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Abstract: This paper reports on the experience in the course of development of an adaptive 
control strategy for an 18-stage multistage flash (MSF) desalination plant presently operating in 
the Arabian Gulf region. The parameter-scheduling strategy maintains optimality of PID 
controllers over the operating region and is derived by simulation using a detailed 
phenomenological dynamic model. An optimal method of reducing the model into first-order- 
dead-time (FODT) form and a non-parametric model-based simulation facility are presented. 
Based on a relative gain array analysis, an appropriate control structure has been established. A 
number of integral performance criteria have been used, without resorting to the use of a reduced 
model, directly with the non-parametric simulation facility for optimal controller tuning. The 
controller parameters are given as a vector function of the top brine temperature (TBT) and the 
brine recycle flow rate, which are key variables for the TBT control. 

Keywords: Relative gain analysis, PID control, nonparametric models, simulation, adaptive 
control, parameter scheduling, nonlinear control, MSF desalination. 

1. PROCESS DESCRIPTION, LINEARISED 
DYNAMIC MODEL AND ITS FEATURES 

1.1 Multistage Flash Desah'nation Process (MSFDP). 

The multistage flash desalination process (MSFDP) 
is an evaporation-condensation process which is a 
major means of desalting seawater at present. It is 
almost similar to the process (sans flashing) of evapo- 
ration, cloud formation and precipitation that occurs 
in nature, giving rain. In view of  this similarity, it is a 
process in close harmony with nature. While being 
instrumental in serving one of the basic needs of 
humanity, it is considered as one which causes little 
environmental pollution or ecological imbalance. 

The MSF process basically consists of evaporation 
and condensation of water successively in a series of 
flash stages. These stages are maintained under 
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progressively reduced pressure. The brine entering a 
particular stage is superheated with respect to the 
conditions inside that stage, as a result of which 
flashing occurs. The vapour generated is then 
condensed on the outside surface of a tube bundle 
provided in the upper portion of the stage, and the 
distillate falls into the product trough placed below 
the tube bundle. The heat released due to 
condensation is recovered by the incoming brine 
flowing through the tubes as a coolant. Thus, the 
multistage process shown in Fig. 1 consists of three 
streams, namely, the first of flashing brine flowing 
from stage 1 to stage N, secondly of cooling brine 
flowing inside the tubes countercurrently and the last 
of distillate product flowing in the same direction as 
that of the flashing brine. 

The MSF evaporator comprises three main sections 
viz., the heat recovery sections, heat rejection 
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sections and a brine heater (Fig. 1). In the recovery 
stages 1 to NR, heat is recovered from the 
condensation of vapour by the recycle stream (i.e. 
cooling brine) flowing countercurrently inside the 
tubes from stage to stage. The recycled brine coming 
out from stage 1 is further heated to the maximum 
temperature in the process (known as "top brine 
temperature" or TBT) in the brine heater by low 
pressure steam, before it enters the first stage for 
flashing. Thus, the brine heater is the primary source 
of energy in the whole process. In the rejection 
stages, which are usually three in number, the fresh 
seawater flows as the coolant on the tube side, and 
part of the heat recovered in these stages is ejected to 
the sea. The remaining seawater after deaeration and 
the necessary chemical treatment enters as "makeup" 
into the last stage, N. 
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Fig. 2. Cross section of the chamber of a flash 
evaporator. 
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Fig. 1. Schematic flow diagram of MSF process 
plant. 

Each flash stage includes: 

* flash chamber in which the flashing occurs, 
• tube bundle on which the condensation takes 

place, 
• tray to receive the distillate, and 
• the vapour space in between. 

Figure 2 shows a cross-section of the chamber of a 
flash evaporator. Between the flash chamber and the 
vapour space are placed the demisters to remove 
entrained droplets from the vapour. Brine flows from 
one flash chamber to the next through a weir box or 
orifice which regulates the brine level in each stage 
in order to prevent blowthrough between the stages 
as well as pressure equalization. The last stage level 
is controlled by manipulating the blow-down flow, 
which is the ultimate discharge of concentrated brine 
to the sea. 

A few stages are directly connected to the vacuum 
line for removing noncondensable gases and air leaks, 
while the others are cascaded for the same purpose. 

The distillate similarly flows from stage to stage in 
the distillate trough and leaves from the final stage as 
the product, where its level in the trough is 
controlled. 

The MSF plant works as part of a dual-purpose plant, 
utilizing low-pressure steam exhaust from the turbine 
as the heat source. Its efficiency mainly depends upon 

the "flash range", which is the difference between the 
TBT and the discharge temperature. The efficiency is 
measured in terms of a "Performance Ratio" (PR), 
which is approximately equal to Kg of product per 
Kg of steam condensed in the brine heater. 

