Ogata, 1992) are the best,
even better than those due to LINSIM (algorithm in
SIMULINK) as is evident from Fig. 11. This
experience renders the proposed algorithm most
trustworthy.

1.4 — — . — —

1.2} /c\

WL ]

08}
= .

06k a -Lnnslm +
b -Nonpsim
¢ -Actual Solution

0.4}

o2} ]

o 4 S A —_ A F— "
1] 0.5 1 1.5 2 25 3 3.5 4 45

Time in min

Fig. 11. Step response (a- LINSIM, b- NONPSIM,
c- Actual response).

3.4 Optimal PID controller design for TBT control
in an 18-stage MSF desalination plant by
NONPSIM.

The IR function was inserted in the present
NONPSIM algorithm, and the closed-loop response
of the TBT loop with steam controller output was
obtained as shown in Fig. 12. Notice that the
response obtained through LINSIM routine from
SIMULINK is considerably time consuming and
slightly different from the results of NONPSIM. In
view of the experience gained with the simple
textbook example, it is assumed that the present
method is reliable, as the discretization interval has
been reduced to the limit below which the results are
not significantly improved further.

1.4 T ~r r T — T -

1.2} 1

sk im

Nonpsim

08t 4
06}
0.4}
0.2¢

0 —t i — Fa— A A 1

0 0.5 1 1.5 2 25 3 3.5 4

Fig. 12. Unit step response of the TBT control loop
in an MSF Plant.

Use of an integral performance criterion often results
in a better closed-loop response of a control system
than heuristic tuning methods, since the method takes
into account the whole transient response of the
system.

The results of optimization with reference to the four
well known (Zhuang and Atherton, 1991) integral
performance criteria, viz., ISE, IAE, ISTE and ITAE
are obtained by simulation using the nonparametric
model of the plant at a particular operating point.
Together with the presently created simulation
facility, the FMINS optimization routine from
MATLAB toolbox has been invoked. FMINS
searches for optimal PID controller parameters.

Several approaches to improve PID tuning above the
level of quality achieved by Ziegler-Nichols’ (Z-N)
method, have been reported in the literature (Ziegler
and Nichols, 1942). In (Astrom and Hagglund, 1984)
a tuning method based on phase margin was
reported. In (Astrom et al., 1993) a refinement of the
Z-N method was suggested. In the works of (Zhuang
and Atherton, 1991) the tuning methods are based on
optimization in the time domain. The Ziegler-
Nichols’ or those corresponding to the FODT form
can be used to initiate the algorithm.
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Table (3) gives the optimal PID controller parameters
for plant operation at the chosen point (TBT 95°C
Recy. flow 14420 thr). Figure 13 gives the
corresponding unit step response function of the
optimally controlled closed-loop system.

1.4 v r T —_ T ——

1.2}

ISTE
ISE
1Y NPT « -
j \/ %
20.3} fTAE
ool
& oe#F

0 L " A s i n

4] 0.5 1 1.5 2 25 3 3.5 4
Time in min

Fig. 13. Step response with optimal control settings.

3.5 Parameter-scheduling scheme for a range of
operating conditions

It is clear that a fixed PID controller cannot be
optimal if the operating point changes from the one
at which the optimal controller was designed in the
presence of nonlinear behaviour. In this section the
parameter variations in the linearised plant model
have been modelled over the operating region of
interest, and these are mapped into the parameter
space of the optimal PID controller.

3.6 The space of operating conditions of the plant.

Based on the studies and plant operating experience,
the most important of the plant operating conditions
to be enlisted in the space are:

T = Top brine temperature (TBT)

F = Brinerecycle flowrate

These two are fixed according to the requirements of
the plant production rate, simultaneously satisfying
other important conditions such as performance ratio.
There are limits set on these variables for practical
reasons. For example, an upper limit on T is set in
view of the plant’s vulnerability to scaling, and a
lower limit on the velocity of brine through the tubes
(thereby on F) to avoid sludge formation. Likewise, a
lower limit on T and a higher limit on the velocity of
brine in the tubes (thereby on F) are based on certain
other conditions. If the ranges of TBT and brine

recycle flow are denoted by [T, 7., |and [F,,,, F,..]
respectively, and a set of operating conditions
{7;, E, k=12,..,N } is considered in this region,
the optimal PID controller parameter vector
¢, = [KuT,] for k=12,...,N is obtained by the
simulation facility developed earlier.

3.7 Mapping of the plant operating condition space
into controller parameter space.

The two-dimensional space of plant operation
conditions is sampled as

{r., F,, k=12,..,N}.