1.2 MSF desalination plant control systems. 

Several closed-loop control systems are typical of a 
modem MSFDP (Fig. 3). The controlled systems are 
as follows (AI-Gobaisi et al., 1991, 1993; AI-Gobaisi, 
1995): 

Brine heater section 
1. Top brine temperature 
2. Temperature of low-pressure steam 
3. Pressure of LP steam 
4. Level of brine heater condensate 
5. Conductivity of brine heater condensate. 
Condenser section (recirculation and make up flow) 
6. Flowrate of brine recirculation 
7. Make-up flowrate 
8. pH-value ofrecirculating brine feed 
9. Antiscale dosing (or antiscale/make-up ratio) 
10. Sodium sulphite injection into brine recirculation 

stream. 
Evaporator section 
11. Brine level in the last stage 
12. Distillate level in the last stage 
13. Flowrate of flow down 
14. Conductivity of distillate 
15. Chloride injection into distillate 
16. pH-value of output distillate (lime/caustic soda 

injection into distillate). 
Cooling section 
17. Flow of seawater to heat reject section 
18. Inlet temperature of cooling water 
19. Minimum flow of seawater. 
Ejector and venting section 
20. Level of condensate in ejector 
21. Conductivity of ejector condensate 
22. Vacuum pressure of the last stage of the evaporator. 
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Fig. 3. MSF desalination process. 

1.3 Modelling and simulation 

Modelling refers to formulating a set of equations 
that mathematically describe any industrial process 
under consideration (Barba et al., 1973). In the 
simulation phase, the formulated model is solved 
using a suitable solution procedure, as well as 
entering the values of  input process parameters. 
Modelling and simulation in the process industry 
may have different goals, such as improving and 
optimizing designs, developing better insight into the 
working of  the process, and ultimately leading to the 
optimal operation and control of  the process. 

The following are the salient features of modelling 
and simulation carried out on an 18-stage MSFDP 
(Husain, et al., 1993). The brine heater is divided into 
10 sections and each flash stage is considered as one 
lump. The various subsystems are described by 
appropriate mass and energy balance equations. The 
interstage orifices are described by the related 
hydraulic models. The control valves, and other 
subsystems and components, have been modelled 
similarly. The design parameters of  these, as in the 
actual plant given by plant designers, are inserted in 
a flowsheet simulator. Table 1 shows the result of 
steady-state simulation with the given operating 
conditions. The result shows the temperatures of the 
brine, distillate and cooling tubes in the 18 flash 
stages. Table 2 compares summer temperature 
profiles in the flash chambers, by simulation, with 
those obtained by actual measurement on the plant. 
The good agreement between the temperature 
profiles of  the model and the actual plant should be 
viewed only as a partial success in model validation. 

1.4 Dynamic simulation and model verification 

The model of the MSF plant is simulated under the 
following conditions of  dynamic run with all loops 
closed for comparison with the plant test response. 

The model response is shown in Fig. 4, together with 
the actual plant response to a TBT setpoint change as 
indicated. 

Table 1 Steady-state performance of the MSF plant 

Operating conditions: 
Steam Flow 165.733 [t/hr] 
Reject Flow 6297.182 [t/hr] 
Recycle Flow 14419.995 [t/hr] 
Make Up Flow 6142.800 [t/hr] 
Blowdown Flow 4919.913 [t/hr] 
Top Brine Temperature 95.000 [C] 
Product Flow 1219.131 [thar] 
Seawater Flow 12439.982 [t/hr] 
Performance Ratio 7.312 [kg/540 kcal] 

Sta- TF IN D OUT TD OUT B OUT TB OUT 
ges 

1 85.102 1 .323  90.640 238.977 91.712 
2 81.897 2.628 87.432 237.666 88.502 
3 78.702 3 . 9 1 5  84.242 236.377 85.313 
4 75.524 5 . 1 8 3  81.056 235.107 82.137 
5 72.360 6.432 77.894 233.856 78.979 
6 69.214 7.662 74.744 232.625 75.839 
7 66.087 8 . 8 7 3  71 .615  231.412 72.716 
8 62.981 10.063 68.502 230.220 69.616 
9 59.900 11.234 65.412 229.048 66.541 
10 56.845 12.383 62.344 227.897 63.491 
11 53.822 13.509 59.296 226.769 60.475 
12 50.837 14.612 56.279 225.666 57.497 
13 47.893 15.689 53..296 224.587 54.560 
14 44.994 16.740 50 .348  223.535 51.670 
15 42.134 17.769 47.452 222.505 48.820 
16 40.651 18.554 45.282 221.719 46.625 
17 38.039 19.363 42.908 220.908 44.348 
18 35.000 20.319 40.751 81.999 42.134 

(TF_IN, TD_OUT and TB_OUT represent the 
temperature profile in the cooling brine, distillate and 
brine chamber respectively. D_OUT is the distillate 
output and B_OUT the flow in a brine chamber). 
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Table 2 Comnarison of Summer TemPerature 
Profiles Results obtained from Simulated (Sim) and 

Observe~l (Obs) in Stqil~ly-State 

Simulated Observed 
Make up flow 5520 5516 [t/hr] 
Blowdown flow 4383 4376 [t/hr] 
Product flow 1133 1140 [t/hr] 
Reject flow 8988 8983 [t/hr] 
Top Brine Temperature 90°C 900 [C] 
Performance Ratio 7.20 7.02[kg/540 cal] 

Flash Brine Distillate Cooling Tube 
Stage (°C) (°C) (°C) 
No. Sim Obs Sim Obs Sim Obs 

1 86.95 87.03 85.88 85 .93  80.71 80.70 
2 83.97 84.11 82.90 83 .03  77 .73  77.79 
3 81.00 81.20 79.93 80.12 74.76 74.89 
4 78.06 78.23 76.97 77 .15  71.81 71.93 
5 75.13 75.28 74.04 74.18 68.88 68.98 
6 72.22 72.35 71.12 71.24 65.96 66.06 
7 69.32 69.44 68.21 68.32 63.06 63.16 
8 66.45 66.56 65.33 65 .41  60.18 60.28 
9 63.60 63.71 62.46 62.54 57.33 57.43 
10 60.78 60.89 59.62 59.67 54.50 54.62 
11 57.98 58.09 56.79 56.87 51.70 51.82 
12 55.23 55.33 53.99 54.06 48.94 49.07 
13 52.51 52.62 51.23 51.29 46.21 46.35 
14 49.83 49.95 48.50 48.56 43.53 43.69 
15 47.20 47.33 45.81 45.88 40.88 41.07 
16 45.03 45.16 43.61 43.68 39.29 ~ 39.24 
17 42.91 43.02 41.44 41 .53  37.21 37.13 
18 40.88 40.88 39.51 39.45 35.00 35.00 
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Fig. 4. Model and actual plant response to a TBT 
setpoint change. 

The model is acceptable in view of its satisfactory 
agreement in dynamic behaviour with the actual 
plant, for further considerations such as analysis and 
control-system design. 

1.5 Model linearization 

A process is generally described by a set of  nonlinear 
ordinary differential and algebraic equations of  the 
form: 

:~(t) = f Ix(t) ,  u(t)] (1) 

where 

y( t )=g[x( t ) ,  u(t)] 

x(t) =[x , ( t )  x2(t ) ... x ( t ) ]  r 

(2) 

(3) 

y(t)=[yt(t) Y2(t) ... y , ( t )~  (4) 

u(t)=[u,(t) u2(t ) ... u(t)]  r (5) 

and f and g are n and m vector valued functions of  
the state x(O and the inputs u(t). Equations (1) and 
(2) are known as the state and output equations 
respectively. 

Consider a steady-state operating condition x ,  u 
and let the process be perturbed by small signals x'(O 
and u° (t) such that 

x(t) = 2+x*(t) 
(6) 

u(t) = ~+u*(t). 

Equation (1) is linearized to appear in the form 

x'(t) = Ax'(t) + Bu'(t) (7) 

where 

A 

-of, 
0 x~ 

a Z  
Ox~ 

of, 
O x  

° . .  
Ox. u=~" 

(8) 

and 

B = 

of ,  oL 
. . .  

Ou~ Ou, 

o s. o s. 
. . .  

Ou, Ou, 
u = ~  

(9) 

Similarly, Equation (2) is linearized into the form 

y'(t) = Cx'(t)+ Du'(t) (lO) 

where 

and 

C = 

O g~ O g, 
. . °  

Ox, a x  

O'g~ Og. 

Ox~ Ox. 

(11) 
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a g, a g, - . . . - 
3 u, a ur 

D= . . . 

ag, .;. aim 
_ 8 Ul au, r=f 

-u=ii 

(12) 

For notational simplicity, Eqs (7) and (10) are written 
without the asterisk as 

i = Ax + Bu (13) 

y = Cx+Du. (14) 

These are the linearized state-space equations about 
(X, ii) . Control-system design is based on these 

equations. The linear model and the related controller 
are valid in the close neighbourhood of the operating 

- - 
point x, u . 

I. 6 Linearized model of an MSF plant 

The model of the present MSF plant is set up in a 
SPEEDUP flow-sheet simulator. Operating 

Figure 5 shows the Bode diagrams of G,,,, in six 

conditions i.e. TBT - 95°C and Recycle Flow of 
different operating conditions, the most important of 

14420 tir have been chosen and the model is 
all elements in G(s). Cases l-3 are TBT-95°C lOO”C, 

linearized at this condition using a dynamic run and 
105’C respectively, keeping the brine recycle flow 

invoking the control design interface (CDI) of 
fixed at 14420 t/hr, and Cases 4-6 correspond to a 

SPEEDUP with the following 6 inputs and 6 outputs: 
brine recycle flow of 11500 t/l-n, 12500 t/hr, 13500 
t/hr with TBT 105°C fixed respectively 

Manipulated variables (inputs) 

u1 : Culvert controller output 

u2 : Makeup controller output 

u3 : Brine recycle controller output 

u4 : Seawater recirculation controller output 

U5 : Reject controller output 

u6 : Steam controller output 
Controlled variables (outputs) 

YI : Top brine temperature 

Y2 : Culvert flow 

Y3 : Fl &Flow (seawater flow to reject section) 

Y4 : Fl KRecycle flow (brine recycle) 

Y5 : Seawater recirculation flow (temperature) 

Y6 : Makeup flow. 

CD1 generates the matrices A,B,C and D of the state 
space and computes the steady-state gain matrix 

G(0). 

The resulting linearized model has 155 state 
variables (7 per stage, the rest from the brine heater 
and integrals of controller errors). 

From the linear state-space description of a multi- 
input-multi-output (MIMO) process in Eqs (13) and 
(14), the transfer function matrix between the inputs 
(manipulated variables) and the outputs (controlled 
variables) is given as 

G(s) = C(sl- A)-* B + D . (15) 

The steady-state gain matrix or the d.c. gain matrix 
for non-integrating processes can be computed at s=O 
in the above as 

G(0) = -CA-‘B. (16) 

In the case of integrating processes, i.e., those having 
poles at the origin of the s-plane (usually due to 
level-control systems), A-’ does not exist. Such 
situations will not be considered here. 