At each of these points, the controller parameter
vectors are given by
T[]

¢ = [K Pk 7:::
In view of the not too wide variations in 7 and F, a
mapping function of the form

¢ = f(T,F)
is considered, or
¢=f(T,F)=a,+a,T+a, F+a,TF=K,
o= (T,F)=a,+a,T+a, F+a, TF=T
e;=f (T,F)=ay,+a; T+ayy F+ay TF=T;.

Using the relations established at the points 1,2,...,N,
the coefficients in the vector function f are deter-
mined by least-squares fitting to form the parameter-
scheduling law for a chosen optimization criterion.

A convenient form of this adaptive law is

a, a, 4; 4, T Kp
€=\a, a, a; a, =T |
F
ay, 4, Gy 4y TF T,

3.8 Parameter-scheduling law for the plant.

Table 3 gives the PID controller parameters obtained
by simulation on the unreduced plant. The Zhuang-
Atherton results which are based on FODT approxi-
mation of the plant are given in the last rows of this
table. The parameter-scheduling strategies obtained
by least-squares fitting of the results in the case of
the four optimizing criteria are given by the
following:

ISE:
- 1]
0 -00076 -00174 00002 ]|
c=10 00086 00392 -0.0003 |
|0 00076 0.0028 -0.00005
) LTF_
IAE:
- 1]
0 -0.0067 -00141 0.0002 | r
c=|0 00165 01102 -00010 || ~
0 00061 000299 -0.00005
y giua
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ITAE:

0 -0.0164 -0.0486 0.0006

e=[0 -00290 01549 -0.0013
0 00032 00045 -0.0001
ISTE:
0 -00035 0.0083 -0.00002
ce=10 002262 01608 -000151
0 00044 -0.00224 0.00001

TF

Case TBT Rec. Crite- Parameters of PID
Flow rion Controllers
°C thr K, T, T,

1 95 14420 ISE 0.7346  2.6647 0.2734
IAE  0.8007 5.3364 0.1814
ITAE 0.8246 4.7709 0.1781
ISTE 14234 6.5527 0.0809
Z-A 1.1244  7.3047 0.0409
2 100 14420 ISE 0.8120 2.5166 0.2521
IAE 09087 39736 0.1541
ITAE 1.5880 4.1986 0.0670
ISTE 0.8654 4.2280 0.1727
Z-A 12113 5.5913 0.0432
3 105 14420 ISE 1.2292 2.05 0.2219
TIAE 1.2162  3.0922 0.1226
ITAE 21436 0.2816 0.0715
ISTE 12893 3.0901 0.1506
Z-A 1.8782 5.2330 0.0371
4 105 11500 ISE 0.8108 1.8366 0.3492
IAE 08271 2.8149 0.2307
ITAE 14653 0.5759 0.1142
ISTE 0.8678 2.8599 0.2304
Z-A 1.1870 4.9570 0.0485
5 105 12500 ISE 0.8547 1.8909 0.2921
1AE 0.9050 2.7296 0.1918
ITAE 15071 0.5320 0.0929
ISTE 0.9002 2.7488 0.2038
Z-A 1.3930 4.7228 0.0439
6 105 13500 ISE 1.1174  1.8207 0.2874
IAE 1.1301 3.0086 0.1632
ITAE 2.0084 3.3760 0.0917
ISTE 1.1906 3.0579 0.1844
Z-A 1.4993  4.2107 0.0413

The PID controllers obtained here are truly optimal.
The tuning algorithm has been tried in several
different cases of plant models and has produced
good results.

4. CONCLUSIONS

The work presented in this paper is the culmination
of systematic efforts at advancing the present state of
control methodology in the desalination industry.
Figure 14 above shows the overall integrated scheme
that is realized here. The parameter scheduling law
derived here for a plant actually operating in Abu
Dhabi in the United Arab Emirates (where the

world’s largest MSF unit is expected to be
commissioned in 1996) is a step forward in the
application of advanced control.

The control strategy proposed here is designed to
handle the nonlinear character of the plant. The
present parameter-scheduling law is expected to be
of use in conjunction with a steady-state optimization
program at a higher level of hierarchy to provide
optimal operating conditions as setpoint values for 7
and F. These will automatically schedule the
controller parameters according to the law presented
here, to ensure dynamic optimization according to
the chosen integral performance criterion.

Model e
[ Steady State l
lObjectives Optimization (Open Loop) |
. (Closed Loop) _ T
Optimal |
Set points

% {Lmeanzallon

Optimal Controller
Design

Parameter Scheduling Law

Controller

Parameters — Controlled

Variables

Manipulated
Variables

i Feedback

S |

Fig. 14. The integrated adaptive control scheme.
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