The following is the d.c. gain matrix for a particular 
point of op be 

G 9ml.42 (0) = 

ration: 

0.000 -2.188 -82.032 0.106 -2.801 54.002 

61.70 176.243 0.0000 0.000 183.301 0.000 

0.000 176243 0.0000 96.70 183.301 0.000 

0.000 0.0000 541.002 0.000 0.0000 0.000 

0.000 0.0000 0.0000 3.497 0.0000 0.000 

0.000 176.243 0.0000 0.000 0.0000 0.000 

Bode Plot (us -a yl) 

-250 

3w 
0 

6 

Frequency (radhc) 66-1 - 
case(ls) 

Fig. 5. G,,,(s) (unreduced) Bode diagrams. 
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2. CONTROL STRUCTURE, OPTIMAL PID 
TUNING BASED ON OPTIMAL FIRST ORDER 
PLUS DEAD TIME (FODT) APPROXIMATION 

clearly suggesting that the pairings are as follows 
(ul--~y2), (u2---~y6), (u3---~y4), (u4---)ys), (us---~y3) and 
(U6---'>y 1). 

In this section the linearized model of the plant is 
considered for six inputs and six outputs. The 
transfer function matrix of the resulting model is 
subjected to interaction analysis by the well known 
relative gain array (RGA) method and an appropriate 
control structure has been established. The design of 
an optimal PID controller for one of the most 
important loops, namely the top brine temperature 
(TBT) loop is considered in detail. The model is then 
optimally approximated to the standard first-order 
plus dead time (FODT) form. 

2.1 Control structure. 

The relative gain array A is a square matrix (for an 
equal number of manipulated and controller 
variables) whose columns refer to the manipulated 
variables and the rows to the controlled variables. 
That is 

-Z.. Z,~2 ... ~ , -  

A = 

Some important properties of A are: 

a) £ X u = 1, for all i 
j=! 

b) ~u is dimensionless. 
From the d.c. gain matrix, A can be computed by 
using the relation 

RGA analysis should also take into account the 
Niederlinski test for stability and is better done with 
GOco) over a range of co around the Nyquist 
crossover point.. Since the RGA analysis in all the 
cases here indicates a very clear pairing strategy, no 
further tests are needed. 

2.2 Model approximation for PID control design. 

Reduced or approximated modelling of controlled 
processes in simple forms such as first-order or 
second-order with delay largely arises out of the 
widely prevailing PID control practice with 
possibilities for advanced features like optimization 
and adaptability. The multitude of model-reduction 
methods aimed at such simple forms, that are 
available in the literature varies in the degree of 
complexity and precision and ranges from crude 
rules of thumb (Smith and Corripio, 1985) and 
simple graphical schemes (Unbehauen and Rao, 
1987) to optimization techniques (Seborg et al, 
1989). Notwithstanding the effectiveness of the 
chosen optimization scheme, whether systematic or 
random-search-based, the need to account for 
fractional values (in terms of the sampling time 
interval) of delay in the desired model forms, 
necessitates an examination of the manner in which 
the objective function in the optimization method has 
to be computed. This seemingly trivial aspect is over- 
looked in most of the existing methods. An important 
contribution here lies in the proper handling of a 
possible fractional delay without rounding it into an 
integral multiple of the sampling time. 

2.3 Problem statement and method of approach. 

A = G(o) * [G(o)-' ]r 

where * denotes element by element multiplication. 

The manipulated and the controlled variables are so 
paired that the relative gains ~.g are as close to unity 
as possible. That is, pair 

(Controlled variable)i with (manipulated variable)j 

if ~'o is closest to 1. In all the six cases here 

-0 0 0 

1 0 0 

0 0 0 
A = 

0 0 1 

0 0 0 

0 1 0 

0 0 1" 

0 0 0 

0 1 0 

0 0 0 

1 0 0 

0 0 0 

The present problem of model reduction may be stated 
as follows: 

"Given the step response ho (t) of a large linear time 
invariant type zero asymptotically stable single-input/ 
single-output system, fred the transfer function G/p,s) 
of a reduced model Gr such that 

J = ~ [h,,(t)-g-~ {s-tG, (p,s)} 1 dt 

is minimised subject to 

ho(OO) = G,(p ,o)  

p~ > 0 

for some specified i (parameters related to poles), and 

p. >_- 0 
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where p is an n-vector of parameters of G,(p,s) and the 
nth element of p corresponds to a time delay." 

In the computation of J, the common practice is to get 
the Z-transform G/q,z) of G/p,s) and then use the 
related difference equation to compute the step 
response of the reduced model as 

h,(kr) = z ' ( < ( q  )}, ,z k = 0,1,2 . . . . .  

where T is the sampling time. This procedure implies a 
rounding error when piT  is not an integer. In discretiz- 
ing the continuous-time model, a zero order hold 
assumption is also required. Of course, this assumption 
is valid for the step input case. However, fractional 
delay may sometimes render the discrete time transfer 
function nonminimum phase. Furthermore, in general, 
when no information is available regarding input 
signals between the sampling instants, it is not possible 
to relate it to a continuous-time version. 

In the present method, in view of the simplicity of the 
forms chosen for G/p,s) namely, 

K e - ~  

a) Or ( " , 0  = 
(1 +X s) 

or b> O, (P,O 
K ( I +  xo s) 

h/t) may be analytically provided, avoiding the 
sampling process on the model. The continuous-time 
function corresponding to the delay-free portion of the 
chosen model can be shifted as desired and then 
sampled, to get the response of the continuous-time 
model with delay exactly at the required sampling 
instants for comparison with the given system response 
ho(t). 

Next, minimization of J can be performed with the 
help of any standard routine. If an unconstrained 
minimization routine is available, the constraints can 
be applied externally. General routines for the time 
response of linear systems with a rigid vector of time 
instants should be avoided, because it will imply the 
same problem with fractional delays as mentioned 
above. 

The matrices A, B, C, and D with the usual notation 
are obtained by linearization. The steady-state or dc 
gain matrix is easily computed as G(0) = - C A "1 B 
when the matrix A is nonsingular, i.e., if the 
integrating loops of the level control are closed and not 
considered in the input-output description. The 
minimal-realisation algorithm could remove only two 
redundant states out of the total of 155. Standard 
system-theoretic methods of model reduction could not 
reduce this minimal model to a tractably simple lower- 

order form, since the system states (153 in number) are 
uniformly scattered, making the elimination procedure 
unsuccessful even with heavy tolerances. However, the 
step response of the large model could easily be com- 
puted and stored for reference in the present reduction 
procedure in which MATLAB was employed. 

2.4 Application of the present method 

The matrices A, B, C and D are first used to compute 
the dc gain matrix G(o). The step response of the 
original plant model is obtained by using the routine 
STEP of MATLAB at an adequate number of points in 
time until the response settles in steady-state. Figure 9 
shows the step response matrices under the chosen 
conditions of operation (TBT, 95°C Brine Recyc 
14420 t/hr). This data is used as reference. The 
algorithm is initiated with a parameter vector in the 
reduced model. The step response of the reduced 
model for this parameter vector is computed and used 
in the computation of the objective function J. The 
MATLAB routine FMINS is employed with external 
constraints to minimize J. Both the first- and second- 
order forms with delay are fitted, and the results are 
shown for GI, 6 in Fig. 6. Even the first-order 
approximation is quite impressive, but the second- 
order approximation is excellent, indeed being able to 
capture the overshoot in the original step response. 

6O 

5O 

4O 

$ 
2O 

10 

0 

~.~Z:2"S:~-~i.:~::.::.::.~: ............................... 

10 4O 5O 
"lime in rain 

60 

20 i ! ,o/ 
0 

0 

Mod~-. 

/ 
/ 

2ncl On:let 

"time Jn rain 

Fig. 6. Reduction o f  G95,14.42 (1,6) (with Recycle flow 
14220 t/hr). 
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The corresponding frequency response functions are 
shown in Fig. 7 to give an idea of the approximation in 
the frequency domain as well. In the frequency band 
of interest, there is an excellent match both in 
magnitude and phase. The time scale is in units of 
minutes and the corresponding frequency is in radians 
per minute. 

I~de Rot 

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 
L.og(racpe~) 

-100 ~ld ~ " 

. 3 0 0 /  i i i i i i i i 

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 
L.ogO~px~) 

Fig. 7. G95,14.42(1,6). An approximation of first- and 
second-order in the frequency domain. 

The transfer function matrices reduced to two levels of 
approximation, namely first and second, are given in 
Fig. 8 (a and b). 

2.5 Optimal PID tuning with FODT approximated 
plant models 

The RGA analysis has shown that simple SISO 
approach based control design is adequate for the 
plant as is evident from Section 1.1. Well established 
design methods (Zhuang and Atherton, 1993) can be 
applied to design controllers based on the FODT 
approximated model. The PID parameters can be 
read from precalculated tables if the parameters of 
the FODT model lie within the range of values for 
which the ready-made tables are available. There are 
situations in which the tables are not directly helpful, 
due to the model parameter values falling outside the 
limits. Moreover, the design is as good or as bad as 
the approximation itself. The repetition will avoid 
this obvious exercise and proceed further to avoid the 
approximation itself. Therefore, the aim here is to 
ensure optimal PID design without resorting to 
FODT approximation, which will be considered in 
Section 3. 

3. PARAMETER SCHEDULING BASED ON 
OPTIMAL PID TUNING WITH AN UNREDUCED 

PLANT MODEL IN NONPARAMETRIC FORM 

Optimal tuning of PID controllers based on integral 
performance criteria is by now well established, but 
the design relies on the standard first-order plus dead 
time (FODT) approximation of the plant model 
whose adequacy is not always guaranteed, and 

U 1 u 2 

Yl 0 -2.1884e"'67~(1 + 28.8135s) 

Y2 61.7 
Y3 0 

Y4 0 
Y5 0 

Y6 0 

U3 U4 U5 U6 

0 

(1 + 17. 522sX1 + 17. 522s) 

-82.032 e'O'O333S(l + 24.878s) 
(1 + 8.576sX1 + 8.460s) 

176.2433 0 
176.2433 0 

0 541.0021 
0 0 

176.2433 0 

0 
96.7 

Q + O.ls) 

0 
3.496 

(l+O.ls) 

0 

-2.8 e " ~  54 e "~18~ 
Q + lO.98s) ~ )  

183.3005 0 
183.3005 0 

0 0 
0 0 

0 0 

Fig. 8 (a). Transfer function matrix with first-order plus delay approximation for G1, 5 & GI, 6. 

u I u 2 u 3 u4 u5 116 

Yl 

Y2 

Y3 

Y4 

Y5 

y6 

-2.1884e'l4676s(1 + 28.8135s) 
(l+17.522sXl+17.522s) 

-82.032e -0.°333s(1 + 24.878s) 
q + 8.576sXl + 8. 46os ) 

-2. 8 e'6" 5s 
1+ 10.98s 

54q+ 20.32s) 
(l +18.3sXl + 7.2s) 

61.7 176.2433 0 0 183.3005 0 
0 176.2433 0 183.3005 0 96. 7 

1 + 0.Is 
0 0 541.0021 0 0 0 
0 0 0 0 0 3.496 

l+O.ls 
0 176.2433 0 0 0 0 

Fig. 8 (b). Transfer function matrix with second-order plus delay approximation for GL6. 
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Fig. 9. TBT 95°C.and recycle flow 14420 t/hr. 

consequently the existing design methods can only 
be termed as sub-optimal. In this section, the need to 
approximate the plant model is removed and a truly 
optimal design scheme using the unreduced plant 
model in its nonparametric form is established. Based 
on this design, a parameter scheduling scheme for 
adaptive (optimal) control is proposed. The 
optimality of performance of the control system is 
maintained over a range of operating conditions 
against the variation in the linearized plant behaviour 
due to its nonlinear character. The scheme is 
illustrated with reference to the top brine temperature 
(TBT) control of the desalination plant. 

This section outlines two aspects: 

a -  A nonparametric model-based simulation facility 
has been developed in the MATLAB framework. 
This facility has been used in the design of 
optimal PID controls without involving model 
reduction or approximation. 

b- A parameter-scheduling scheme for a range of 
operating conditions has been developed to 
handle the problem of control of a nonlinear 
plant by an adaptive control slrategy. The 
method of approach is based on linear designs 
corresponding to an adequate number of points 
in the operating region, obtained by extensive 
simulations and characterizing the resulting 
controller parameter space as a mapping of the 
space of plant operating conditions. 

3.1 PID control system simulation and optimization 
with unreduced plant model in nonparametric 
form. 

Simulation of PID loops with finite-dimensional or 
parametric models can lead to problems related to 
dimensionality, numerical conditioning, computa- 
tional accuracy and stability, etc. This work was in 
fact motivated by the disappointing experience in the 
course of simulation attempts in the case of the 
present model in closed-loop with a PID controller. 

The results of MATLAB SIMULINK PID control 
using this full model (155-dimensional) was quite 
time-consuming with no consistency. Some were 
unstable (such as Euler, Runge-Kutta-3 and Runge- 
Kutta-5). 

A nonparametric model such as an impulse response 
(IR) or step response (SR) model can be obtained 
either from the original, linearized model from 
MATLAB or more commonly from plant tests. A 
re, cursive algorithm, based on discretised convolution 
using such a model, is proposed here. The burden 
then is only due to the discretization of these 
functions. Simple trapezoidal rules of integration 
would render the algorithm robust to deal with 
nonparametric models such as IR or SR which pose 
few problems due to their inherently good behaviour 
in the case of physical systems. Such an algorithm, 
that treats the unreduced or unapproximated model as 
a valuable means by which to design PID control, is 
given below. 
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Consider a SISO feedback 
controller, as shown in Fig. 10. 

system with PID 

ProceSSp ~ )  

Therefore, for the PID controller 

Based on the trapezoidal rule for integration and the 
backward difference formula for derivative 

Fig. 10. A SISO feedback control system. 

Let the process be described by the sequence 

[P~, P2, P3, P, ... .  ] of samples at intervals of 

[O, T, 2T, 3T .. . .  ] of the impulse response function 

p(t ) .  Define the matrix 

P = T  

"P-L 
2 

P~ P' O 
2 2 
P~ P, 
T T 
P, 
T P3 P2 

P, 
~ -  P.-I P.-~ 

P_..L 
2 

Pl 
P.-~ P2 "~- 

E = 

and 

D = 

respectively. 

"0.5 

0.5 

T 0.5 

0.5 
. ° °  

0.5 1 

0.5 

1 05 

1 1 05 

, , .  

- - 1  1 

0 -1 1 

0 0 -1 

0 0 0 

1 

° . ,  . ° .  

O 

O 

-1 

0.5 

and the vectors of samples of the loop signals The above give 

Then, 

r = [rl r2 r3 r4 ... r,] r 

e = [e, e2 e3 e, ... e,]  T 

u = [u~ u 2 u3 u ,  . . .  u . ]  T 

y : [yt y2 y3 y4 "'" y , ]  r .  

y = P u  

e = r - y  

u = C y  

where C is a matrix like P containing the controller 
information. 

3.2 P I D  Contro l l e r .  

y = [ I + P C ]  ~ PC r 

where I is an identity matrix. 

The above algorithm can be written in the following 
recursive form for implementation in the desired 
simulation routine: 

a =  I + 2 T +  , 13= 1+ T 2 P~ Kc ct 

y,  = -~ t], K~ ~ r, 

e t = r~ - y~ 

u~ = K c o~ e I 

The output of the controller 

u(t)  = K c e ( t )  + -~ e( t )  dt + T~ - ~  Y 2  --'-- 

2 L2T, r J 

In terms of  the operational matrices (Rao 1983), e2 = r2 - Y2 

E ] u~ = K c e, + -~-~ ~ , --~ (e2 - e, ) 

and for k = 3,4 ...... 
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= 

T k-I T 
[ -  e. u, + r y  e. . , . ,  +-e, 
J 2 j=~ - 2 

|FT ] r ||~-e,-Te,_,+-~2..,e,_,l+g e,K~r, 
lL i ~ *=3 j 

e k = rk - u k 

T e +ek)+ T " T'l(e -e,_,)] 

If the plant model data is available in the form of a 
sequence of values of the step response function 

{s,,i= 1,2 .... },  the sequence of impulse response 

values required for the proposed algorithm can be 
computed as 

{Pk s,+~ -s, k=l,2,... } 
T ' 

Alternatively the sequence {p, } may be replaced 

with {s,} and the plant may be driven with the 

sequence {Au,} where A u , = { u , - u , _ , I / T .  
With either of these modifications, the algorithm can 
work with the sequence of a step response function. 
The proposed non-parametric model simulation 
method is referred to as NONPSIM. 

3.3 Comparison with other methods with reference 
to an example. 

The results of the present method NONPSIM in the 
case of the example from (Ogata, 1992) are the best, 
even better than those due to LINSIM (algorithm in 
SIMULINK) as is evident from Fig. 11. This 
experience renders the proposed algorithm most 
trustworthy. 

1.4 

1,2 

1 

0.8 

0.6 

0 . 4  

0.2 

0 

a -Linsim 
b -Nonpaim 
c -Actual Solution 

0 5  1 1.5 2 2 5  3 3 5  4 4.5 
"l~me in rain 

Fig. 11. Step response (a- LINSIM, b- NONPSIM, 
c- Actual response). 

3.4 Optimal PID controller design for TBT control 
in an l &stage MSF desalination plant by 
NONPSIM. 

The IR function was inserted in the present 
NONPSIM algorithm, and the closed-loop response 
of the TBT loop with steam controller output was 
obtained as shown in Fig. 12. Notice that the 
response obtained through LINSIM routine from 
SIMULINK is considerably time consuming and 
slightly different from the results of NONPSIM. In 
view of the experience gained with the simple 
textbook example, it is assumed that the present 
method is reliable, as the discretization interval has 
been reduced to the limit below which the results are 
not significantly improved further. 

1.4 

0.8 

0.6 

0.4 

0.2 

0 
0 0.5 1 1.5 2 2.5 3 3.5 4 

Fig. 12. Unit step response of the TBT control loop 
in an MSF Plant. 

Use of an integral performance criterion often results 
in a better closed-loop response of a control system 
than heuristic tuning methods, since the method takes 
into account the whole transient response of the 
system. 

The results of optimization with reference to the four 
well known (Zhuang and Atherton, 1991) integral 
performance criteria, viz., ISE, IAE, ISTE and ITAE 
are obtained by simulation using the nonparametric 
model of the plant at a particular operating point. 
Together with the presently created simulation 
facility, the FMINS optimization routine from 
MATLAB toolbox has been invoked. FMINS 
searches for optimal PID controller parameters. 

Several approaches to improve PID tuning above the 
level of quality achieved by Ziegler-Nichols' (Z-N) 
method, have been reported in the literature (Ziegler 
and Nichols, 1942). In (Astrom and Hagglund, 1984) 
a tuning method based on phase margin was 
reported. In (Astrom et al., 1993) a refinement of the 
Z-N method was suggested. In the works of (Zhuang 
and Atherton, 1991) the tuning methods are based on 
optimization in the time domain. The Ziegler- 
Nichols' or those corresponding to the FODT form 
can be used to initiate the algorithm. 
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Table (3) gives the optimal PID controller parameters 
for plant operation at the chosen point (TBT 95°C 
Recy. flow 14420 t/hr). Figure 13 gives the 
corresponding unit step response function of the 
optimally controlled closed-loop system. 

3. 7 Mapping o f  the plant operating condition space 
into controller parameter space. 

The two-dimensional space of plant operation 
conditions is sampled as 

1.2 

I I \ ,sE 

0 
0 0.5 1 1.5 2 2.5 3 3.5 4 

Time in min 

Fig. 13. Step response with optimal control settings. 

3.5 Parameter-scheduling scheme fo r  a range o f  
operating conditions 

It is clear that a fixed PID controller cannot be 
optimal if the operating point changes from the one 
at which the optimal controller was designed in the 
presence of nonlinear behaviour. In this section the 
parameter variations in the linearised plant model 
have been modelled over the operating region of 
interest, and these are mapped into the parameter 
space of  the optimal PID controller. 

3.6 The space o f  operating conditions o f  the plant. 

Based on the studies and plant operating experience, 
the most important of the plant operating conditions 
to be enlisted in the space are: 
T = Top brine temperature (TBT) 
F = Brine recycle flowrate 

These two are fixed according to the requirements of 
the plant production rate, simultaneously satisfying 
other important conditions such as performance ratio. 
There are limits set on these variables for practical 
reasons. For example, an upper limit on T is set in 
view of the plant's vulnerability to scaling, and a 
lower limit on the velocity of  brine through the tubes 
(thereby on F) to avoid sludge formation. Likewise, a 
lower limit on T and a higher limit on the velocity of 
brine in the tubes (thereby on F) are based on certain 
other conditions. If  the ranges of TBT and brine 

recycle flow are denoted by [T~., T,,~] and [F,,~, F ~ ]  

respectively, and a set of operating conditions 

{T k, F~, k = 1,2 ..... N } is considered in this region, 

the optimal PID controller parameter vector 

[K~, T,, T~ ] for k = 1,2 ..... N is obtained by the gk 
1 I 

simulation facility developed earlier. 

F , ,  k = l , 2 , . . . , N } .  

At each of these points, the controller parameter 
vectors are given by 

In view of the not too wide variations in T and F, a 
mapping function of the form 

c = f ( T , F )  

is considered, or 
g = f~ ( T , F ) = a ,  + a~2 T + at3 F + a~4 TF = Kp 

c2 = f2 ( T , F )  = a2j + a22 T + a23 F + az4 TF = T~ 

c3 = f3 (T, F)  = a31 + a32 T + a33 F + a34 TF = T d . 

Using the relations established at the points 1,2,...,N, 
the coefficients in the vector function f are deter- 
mined by least-squares fitting to form the parameter- 
scheduling law for a chosen optimization criterion. 

A convenient form of this adaptive law is 

[ lll 
¢=1a2, a22 a23 a=,] = . 

La3, a3z a~ a34J TF Ta 

3.8 Parameter-scheduling law f o r  the plant. 

Table 3 gives the PID controller parameters obtained 
by simulation on the unreduced plant. The Zhuang- 
Atherton results which are based on FODT approxi- 
mation of the plant are given in the last rows of this 
table. The parameter-scheduling strategies obtained 
by least-squares fitting of the results in the case of 
the four optimizing criteria are given by the 
following: 

ISE: 

C =  

IAE: 

C = 

i -0.0076 --0.0174 
0.0086 0.0392 

0.0076 0.0028 

i -0.0067 -0.0141 
0.0165 0.1102 

0.0061 0.00299 

o.ooo2 1 
-0.0003 

-0.00005 TF 

000021I l 
-o.oo,o / / ,  ! 
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ITAE: 

i -0.0164 -0.0486 
e = -0.0290 0.1549 

0.0032 0.0045 

ISTE: 

! -0.0035 0.0083 

e = 0.02262 0.1608 

0.0044 -0.00224 

o.ooo6 1 
-0.0013 

--0.0001 TF 

000<I'  ] 
-00015111 | 
o.oooo, j L J 

T~blg 3 Optimal PID Controller Paramgters 

Case TBT Rec. Crite- Parameters of PID 
Flow rion Controllers 

°C t/hr I~ T i T d 
1 95 14420 ISE 0.7346 2.6647 0.2734 

IAE 0.8007 5.3364 0.1814 
ITAE 0.8246 4.7709 0.1781 
ISTE 1.4234 6.5527 0.0809 
Z.A 1.1244 7.3047 0.0409 

2 100 14420 ISE 0.8120 2.5166 0.2521 
IAE 0.9087 3.9736 0.1541 
ITAE 1.5880 4.1986 0.0670 
ISTE 0.8654 4.2280 0.1727 
Z-A 1.2113 5.5913 0.0432 

3 105 14420 ISE 1 .2292 2.05 0.2219 
IAE 1.2162 3.0922 0.1226 
ITAE 2.1436 0.2816 0.0715 
ISTE 1.2893 3.0901 0.1506 
Z-A 1.8782 5.2330 0.0371 

4 105 11500 ISE 0.8108 1.8366 0.3492 
IAE 0 .8271 2.8149 0.2307 
ITAE 1.4653 0.5759 0.1142 
ISTE 0.8678 2.8599 0.2304 
Z-A 1.1870 4.9570 0.0485 

5 105 12500 ISE 0.8547 1.8909 0.2921 
IAE 0.9050 2.7296 0.1918 
ITAE 1.5071 0.5320 0.0929 
ISTE 0.9002 2.7488 0.2038 
Z-A 1 .3930  4.7228 0.0439 

6 105 13500 ISE 1 .1174  1.8207 0.2874 
IAE 1.1301 3.0086 0.1632 
ITAE 2.0084 3.3760 0.0917 
ISTE 1.1906 3.0579 0.1844 
Z-A 1 .4993 4.2107 0.0413 

The PID controllers obtained here are truly optimal. 
The tuning algorithm has been tried in several 
different cases of  plant models and has produced 
good results. 

4. CONCLUSIONS 

The work presented in this paper is the culmination 
of  systematic efforts at advancing the present state of  
control methodology in the desalination industry. 
Figure 14 above shows the overall integrated scheme 
that is realized here. The parameter scheduling law 
derived here for a plant actually operating in Abu 
Dhabi in the United Arab Emirates (where the 

world's largest MSF unit is expected to be 
commissioned in 1996) is a step forward in the 
application of advanced control. 

The control strategy proposed here is designed to 
handle the nonlinear character of the plant. The 
present parameter-scheduling law is expected to be 
of use in conjunction with a steady-state optimization 
program at a higher level of  hierarchy to provide 
optimal operating conditions as setpoint values for T 
and F. These will automatically schedule the 
controller parameters according to the law presented 
here, to ensure dynamic optimization according to 
the chosen integral performance criterion. 

F-----ires ~ Steady State l Objectives Optimization {(Open Loop) ] 
. . . .  (Closed Loop) ] 

t Optimal } 

{ ILine°rizai ° l 
~ptimal Controller[ 
[ Design j 

Parameter Scheduling Law ] 
Controller 

Set point ~ m e t e r s  I 1 Controlled 
- - ~  [ t I Variables 

Plont i--~----~ 
I [ reodb~ok j 

Fig. 14. The integrated adaptive control scheme. 
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